Abgabe Donnerstag, 9. November 2017, bis 8.15 Uhr in die jeweiligen Kästen.

Aufgabe 1 (4 Punkte)

Zeigen Sie, dass jedes Intervall in den reellen Zahlen die Vereinigung von abzählbar vielen abgeschlossenen Intervallen ist.

Aufgabe 2 (4 Punkte)

Zeigen Sie, dass es ein $x \in (\mathbb{R} \setminus \mathbb{Q})_+$ mit $x^k \notin \mathbb{Q}$ für alle $k \in \mathbb{N}$ mit $k \ge 1$ gibt.

Aufgabe 3 (4 Punkte)

Beweisen Sie die folgenden Aussagen:

- (a) Die Menge $\mathcal{P}'(\mathbb{N}) := \{\text{endliche Teilmengen von } \mathbb{N} \}$ ist abzählbar.
- (b) Die Menge $\mathcal{P}(\mathbb{N})=\{\text{Teilmengen von }\mathbb{N}\}$ ist nicht abzählbar.

Aufgabe 4 (4 Punkte)

Beweisen Sie die folgenden Aussagen:

- (a) Sei $(x_n)_{n\in\mathbb{N}}$ eine konvergente Folge in \mathbb{R} , und sei $s\in\mathbb{R}$ mit $s\geq x_n$ (bzw. $s\leq x_n$) für alle bis auf endlich viele $n\in\mathbb{N}$. Dann gilt $s\geq \lim_{n\to\infty}x_n$ (bzw. $s\leq \lim_{n\to\infty}x_n$).
- (b) Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} mit $\lim_{n\to\infty} x_n > 0$. Dann sind alle bis auf endlich viele $x_n > 0$.
- (c) Sei $(x_n)_{n\in\mathbb{N}}$ eine Nullfolge in \mathbb{R} , und sei $(y_n)_{n\in\mathbb{N}}$ eine beschränkte Folge in \mathbb{R} . Dann ist $(x_n \cdot y_n)_{n\in\mathbb{N}}$ eine Nullfolge.

BEMERKUNG: Schreiben Sie Ihre Lösungen immer so auf, dass alle Rechen- oder Denkschritte nachvollziehbar sind.