Abgabe Donnerstag, 11. Januar 2018, bis 8.15 Uhr in die jeweiligen Kästen.

Aufgabe 1 (4 Punkte)

Es sei $r \in \mathbb{N}^*$, und es sei $(B_n)_{n \in \mathbb{N}}$ eine Folge von Matrizen in $M(r \times r, \mathbb{C})$ mit $B_n = (b_{n,i,j})_{1 \leq i,j \leq r}$ für $n \in \mathbb{N}$. Man sagt, dass $(B_n)_{n \in \mathbb{N}}$ gegen eine Matrix $B = (b_{i,j})_{1 \leq i,j \leq r} \in M(r \times r, \mathbb{C})$ konvergiert, falls für alle Paare $(i,j) \in \{1,\ldots,r\}^2$ die Folge der Koeffizienten $(b_{n,i,j})_{n \in \mathbb{N}}$ gegen $b_{i,j}$ konvergiert.

Wir definieren die Exponentialfunktion einer Matrix A wie folgt:

$$\exp(A) = \sum_{k=0}^{\infty} \frac{1}{k!} A^k.$$

Zeigen Sie: Die Exponentialfunktion ist für jede Matrix $A \in M(r \times r, \mathbb{C})$ wohldefiniert, d.h. die Folge der Partialsummen konvergiert.

HINWEIS: Beweisen Sie dafür z.B. zunächst die folgende Hilfsaussage: Mit γ_k bezeichnen wir das Maximum der Beträge der Koeffizienten der Matrix A^k . Dann gilt $\gamma_k \leq r^{k-1}\gamma_1^k$.

Aufgabe 2 (4 Punkte)

Es seien $a, b, c, d \in \mathbb{R}$ mit $a \leq b$ und $c \leq d$. Wir betrachten die Menge

$$D := \{ x + iy \in \mathbb{C} : x \in [a, b], y \in [c, d] \}.$$

Sei $f: D \to \mathbb{C}$ eine stetige Funktion.

- (a) Für jedes feste $x \in [a, b]$ definiere eine Funktion $h_x : [c, d] \to \mathbb{R}_+$ durch $h_x(y) := |f(x, y)|$. Zeigen Sie, dass jede dieser Funktionen h_x stetig ist.
- (b) Zeigen Sie, dass die Funktion |f| auf D ihr Minimum annimmt. HINWEIS: Zeigen Sie z.B. zunächst, dass die Funktion $g: [a, b] \to \mathbb{R}_+, x \mapsto \inf\{|f(x,y)| : y \in [c,d]\}$ stetig ist. Dazu können Sie Teil (a) verwenden.

Aufgabe 3 (4 Punkte)

Wir definieren den Tangens tan: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ durch $\tan(x) := \frac{\sin(x)}{\cos(x)}$. Zeigen Sie:

- (a) Die Funktion tan ist bijektiv und streng monoton wachsend.
- (b) Es gilt $\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 \tan(x) \tan(y)}$, für alle $x, y \in (-\frac{\pi}{2}, \frac{\pi}{2})$ mit $x + y \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

Aufgabe 4 (4 Punkte)

Definiere Funktionen $f, g: [0, \infty) \to \mathbb{R}$ durch

$$f(x) := \begin{cases} \sin\left(\frac{1}{x}\right), & x > 0 \\ 0, & x = 0 \end{cases}, \quad \text{und} \quad g(x) := \begin{cases} x\sin\left(\frac{1}{x}\right), & x > 0 \\ 0, & x = 0 \end{cases}.$$

Zeigen Sie, dass g stetig ist, f aber nicht

Beispiele für Klausuraufgaben (ohne Wertung):

- 1. Definieren Sie, was es für die Folge $(a_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ heißt, gegen $a\in\mathbb{C}$ zu konvergieren.
- **2.** Was bedeutet es für eine Folge $(a_n)_{n\in\mathbb{N}}\subset\mathbb{C},$ Cauchyfolge zu sein?
- **3.** Beweisen Sie in höchstens drei Sätzen, dass jede konvergente Folge $(a_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ mit Grenzwert $a\in\mathbb{C}$ eine Cauchyfolge ist.