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Abstract

We develop the analog of crystalline Dieudonné theory for p-divisible groups in the arithmetic
of function fields. In our theory p-divisible groups are replaced by divisible local Anderson modules,
and Dieudonné modules are replaced by local shtukas. We show that the categories of divisible local
Anderson modules and of effective local shtukas are anti-equivalent over arbitrary base schemes.
We also clarify their relation with formal Lie groups and with global objects like Drinfeld mod-
ules, Anderson’s abelian t-modules and ¢t-motives, and Drinfeld shtukas. Moreover, we discuss the
existence of a Verschiebung map and apply it to deformations of local shtukas and divisible local
Anderson modules. As a tool we use Faltings’s and Abrashkin’s theory of strict modules, which we
review to some extent.
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1 Introduction

In the arithmetic of number fields elliptic curves and abelian varieties are important objects. Their
theory has been vastly developed in the last two centuries and their moduli spaces have played a major
role in Faltings’s proof of the Mordell conjecture [Fal83l [CS86], the proof of Fermat’s Last Theorem
by Wiles and Taylor [Wil95) [TWO95, [CSS97], and the proof of the Langlands correspondence for GL,,
over non-archimedean local fields of characteristic zero by Harris and Taylor [HT01]. A useful tool to
study abelian varieties and their moduli spaces are p-divisible groups. More precisely, for an elliptic
curve or an abelian variety E over a Zy-algebra R the p-divisible group E[p™] = 11_11)1 E[p"], also called

Barsotti-Tate group, captures the local p-adic information of E. One reason why E[p™] is a useful
tool to study E is that the complicated arithmetic data of a p-divisible group over a Z,-algebra R
in which p is nilpotent can be faithfully encoded by an object of semi-linear algebra, its Dieudonné
module.

Elliptic curves and abelian varieties have analogs in the arithmetic of function fields. Namely,
Drinfeld [Dri74, Dri87] invented the notions of elliptic modules (today called Drinfeld modules) and
the dual notion of F'-sheaves (today called Drinfeld shtukas). These structures are function field
analogs of elliptic curves in the following sense. Their endomorphism rings are rings of integers in
global function fields of positive characteristic or orders in central division algebras over the later. On
the other hand, their moduli spaces are varieties over smooth curves over a finite field. Through these
two aspects in which global function fields of positive characteristic come into play, Drinfeld shtukas
and variants of them proved to be fruitful for establishing large parts of the Langlands program over
local and global function fields of positive characteristic in works by Drinfeld [Dri74, Dri77, [Dri87],
Laumon, Rapoport, and Stuhler [LRS93|, L. Lafforgue [Laf02] and V. Lafforgue [Lafl8]. Beyond this
the analogy between Drinfeld modules and elliptic curves is abundant.

In this spirit, Anderson [And86] introduced higher dimensional generalizations of Drinfeld modules,
called abelian t-modules. These are group schemes which carry an action of the polynomial ring F, [¢]
over a finite field I, with r elements subject to certain conditions. Abelian ¢-modules are the function
field analogs of abelian varieties; see for example [BH09]. Although Anderson worked over a field,
abelian t-modules also exist naturally over arbitrary F,[t]-algebras R as base rings; see Definition
They possess an (anti-)equivalent description by semi-linear algebra objects called t-motives, which are
R[t]-modules together with a Frobenius semi-linear endomorphism, see Definition [6.2] and Theorem [6.6],
and are a variant and generalization of Drinfeld shtukas. Through the work of Drinfeld and Anderson
it was realized very early on that a Drinfeld module or abelian t-module over a field is completely
described by its t-motive. The same is true over an arbitrary F,[t]-algebra R, as is shown for example in
[Har19]. So in a way the situation in function field arithmetic is much better than in the arithmetic of
abelian varieties: the t-motive is a “global” Dieudonné module which integrates the “local” Dieudonné
modules for every prime in a single object.

Correspondingly it is not difficult to come up with a definition of a “Dieudonné module” at a
prime p C F,[t] of an abelian t-module: it should arise as the p-adic completion of its ¢-motive;
see Example [6.7[(b) for details. The object one ends up with is an effective local shtuka. To define
these let p = (z) for a monic irreducible polynomial z € F,[t] and let F, = F,[t]/p be the residue
field. Then {iLnFT [t]/p" = F4[z]. Let R be an F,[z]-algebra in which the image ¢ of z is nilpotent.

An effective local shtuka over R is a pair M = (M, Fys) consisting of a locally free R[z]-module M
of finite rank, and an isomorphism Fj;: aq*M[Z—iC] o M[Z—ic] with Fy(oy M) C M. Here o is
the endomorphism of R[z] which extends the g-Frobenius endomorphism o, = Frobg g: b+ b7 for
be Rbyoj(z) =z and oy M := M ® R[:.op R[z]. Now the goal of crystalline Dieudonné theory
in the arithmetic of function fields is to describe the analogs of p-divisible groups which correspond
to effective local shtukas. In the present article we call them z-divisible local Anderson modules as
in the following definition, and we develop this theory under the technical assumption that ¢ € R is

nilpotent. This theory was already announced in [Har05] [Har09, [Har11l [HKT9] and is used in [Har19].



1 INTRODUCTION 3

Definition [T, A z-divisible local Anderson module over R is a sheaf of Fy[z]-modules G on the big
fopf-site of Spec R such that

(a) G is z-torsion, that is G = li_n}lG[z”], where G[z"] := ker(z": G — G),
(b) G is z-divisible, that is z: G — G is an epimorphism,

(c) For every n the F,-module G[2"] is representable by a finite locally free strict F,-module scheme
over R in the sense of Faltings (Definition [4.8)), and

(d) locally on Spec R there exists an integer d € Z>q, such that (z — ()¢ = 0 on wg where wg :=

l(iﬁle[zn] and wgn) = E*QlG[zn}/SpecR for the unit section ¢ of G[2"] over R.

Such objects were studied in the special case with d = 1 in work of Drinfeld [Dri76], Gen-
estier [Gen96], Laumon [Lau96], Taguchi [Tag93] and Rosen [Ros03]. Generalizations for d > 1
and their semi-linear algebra description by the analog of Dieudonné theory were attempted by the
first author in [Har05, Definition 6.2] and by W. Kim [Kim09, Definition 7.3.1]. But unfortunately
both definitions and the statements about the analog of Dieudonné theory [Har05, Theorem 7.2] and
[Kim09, Theorem 7.3.2] are wrong. The problem lies in the fact that the strictness assumption from
is missing. Our above definition corrects this error. It generalizes Anderson’s [And93, §3.4] def-
inition of formal t-modules who considered the case where the G[z"] are radicial and G is a formal
[F,[z]-module in the following sense.

Definition 1.1. In this article we define a formal F,[z]-module over an Fg-scheme S to be a formal
Lie group G equipped with an action of F,[z]. In particular, we do not impose a condition for the
[F,[z]-action on wg.

The description of z-divisible local Anderson modules by effective local shtukas is deduced from
Abrashkin’s [Abr06] anti-equivalence between finite locally free strict Fy-module schemes over Spec R
and finite F,-shtukas. The latter are pairs (M, Fs) consisting of a locally free R-module M of finite
rank and an R-module homomorphism Fyy: o7 M — M. We define finite and local shtukas in Section 2]
and we recall Abrashkin’s results in Section Bl His equivalence is given by Drinfeld’s functor

(M, Fy) — Dry(M,Fy) := Spec (@Sym%M)/(m@)q—FM(Uq*m):meM),
n>0

and its quasi-inverse defined on a finite locally free strict F,-module scheme G as
G — Mq(G) = HomR—groups,]Fq—lin(Gy Ga,R)a

by which we mean the R-module of Fj-equivariant morphisms of group schemes over R on which
the Frobenius Fjy () is provided by the relative g-Frobenius of the additive group scheme G, g over
R. Various properties of M are reflected in properties of Dr,(M); see Theorem for details. The

functors Dr, and M, are extended to effective local shtukas M and z-divisible local Anderson modules
G by

M — Dry(M) = li_n)lqu(M/z"M) and

n

G — M/(G) = {iﬂqu(G[z"]).

n

Generalizing [And93| §3.4], who treated the case of formal F,[z]-modules, we prove the following

Theorem 831
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(a) The two contravariant functors Dry and M, are mutually quasi-inverse anti-equivalences be-
tween the category of effective local shtukas over R and the category of z-divisible local Anderson
modules over R.

(b) Both functors are Fy[z]-linear, map short exact sequences to short exact sequences, and preserve
(ind-) étale objects.

(¢) G is a formal F[z]-module if and only if Far is topologically nilpotent, that is im(Fy,) C zM
for an integer n.

(e) the R[z]-modules WDr, (M,Fyy) and coker Fiyy are canonically isomorphic.

In Section [l we explain the relation of z-divisible local Anderson modules and local shtukas to
global objects like Drinfeld modules [Dri74], Anderson’s [And86] abelian t-modules and ¢-motives, and
Drinfeld shtukas [Dri87]. In particular, if E is a Drinfeld-F,[t]-module or an abelian ¢t-module over R,
then the z"-torsion points E[z"] of E form a finite locally free F,[t]/(z")-module scheme over R. By
Example [6.7(b), the limit G := E[2*°] := ll_II)lE [2"] in the category of fppf-sheaves of Fy[z]-modules

on Spec R satisfies G[2"] := ker(z": G — G) = E[2"] and is a z-divisible local Anderson module
over R. Moreover, the associated effective local shtuka M (G) from Theorem 8.3 arises as the z-adic
completion of the t-motive associated with F; see Example [6.7(b).

In Section [7] we present the above definition of z-divisible local Anderson modules G and give
equivalent definitions. We also introduce truncated z-divisible local Anderson modules, like for example
G[z"]; see Proposition In Section [ we investigate, for ¢ = 0 in R, the existence of a z%-
Verschiebung V,a ¢ for (truncated) z-divisible local Anderson modules G, respectively for local shtukas,
with V,a g o Fya = 2% . idg and FocgoV,ag= 2% idaq*(;, where Fy g is the relative g-Frobenius of G
over R. We use the z%-Verschiebung in Theorem to prove that lifting a z-divisible local Anderson
module from R/I to R when I9 = (0) is equivalent to lifting the Hodge filtration on its de Rham
cohomology. In Section [I0] we use the z%-Verschiebung to clarify the relation between z-divisible
local Anderson modules G and formal F,[z]-modules. Following the approach of Messing [Mes72]
who treated the analogous situation of p-divisible groups and formal Lie groups, we show that a z-
divisible local Anderson module is formally smooth (Theorem [10.4]), and how to associate a formal
F,[2]-module with it (Theorem [I0.7]). We also discuss conditions under which it is an extension of an
(ind-)étale z-divisible local Anderson module by a z-divisible formal [F,[z]-module (Proposition [0.16])
and we prove the following

Corollary There is an equivalence of categories between that of z-divisible local Anderson
modules over R with G[z] radicial, and the category of z-divisible formal Fy[z]-modules G with G|z]
representable by a finite locally free group scheme, such that locally on Spec R there is an integer d
with (z — )4 =0 on wg.

In Section [ we explain Faltings’s notion of strict F,-module schemes and give details additional to
the treatments of Faltings [Fal02] and Abrashkin [Abr06]. This notion is based on certain deformations
of finite locally free group schemes and the associated cotangent complex, which we review in Section [3],
respectively in Appendix [Al There is an equivalent description of finite locally free strict F,-module
schemes by Poguntke [Pogl7]; see Remark [5.3]
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formulations from their reports to improve our introduction. Both authors were supported by the
Deutsche Forschungsgemeinschaft (DFG) in form of the research grant HA3002/2-1 and the SFB’s
478 and 878.
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Notation

Let IF, be a finite field with ¢ elements and characteristic p. For a scheme S over SpecF, and a positive
integer n € N5 we denote by gyn := Frobgn g: § — S its absolute ¢"-Frobenius endomorphism which
acts as the identity on points and as the ¢"-power map b — b?" on the structure sheaf. For an S-scheme
X, respectively an Og-module M we write o;n X := X X g, S, respectively an M := M ®0s.07 Og
for the pullback under gyn. For m € M we also write gjn(m) := m ® 1 € o;nM and note that
o (bm) =bm @ 1 =m®bl =bp" ~oym for b € Og and m € M.

Let z be an indeterminant over F,. Let Og[z] be the sheaf on S of formal power series in z. That is
I'(U, 0s[z]) =T(U, Og)[z] for open U C S with the obvious restriction maps. This is indeed a sheaf
being the countable direct product of Og. Let ¢ be an indeterminant over F, and let F,[(] be the ring
of formal power series in ¢ over F,. Let /\/z'lp]Fq [c] e the category of F, [¢]-schemes on which ¢ is locally
nilpotent. For S € Nilpg, ¢ let Os((2)) be the sheaf of Og-algebras on S associated with the presheaf
U — T'(U,0p)[z][X]. If U is quasi-compact then Og((2))(U) = I'(U,Og[z])[1]. Since ( is locally
nilpotent on S, the sheaf Og((2)) equals the sheaf associated with the presheaf U — I'(U, Og[2]) [z z)-
We denote by o the endomorphism of Og[z] and Og((2)) that acts as the identity on 2 and as b — b7
on local sections b € Og. For a sheaf M of Og[z]-modules on S we let oy M := M ®og[.],0 Os[7]
and M[Z—ig] = M ®04[2] Og[[z]][z—ig] = M ®pg[. Os((2)) be the tensor product sheaves. Also for

a section m € M we write o;m := m ® 1 € g; M. Note that a sheaf M of Og[z]-modules which
I

fpgc-locally on S is isomorphic to Og[z is already Zariski-locally on S isomorphic to Og [[z]]@r by
[HV11l Proposition 2.3]. We therefore call such a sheaf simply a locally free sheaf of Og[z]-modules
of rank r.

2 Local and finite shtukas

Let S be a scheme in Nilpg,_ -

Definition 2.1. A local shtuka of rank (or height) r over S is a pair M = (M, Fys) consisting of a
locally free sheaf M of Og[z]-modules of rank r, and an isomorphism Fy;: o7 M| ol = M [zflc]

A morphism of local shtukas f: (M, Fy) — (M', Fyp) over S is a morphism of the underlying
sheaves f: M — M’ which satisfies Fiy 0 0 f = f o Fyy.

A quasi-isogeny between local shtukas f: (M, Fy) — (M', Fypp) over S is an isomorphism of
Os((z))-modules f: M ®p4.1 Os((2)) == M' ®0g[.1 Os((2)) with Far o0, (f) = f o Fpr. A morphism

which is a quasi-isogeny is called an isogeny.

For any local shtuka (M, Fi) over S € Nilpg, ¢ the homomorphism M — M [Zflc] is injective by
the flatness of M and the following

Lemma 2.2. Let R be an Fy[(]-algebra in which ¢ is nilpotent. Then the sequence of R[z]]-modules

0 R[] R[] R 0

I——z—-(, 2——=C

is exact. In particular R[z] C R[[z]][zflc]

Proof. If 3, b;2" lies in the kernel of the first map, that is, 0 = (z — ¢)(X, biz?) = >, (bim1 — Cbi)Z%,
then b; = (bjy1 = ("b;yy, for all n. Since ( is nilpotent, all b; are zero. Also due to the nilpotency of
¢ the second map is well defined and surjective. For exactness in the middle note that >, ;¢* = 0
implies Y, b;2" = Y, bi(2" — ¢*) which is a multiple of z — (. O

For a morphism f: S’ — S in Nz’lquM we can pull back a local shtuka (M, Fys) over S to the
local shtuka (M ®o4.) Os[2], Fu @ id) over S’
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We define the tensor product of two local shtukas (M, Fys) and (N, Fiy) over S as the local shtuka
(M ®Os[[z] N, Fy® FN). The local shtuka 1(0) = (OS[[Z]], F][(()) = idOS[[Z]]: 0'[1*(95[[2]] = Os[[z]] =
Osl2]) is a unit object for the tensor product. The dual (MV,FMv) of a local shtuka (M, Fys) over
S is defined as the sheaf M~ = Homog[] (M, Og][z]) together with

Fuve of M 2] = MU[L], fo fo )l

Also there is a natural definition of internal Hom’s with Hom(M,N) = M '® N. This makes the
category of local shtukas over S into an Fy[z]-linear, additive, rigid tensor category. It is an exact
category in the sense of Quillen [Qui73| §2] if one calls a short sequence of local shtukas exact when
the underlying sequence of sheaves of Og[z]-modules is exact.

Lemma 2.3. Let (M, Fyy) be a local shtuka over S. Then locally on S there are e,e/, N € Z such
that (z — Q)M C Fy(ofy M) C (2 — ()™M and NM c Fy(o; M).  For any such e the map
Fyiof M — (2 — ()~°M is injective, and the quotient (z — ¢)~°“M/Fy(o; M) is a locally free Og-
module of finite rank.

Proof. We work locally on Spec R C S and assume that oM and M are free Og[z]-modules. Applying
Fyy to a basis of o, M, respectively F 1\_41 to a basis of M, proves the existence of e, respectively €.
If N > ¢ is an integer which is a power of p such that (N = 0 in R, then 2N M = (2N — (MM =
(z—ONM C Fyr(of M).

We prove that the quotient K := (2 — ()™M /Fy (0, M) is a locally free R-module of finite rank.
This was already proved in [HV11, Lemma 4.3, but the argument given there only works if R is
noetherian, because it uses that R[z] is flat over R. We now give a proof also in the non-noetherian
case. Since K = coker (Fj; mod (z — ¢)*¢': o M/(z — C)EJFEI%*M = (2= 0)7°M/(z — ¢)* M), it is of
finite presentation over R. Since R[z] C R[[z]][zi C] is a subring by Lemma and M is locally free,
the map Fy: oy M — (2 — ()”°M is injective. Let m C R be a maximal ideal and set k = R/m. In
the exact sequence

0 — TorfVU (K k[2]) — oM @ppg k2] = (2= ()M @gpg k2] = K ®ppp k[2] — 0,

we have isomorphisms oy M ® g, k[z] = k[2]® M = (2—()"°*M ®g[.1 k[2]. Moreover, ¢ = 0in k and
hence z¢T¢' K ®p[ep k2] = 0. Since k[2] is a PID, the map oM ®@pp.p k[2] = (2 — ()™M ®pg[q k[2]
is injective by the elementary divisor theorem, and hence 0 = Torsz (K,k[z]). To relate this to
Tor (K, k) = Tor?[[zﬂ/(z_oe“, (K, k[2]/(2%¢)) we use the change of rings spectral sequence [Rot09]

Theorem 10.71] and the induced epimorphism (from its associated 5-term sequence of low degrees, see
[Rot09, Theorem 10.31])

e+e/

. = TOI‘?[[ZH(K,/C[[Z]]) — Tor?[[zﬂ/(z—o (K,k[[z]]/(ze+5/)) 0.

It follows that Torf!(K, k) = 0 and from Nakayama’s lemma we conclude that K is locally free over R
of finite rank; compare [Eis95 Exercise 6.2]. O

Definition 2.4. A local shtuka M = (M, F)y) over S is called effective if Fy; is actually a morphism
Fyriof M — M. Let (M, Fyr) be effective of rank r = rk M. We say that

(a) (M, Far) has dimension d if coker Fjy is locally free of rank d as an Og-module.
(b) (M, Fyyp) is étale if Fyy: oy M == M is an isomorphism.

(c) Fu is topologically nilpotent if locally on S there is an integer n such that im(F};) C M, where
Fyp=Fyoo/Fyo... oJ;n,lFM: oM — M.
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(d) M is bounded by (d,0,...,0) € Z" for an integer d > 0, if M satisfies

N Fu(opM) = (z—0* N\ M.

Osl] Osl2]
Example 2.5. We define the Tate objects in the category of local shtukas over S as
1(n) = ((95[[,2]] s Fay i1 (22— C)") .
By Lemma 2.3] every local shtuka over a quasi-compact scheme S becomes effective after tensoring
with a suitable Tate object.
More generally, let now S be an arbitrary F,-scheme.

Definition 2.6. A finite F,-shtuka over S is a pair M = (M, Fys) consisting of a locally free Og-
module M on S of finite rank denoted rk M, and an Og-module homomorphism Fj;: oy M — M. A
morphism f: (M, Far) — (M', Fyp) of finite Fy-shtukas is an Og-module homomorphism f: M — M’
which makes the following diagram commutative

* U;f * !
oy M——- a, M
lFM \LFM’
f

M M.
We denote the category of finite Fy-shtukas over S by F,-Shtg.

A finite [F -shtuka over S is called étale if Fys is an isomorphism. We say that Fjs is nilpotent if
there is an integer n such that Fy; := Fyyoo Fpo...0 J}L,IFM =0.

Finite F,-shtukas were studied at various places in the literature. They were called “(finite) ¢-
sheaves” by Drinfeld [Dri87, § 2], Taguchi and Wan [Tag95, TW96] and “Dieudonné F,-modules” by
Laumon [Lau96]. Finite F,-shtukas over a field admit a canonical decomposition.

Proposition 2.7. ([Lau96, Lemma B.3.10]) If S is the spectrum of a field L every finite F,-shtuka
M = (M, Fyr) is canonically an extension of finite F,-shtukas

0 — (Mg, Fsy) — (M, Fy) — (Mya, Frn) — 0

where Fy is an isomorphism and Fyy is nilpotent. My, = (Mg, Fey) is the largest étale finite F-sub-

shtuka of M and equals im(FJf};M ). If L is perfect this extension splits canonically.

Proof. This was proved by Laumon [Lau96, Lemma B.3.10] for perfect L. In general one considers
the descending sequence of L-subspaces ... D im(FJ,) O im(Fy;™') D ... of M which stabilizes
at some finite n. If im(Fy;™!) = im(F},) then Fi: oy (im ) — im Fit = im FY, is surjective,
hence bijective, and therefore 1m(F1(L4/) = im(F};) for all n’ > n. So the sequence stabilizes already

for some n < rkM and Mg = im(F X};M ). If L is perfect, My; is isomorphic to the submodule
Unso ker(Fyy o ogn: M — M) of M; see [Lau96l, Lemma B.3.10]. O

Example 2.8. Every effective local shtuka (M, Fjs) of rank r over S yields for every n € N a finite
[F,-shtuka (M /2" M, Fpr mod z") of rank rn, and (M, Fys) equals the projective limit of these finite
[ -shtukas.

Thus from Proposition [2.7] we obtain

Proposition 2.9. If S is the spectrum of a field L in NilquHC}] every effective local shtuka (M, Fyr)
is canonically an extension of effective local shtukas

0 — (Mg, Fee) — (M, Fy) — (Mui, Fat) — 0

where Fg is an isomorphism and Fyy is topologically nilpotent. (Mg, Fgy) is the largest étale effective
local sub-shtuka of (M, Fyr). If L is perfect this extension splits canonically. O
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3 Review of deformations of finite locally free group schemes

For a commutative group scheme G over S we denote by €g: S — G its unit section and by wg :=
E*GQ}; /s its co-Lie module. Tt is a sheaf of Og-modules. In order to describe which group objects
are classified by finite IF,-shtukas we need to review the definition of strict IF;-module schemes in the
next two sections. We follow Faltings [Fal02] and Abrashkin [Abr06]. We begin in this section with
a review of deformations of finite locally free group schemes. Recall that a group scheme G over S is
called finite locally free over S if on every open affine Spec R C S the scheme G is of the form Spec A
for a finite locally free R-module A. By [EGAL I,ew, Proposition 6.2.10] this is equivalent to G being
finite flat and of finite presentation over S. The rank of the R-module A is called the order of G and
is denoted ord G. It is a locally constant function on S. The following facts will be used throughout.

Remark 3.1. (a) A morphism G’ — G of finite locally free group schemes is a monomorphism (of
schemes, or equivalently of fppf-sheaves on S) if and only if it is a closed immersion by [EGAL IVy,
Corollaire 18.12.6], because it is proper.

(b) Let G and G” be group schemes over S which are finite and of finite presentation and assume that
G is flat over S. Then a morphism G — G” of is an epimorphism of fppf-sheaves on S if and only if
it is faithfully flat; compare the proof of [Mes72l, Chapter I, Lemma 1.5(b)].

(¢) A sequence 0 — G' - G — G” — 0 of finite locally free group schemes over S is called ezact if
it is exact when viewed as a sequence of fppf-sheaves on S. By the above this is equivalent to the
conditions that G — G” is faithfully flat, and that G’ — G is a closed immersion which equals the
kernel of G — G”. In this case ord(G) = ord(G’) - ord(G”) as can be seen from the isomorphism

Og =2 O0g 0 G Og where egr: S — G” is the unit section, and from the multiplicativity of ranks

l“k(gs Oqg = (rkoc,, Og) . (l“k(gs OGn) = (rkos O(;/) . (rkos OGn).

(d) If G" — G is a closed immersion of finite locally free group schemes over S, then the quotient
G /G’ exists as a finitely presented group scheme over S by [SGA 3| Théoréme V.4.1 and Proposition
V.9.1], which is flat by [EGAl IV3, Corollaire 11.3.11]. It is integral over S and hence finite, because
O¢/er C Og. In particular, G/G" is finite locally free over S.

In the following we will work locally on S and assume that S = Spec R is affine. Let G = Spec A
be a finite locally free group scheme over S. Then G is a relative complete intersection by [SGA 3|
Proposition II1.4.15]. This means that locally on S we can take A = R[X1,...,X,|/I where the ideal
I is generated by a regular sequence (f1,..., f,) of length n; compare [EGAL IV, Proposition 19.3.7].
The unit section eg: S — G defines an augmentation 4 := €,: A — R of the R-algebra A, that is,
€4 is a section of the structure morphism t4: R < A. Faltings [Fal02] and Abrashkin [Abr06] define
deformations of augmented R-algebras as follows. For every augmented R-algebra (A,eq: A — R)
set Iy := keres. For the polynomial ring R[X] = R[X1,...,X,] set Iy = (Xi1,...,X,) and
erx): R[X] — R, X, = 0. Abrashkin [Abr06, §§1.1 and 1.2] makes the following

Definition 3.2. The category DSchg has as objects all triples H = (H, Hb,’iq.[), where H = Spec A
for an augmented R-algebra A which is finite locally free as an R-module, where H® = Spec A for
an augmented R-algebra A’, and where iy : H < H” is a closed immersion given by an epimorphism
iq: A" — A of augmented R-algebras, such that locally on Spec R there is a polynomial ring R[X] =
R[X1,...,X,] and an epimorphism of augmented R-algebras j: R[X] — A” satisfying the properties
that

e the ideal I := ker(i4 o j) is generated by elements of a regular sequence of length n in R[X],
e kerj = I - Ipx), and hence A = R[X]/I and A = R[X]/(I - Ipix))-

In particular, H is a relative complete intersection. We write A = (A, A%iy) and H = Spec A.
A morphism Spec(A4, Ab,iz) — Spec(A, A%, iy) in DSchg is given by morphisms f: A — A and
f7: A” — A” of augmented R-algebras such that foiy =i io f?. Sometimes iy and i are ommited.
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For an object H = Spec(A,Ab,iA) of DSchg define the two R-modules Ny = keriy and tj, =
I /12 “1»» Where I, is the kernel of the augmentation ¢ 45 : A® — R. After choosing locally on Spec R an

epimorphism j: R[X] — A” we have I 5, = Irix)/(I-Ig(x)), which implies Nyy = I/(I - Ig[x)) and t3, =
Ipix)/ I?%[ X Both are finite locally free R-modules of the same rank. This is obvious for ¢}, and for
N3 we give a proof in Lemma [3.3] below. Also note that I -keriq = 0, because keriq = I/(I- Ig|x))-
We write n = ng: Ny — A for the natural inclusion and 7 = 73, := (id —14p€ 4p) mod Iib DAY t3,.
If H = (A, A") and H = Spec(A, A?) every morphism (f, f*): (4, A”) — (A, A°) in Hompge (X, H)
induces morphisms of R-modules Ny: Ny — Ny and t3: 3, — t; with f? ony = ng o Ny and
71'ﬁofb :t}om{.

Lemma 3.3. If H = Spec(A, Ab,iA) € DSchg then A and Ny are finite locally free R-modules with
rkr Ny = rkg t;—t'

Proof. Considering the exact sequence 0 — keriy — A° — A — 0 of R-modules it suffices to
prove that Ny = keriy is finite locally free. Working locally on Spec R we assume that there is an
epimorphism j: R[X] — A® as in Definition such that I := ker(ig o j) is generated by a regular
sequence (f1,..., fn). Then keriq = I/(I - Ipx)) = I @px) R. From Lemma [AJ] we get an exact
sequence of R[X]-modules

®1§u<uén R[X] ’ hlw - @Z:l R[)_(] gy —I1——=10
h,u,u'—>fl/g,u_fugl/7 gu'—>f1/

Applying . ®px] R, the first homomorphism becomes zero because f, € Ig[x], whence f, =0 in R.
So kerig = R®™. The equality of ranks follows from ¢, = IR[X}/I%{[X} =@,_R-X,. O

Faltings [Fal02, §2] notes the following

Lemma 3.4. Let H = Spec(A, A®,i4) and H = Spec(ﬁ, A, i 7) be objects in DSchg and let f: A — A
be a morphism of augmented R-algebras. Then the set

L= {f": A A morphisms of augmented R-algebras for which (f, fb) € Hompgen g (ﬁ,’H) }

is non-empty and is a principal homogeneous space under Hompg(t;,, Nﬁ). That is, for any f° € L the
map Homp(ty, Ng) — L, h — P+ ng o homy is a bijection.

For the convenience of the reader we include a

Proof. We first show that for every f” € £ the map f* := f” + nghiy A = Aisa morphism of
augmented R-algebras. Clearly it is a map of R-modules with fb(f ) C Iz, We must show that
Pxy) = (@) (y). We write z = 2/ + 2" and y = ¢/ + ¢ with 2,/ € 1 (R) and 2”,y" € .
Since nghmy(x) - nghry(y) € ker(i7)* = 0 and foz") - nghry(y) € I3, - ker(iz) = 0, as well as
nghmy(2'y') = nghry(2"y") = 0 we compute

P@P@) = F@FLE)+ G+ L") nghmy) +nghm() - (£ @) + £ ")

"(wy) + 2 nghmy(y) + o - nghm (@)

)+
xy) +n hm.dxy%—ym—:py +2"y")
)

Il
s s

b:l?y

F(
(
’(
(
Since im(nﬁhmj) C ker(i3,) we have iz, o fo= iz 0 f” = foiy andso frec.

Next if f°, f> € £ then im(f* — f*) C ker(iz,). If further z = 2’ + 2” € A’ with 2’ € 1 4,(R) and
2" € I, then f2(z) — f2(x) = 2’ + f(z”") — 2’ — f*(2") is independent of /. And for 2”,y" € I, the
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equation f*(z"y") — f(«"y") = (") (£’ (y") = P(y")) + (£*(=") = P(2")) ' (y") € I3, -ker(iz) = 0
shows that f*— f” factors through a unique R-homomorphism ~ € Hom R(tH, Ng)as f b= SLUER

It remains to show that £ # (. Locally on open affine subsets U; := SpecR C S we con-
sider presentations A = R;[X]/I, A® = Ri[X]/(IIg,x)) and A = R;[X ]/I A’ = R; [X]/(II RiX ])
We choose an R;-homomorphism F: R;[X] — R;[X] which lifts f. In particular, F;(I) C I and
Fi(Ip,x)) C 1 Ri[X]" Therefore F; induces a homomorphism fib: A® — A° which lifts f. In order to
glue the fib we consider the quasi-coherent sheaf H := Homg(t3,, Nﬁ) on S. Over U;; := U; NU; both
f? and f]b lift f. By the above there is a section h;; € I'(U;;, H) with - fjb = nghijmy. The hi;
form a Cech cocycle. Since Hl({Ui}, H) = 0 we find elements h; € I'(U;, H) with h;; = h; — hj. This
means that the fib = fz-b — nghimy coincide over U;; and glue to a morphism f > A* — A® which lies
in L. ]

The category DSchg _possesses direct products. If H = Spec(A AP ,i4) and H = Spec(A A 1)
then the product H xg H is given by Spec(A @ A, (A ®g A), k), where

(A@rA) = (A @rA)/(kerig@ A + A’ @keriz) - (I @A + A" ®13)

and « is the natural epimorphism (A®pg A) — A®pgA. After choosing locally on Spec R presentations
A= R[X]/I, A" = RIX]/(I - Ipjx)) and A = R[X]/I, A’ = R[X]/(I - L)) we can write

(A®rA)Y = RIX©1,1©X] /(I ® R[X]+ RIX]® 1) - (Inx) ® R[X] + RIX] ® Iy5))-

The projections pry: H xg ﬁ~—> H and pry: H Xg H — H come from the natural embeddings of R[X]
and R[X] into R[X ® 1,1 ® X].

Definition 3.5. Let DGrg be the category of group objects in DSchg. If G = Spec. A € DGrg, then its
group structure is given via the comultiplication A: A — A®r A and A’: A’ — (A®p A)°, the counit
e: A — Rand¢&”: A’ — R, and the coinversion [—1]: A — A and [~1]°: A> — A", which satisfy the
usual axioms. In particular, we require the counit axiom (id 4 ®e”)o A’ = id 4 = (£”® id 45) 0 A’, and
that ¢ and €” are the augmentation maps. The morphisms in DGrg are morphisms of group objects.

If g = (G, Gb) € DGrg, note that G = Spec A is a finite locally free group scheme over R with
the comultiplication A, the counit £ and the coinversion [—1]. But in general G’ is not a group
scheme over S when the comultiplication A”: A” — (A®p A)” does not lift to A” ®p A°. Faltings and
Abrashkin [Abr06l § 1.2] make the following

Remark 3.6. (a) If G = Spec(A, A°,i4) € DSchg and G = Spec A is a finite locally free group
scheme over R, then there exists a unique structure of a group object on G, which is compatible
with that of G. Tt satisfies A’(z) —2®1—1®@2 € I, @1, forall x € I,,.

(b) If G, € DGrg are group objects and (f, f’) € Hompgeng (G, H) such that f: G — H is a
morphism of group schemes, then (f, f°) € Hompa:g (G, H).

For the convenience of the reader we give a

Proof. @ By Lemma B4 we may choose a homomorphism A A — (A®r A)* which lifts the
comultiplication map A: A - A®r A. We want to modlfy A" to A = AY + ngxg o h omg for an
R-homomorphism h € Hompg(tg, Ngxg) such that (id, ®¢ Yo A” = idy = (" ® id ) o A holds.
Thus we can take ngxgohomg(z) = (z—(id ®€b)ozb(x)) @1+1® (z— (&® idAb)Ozb(éU)). Note that
this lies in Ngxg, because (ids ®e) o A = idy = (e ® id4) o A implies z — (id 4 ®e”) 0 A®(x) € kerig
and z — (2" ® id ) o A’(z) € keriy. This also shows that ngxg o homg: A” — (A ®g A)’ factors
through ¢& and therefore h exists.
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To prove uniqueness of A’ we work locally on S and choose a presentation A = R[X]/I and
A’ = R[X]/(I - Igix)). Then we have A®p A= R[X ®1,1® X]/(I ® R[X] + R[X]®I) and

(ARrA) = RX®1,1®X]/(I®R[X]+RX]®1I)- (Inx) ® RIX]+ RX] ® Ipx)) -

Note that every element v ® & € I ® R[X] with w € I and & = @' + @’ € R[X], where @ € R and
a" € Igpx), satisfies u ® & = u @ @' = (@'u) ® 1 in

ker(iaga) = (I® RX|+ RX]® 1) /(I ® RX]+ R[X]|®1I) - (Igx) ® RIX] + R[X] ® Ipx)) -

Now assume that A” and A’ both satisfy the counit axiom and lift A. Then for every z € A’ there are
u,v € I such that A’(2)—A"(z) = u®14+10v in (AQRA)’. We obtain u = (id 4 ®e”)(A?(z)—AP(z)) =
z—z=0and v=(® idy)(A(x) — A’(z)) = & — x = 0. This proves that A” = A,

The last assertion is standard. Namely, write A’(z) —2®@1 - 1@z =Y, u; ® v; for u; = u} +u/,
v; = vl + o with v}, v} € 1(R) and u/,v) € I. Then Y ulv; = (2 @ idp) (X u @ v;) =
r — & (z) — 2 = 0 implies >, u; ® v; = uZ ® v, And Y, ufv] = (idy @) (3wl @ v) =
(idyp @")(A°(@) —2®@1—-1®2) =2 — 2 — & (z) = 0 implies >, ué’@vi = ul @
[(b)] We write G = Spec(A4, A") with Comultlphcatlon (A, A% and counit (g,£), and H = Spec(A, A”)
with comultiplication (A, A”) and counit (£,&”). We also write A = R[X]/I locally on S. We have to
show that F := (A’ o f* — (fb @) oAY): A = (A®g A) is zero. From Ao f = (f ® f) o A we see
as in [(a)] that for every z € A’ there are u,v € I with F(z) =u®1+1®vin (A®r A)°. Now

u = (idp @) o F(a)
(idp @e )oAbOf( ) (idp 22) 0 (' @ ) 0 B2(a)
= 1dAbof (z) — f o (idy ®&°) o A’(x)
= f(2) - f(a )
= 0,
and likewise v = 0. This shows that F = 0 and (f, f*) € Hompa,s (G, H) as claimed. O

Let G = (G, G, ig) € DGrg. Faltings defines the co-Lie complex of G over S = Spec R (that is, the
fiber at the unit section of G of the cotangent complex) as the complex of finite locally free R-modules

lys: 00— Ng —5t5—0 (3.1)

concentrated in degrees —1 and 0 with differential d := mg o ng. Recall that the co-Lie complex of
G/S and more generally the cotangent complex of a morphism was defined by Ilusie [[I71], TI72]
generalizing earlier work of Lichtenbaum and Schlessinger [LS67]; cf. Appendix [Al If G = Spec A for
A = R[X]/I where I is generated by a regular sequence then the cotangent complex of Illusie [[1I71],
I1.1.2.3] is quasi-isomorphic to the complex of finite locally free A-modules

. d
Lgs: 0—>1/12—+Q}%[&/R®R[&A—>0

concentrated in degrees —1 and 0 with d being the differential map; see [[lI71, Corollaire I111.3.2.7]. The
co-Lie complex of G over S is defined by Illusie [III72, § VII.3.1] as Ké/s = EEL.G/S where eg: S — G
is the unit section. To see that this is equal to Faltings’s definition note that

eg(I/I?) = I/IP®aR = I®px R = I/(I-Igx) = Ng  and

eQpyr @rx) A) = Qpxyr@rx) R = @aR-dX, = Inx/Trx =
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and that the differential of both co-Lie complexes sends an element x € I to the linear term in its
expansion as a polynomial in X, because all terms of higher degree are sent to zero under &f,.
Up to homotopy equivalence both LZ; /8 and Ké /8 only depend on G, and not on the presentation

A = R[X]/I nor on the deformation G of G. Note that L;: /s and L*Eé /s are quasi-isomorphic by
[Mes72, Chapter II, Proposition 3.2.9] where ¢: G — S is the structure map.

Definition 3.7. We (re-)define the co-Lie module of G over S as wg = HO(E_C:/S) := coker d and set
ng = H_l(ﬁé/s) := ker d. These R-modules only depend on G and not on G. Since HO(L;T,/S) = QE/S

we have wg = E*GQE /s which is also canonically isomorphic to the R-module of invariant differentials
on G.

We record the following lemmas.
Lemma 3.8. If G € DGrg the following are equivalent:

(a) G is étale over S,
(b) wa =0,
(c¢) the differential of E_C:/s is an isomorphism.

Proof. If GG is étale then Qé /5= 0. Conversely, since Qé /s is a finitely generated Og-module, wg =0
implies by Nakayama that G is étale along the zero section. Being a group scheme it is étale everywhere.

Clearly implies @ Conversely if wg = 0, that is, if d is surjective, then d is also injective,
because both t5 and Ng are finite locally free of the same rank by Lemma O

Lemma 3.9 ([Mes72, Chapter II, Proposition 3.34]). Let 0 - G' - G — G” — 0 be an exact
sequence of finite locally free group schemes over S. Then there is an exact sequence of R-modules

0—>nG//—>ng—>nG/—>wGN—>wg—>wG1—>0.

In particular, if G' — G is a closed immersion then wg — wqr is surjective.

4 Strict F,-module schemes

We keep the notation of the previous section. Let O be a commutative unitary ring.

Definition 4.1. In this article an O-module scheme over S is a finite locally free commutative group
scheme G over S together with a ring homomorphism O — Endg(G). We denote the category of
O-module schemes over S by Gr(O)s.

Proposition 4.2. If S is the spectrum of a field L every O-module scheme G over S is canonically an
extension 0 — GY = G — G — 0 of an étale O-module scheme G* by a connected O-module scheme
GY. The O-module scheme G is the largest étale quotient of G. If L is perfect, G is canonically
isomorphic to the reduced closed O-module subscheme G4 of G and the extension splits canonically,

G = GO XS Gred.

Proof. The constituents of the canonical decomposition of the finite S-group scheme G are O-invariant.
O

Definition 4.3. Let S = Spec R be a scheme over O and let G € DGrg. A strict O-action on G
is a homomorphism O — Endpg.4(G) such that the induced action on Ké /s is equal to the scalar
multiplication via O — R; compare Remark

We let DGr(O)g be the category whose objects are pairs (G, [.]) where G € DGrg and [.]: O —
Endparg(G), a — [a] is a strict O-action, and whose morphisms f: (G,[.]) — (G',[.]') are those
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morphisms f: G — G’ in DGrg which are compatible with the O-actions, that is, which satisfy
folal=]a) o f forallacO.

We let DGr*(O)s be the quotient category of DGr(O)gs having the same objects, whose morphisms
are the equivalence classes of morphisms (G,G”) — (H,H’) in DGr(O)s which induce the same
morphism G — H.

So by definition the forgetful functor DGr*(0)s — Gr(O)g, which sends (G,G?) to G and mor-
phisms (G, G*) — (H, H’) to their restriction to G — H, is faithful.

Faltings [Fal02, Remark b) after Definition 1] notes the following property of strict O-actions for
which we include a proof.

Lemma 4.4. A strict O-action [.]| on G induces on every deformation G of G a unique strict O-action

[.] which is compatzble with all lifts Q — G and G — Q of the identity on G. In particular, the pairs
(G,[.]) and (G, []) are isomorphic in DGr*(O0)g.

Proof. Let G = Spec(A4, A”) and G= Spec(A, Zb) By Lemmal[3.4lwe may choose lifts f: A" — A" and
g: A’ — A" of the identity on A, and there are homotopies h: tg — Ng and h: t} — Ng satisfying

gf = id+nhr and fg = id+nh7 where n = ng, m = mg and n = ng, T = g If we have a

strict O-action O — Endpgrg (Q) a — [a] on G satisfying f o [a] = [ J]o fand go [ | = [a] o g then
we necessarily must have [a] = [ I(fg —nh@) = folalog— TIN[’;]hﬂ' = flalg — anh#. This proves
uniqueness.

S0 to define a strict O-action on G we choose f and g as in the previous paragraph and we set
[a] := flalg — afih7: A* — A’. To show that this is a ring homomorphism we first note that it is
R-linear. To prove compatibility with multiplication let b, c € A”. We write b =0 +0" and ¢ = ¢/ + ¢’
with o/, ¢/ € v 3, (R) and b, ¢” € I,. Then 7(b) = (0" mod I%b) =:b" and [ 1(b) = flalg(b)—anh(®") =
v + flalg(t") — anh(b’) with fa]g(b”) € I3, because f, [a] and g are homomorphisms of augmented

R-algebras. Since ﬁ(N§)2 =n(Ng

)13 = (0) and b"¢” = 0 we can compute
[a](b) - lal(c) = flalg(be) — ¥ - anh(c") — ¢ - anih(V")
= flalg(be) — anh(V ¢ + VT + 577
= flalg(bc) — anhi(be)

= [al(bo).

We next claim that the map O — Endpars(G),a — [a] is a ring homomorphism. First of all
[1] = fg — ih# = id. Next note that

)
_l_

=
I

o ((flalg — anhw) @ (f[blg — bih#)) o A’
=ﬁw((f®f)([a]®[b])(g®g)—(aﬁﬁfr)@@f[b]g—f[ lg ® (bAh#) + (afih#) ® (bnhw))oﬁ",

where m: (ﬁ R g)b — A s induced from the multiplication in the ring A’ and the homomgrphigm
(flalg—anhm)@(f[blg—bnhr): AI’®RAI’ — Ab®RAb induces a homomorphism (AQRA)” — (AQRA)
denoted by the same symbol. To prove [ ]+ [b] [a +b] := fla+blg — (a + b)ah& we observe

o(f@f)la@b)g@g)eA’ = fomo([d@b) oA og = fola+blog,

and we evaluate the claimed equality on X, where A* = R[X]/I - Ipxz)- For every v there are
u;, v; € IR[X} such that Ab()z,,) =X, 21+1®X, + > Ui ® vy see @ after Definition Now
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(1) =0, as well as (ﬁﬁfr)(IR[;q) cI/I-1 rE) C A and f[b]g(IRp?]) C Iz imply

o ((anh@) ® flblg) o A’(X,) = anh#(X,)  and

mo (flalg® (bah7)) o A°(X,) = baha(X,) and  ((afh®t) @ (bih#)) o A’(X,) = 0.

From this [Aaj + m = [a+b] follows. To prove that [Aaj o m = [fa\b/], we use that N, = a and
th = b implies la]n = NN}, = a-n and ©[b] = ty™ = b, as well as la]gi = [a]nNy = a - gi and
Tf[b] = tjm[b] = b- 7 f. We compute

[alo B] = (flalg— afih#) o (f[blg — bh7)

fla)(id +nhm)[blg — anhz f[blg — b - flalg Ah% + abRhFih
fla][blg + ab fnhrg — abih fg — ab fgihx + abnhinh#
flablg + ab f(gf — id)g — ab(fg — id)fg — ab(fg — Ah7)ih7
flablg — abnh7

= [ab] .

a

This proves that O — Endpa:s(G),a — [a] is a ring homomorphism. From

tei = #[a]
ANy = [ = flalgn —anhan = a(fg—nh@)n = an

7flalg — a7nhic = a#(fg—nh7) = a7 and

[

we conclude that O — EndDGrs(g), a [/(\1/] is a strict O-action on G.
To prove that [;Lj is compatible with f and g, we compute iCT]f = flalgf —anhitf = fla]+ fla]nhm—
a(fgf = f) = fla] and gla] = gflalg —agiihi = lalg+nhrllg—a(gfg—g) = lalg. 1t f': £’ — A’ and
g A" — A° are other lifts of the identity on A then f' = f —I—nﬁw and ¢ = g+nd7 for R-homomorphisms
€.t§—>N§and€.t2~—>Ng. Then f'[a] = fla] + #érla] = [alf + a?dr = [a]f + [a]idr = [a]f’ and

[alg’ = [alg + [a]nlT = g[?tj +anlm = g[?tj + n@frm = g’[ J. This proves the first part of the lemma.
Finally f and g are mutually inverse isomorphisms between (G, [.]) and (G, [ ) in DGr*(0)s. O

Remark 4.5. The co-Lie complex K_C: /s depends on the deformation G of G. For another deformation C7

the complex £~ . is homotopically equivalent to Eé /s Therefore one might try to weaken Definition [£.3]

G/s
and only require that the action of a € O on Eé /8 is homotopic to the scalar multiplication with a.
We do not know whether this is equivalent to Definition 3] and whether Lemma [£.4] remains valid
for general O. Both is true for the polynomial ring O = F,la].

Remark 4.6. Note that there can be different non-isomorphic strict O-actions on a deformation G.
For example let G' = e, = Spec R[X]/(X?) and A’ = R[X]/(XPT1). Let O = F,[a] be the polynomial
ring in the variable a, and let R be an O-algebra by sending a to 0 in R. For every u € R the
endomorphism [a] = 0: @, — @, X + 0 lifts to [a]: A — A%, X = uXP. All these lifts define strict
O-actions on (G, Spec A”) which are non-isomorphic in DGr*(F,[a])s. In particular, the forgetful
functor DGr*(Fp[a])s — Gr(F,la])s is not fully faithful.

In contrast, for O = F, we have the following

Lemma 4.7. The forgetful functor DGr*(F,)s — Gr(Fy)s is fully faithful. In particular, if G €
Gr(F,)s and G = (G,G*) € DGrg is a deformation of G, then there is at most one strict Fy-action
on G which lifts the action on G.



4 STRICT Fo-MODULE SCHEMES 15

Proof. Let (G,[.]) and (G, m) be in DGr*(F,)s with G = Spec(4, A°) and G = Spec(4, A"). Let
f: A — A be a morphism in Gr(F,)s, that is [a]f = fla]. Take any lift f: A — A® of f. Then
for each a € F, there is an R-homomorphism h,: t; — Ng with [q] f° = f’la] = fhgm. Tt satisfies
hap = ahy, + bh, because 7[b] = thy™ = bm and [ In= nNm = an, and hence

ithayw = [abl "~ flab] = [a]([] /" = (b)) +([al £ = £ [a))b] = [a]fih -+ fham(b] = f(ahy+bho)

We claim that it also satisfies hqyp = hq + hp. Namely

Nhappm = [a+b] fb[a—i-b]
= o([a] [b])oAbofb fromo([a] @ [b]) o A’
= o ((af H — 'l ® f[0]) o A’
= o (([alf’ — fla) ® B £+ fla ® (1] — 1))

= mo (Rhem ® []fb—i-f[]@ﬁhmr)oAl’

where m: (A®gA)’” — A” is induced from the multlphcatlon in the ring A’ and ([a]fb ® [b] f°): A op
A® - A" @ A" induces a homomorphism (A @r A)” — (A @g A)’ denoted by the same symbol. We
evaluate this expression on X, where A* = R[X]/I -1 R[x]- For every v there are u;,v; € Ig[x] such
that A°(X,) = X, ® 1 + 1 ® X, + 3, u; ® vy; see [(a)] after Definition Now 7(1) = 0, as well as
(nhaﬂ')([R[X]) C [/[ R[X] C Ab and [b] fb([R[iq) C IR[X] imply ﬁha+b7T(X,,) = ﬁhaW(XV)-i-ﬁhb?T(Xy)
as desired. This proves hgiy, = hg + hp. If a lies in the image F, of Z in F, then h, = a-hy = 0.
In other words a +— hq, Fq — Homp(tg, Ng) is an Fy-derivation. Since QIIFq JE, = (0) we must have

he = 0 and [a ]fb f*[a] for all @ € F,. This means that (f, f’) defines a morphism in DGr*(F,)s
which maps to f under the forgetful functor So this functor is fully faithful. The remaining assertion
follows by taking A = AP, A=A and = O

Definition 4.8. A finite locally free F,-module scheme G over R is called a strict Fy-module scheme
if it lies in the essential image of the forgetful functor DGr*(F,)s — Gr(F,)s, that is, if it has a
deformation G carrying a strict Fy-action which lifts the Fy-action on G. We identify DGr*(F,)s with
the category of finite locally free strict F,-module schemes over S.

Lemma 4.9. For a finite locally free Fy-module scheme G over R the property of being a strict Fy-
module scheme is local on Spec R.

Proof. Let G be a deformation of G over Spec R. Let Spec R; C Spec R be an open covering and let
G; be deformations of G' x g Spec R; carrying a strict Fy-action which lifts the [F-action on G. This
action induces by Lemma [4.4] a strict Fy-action on G x r Spec R; for all i. Above Spec R; N Spec R;
these actions coincide by Lemma [4.7] and hence they glue to a strict [Fy-action on G as desired. O

Example 4.10. We give some examples for finite locally free strict F,-module schemes. Let R be an
F-algebra.

(a) Let &y = Spec R[X]/(XY) and ‘D‘Z = Spec R[X]/(X%*1). Then [a](X) = aX for a € F, defines a
strict Fg-action on G = (e, a(b]). Indeed, the co-Lie complex is

lo)s: 0—X"R— X -R—0

with d = 0 and a € F, acts on it as scalar multiplication by a because N, (X?) = (aX)? = aX? and
£y (X) = aX. Therefore e is a finite locally free strict F,-module scheme.
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(b) On @, = Spec R[X]/(XP) there is an Fg-action given by [a](X) = aX. If ¢ # p it does not lift
to a strict Fg-action on @zb = Spec R[X ]/(Xp+1) Although we may lift the action to G = (ay, @z;,) via
[a](X) = aX the co-Lie complex is

g0 00— X’ R— X-R—0
and so a € [F, acts on Ng by a? which is not scalar multiplication by a when a? # a. Any other lift
[a] of the F,-action on @, to G satisfies [a] = [a] + nh,7 for an R-homomorphism h,: t; — Ng and
yields nN[ ] [ |n = la]n + nhymn = [a]n = nN|, because 7n = d = 0 on Eé/S‘ So no such action is

strict and av, is not a strict F,-module scheme.

(c) The constant étale group scheme F, = Spec R[X]/(X? — X) over Spec R and its deformation
@b = Spec R[X]/(X9! — X?) carry a strict F-action via [a](X) = aX. Indeed, the co-Lie complex is

l)s: 0—(X—X9).R— X-R—0

with d: X — X% — X and a € F, acts on it by N (X — X?) = aX — (aX)? = a(X — X9) and
£y (X) = aX. Therefore Fy is a finite locally free strict Fg-module scheme.

(d) The multiplicative group g, = Spec R[X|/(X? —1) has an Fj,-action via [a](X) = X* This
action does not lift to /,ull’, = Spec R[X]/(X —1)P*!, because on /,ull’, we have A(X) = X ® X and hence
[a](X) = X?, which satisfies [p](X) = XP? # 1. Therefore no deformation of ji, can carry a strict
Fp-action and ju, is not a strict Fp-module scheme. Note that nevertheless [F), acts through scalar

multiplication on the co-Lie complex ¢ Jip/S"

Part (c) generalizes to the following

Lemma 4.11. Any finite étale Fy-module scheme is a finite locally free strict Fq-module. In particular,
if 0 » G' - G — G" — 0 is an ezact sequence of finite locally free F,-module schemes with G a strict
Fy-module and G" étale, then both G’ and G" are strict Fy-modules.

Proof. The first assertion was remarked by Faltings [Fal02, § 3, p. 252] more generally for finite étale
O-module schemes, and also follows from [Dri&7) Proposition 2.1(6)] and Theorem [5.2 below. For the
convenience of the reader we include a direct proof which also works for general O. Let G be a finite
étale F-module scheme. Since it is clearly locally free we must prove its strictness. Locally we choose
a presentation G' = Spec A with A = R[X]/I and A* = R[X]/I- Ig[x)- Since G is étale, its zero section
is open and A = R x A; is a product of rings, where R = R[X]/Ig(x] corresponds to the zero section
and A; to its complement. If I} := ker(R[X] — A;) then I = IR[& 11 and Iy + I1 = (1). We fix
elements ug € Igx) and uy € Iy with ug +uy = 1. For a € F, let [a]: A — A denote its action on A
and lift it arbitrarily to an R-homomorphism [a]: R[X] — R[X]. This lift satisfies [a](Irx]) C IRr[x]
and [a](I1) C I, because [a] fixes the zero section of G and stabilizes its complement. We define the
R-homomorphism [a]’: R[X] — A” by

[a’(X;) = aXui + [a)(X;)(1 —w1) = aXi(1—up) + [a](Xi)uo € Ipy-

Since uy € Iy and Xj,[a|(X;),uo € Ipjx), it follows that [a)’(X;) = [a](X;) mod I = Ipix)l1 and
[a]’(X;) = aX; mod I?%[X}. Therefore [a]’(I) C I, whence [a]’(I - Ipix)) C I - Igjx), and so this
defines an R-homomorphism [a]’: A’* — A which lifts the action of [a] on A. Since for every = €

I C Igix] we have [a P(z) — ax € IR[X] and  — zu; = zug € Ilpx), we compute for [a]’(x) in

I/1Igx) = Ig ]Il/I 111 that [a(z) = [a’(z) - uy = azu; = ax. In particular, [a] acts as scalar
multiplication by a on tg = Ig[x) / I and Ng=1/II R[x]- Moreover, this shows that the map F, —
Endp.alg(R[X]/ R[X]) > [a]’ is a ring homomorphism. Likewise F, — Endg aig(41),a + [a]” = [a]
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is a ring homomorphism. Since I Ip[x) = Ié[X]Il and I%E[X] + 11 = (1) imply A® = R[X]/I%[X] X Ay, it
follows that the map F, — Endpgarg(G),a + ([al,[a]’) is a ring homomorphism. This defines a strict
[F4-action on G = (Spec A, Spec A%).

The last assertion on the strictness of G’ can be proved on affine open subsets of S. There
Lemma L7l implies that the morphism G — G” is F-strict in the sense of Faltings [Fal02, Definition 1],
and by [Fal02| Proposition 2] its kernel G’ is a strict Fo-module. O

5 Equivalence between finite I ,-shtukas and strict F,-modules

Let S be a scheme over SpecF,. Recall that a finite locally free commutative group scheme G over S is
equipped with a relative p-Frobenius Fj, ¢: G — 0,G and a p-Verschiebung morphism V,, ¢: 0,G = G
which satisfy F}, oV, e =p id(,;(; and V), o F), ¢ = p idg. For more details see [SGA 3, Exposé VIIa,
§4.3]. Example [£10]is generalized by the following results of Abrashkin. The first is concerned with
finite locally free strict F,-module schemes.

Theorem 5.1 ([Abr06, Theorem 1]). Let G be a finite locally free group scheme equipped with an
F,-action over an Fp-scheme S. Then this action lifts (uniquely) to a strict Fp-action on some (any)
deformation of G if and only if the p-Verschiebung of G is zero. In particular, the forgetful functor
induces an equivalence between DGr*(F,)s and the category of those group schemes in Gr(FF,)s which
have p-Verschiebung zero.

To explain Abrashkin’s classification of finite locally free strict F-module schemes we recall that
Drinfeld [Dri87, §2] defined a functor from finite [F-shtukas over S to finite locally free F,-module
schemes over S. Abrashkin [Abr06] proved that the essential image of Drinfeld’s functor consists of
finite locally free strict F,-module schemes. Other descriptions of the essential image were given by
Taguchi [Tag95, §1] and Laumon [Lau96, §B.3]. (But note that [Lau96, Propositions 2.4.11, B.3.13
and Lemma B.3.16] are incorrect as the Fg-module scheme G = @, = Spec R[z]/(zP) shows when
p # q.) Drinfeld’s functor is defined as follows. Let M = (M, Fiyr) be a finite F-shtuka over S. Let

E = Specs @ Syme, M
n>0

be the geometric vector bundle corresponding to M, and let Fy p: B2 — o E be its relative g-Frobenius
morphism over S. On the other hand, the map Fj; induces another S-morphism Spec(Sym® Fy): E —
o, E. Drinfeld defines

Dry(M) := ker(Spec(Sym® Fy) — Fyp: E— o;E) = Specy (@ Symgy, M) /1
n>0

where the ideal I is generated by the elements m®? — Fy;(oFm) for all local sections m of M. (Here
m®? lives in Sym¢, M and Fi(g;m) in Symp, M.)

There is an equivalent description of Dry(M) as follows. Let S = Spec R be affine and denote the
R-module I'(S, M) again by M. Let Frob, gp: R — R be the g-Frobenius on R with z — z9. We
equip M with the Frob, g-semi-linear endomorphism Fjjmi: M — M, m— FM(aq*m), which satisfies
F5emi(pm) = Fy (o7(bm)) = Fy(blo;m) = bIFmi(m). Also we equip every R-algebra T with the
Frobg r-semi-linear R-module endomorphism F%Omi := Frobg7: T — T. Then Dry,(M) is the group
scheme over S which is given on R-algebras T as

Dry(M)(T) = Hompsemi(M,T) = {h € Hompnioa(M,T): h(m)? = h(Fy(o;m)) Vm e M },

because Homp nod(M,T) = Homp alg(Symy M,T) = E(SpecT). We thank L. Taelman for men-
tioning this to us.
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Dr,(M) is an Fy-module scheme over S via the comultiplication A: m +— m ® 1+ 1 ® m and the
F,-action [a]: m +— am which it inherits from E. It has a canonical deformation

Dr (M)’ = Spec, (@Sym@s M) /(I - Io),
n>0

where Iy = @n21 Symg, M is the ideal generated by all m € M. This deformation is equipped with

the comultiplication A°: m +— m ® 14+ 1 ® m and the F,-action [a]”: m + am. We set Dry(M) =
(Dr, (M), Dr,(M)*). Tts co-Lie complex is

0— I/(I Iy) — Iy/I2 — 0 (5.2)

with differential d: m®¢ — Fy(om) — —Fuy(o;m). On it [a] acts by scalar multiplication with a
because (am)? — Fi(o; (am)) = a?(m®? — Fy(ofm)). This defines the functor Dry: Fg-Shty —
DGr(F,)s. We also compose Dr, with the projection to DGr*(F,)s.

Conversely, let G = (G,G”) = Spec(A, A’) € DGr(F,)s in the affine situation S = Spec R. Note
that on the additive group scheme G, s = Spec R[z] the elements b € R act via endomorphisms
y: Go,5 — Ga5 given by ) : Rlx] — R[z],  — bx. This makes G, g into an R-module scheme,
and in particular, into an Fj,-module scheme via F, C R. We associate with G the R-module of
[F,-equivariant homomorphisms on S

My(G) = Homp groupsr,iin(G:Gas) = {z€A: A(x) =2®1+1®u, [a|(z)=ax, YacF,},

with its action of R via R — Endp.groups,Fy-lin(Ga,s). It is a finite locally free R-module by [Pogl7,
Proposition 3.6 and Remark 5.5]; see also [SGA 3, VII,, 7.4.3] in the reedited version of SGA 3 by
P. Gille and P. Polo. The composition on the left with the relative ¢-Frobenius endomorphism Fy g, 4
of Gq,5 = Spec R[x] given by z ~ 29 defines a map My (G) — My(G),m — Fyg,s o m which is
not R-linear, but o;-linear, because Fy g, s © ¥s = e © FyG, s Therefore, Fy g, ¢ induces an R-
homomorphism Fyy, (g): 0, Mq(G) = My(G). Then M (G) := (My(G), Far,(g)) is a finite shtuka over
S. Note that for m € M,(G) the commutative diagram

Fyc .
G . o;G (5.3)
ml loq*m
F "Wa
Ga,S il Ga,S
implies that Fy g)(oym) = Fyg,s0m = oymo Fyg. If H € DGr(F,)s and (f, f):G = Hisa

morphism in the category DGr(F,)s, then M (f): M (H) — M, (G), m — mo f. This defines the
functor M : DGr(F;)s — Fg-Shtg. It factors through the category DGr*(Fy)s and further over the
forgetful functor through the category of finite locally free strict F,-module schemes over S.

There is a natural morphism M — M (Dry(M)), m +— fm, where fy,: Dry(M) — Gus5 =
Spec R[] is given by fy (z) = m. There is also a natural morphism of group schemes G — Dr,(M ,(G))

given on the structure sheaves by @ Symg, My(G)/I — Og, m — m*(x), which is well defined be-
n>0

Faryey(ogm)*(z) = (Fyg,s0 m)'(x) = m" (%) = (m"(x))?.

A large part of the following theorem was already proved by Drinfeld [Dri87, Proposition 2.1]
without using the notion of strict Fy,-modules.

cause

Theorem 5.2. (a) The contravariant functors Dry and M, are mutually quasi-inverse anti-equiva-
lences between the category of finite F,-shtukas over S and the category of finite locally free strict
F,-module schemes over S.
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(b) Both functors are Fy-linear and map short exact sequences to short exact sequences. They pre-
serve €tale objects and map the canonical decompositions from Propositions and[Z27 to each
other.

Let M = (M, Fur) be a finite Fy-shtuka over S and let G = Dry(M). Then
(¢) the natural morphisms M — M (Dry(M)), m = fm and G — Dry(M (G)) are isomorphisms.
(d) the Fy-module scheme Dry(M) is radicial over S if and only if Far is nilpotent locally on S.

(e) the order of the S-group scheme Dry(M) is ¢"cM.

(f) the co-Lie complex Kérq(M)/S is canonically isomorphic to the complex 0 — o/ M ﬂ) M — 0.
In particular, wp,, () = coker Fy and npe, vy = ker Fi .

Proof. Assertions @ and were proved by Abrashkin [Abr06, Theorem 2] in terms of the category
DGr*(Fy)s.

@ The Fg-linearity is clear from the definitions and the compatibility with étale objects follows
from and Lemma B8 Let 0 - M” — M — M’ — 0 be a short exact sequence of finite F-
shtukas. Then by construction Dry(M’) — Dry(M) is a closed immersion. Using [(a)| we consider the
local sections of M" = Homg_groups,Fy-lin(Dre(M"),Ga,s) which are obtained by the closed immer-
sion Dry(M") < Spec(Symg, M") composed with local coordinate functions on Spec(Symg, M").
These local sections go to zero in M’ and this yields a morphism Dry(M)/ Dry(M’) — Dry(M"). The
latter must be an isomorphism by @ due to the identification

M, (Dry(M)/Dr,(M')) = ker(M,(Dr,(M)) — M,(Dr,(M")) = M" = M,(Dr,(M")).

Conversely let 0 - G’ — G — G” — 0 be a short exact sequence of finite locally free strict F,-
module schemes. Then the exactness of 0 — M (G") — M ,(G) — M ,(G") is obvious. Applying Dr,,
whose exactness we just established, to the injection M (G)/M ,(G") — M(G') yields an isomorphism
Dr,(M,(G)/M ,(G")) = ker(G — G") = G'. From [(a)|it follows that M (G)/M ,(G") — M(G') is an
isomorphism.

Finally consider the exact sequences from Propositions and 2771 Then Dr, (M) is an étale
quotient of Dry(M). This yields a morphism Dry(M)% — Drq(My,). Conversely M, (G*) is an
étale IFy-subshtuka of M (G). This yields a morphism M q(Gét) — M (G)s. The equivalence of [(a)]
shows that both morphisms are isomorphisms. This proves the compatibility of Dr, and M, with the
canonical decompositions.

[(d)] By definition G := Dry(M) is radicial over S if G(K) — S(K) is injective for all fields K. This
can be tested by applying the base change Spec K — S. By @ and Propositions and [2.7] the
base change G xg Spec K is connected if and only if Fi; ® idg is nilpotent. This implies @ over
Spec K. It remains to show that Fjs is nilpotent locally on S if G is radicial. Locally on an affine
open Spec R C S we may choose an R-basis of M and write Fi; as an r X r-matrix where r = rk M.
For every point s € S, Proposition [27] implies that F}j, = 0 in x(s)"*". Therefore the entries of the
matrix Fp; lie in the nil-radical of R. If n is an integer such that their ¢"-th powers are zero then

F"™ = Fr. ... g (Ff,) = 0. This establishes [[d)]
[(€)] If locally on S we choose an isomorphism M = @_; Og - X,, and let (¢;;) be the matrix of the

morphism Fy: oy M — M with respect to the basis (X1,..., Xy), then Dry(M) is the subscheme of
GZ g» given by the system of equations

n
X]q = Ztini forjzl,...,n.

i=1



6 RELATION TO GLOBAL OBJECTS 20

Therefore Op,, (ar) is a free Og-module with basis X" -...- X', 0 < m; < ¢. Thus ord Dry(M) :=
I'k@s Oqu(M) = quM.

In the presentation of E;rq(M)/s given in (B.2) with I = (m®? — Fy(o;m): m € M) and Iy =
D.>1 Symp, M we use the isomorphisms of Og-modules M -~ Ip/13, m — m and ofM ~

I/(I1o),bojm = m®b — bFy(om) —bm®. Note that the latter is surjective by definition
and injective because both oM and I/(I Iy) are locally free Og-modules of the same rank. O

Remark 5.3. Finite locally free strict F,-module schemes over S = Spec R were equivalently described

by Poguntke [Pogl7] as follows. He defines the category Fq—grg’b of finite locally free F,-module
schemes G = Spec A which locally on S can be embedded into Gix g for some set NV and are balanced
in the following sense. The R-module

M,(G) := Homg groups(G,Gas) = {z€ A: Alx)=2@1+1Qa}
of morphisms of group schemes over R decomposes under the action of IF, on G into eigenspaces
My(G)yi == {m € My(G): [a](m) = o - for all a € F, }

for i € Z/eZ where ¢ = p°. Now G is balanced if the composition on the right with the relative
p-Frobenius F), g, ; of the additive group scheme G, s induces isomorphisms M, (G),i == My(G)yi+1
for all i = 0,...,e—2. Note that it is neither required nor implied that also My,(G)ye-1 — M,(G)1 =:
M,(G) is an isomorphism. The latter holds if and only if G is étale by Theorem

Abrashkin [Abr06l, 2.3.2] already showed that every finite locally free strict F;-module scheme over

S belongs to Fq—grg’b. And Poguntke [Pog17, Theorem 1.4] conversely shows that Dr, and M, provide

an anti-equivalence between the category of finite F,-shtukas over S and the category Fq-gr;’b.

6 Relation to global objects

Without giving proofs, we want in this section to relate local shtukas and divisible local Anderson
modules (defined in the next section), as well as finite F -shtukas and finite locally free strict F,-
module schemes to global objects like A-motives, global shtukas, Drinfeld modules, Anderson A-
modules, etc. which are defined as follows. Let C' be a smooth, projective, geometrically irreducible
curve over F,. For an [Fi-scheme S we set Cg := C xp, S and we consider the endomorphism
oq = idg ® Froby g: Cs — Cs.

Definition 6.1. (a) Let n and r be positive integers. A global shtuka of rank r with n legs over an
F,-scheme S is a tuple N’ = (N, ¢y, ..., cp, Tar) consisting of
e a locally free sheaf AN/ of rank r on Clg,
e F,-morphisms ¢;: S — C called the legs of N and

e an isomorphism 7 : oy N g, r., = NlcsU, r., outside the graphs I'c, of the ¢;.
In this article we will only consider the case where I'c; NT'¢; = () for ¢ # j.

(b) A global shtuka over S is a Drinfeld shtuka if n = 2, T'c; "', = (), and 7, satisfies o7 (g; N') C N
on Cg \ T, with cokernel locally free of rank 1 as Og-module, and 7'/\_/1 (N) C /N on Cs\ T,
with cokernel locally free of rank 1 as Og-module.

Drinfeld shtukas were introduced by Drinfeld [Dri87] under the name F-sheaves.
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An important class of special examples is defined as follows. Let co € C be a closed point
and put A := I'(C \ {0},0¢). Then SpecA = C \ {oo}. We will consider affine A-schemes
c: S = Spec R — Spec A and the ideal J := (a®1—-1®c*(a): a € A) C Ar := A®p, R whose vanishing
locus V(J) is the graph I'. of the morphism ¢. The endomorphism o, := idc ® Frob, g: Cs — Cg
induces the ring endomorphism oy := id4 ® Frobg g: Ar — Ag, a® b+ a®b? of Ag for a € A and
b € R. The following definition generalizes Anderson’s [And86] notion of t-motives, which is obtained

as the special case, where C' = P!, A = F,[t] and R is a field.

Definition 6.2. Let d and r be positive integers and let S = Spec R be an affine A-scheme. An
effective A-motive of rank r and dimension d over S is a pair N = (N, 7y) consisting of a locally
free Ag-module N of rank r and a morphism 7n: oy N — N of Ag-modules, such that coker 7y is a
locally free R-module of rank d and J¢ - coker 7y = 0. More generally, an A-motive of rank r over
S is a pair N = (N, 7n) consisting of a locally free Agr-module N of rank r and an isomorphism
TN 05 Nlspec Ap~v(J) = Nlspec A v(s) outside the vanishing locus V(J) = T'c of J.

Example 6.3. (a) If N' = (N, c1,c2,7n7) is a global shtuka of rank r over S = Spec R with two
legs such that ¢; = ¢ and ¢3: S — {00} C C, then N(N) := (N,7n) := (I'(Spec Ag,N),7x) is an
A-motive of rank r over S.

(b) Conversely, if co € C(F,), every A-motive N = (N, 7y) over an affine A-scheme c¢: S = Spec R —
Spec A can be obtained from a global shtuka N’ = (N, ¢1, ¢2, 7ar) by taking ¢; = ¢ and ¢3: S — {00} C
C, and taking N as an extension to Cg of the sheaf associated with N on Spec Ag, and 7or = 7.

These global objects give rise to finite and local shtukas, and that motivates the names for the
latter.

Example 6.4. (a) Let i: D < C be a finite closed subscheme and let N’ = (N, c1,...,¢n, 7a7) be a
global shtuka of rank 7 over S such that 7x(0;N') C A in a neighborhood of Dg := D xp, S. (For
example this is satisfied if A is a Drinfeld-shtuka and DgN T, = 0 or if N is as in Example [6.3] with
N(N) an effective A-motive and D C Spec A.) Then

(M, Fy) = ("N, i 1w)

is a finite Fy-shtuka over S, because M is locally free over S of rank r - dimg, Op. The sense in which
N is global and (M, Fyy) is finite, is with respect to the coefficients: N lives over all of C' and M lives
over the finite scheme D. This example gave rise to the name “finite IF -shtuka”.

(b) Let v € C be a closed point defined by a sheaf of ideals p C O¢, let § be the cardinality of
the residue field I, of v, let f := [F, : F,;], and let z € F,(C) be a uniformizing parameter at v. Let
N = (N,c1,...,cn,7n) be a global shtuka of rank r over S = Spec R such that for some ¢ the elements
of ¢f(p) are nilpotent in R. Set ¢ := ¢} (z) € R. Then the formal completion of Cg along the graph
I'., of ¢; is canonically isomorphic to Spf R[z] by [AHI14l Lemma 5.3]. The formal completion M of
(N, 7n) along ', together with 7 := i aqf*M[zic] o M[Z%C] is a local shtuka over S of rank r
(as in Definition 2.1 with ¢ and F,[z] and o, replaced by ¢ and F,[z] and o ). See [Har19l §6] for
more details. Again M is local with respect to the coefficients as it lives over the complete local ring
(50,@ = F,[z] of C at v. This gave rise to the name “local shtuka”.

So far we discussed the semi-linear algebra side given by shtukas. On the side of group schemes, an
important source from which the corresponding strict F,-module schemes arise are Drinfeld A-modules,
or more generally abelian Anderson A-modules. To define them, let ¢: S = Spec R — Spec A be an
affine A-scheme. Recall that for a smooth commutative group scheme E over Spec R the co-Lie
module wg = E*EQ}E /R is a locally free R-module of rank equal to the relative dimension of F over
R. Moreover, on the additive group scheme G, r = Spec R[z] the elements b € R, and in particular
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c*(a) € Rfora € F, C A, act via endomorphisms ¢,: G4, g = Ggq g given by ¥ : Rz] — R[z], z — bz.
This makes G, g into an Fg-module scheme. In addition, let 7 := Fj g, , be the relative g-Frobenius
endomorphism of G, p = Spec R[z] given by x — x?. It satisfies 7 0 ¢y, = 9ps 0 7. We let R{7} :=
{Z?:O biT':n € Ny, b; € R} with 70 = b97 be the non-commutative polynomial ring in the variable
7 over R. There is an isomorphism of rings R{7} =~ EndR—groups,]Fq—lin(Ga, r) sending an element
f=>;bim" € R{r} to the F -equivariant endomorphism f: G, r — Ga g given by f*(z) := >, bz

Definition 6.5. Let d and r be positive integers. An abelian Anderson A-module of rank r and
dimension d over an affine A-scheme c¢: Spec R — SpecA is a pair E = (E,y) consisting of a
smooth affine group scheme E over Spec R of relative dimension d, and a ring homomorphism ¢: A —
Endp_groups(E), a — ¢4 such that

(a) there is a faithfully flat ring homomorphism R — R’ for which E x pSpec R’ & Gi r as Fg-module
schemes, where F, acts on E via ¢ and F, C A,

b) (a®1—-1®c*a)? - wg =0 for all a € A under the action of a ® 1 induced from ¢, and the
natural action of 1 ® b for b € R on the R-module wg,

(c) theset N := M, (E) := Hompg_groups,F,-lin(E, Ga,r) of Fg-equivariant homomorphisms of R-group
schemes is a locally free Ar-module of rank r under the action given on m € N by

A>a: N — N, m—moy,

R>b: N—N, m—ipom

If d = 1 this is called a Drinfeld A-module over S; compare [Har19l Theorem 2.13].

The case in which C =P!, A =F[t], and R is a field was considered by Anderson [And86] under
the name abelian t-module. In [Harl9 Theorem 2.10] we give a proof the following relative version of
Anderson’s theorem [And86, Theorem 1].

Theorem 6.6. If E = (E, @) is an abelian Anderson A-module of rank r and dimension d, we consider
in addition on N := My(E) the map 5™ : m — Fyg, zo m. Since 75™ (bm) = bir3™ (m) for b € R,
the map T™ is og-semilinear and induces an Ag-linear map T : of N — N with 75¢™ (m) = 7n(0;m).
Then M (E) := (N,7n) is an effective A-motive of rank r and dimension d. There is a canonical

isomorphism of R-modules
coker Ty = wp, mmodTy(o;N) > m*(1), (6.4)

where m*(1) means the image of 1 € wg, , = R under the induced R-homomorphism m*: wg, , — WE-

The contravariant functor E — M (E) is fully faithful. Its essential image consists of all effective
A-motives N = (N, 7n) over R for which there exists a faithfully flat ring homomorphism R — R’
such that N ®g R’ is a finite free left R'{7}-module under the map 7: N — N, m > 7nx(oym).

Example 6.7. Let £ = (E, ) be an abelian Anderson A-module over an affine A-scheme ¢: Spec R —
Spec A, and let N := M (E) be its associated effective A-motive.

(a) Let a C A be a non-zero ideal. By [Har19, Theorem 5.4] the a-torsion submodule of E, defined as
the scheme-theoretic intersection

Ela] = mker(wa:E—)E),

aca

is a finite locally free A/a-module scheme and a strict F,-module scheme over S, which satisfies

M, (Ela]) = N/aN and E[a] = Dry(N/aN).



7 DIVISIBLE LOCAL ANDERSON MODULES 23

(b) Let p C A be a maximal ideal and assume that the elements of ¢*(p) C R are nilpotent. Let ¢ be
the cardinality of the residue field F, := A/p and let f := [F, : F;]. We fix a uniformizing parameter
z € Fy(C) = Frac(A) at p and set ¢ := ¢*(z) € R. We obtain an isomorphism Fy[z] == A, =
{iLnA/p". As in Example the J-adic completion M of N together with 7 := 1 Jqf*M — M is
an effective local shtuka M = (M, 7y) over R of rank r (as in Definition 2] with ¢ and F,[z] and
o, replaced by ¢ and F,[z] and o7 *). By [Harl9, Theorem 6.6] the torsion module E[p"] is a finite
locally free strict Fp-module scheme which satisfies Drg(M /p" M) = E[p"] and M /p"M = M ;(E[p"]).
Moreover, in the sense of Section [7] below, the inductive limit E[p*>°] := ll_II)l E[p"] is a p-divisible local

Anderson module over R which satisfies Drg(M) = E[p*] and M = M ;(E[p>]) under the functors
from Theorem B3] Note that condition (b) of Definition implies that (z — ¢)? = 0 on wpn for
every n and on wgppe) = {iﬂlwﬁ[pn}.

7 Divisible local Anderson modules

The name “divisible local Anderson module” is motivated by Example [6.7(b). These are the function
field analogs of p-divisible groups. They were introduced in [Har09], but their definition in [Har09}
§3.1] and the claimed equivalence in [Har09, §3.2] is false. We give the correct definition below
analogously to Messing [Mes72, Chapter I, Definition 2.1]. We fix the following notation. For an
fppf-sheaf of F,[z]-modules G over a scheme S we denote the kernel of 2": G — G by G[z"]. Clearly
(G[z"t™])[2"] = G[2"] for all n,m € N.

Definition 7.1. A z-divisible local Anderson module over a scheme S € Nilpy, [¢] is a sheaf of Fy[z]-
modules G on the big fppf-site of S such that

(a) G is z-torsion, that is G = lii>nG[z”],

(b) G is z-divisible, that is z: G — G is an epimorphism,

(c) For every n the F,-module G[2"] is representable by a finite locally free strict F,-module scheme
over S (Definition [L.8]), and

(d) locally on S there exists an integer d € Zx, such that (z—¢)? = 0 on wg where wg := l(il_an[zn}.

We define the co-Lie module of a z-divisible local Anderson module G over S as wg := l(il_an[zn}. We

will see later in Lemma, and Theorem [I0.7] that w¢ is a finite locally free Og-module and we define
the dimension of G as rkwg . It is locally constant on S.

A z-divisible local Anderson module is called (ind-)étale if wg = 0. Since wg surjects onto each
wg[zn) because w;,, : wgzn+1] = W[z is an epimorphism, wg = 0 if and only if all G [2"'] are étale, see
Lemma 3.8

A morphism of z-divisible local Anderson modules over S is a morphism of fppf-sheaves of F,[z]-
modules.

The category of z-divisible Anderson modules over S is Fy[z]-linear and an exact category in the
sense of Quillen [Qui73] §2].

Remark 7.2. We will frequently use that for a quasi-compact S-scheme X any S-morphism f: X —
lii>nG [2"] factors through f: X — G[z™] for some m; see for example [HV11, Lemma 5.4].

Remark 7.3 (on axiom [(d)| in Definition [7.1]). Note the following difference to the theory of
p-divisible groups. On a commutative group scheme multiplication by p always induces multiplication
with the scalar p on its co-Lie module. In the case of F,[z]-module schemes, axiom @ is the appro-
priate substitute for this fact, taking into account Example It allows that z — ( is nilpotent on
wgzn]- Without axiom @ the Og-module wg is not necessarily finite; see Example [7.7] below.
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Notation 7.4. Let G be a z-divisible local Anderson module. We denote by i, the inclusion map
G[z"] = G[z"*] and by iy G[2"] — G[z™"] the composite of the inclusions ip4m—10...01,. We
denote by jp m, the unique homomorphism G[z™"] — G[z™] which is induced by multiplication with
2™ on G[z™T™"] such that iy © jnm = 2" idgzm+n). Observe that also jym © imm = 2" idgem) for
all m,n € N, as can be seen by composing with the F,[z]-equivariant monomorphism i, ,,: G[z™] —

Gz,

The following two propositions give an alternative characterization of divisible local Anderson
modules, which is analogous to Tate’s definition [Tat66] of p-divisible groups.

Proposition 7.5. Let G be a z-divisible local Anderson module.

(a) For any 0 < m,n the following sequence of group schemes over S is exact
0 = G[2"] 27 Glmtn) 2 Glm) S 0. (7.5)

(b) There is a locally constant function h: S — N, s = h(s) such that the order of G[z"] equals ¢"".
We call h the height of the z-divisible local Anderson module G.

Proof. @ Since z: G — G is an epimorphism, also j,,, is. The rest of @ is clear. Let h :=
rkog M ,(G[z]). Then ord G[z] = ¢" by Theorem Now [(b)] follows from [(a)] and the multiplica-
tivity of the order; see Remark B.I|(c). O

Proposition 7.6. Let (G, in: Gn — Gni1)nen be an inductive system of Fylz]-module schemes
which are finite locally free strict Fy-module schemes over S such that

(a) in induces an isomorphism i,: Gy == Gn1[2"],
(b) there is a locally constant function h: S — Ny such that ord G,, = ¢™" for all n,

(¢) locally on S there exist an integer d € Z>q, such that (z — () =0 on wg where wg = l(iﬂleﬂ.
Then G = li_II)lGn 18 a z-divisible local Anderson module.

Proof. Since i,: Gy, < Gp41 is @ monomorphism the maps G, (1) < G,11(T") are injective for all S-
schemes T and we may identify G, (T') with a subset of G(T'). From [(a)]it follows that G, = G, [2"] C
G[2"] for all m > n. Conversely let z € G[z"](T) for an S-scheme T. On each quasi-compact open
subscheme U C T we can find an m such that z|y € G,,,(U) by Remark Now 2"z = 0 implies
x|y € Gu[z"|(U) = G,(U). In total x € G,(T). This shows that G,, = G[z"] and G = lii>nG[z"] is
z-torsion.

The quotient G,,/G; is a finite locally free group scheme over S by Remark B.Il(d). Its order is
g(n—bh by [(b)] and the multiplicativity of the order; see Remark [B.Ii(c). The natural map z: G,,/G1 <
Gn[2"1] 2 G,,—1 is a monomorphism and hence a closed immersion by RemarkB.1(a). Thus Og,_, —
Og,/q, is an epimorphism of finite locally free Og-modules. It must be an isomorphism because
rkog O, /¢, = ord(Gn/G1) = ord(Gp-1) = rkog Og,_, by [(b)l This proves that z: G, = Gp_1 is
an epimorphism of fppf-sheaves. Let x € G(T') for an S-scheme T. Choose a quasi-compact open
covering {U; }; of T. For each i we find by Remark [7.2] an integer n; such that x|y, € Gy, (U;). By the
above, there is a y; € Gp,+1(U;) € G(U;) with z - y; = z|y,. This shows that G is z-divisible. By
it is a z-divisible local Anderson module. O

Note that we require the conditions [(d)] in Definition [T and in Proposition due to the
following example which we do mot want to consider a z-divisible local Anderson module.
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Example 7.7. Let S be the spectrum of a ring R in which ( is zero, and let GG,, be the subgroup of
Gy s = Spec R[z1,...,x,] defined by the ideal (z1,...,27). Make G,, into an F,[z]-module scheme
by letting z act through

2*(x1) = 0 and 2(xy) = o forl<v<mn.

Define i, : G,, = Gp+1 as the inclusion of the closed subgroup scheme defined by the ideal (zy,41).
As in Proposition one proves that G := h_H}l G, satisfies axioms @ to of Definition [T.1] but

not @ Here wg, = @), R - dr; = R", and so wg is not a finite R-module. Therefore we cannot
drop the conditions [(d)| in Definition [Z1] and in Proposition

In the remainder of this section we introduce truncated z-divisible local Anderson modules.

Lemma 7.8. Let n € N and let G be an fppf-sheaf of Fy[z]-modules over S, such that G = G[2"].
Then the following conditions are equivalent

(a) G is a flat Fy[z]/(2")-module,
(b) ker(z"~%) = im(2') fori=0,...,n, that is the morphism z': G — G[2"%] is an epimorphism.
Proof. Because of @ the multiplication with z* induces isomorphisms
F,[2]/(2) = 2'F,[2] /2 TIF, [2] and G/2G =~ Z'G/7@

for i < n — 1. This gives us ker(2"~!) C im(z), and the opposite inclusion ker(z"~1) D im(z) follows
from G = G[z"]. Now ker(z"~%) C ker(2"~!) C im(z) implies that ker(z"~%) = zker(z" 1) =
z- 271G = 2'G by induction on i.

(b)={(a)l Taking i = 1 implies im(z) = ker(z"!), and hence multiplication with 2"~! induces an
isomorphism G/zG = 2z"~'G. Since this factors through the epimorphisms G/2G — 2G/2*G —
-+ = 2" 1@ we see that each of these maps is an isomorphism. Thus we have

gr® (Fqlz]/(z")) @r, gr°(G) = gr*(G). (7.6)

Note that the ideal (z) C F4[z]/(2") is nilpotent. Since G/zG is flat over F,[z]/(z) = F, [Bou61
Chapter III, § 5.2, Theorem 1] implies that G is a flat F,[z]/(2")-module. O

Definition 7.9. Let d,n € Nyg. A truncated z-divisible local Anderson module with order of nilpotence
d and level n is an fppf-sheaf of F,[z]-modules over S, such that:

(a) If n > 2d it is an Fy[z]/(2™)-module scheme G which is finite locally free and strict as Fy-module
scheme, such that (z — ¢ )d is homotopic to 0 on Ké /s and G satisfies the equivalent conditions
of Lemma [7.8l

(b) If n < 2d it is of the form ker(z": G — G) for some truncated z-divisible local Anderson module
G with order of nilpotence d and level 2d.

If G is a z-divisible local Anderson module over S € Nilpg, [ With (2 — ¢ )% =0 on wg, we will
see in Proposition below that G[z"] is a truncated z-divisible local Anderson module with order
of nilpotence d and level n. This justifies the name.
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8 The local equivalence

The category of z-divisible local Anderson modules over S and the category of local shtukas over S
are both F,[z]-linear. Our next aim is to extend Drinfeld’s construction and the equivalence from
Section [B] to an equivalence between the category of effective local shtukas over S and the category of
z-divisible local Anderson modules over S.

For every effective local shtuka M = (M, Fys) over S we observe M = lim(M/z" M, Fp; mod 2" M)

(_
and we set
Dry(M) = h_n} Dry(M/Z"M, Fyy mod 2" M) .
The action of F,[z] on M makes Dry(M) into an fppf-sheaf of F[z]-modules on S. Conversely, for
every z-divisible local Anderson module G = lim G[z"] over S we set
—

M,(G) = (My(G), Fagyq)) = lim (My(G[2"]), Far,cpem) -

Multiplication with z on G gives M,(G) the structure of an Og[z]-module.

Lemma 8.1. Let G = li_n}lG[z”] be a z-divisible local Anderson module of height r over S, see Propo-
sition [T0], then My(G) is a locally free sheaf of Og[z]-modules of rank r.

Proof. Applying M, to the exact sequence 0 — G[2"] LINY! [z 1] = [2"*1] yields an exact sequence
of Og[z]-modules

Z?’L

MG D MG

M,(G[Z"]) — 0.

We deduce from [Bou61l, § I11.2.11, Proposition 14 and Corollaire 1] that M,(G) is a finitely generated
Og[z]-module and the canonical map My(G) — M,(G[z"]) identifies M, (G[2"]) with M,(G) /2" M,(G).
We claim that multiplication with z on M,(G) is injective. So let {El( fo)n € My(G), fn €

M,(G[2"]) with z - f,, = 0 in M,(G[2"]) for all n. To prove the claim consider the factorization
2 idyyaeey = Mo(in) o MyGing): My(GE])) — My(GLe")

obtained from Notation [[4l Theorem implies that Mg (ji1,,) is injective, and hence f, =
My(in,1)(frng1) is zero for all n as desired.
Locally on SpecR C S the R-module M,(G]z]) is free. By Theorem its rank is 7. Let

mi,..., m, be representatives in M,(G) of an R-basis of M,(G|z]) and consider the presentation
0 — kera — EB R[] m; == M,(G) — 0. (8.7)
i=1

Note that « is surjective by Nakayama’s Lemma [Eis95, Corollary 4.8] because z is contained in the
radical of R[z]. The snake lemma applied to multiplication with z on the sequence (8.7 yields the
exact sequence

0 — coker(z: kera — kera) — @Rmi = My(Gz]) =0
i=1

in which the right map is an isomorphism. This implies that multiplication with 2™ is surjective on
ker v for all n, and hence kera C N, 2" - (B;_; R[z] mi) = 0 because R[z] is z-adically separated.
Therefore M,(G) is locally on S a free Og[z]-module of rank 7. O
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Recall from Theorem that the co-Lie complex Eé[zn] /s of G[z"] is canonically isomorphic

Farg(ar=m))

to the complex of Og-modules 0 — a7 M,(G[2"]) My(G[z"]) = 0. In particular, ngn =
ker Fyr (Glzn)) and wgpen) = coker Fiyy [n)) for the Og-modules from Definition [3.7]

Lemma 8.2. Let S € Nilpg ¢ and let G = lii>nG[z"] be a z-divisible local Anderson module over S.
Then

(a) locally on S there is an N € N such that the morphism i, : G[2"] — G[2"TY] induces an isomor-
phism wgzn+1) == wglen) for alln > N.

(b) The projective system (nG[zn})n satisfies the Mittag-Leffler condition.

(c) M (G) is an effective local shtuka over S and coker(Fyr (a)) is canonically isomorphic to wg.
In particular, wg is a finite locally free Og-module.

Proof. Working locally on S we may assume that ¢V = 0 in Qg and that (z — O)%wg = 0 for
some integers N’ and d. Let N > max{N’,d} be an integer which is a power of p. Then zNwg =
(N — Mwe = (2 — ONwe = 0.

[(2)] The closed immersion i,: G[2"] < G[:""!] induces an epimorphism w;, : W@ent1] = Walen) and

therefore w¢ surjects onto each wg,». This implies that 2N wgzn) = 0 for all n. Applying Lemma [3.9]
to the exact sequence (0] for m = 1,

0 — G[z"] % Gl 2L G2 — 0,

and using 1y, 0 jn,1 = 2" idG[szrl} in

Ini ina
WG[p] == W@[en+l] — > WG[pn] T 0

,l'*
l,n[ /

w(;[zn+1]

we obtain that ker(wg(n+1) — Wan]) = 2"wgzn+1). Therefore wgpn+1) == wgl.n) 1s an isomorphism
for all n > N.

To prove [(b)] we fix an n > N. We abbreviate the Og-modules M,(G[z*]) by M}, and the map
Fyp a4y by Fi. From Proposition and Theorem [5.2)(b)| we have an exact sequence

MCZ(jn,k:)
A

0 — M, Y ARIGIONRS VRSN Y

It remains exact after applying o, because M,, is locally free. For all k, we consider the commutative
diagrams

0—>ker Fyy, —> 0 My, —=im Fpy,—=0 0 —im Fpyy, —> My, —> coker Fjyj, —= 0
lpk iaq*Mq(ivl,k) i i iMq(in,k) lg
0 ——=ker F,, —— O'q*Mn F’ im F}, 0 0 im F}, o M, coker F,, ——= 0

where we have split F,, = F o F/ with F] surjective and F) injective, and where the vertical map
on the right in the second diagram is an isomorphism by the identification coker F}, = wg[;» from
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Theorem 5.2(f)] and by what we proved in [(a)| above. We denote the vertical map on the left in the
first diagram by pg. The snake lemma applied to both diagrams yields the following exact sequence

oy My, LN M}, — coker pp, — 0.
Therefore coker py = coker Fj, = wg,x. In the diagram

0 —— im py+1 — ker F;,, — coker py41 —= 0

| | |-

0 im pg ker F,, — coker pp, ——— 0

the vertical map on the right is an isomorphism for k¥ > N by what we have proved in @ above.
Therefore the image of py stabilizes for & > N, that is ngp,n) = ker F,, satisfies the Mittag-Leffler
condition. Note that also (im F},),, satisfies the Mittag-Leffler condition. We will use this for proving
(c)

We still abbreviate M,(G[2"]) by M,, and Fyy (g[.n) by Frn. The maps F,: oy M,, — M, give us
two short exact sequences of projective systems

0 — ker F;, — o, M, — imF, — 0 and 0 — imF, — M, — cokerF;, — 0.

Taking the projective limit, using the Mittag-Leffler conditions via [Har77, Proposition 11.9.1(b)], the

isomorphism o, (M, (G)) = 1(1210‘; (M,,) which is due to the flatness of M,(G) over Og, and combining

both exact sequences we obtain an exact sequence

F
0 — limker F,, — o (My(G)) —=Zs M,(G) — lim coker F,, — 0.
— —

This shows that wg := {iﬂle[zn} = l(ﬁl coker I, = coker Fyy (), which is finite locally free over Og by

Lemma[2Z3 Furthermore, condition[(d)|of Definition [T implies that (z—¢)? annihilates coker F M,(G)-
This proves that the map Fy (q): UJ(Mq(G))[Z—iC] — Mq(G)[ZTIC] is surjective. As both modules are

locally free over Og|[z] [leg] of the same rank, the map is an isomorphism. Thus M (G) is an effective
local shtuka. O

We can now prove the following theorem. It generalizes [And93| §3.4], who treated the case of
formal F,[z]-modules, which we state in |(c)|

Theorem 8.3. Let S € Nilpg, (]-

(a) The two contravariant functors Drq and M, are mutually quasi-inverse anti-equivalences between
the category of effective local shtukas over S and the category of z-divisible local Anderson modules
over S.

(b) Both functors are Fy[z]-linear, map short exact sequences to short exact sequences, and preserve
(ind-) étale objects.

Let M = (M, Fir) be an effective local shtuka over S and let G = Dry(M) be its associated z-divisible
local Anderson module. Then

(¢) G is a formal Fy[z]-module (Definition 1)) if and only if Fas is topologically nilpotent.
(d) the height (see Proposition [7.5) and dimension of G are equal to the rank and dimension of M.

(e) the Og|z]-modules wp,, vy and coker Fyy are canonically isomorphic.
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(f) if M is bounded by (d,0, . ..,0) for an integer d > 0, then diim G = d is constant and (z—()%wg =
(0) globally on S, but the converse is false in general.

Proof. [(a)] We already saw in Lemma B.2(c)| that M o Sends z-divisible local Anderson modules to
effective local shtukas. To prove the converse we use Proposition [[L6l Let M = (M, Fys) be an
effective local shtuka over S and abbreviate M /z"M =: M, = (M, Fu,,) and G, := qu( ). Then
G = Dry(M) = li_II)lGn. Consider the locally constant function h := rkp g,y M on S. It satisfies

rkoy (M) = nh. By Theorem the G, are finite locally free strict F,-module schemes over S of
order g™ and the exact sequence of finite F,-shtukas M,, 11 =, M, . — M, — 0 yields an exact

sequence of group schemes 0 — G,, — Gp41 N Gp+1. This implies that G,, = ker(2": Gp41 —
Gni1) =: Gpi1[2"]. By Lemma 23] we know that locally on S there exist positive integers e/, N such
that (z — ¢ )e/ = 0 on coker Fiyy and 2z = 0 on coker Fy;. Applying the snake lemma to the diagram

0 aq* M M coker F)s 0
\LZ’!L lz’n \LZ’!L
0 aq* M Fur M coker Fs 0

shows that coker Fiy — coker Fyy, is an isomorphism for n > N. Therefore by Theorem [5.2(f)

wg = {ianGn = l{iincoker(FMn) = coker Fyy .

This establishes [(e)] and implies (z —¢)° = 0 on wg. Therefore G = hm Gy, is a z-divisible local

Anderson module by Proposition [[.6l By Theorem [5.2] the functors Dr, and M, are quasi-inverse to
each other. This proves @

@ From our proof above, the height of Dr,(M) equals the rank of M. The equality of dimensions
follows from @

[(b)] The F,[z]-linearity of the functors is clear by construction. From [(e)|it follows that both functors
Dr, and M, preserve (ind-)étale objects. To prove the exactness of Dry let 0 — M " M- M =0
be a short exact sequence of effective local shtukas. Modulo z" it yields a short exact sequence of finite
F,-shtukas 0 — M/ — M, — M, — 0, where M}, := M" /2" M", etc. Theorem[5.2lproduces the exact
sequence 0 — G'[2"] — G[z"] — G"[z"] — 0, where G = Dry(M), G’ = Dry(M’), G” = Dr,(M").
This implies that 0 — G’ — G — G” — 0 is exact, because taking direct limits in the category of
sheaves is an exact functor.

Conversely let 0 - G’ — G — G” — 0 be a short exact sequence of z-divisible local Anderson
modules. Since multiplication with 2™ is an epimorphism on G”, the snake lemma yields the exact
sequence of finite locally free strict Fg-module schemes 0 — G'[2"] — G[z"] — G"[2"] — 0. Theo-
rem implies that the sequence 0 — M/ — M, — M/ — 0 is exact, where M = M, (G), M =
M,(G"), M" = M,(G"). Since {M3,} satisfies the Mittag-Leffler condition we obtain the exactness of
0—-M'—-M-—M —0.

Let G = Dry(M). In Proposition [[0.11] below we will see that G is a formal F,[z]-module if and
only if G[z] = ker(z: G — G) is radicial, which by Theorem [5.2(d)|is equivalent to Fis, = (Fj mod z)
being nilpotent locally on S. The latter is the case if and only if locally on S there is an integer n
such that (Fjs)™ =0 mod z, that is, if and only if F); is topologically nilpotent.

[(()] If M is bounded by (d,0,...,0) then (z — ¢)¢ annihilates coker Fiy = wg. The dimension of G
can be computed by pullback to the closed points s: Speck — S. There M ®o4 k = k[[z]]rkM =
oy M ®og k and ¢ = 0 in k. The elementary divisor theorem implies (dim G)(s) = dimy s*wg =
dimyg(coker Fiyy) ®og k = ord, det(Fi ®og4 k) = d by definition of boundedness of M by (d,0,...,0).
That the converse fails can be seen from the following O
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Example 8.4. Let R = kle]/(¢2) for a field k. Then the local shtuka M = (R[z]?, Fys = (ZEC 2_2_€>)

satisfies (z — ¢)? = 0 on coker Fjy = R%. So its associated z-divisible local Anderson module G =
Dr, (M) satisfies the conclusion of Theorem B3 F)] But (A2Fy)(1) = (z—()?—e(2—¢) ¢ (2—¢)* N2 M,
and hence M is not bounded by (2,0). This also shows that [HV11, Example 4.5] is false.

Corollary 8.5. Let S € Nz’lquM and let f: G' — G be a monomorphism of z-divisible local Anderson
modules over S. Then the quotient sheaf G/G' is a z-divisible local Anderson module over S.

Proof. Since the question is local on S we may assume that S = Spec R is affine. For all n the induced
map G'[2"] — G[2"] is a monomorphism, hence a closed immersion by Remark B.I(a). By Lemma 7]
it is strict Fy-linear in the sense of Faltings [Fal02 Definition 1], and by [Fal02, Proposition 2] the
cokernel G := G[z"]/G'[2"] is a strict Fg-module scheme which is finite locally free by Remark B.Ii(d).
By Theorem this induces the exact sequence of finite F,-shtukas 0 — M (G}) — M (G[z"]) —
M ,(G'[z"]) — 0. In the following diagram

0 G2 2 Gt I G 0
in,m \L Jn,m \L

0 G[z"] — G[z"T™] G[z™] 0
\L i \L 3! \L

0 G, ———Gan., ———Gan, 0
| | |
0 0 0

», and the two upper rows are exact by Proposition By
the snake lemma this defines the exact sequence in the bottom row. By Theorem this implies
that M, (i ): M, (Gy.,) — M,(G}) is surjective for all n. In particular, the projective system
M ,(G}) satisfies the Mittag-Lefler condition, and the morphism M (f): M = M (G) — M =
M q(G’ ) of effective local shtukas corresponding to f by Theorem [R3]is surjective by [Har77, Propo-
sition I1.9.1(b)]. The kernel M" := ker M (f) = l<i£1]\_4q(G;;) is a locally free R[z]-module with a

morphism Fyyr: o M" — M" inducing an isomorphism Fy : aq*M”[zflc] — M”[zic], because this

the columns are exact by definition of G/

is true for M and M’. Thus M” is an effective local shtuka over S. Applying the snake lemma

to the (injective) multiplication with 2™ on the sequence 0 — M" — M — M’ — 0 shows that

M"/z"M" = M (G}). Therefore, Theorem B3] implies that G/G’ = Dry(M") = lim G, is a z-
H

divisible local Anderson module over S. O

9 Frobenius, Verschiebung and deformations of local shtukas

Definition 9.1. Let G be an fppf-sheaf of groups over an Fy-scheme S. For n € No we let G[F}
be the kernel of the relative ¢"-Frobenius Fyn g: G — 05nG of G over S. In particular, G[Fg] =

ker(idg) = (0).
Let S € /\/'z'lqu [c]- Later we will assume that ¢ = 0 in Og. Let G be a z-divisible local Anderson

module over S and let M = (M, Fy) = M, (G) be its associated local shtuka from Theorem 8.3l
Then the g-Frobenius morphism Fj, ¢ := li_n)quG[zn]: G — 0, G corresponds by diagram E3) to the

morphism
M (Foc) = Fu: My(o;G) = o, My(G) — My(G), m — mol,g = Fu(m).

In addition to the ¢g-Frobenius, G carries a ¢-Verschiebung which is identically zero by Theorem [5.11
Therefore, if ¢ = 0 in Og we will introduce a “z%Verschiebung” in Remark and Corollary
below, which is more useful for z-divisible local Anderson modules. We begin with the following
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Lemma 9.2. Let M be an effective local shtuka with (z — ()% = 0 on coker Fy;. Then there exists a
uniquely determined homomorphism of Og[[z]-modules Vas: M — o M with Fyo Vi = (z—¢)?- idy
and Vi o Fry = (2 — )% - idgy -

Proof. Since Fyy is injective by Lemma 23] and (z — ¢)¢ = 0 on coker Fy, the lemma follows from the
following diagram

00— M —2 > M coker Fys 0 (9.8)
\% e
(z—odl e l(z—od l(z—od =0
A
0 Jq*M M coker Fy 0. O
Fur

Remark 9.3. If ( = 0 in Og, the Frobenius f := Fy: 0(1*]\_4[%] =~ MIL] satisfies Fys o o f =
Fyo aq*F w=/fo aq*FM, and hence is a quasi-isogeny between the local shtukas aq* M = (Jq* M, aq* Fur)
and M. Likewise, if M is effective with (z — ¢)? = 0 on coker Fj;, the homomorphism Vj; from
Lemma is an isogeny V,ap = Vi: ML = O’;M[%], called the z¢-Verschiebung of M. Tt
satisfies Fiy o V,a )y = 2% . idys and Voo Fy = 24 idgs p- Indeed, ¢ = 0 = (7 implies that the
following diagram is commutative N

* 4 'z M * [ %
oy M oy (o5 M)
J/FM loq*FM—Fa*M
VdM
M — oM ,

as Faq*MoU;Vzd,J\_J = O';FM OU;‘/;d,M = aq*((z — C)d . idM) = (Z — Cq)d . idaq*M = Vzd,J\_JOFM-

Corollary 9.4. Assume that ( = 0 in Og. Let G be a z-divisible local Anderson module over S
with (z — )% = 0 on wg. Then there is a uniquely determined morphism Vag:oyG — G with
FogoVag = 24 idoq*(; and V,a goFya = 2%.idq. It is called the z%-Verschiebung of G. In particular,
G[F}] == ker(Fyn g: G — 0,uG) is contained in G[z"] and ker(VZZ’G: onG — G) C q;‘nG[z"d] for all
n.

Proof. Let M = M (G) be the effective local shtuka associated with G. Since (z — ¢)* = 0 on
wg = coker Fyy, the z%-Verschiebung V,a pr of M from Remark corresponds by Theorem B3] to a
morphism V,a ¢ := Dry(V,a pr): 0y G — G with [ goV,aqc = 2. dgsq and Va go Fya = 24 idg,
and hence VZ’;G oF q’fG = 2" . idg and F, ;,G o V;}a o= nd, idgq*ng. This proves the corollary. O

Proposition 9.5. Let G be a z-divisible local Anderson module with (z — ()¢ = 0 on wg, and let

n € N. Then G[z"] :=ker(z": G — G) is a truncated z-divisible local Anderson module with order of
nilpotence d and level n; see Definition[7.9

Proof. The equivalent conditions of Lemma [T.§] for the F,[z]/(2")-module scheme G[2"] follow from
Proposition by considering for all v = 0,...,n the commutative diagram

In—v,p

Glz""] b G[z"] G[2"]

in which 4, ,,—, is a monomorphism and j, ,—, an epimorphism, and hence ker(z"7") = ker(jp—,,) =

im(ip—p,) = im(2”). By Theorem (z —¢)% = 0 on coker Far,(c)- We reduce the map Vi (@)
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from Lemma modulo 2" to obtain a homomorphism Vi, (qzn)): My(G[2"]) — of My(G[2"]) with
Fary e oVaren)) = (2= 0" idag(aen and Vi, @) 0 Fary (61m)) = (2=0)" idoggy 61z Under
the identification of the co-Lie complex Eé[zn]/s with 0 — o M, (G[2"]) Tig(Clem M,(G[z"]) — 0 from
Theorem the map Vi, (g[.n)) corresponds to a homotopy h: t*G[zn} — Ng[zn) With dh = (2 — ¢)?
on tg.. and hd = (z—¢)% on Ngzn). This means that (z — ¢)? is homotopic to zero on Eé[z”}/S' O

Proposition 9.6. Assume that ¢ =0 in Og. Let G = G[#!] be a truncated z-divisible local Anderson
module over S with order of nilpotence d and level . Then

(a) there exists a morphism V,a g 0;G — G with Fy goV,a g = 2% idore and Ve goFy g = 24 idg.
It is not uniquely determined, unless G is étale.

(b) G[F{] C G[z"] and kerVZidG C a*iG[zid] for all i.

Now let n € Nyg and | = nd. In partzcular if n = 1 there is a truncated divisible local Anderson
module G of level 2d with G = G[z%] and we assume that Vig=1V Then

oq G’
¢) for all i with 0 < i < n the morphism — 0 is an epimorphism,
for all i with 0 h hism F! wc: GlF, “GlFy ™ ¢ hi
d) the morphisms V1 i onG — ker F'; and I)': G — kerV are epimorphisms,
z q,G G
(e) G[Fqi] and ker Vzid o are finite locally free strict Fg-module schemes over S for all 0 <i <n,
(f) for all 0 < i <n we have wg = Wazid) = WGk, and this is a finite locally free Og-module.

Proof. [(a)] Let h: tf; — N¢ be a homotopy with dh = (z — ()¢ on t}, and hd = (2 — {)? on Ng. Note
that h is determined only up to adding a homomorphism t7, — cokerd = wg — ng = kerd — Ng,
and in particular, is not unique unless G is étale. Let V': M,(G) — o, M,(G) be the homomorphism

. F
which corresponds to h under the identification of the co-Lie complex £, /s with 0 — 07 My (G) Mol

My(G) — 0 from Theorem B.2(f)l Then Vo Fiy () = 2% iqu*Mq(G) =0, (z4- idar, (@) = o5 (Far,a) ©
V) = Formyc) © ogV implies that V: M (G) — oy M, (G) = M,(0;G) is a morphism of finite Fg-
shtukas. It induces the desired morphism V,a ¢ := Dry(V): 0;G — G with Iy goV,aq = 2. idorc

d

and Vi, g o Fyg = 2%+ idg.

@ follows from Vzid G° F; a = 2. ide and F? 7.G © Vi lig = Zid . id,= ¢ which are consequences of @
) ? q

is trivial if n =1 and ¢ = 0 or 1. If n > 2 there is by@a factorization F;G o Vzid’G = 7. U;G —
aq*iG. Since the morphism z%¢: aq*iG — U;G[z(”_i)d] is an epimorphism by Lemma [78] and since
aq*iG[Fq"_i] C U;G[z("_i)d] by [(b)} we obtain
[(d)] is proved by induction on n. For n = 1 we use G = é[zd]. By Lemma [T.8] there is an exact
sequence

0 — O[z% — G 25 G2 — 0.
Since G[F,] C C~¥[Fq] c G[z% by [(b)} the map VageF, g = 24 (24)7YG[F)) — G[F,] is an
epimorphism. From F, &: (DY GIF,) — O'q*G[ 4 = aqG we see that V.ag = Vg e ;G —
G[F,] is an epimorphism. The statement for Fj ¢ is proved in the analogous way using ker Vg C
ker V5 C UZCNJ [z9]. Thus we have proved [(d)| for the case n = 1.
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To prove it in general by induction on n, consider the diagram

sz,
O’;rLGl:an:I ¢ G[F[;L]
y -
o2 G- (0 Gl ) [y~ —= o GlEy].

sy n—1
a, Vzd,G

In the bottom row, o VZZ_(; is an epimorphism by the induction hypothesis, and the equality comes
from @ The vertical map on the left is an epimorphism by Lemma [7.8, and therefore Fj g o VYZZ,G
is an epimorphism. Thus if we can show that ker(Fj, ¢) = G[F}] is contained in the image of Vi it
will follow that sz‘lﬁ  1s an epimorphism. But by the case n = 1 settled above

* d —1)d/ _* d — * d * d
GIFy) = Voa (07 G2") = Via g 0 20 V07 GIz") = Vi 0 Fi' g og GI2™)) € Vi (052 G2"]).
This proves that V[ . is an epimorphism. The statement for F(ZG is proved in the same way.

@The morphisms F qi’G: G— aq*iG and Vzid’G: aq*iG — (G between group schemes of finite presentation
over S are themselves of finite presentation by [EGAl IVy, Proposition 1.6.2(v)]. Therefore G[Fy] :=
ker F| o and ker ‘gd,G are of finite presentation over S by [EGAl IV;, Proposition 1.6.2(iii)]. As
closed subschemes of G, respectively aq*iG, they are also finite over S. Since in @ we proved that

Vzid’G: U;G[Zid] — (G[")[F}] = G[F}] and F;G: G[#'] — ker Vzidg[zm] = ker Vzidg are epimorphisms,
they are faithfully flat by Remark B.I(b). Therefore G[F;] and ker V. o are flat over S by [EGA| TV3,
Corollaire 11.3.11], and hence finite locally free. Over any affine open U C S the Fy-equivariant
morphisms Fqi’G and Vzid’G lift by Lemma HE.7] to morphisms in DGr(F,)y. Thus they are Fy-strict
morphisms in the sense of Faltings [Fal02, Definition 1]. By [Fal02) Proposition 2] their kernels
G[F!] x5 U and ker(‘/'zid’G) xg U are strict Fi-module schemes over U. So the Fg-strictness of G[F}]

and ker Vzid o over all of S follows from Lemma

For any group scheme G = Spec R[X1,..., X,]/I of finite type over Spec R, we compute G[Fy| =
Spec R[X1,...,X,]/(I,X{,...,X}). By the conormal sequence [Har77, Proposition 11.8.12] for the
closed immersion G[F] C G this implies we = wgp,]- The inclusion G[F,] C G[z¢] from [(b)| therefore
implies G[F,] = (G[2'])[F,], and hence wg = welzid) = wgir,) for all i. Moreover, since G[Fy] is a
finite locally free strict F,-module scheme over S by we can compute wgr,] as coker Fiy, (q[r,))
where (M, (G[Fy]), Fan,qir,))) 18 the associated finite Fy-shtuka from Theorem In particular,
Fryyciry)) = M, (Fyarr,)) = 0 and this implies that coker Fiy (qr,)) = Mq(G[Fy]) is a finite locally
free Og-module. O

In the remainder of this section we will show that to lift a z-divisible local Anderson-module
is equivalent to lifting its “Hodge filtration”. Let S € Nilqu[[C]] and let G be a z-divisible local

Anderson-module over S satisfying (z — ()% - wg = 0. Let (M, Fyr) be its effective local shtuka. Then
(z — )% - coker Fjy = 0 and we consider the map Vs from Lemma The injective morphism Fjy
induces by diagram ([@.8)) an exact sequence of Og[z]-modules

0 — cokerVMﬂ)M/(z—C)dM — coker F)y — 0.

In particular coker V) is a locally free Og-module of finite rank. Conversely, Vs induces the exact
sequence of Og[z]-modules

0 — cokerFMl/y%J;M/(z—g)dJ;M — coker Vjy — 0. (9.9)
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Definition 9.7 (compare [HLT19] §5.7]). We call H(G) = H} (G, Os[2]/(2—¢)?) == of M/ (z—C) oy M
the de Rham cohomology of G with coefficients in Og[z]/(z — ¢)?. Tt is a locally free Og[z]/(z — ¢)%-
module of rank equal to rk M = height G. The Og[z]-submodule V) (coker Fj;) C H(G) is called the
Hodge filtration of the z-divisible local Anderson-module G.

Now let 7: S” < S be a closed subscheme defined by an ideal I with I? = 0. Then the morphisms
Froby ¢ and Frob, ¢/ factor through 4

Frob,s = ioj: S—5 =8 and Frob, s = joi: S —S5—5".

where j: S — S’ is the identity on the underlying topological space |S’| = |S| and on the structure
sheaf this factorization is given by

0s 5 0y 2 04
b —~ bmodl — 9.

Let G’ be a divisible local Anderson-module over S’ with (2 —()%-wg = 0, and denote by (M, Fiyr) its
local shtuka. We set H(G')g := j*M'/(z — )?j*M’. This is a locally free module over Og[z]/(z — ¢)?
and satisfies i*H(G")s = H(G").

Theorem 9.8. The functor G — (i*G, Vi (coker Far) C H(G)) defines an equivalence between

(a) the category of z-divisible local Anderson-modules G over S with (z — ()% - wg = 0, and

(b) the category of pairs (G’, Fil C H(G’)S) where G’ is a z-divisible local Anderson-module over
S" and Fil C H(G")s is an Og[z]]-submodule whose quotient is a flat Og-module, and which
specializes to the Og[z]-submodule Vs (coker Fppr) C H(G') under i.

Proof. We describe the quasi-inverse functor. Let (G', Fil C H(G')s) be given and let (M', Fyp)
be the local shtuka of G’. We define Vj;: M < j*M’ as the kernel of the morphism j*M’' —»
H(G")s/Fil. Since Fil C H(G")s specializes to Vis(coker Fy;1) C H(G') we obtain *(H(G")s/Fil) =
H(G")/Vp (coker Fppr) = coker V. This implies *M = M’ and o M = j*i*M = j*M'. Moreover
coker V) is annihilated by (z—¢)%. Thus there is an injective morphism of Og[z]-modules Fis: o) M —
M with Fp;Viy = (z — )% idys and ViyFyy = (2 — ¢)? idoq*M. From sequence ([0.9) we see that the
cokernel of Fj; is a locally free Og-module. Clearly the z-divisible local Anderson-module G over
S associated with the local shtuka (M, F);) specializes to G’ and has Fil C H(G')s = H(G) as its
Hodge filtration. O

Remark 9.9. We only treated the case where S’ C S is defined by an ideal I with I9 = 0. The
general case for d = 1 is treated by Genestier and Lafforgue [GL11, Proposition 6.3] using ¢(-divided
powers in the style of Grothendieck and Berthelot.

10 Divisible local Anderson modules and formal Lie groups

In this section we clarify the relation between z-divisible local Anderson modules and formal F,[z]-
modules; see Definition [[LTI We follow the approach of Messing [Mes72] who treated the analogous
situation of p-divisible groups and formal Lie groups.

Definition 10.1. Let G be an fppf-sheaf of abelian groups over S € ./\fz'lqu 1c]- We say that G is

o F-torsion if G = lii>nG[Fq"], see Definition 0.1

n

o F'-divisible if Fy¢: G — 0,/G is an epimorphism.
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Recall that Messing [Mes72, Chapter II, Theorem 2.1.7] proved that a sheaf of groups G on S
is a formal Lie group [Mes72, Chapter II, Definitions 1.1.4 and 1.1.5], if and only if G is F-torsion,
F-divisible, and the G[F}'] are finite locally free S-group schemes.

Theorem 10.2. When ¢ = 0 in Og and G is a z-divisible local Anderson module over S, then
li_n)lG[F;] is a formal F,[z]-module. It is equal to G := li_n}Infk(G), where for any S-scheme T,

k

Messing [Mes72, Chapter II, (1.1)] defines

(Inf* G)(T) := {:17 € G(T): there is an fppf-covering {Spec R; — T'}; (10.10)
and for every i an ideal I; C R; with Il-kJrl = (0)
such that the pull-back x € G(Spec R;/I;) is zero} .

Proof. By [Mes72, Chapter II, Theorem 2.1.7] it suffices to show that h_II)l G[F]'] is F-torsion, F-
divisible and that the G[F}'] are finite locally free. By construction lim G[F}'] is F-torsion. By
—

Definition there is locally on S an integer d with (z — ()¢ - wg = (0), and then G[F}] C G[z"]
by Corollary [@.4land G[2"9] is a truncated z-divisible local Anderson module with order of nilpotence d
and level nd by Proposition Therefore Proposition shows that G[F}'] is finite locally free, and
that Fy q: GIF}'] — o G[F;~']is an epimorphism. Consequently, Fy hi)nG[F:] — oy (h_H)l G[F}]) =
lim o, G [F(;‘_l] is an epimorphism and so lim G[F}'] is F-divisible, and hence a formal Lie group. The
— —

action of IF,[z] makes it into a formal F,[z]-module.

To prove the last statement of the theorem, observe that for any S-scheme T the homomorphism
Fyng: G(T) — (072G)(T) is simply the map sending x to zoFroby» 1 as can be seen from the following
diagram

Frobgn 1

N
e

S————

.,
I

FI‘Ob n.s

Therefore, the monomorphism G[Fy'] < G defines an inclusion G[F}'] C Inf?"~1 G, the ideals I; in
(I0.10) being the augmentation ideal in Og| ] defining the zero section. We claim that this inclusion
is an equality. Solet z € (Inf?"~! G)(T) and let R; and I; be as in (I0I0). Then [an = (0) implies that
Frobgn g, factors through R; —» R;/1; 25 R;. So Fyn.c()|spec R; = o Frobyn g, = 7% (%|spec r,/1;) =
0, that is z € G[F}']. Thus we have G[F}'] = Inf?" = G and h_n)lG[Fq"] = li_n)lInfk(G) C G which
completes the proof. O

Our next aim is to extend the theorem to all S € /\/’z’lplgqm. For that purpose we start with the
following

Lemma 10.3. Let S be a scheme with (Nt =0 in Og, and let G = G[2™%] be a truncated z-divisible
local Anderson module over S with order of nilpotence d and level nd with n > N + 1. Then for any
affine open subset U of S and any quasi-coherent sheaf F of Oy-modules the natural homomorphism

for the co-Lie complexes Ext}gU e F) — ExtéU (6(; F) is zero.

G[z(n*Nfl)d}/U7 [z”d}/U’
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Proof. We proceed by induction on N and begin with N = 0. If n = 1, then G[z(*~N=D4] = (0) and
there is nothing to prove. If n > 2 we use [Mes72l, Chapter II, Corollary 3.3.9] for the sequence

0 —s GV s gond) 21

G[z% — 0.
So we have to show that

(a) WG[znd] = Wgx(n-1)d) 18 an isomorphism,

(b) wgene) and wer,q) are locally free Og-modules, and

() tkwgegram-14) < rkwgegpzq) for all points s € S.

All three statements follow from Proposition @.6(f)l This concludes the proof when N = 0.
For general N we take the exact sequence

0= (F—=F—= F/CF—=0.

and consider the commutative diagram with exact rows

EXt%DU (EG[Z(n—N—l)d}/U7<]:) _>EXt%9U (EG[Z(n—N—l)d}/UVF) _>EXt%9U (Ec.?[z("*Nfl)d}/U’f/C‘F)

| l |

EXt}DU (E(.;[Z(n—N)d]/Uv C]:) - EXt%DU (Eé[z(n—N)d]/Uv ]:) - EXt}DU (E

l l

EX‘U}oU (gc.:[znd}/w ¢F) EX‘U}oU (¢

C.}[z("*N)d]/U’ ]:/CJ:)

G[z”d}/U’ f) .

Since ¢ - (F/C(F) = (0), the right vertical arrow can be computed by base change to the zero locus
V(¢) € S of (. So it is the zero map by what we have proved above, and hence the image of
ExtggU (EG[z(n*N*Dd]/U’ F) in ExtéU (EG[z("*N)d}/U’]:) lies inside the image of ExtggU (EG[Z(”*N)d]/U’ CF).
Since ¢V - (¢F) = (0), the lower left vertical arrow can similarly be computed by base change to the
zero locus V(¢V) C S, and hence it is the zero map by our induction hypothesis. This proves the
lemma. O

Theorem 10.4. If S € NilquﬂCﬂ and G is a z-divisible local Anderson module over S, then G is
formally smooth.

Proof. Let X' be an affine scheme over S and let X be a closed subscheme defined by an ideal of
square zero. Let f: X — G be an S-morphism. We must show that f can be lifted to an S-morphism
X' =G

X —X

s
¥ s
l%/f’

G
As X is quasi-compact we have G(X) = ligaG[z"](X) = h_H}lG[an](X), and hence f: X — G[z"9] for

some n by Remark We cover X by a finite number of affine opens U;, ¢ = 1,...,m such that the
image of U; in S is contained in an affine open V;. Since ( is nilpotent on each V; there is an integer
N such that ¢V*1 is zero on |JV;. Replacing S by S’ = [JV; and G by Gg we are led to the case
where (V1 = 0 in Og. But now Lemma [I0.3] and [Mes72, Chapter II, Proposition 3.3.1] show that f
can be lifted to an f': X’ — G[z("+N+1D4] and the theorem is proved. O
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Lemma 10.5. Let G be a z-divisible local Anderson module over S with (z — ()¢ =0 on wg for some
d € N. Assume we are given an S-scheme X' and a subscheme X defined by a sheaf of ideals I such
that I*+1 = (0) and ¢V -1/1? = 0 for some integer N. Let N' be the smallest integer which is a power
of p and greater or equal to N and d. If an S-morphism f': X' — G satisfies f = f'|x: X — G[z"],
then f' factors through f': X' — G[z""*N'] c G.

Proof. The problem is local on X’ and hence we can assume that X’ is affine and thus quasi-compact.
But then ' € G(X') = li_n}G[zm](X') and hence we can assume that f: X’ — G[2"] for some n/

by Remark We now use induction on &k and the sequence of closed subschemes V(I') ¢ X' for
l=1,...,k+1. Thus we can assume that I> =0 and k = 1.

Since f € G[z"](X) we have 2" f = 0, and so 2" f € G[2"'](X’) has the property that its restriction
to G[2""'](X) is zero. Since I? = 0, the group of sections of G[2"'] over X’ whose restriction to X is
zero, is by [SGA 3|, III, Théoreme 0.1.8(a)] isomorphic to the group Home (WG[zn’} ®og Ox, I) under
an isomorphism which sends the zero morphism X’ — G[2"'] to the zero element, and the morphism
2" f' to an element which we denote by h € Home, (wg ®04 Ox, I). Since ¢V kills I and N’ > N we
obtain ¢V -h = 0. On wg the assumption (z — )% = 0 implies 2V = ¢V, and so the section 2V (2" f')
is sent to 2V - h = ¢N' - h = 0. This implies 2"V f/ = 0, that is, f’ € G[2"*N')(X"). O

Corollary 10.6. Let ¢V = 0 in Og and let G and d be as in Lemma 070 Let N’ be the smallest
integer which is power of p and greater or equal to N and d. Then the k-th infinitesimal neighborhood
of G[z"] in G is the same as that of G[z"] in G[z"T*N']. In particular, Inf*(G) = Inf*(G[z*N']) and
this is therefore representable.

Proof. By definition [Mes72, Chapter II, Definition (1.01)], an S-morphism f: 77 — G belongs to the
k-th infinitesimal neighborhood of G[z"] in G, if and only if there is an fppf-covering {Spec R; —
T'}; and ideals I; C R; with I"™ = (0) such that flspec ri/1; € G[2"](Spec R;/I;). But then f €
G[z"tFN')(T") by Lemma The last statement is the special case with n = 0. O

Theorem 10.7. Let G be a z-divisible local Anderson module over S € Nilqu[[C]]' Then G =
lii>n1nfk(G) is a formal Fy[z]-module.

Proof. As G clearly is an F,[z]-submodule of G, we must show that it is a formal Lie variety; see
[Mes72, Chapter II, Definition 1.1.4]. By construction it is ind-infinitesimal. Since the question is local
on S we may assume that there are integers N and d as in Corollary Then the sheaf Inf*(G) is
representable for all k. By Theorem [[0.4] we know that G is formally smooth and by definition (I0.I0])
of Infk(G) this implies that G is formally smooth. Let N’ be the smallest integer which is power of p
and greater or equal to N and d. Then G[z*V'] satisfies the lifting condition 2) of [Mes72, Chapter II,
Proposition 3.1.1] by Theorem [0 and Lemma I05l Therefore, by [Mes72, loc. cit.] G[z#Y'] satisfies
condition 2) and 3) of [Mes72, Chapter II, Definition 1.1.4], and hence is a formal F,[z]-module. O

Remark 10.8. We already know from Theorem B3] and Lemma 2.3] that w¢ is locally free of finite
rank. This now follows again from the theorem, because wg = wg.

Next we pursue the question when a z-divisible local Anderson module is a formal F,[z]-module
and vice versa.

Lemma 10.9. Let B be a ring in which ¢ is nilpotent, and let I be a nilpotent ideal of B. Define a
sequence of ideals I :== (I +1?,... , In4q := (I, + (In)z. Then for n sufficiently large I, = (0).

Proof. Let J = (B + 1. Then it is easy to check that I, C J"T!. Since ¢ and I both are nilpotent, so
is the ideal J. This implies I,, = 0 for n sufficiently large. O
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Lemma 10.10. If S € Nilpg 1 and G is a formal F,[2]-module over S such that locally on S there
is an integer d with (z — ()% = 0 on wg, then G is z-torsion.

Proof. We must show G = lii>nG [2""] and since this is a statement about sheaves, it suffices to check

it locally on S. Thus we can assume S = Spec R with ( € R nilpotent and G is given by a power
series ring R[X7, ..., X4]; see [Mes72, p. 26]. If T is any affine S-scheme, say T' = Spec B, then an
element of G(T') will be an N-tuple (b1, ...,bs) with each b; nilpotent. Let I be the ideal generated
by {b1,...,bq}. Let N’ be a power of p with N’ > d. Then multiplication with z¥" on G is given
by power series (2V')*(X;) € R[Xi,...,X4] with linear term ¢NV'X; and without constant term,
because wg = (X1,...,Xq)/(X1...,X4)% Therefore each component of 2z - (by,...,bs) belongs to
¢(N'T+ 1% € ¢TI+ I? =: I,. Then each component of 2V . (by,...,bg) belongs to the ideal I,, from
Lemma [[0.9] and hence the lemma shows that (by,...,bs) is z-torsion. O

The next result is analogous to Messing’s characterization [Mes72, Chapter II, Proposition 4.4] for
a p-divisible group to be a formal Lie group, and also its proof follows similarly using Theorem [I0.71

Proposition 10.11. Let S € Nz’lquM and let G be a z-divisible local Anderson module over S. Then
the following conditions are equivalent:

(a) G=G.

(b) G is a formal Fy[z]-module.

(¢) G[z"] is radicial for all n.

(d) Glz] is radicial. O

Corollary 10.12. For S € Nilqu[[d]’ there is an equivalence of categories between that of z-divisible
local Anderson modules over S with G|z] radicial, and the category of z-dwisible formal Fy[z]-modules
G with G[z] representable by a finite locally free group scheme, such that locally on S there is an integer
d for which (z — ¢)% =0 on wg.

Proof. By Lemma [[0.10] and Proposition [[0.11] both categories are identified with the same full sub-

category of fppf-sheaves of FF,[z]-modules on S, once we observe that G[z"] := ker(z": G — G)
is a strict F,-module as the kernel of an F,-linear homomorphism of formal Lie groups which are
F,-modules. O

Corollary 10.13. Let S € Nz’lquM be the spectrum of an Artinian local ring. Then a z-divisible

formal F[2]-module, such that locally on S there is an integer d for which (z — () = 0 on wg, is a
z-divisible local Anderson module with G|z| radicial and conversely.

Proof. This follows from Corollary [0.12] because the G[2"] are automatically representable by finite
locally free group schemes by [Mes72, Chapter II, Proposition 4.3]. O

The next result is analogous to Messing’s characterization [Mes72, Chapter II, Proposition 4.7] for
a p-divisible group to be ind-étale, and also its proof follows verbatim.

Proposition 10.14. Let S € Nilp]Fq[[Cﬂ and let G be a z-divisible local Anderson module over S. In
order that G = 0 it is necessary and sufficient that G is (ind-)étale. O

We have the following lemma for z-divisible local Anderson modules over S similarly to and with
the same proof as [Mes72, Chapter II, Proposition 4.11].

Lemma 10.15. Let S € /\/'z'lp]Fq[[C]] and let 0 — G1 — Go — G3 — 0 be an exact sequence of z-divisible
local Anderson modules over S. Then 0 — G — Go — G35 — 0 is also exact. ]
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Finally there is a criterion when G is itself a z-divisible local Anderson module in analogy to
Messing’s criterion [Mes72, Chapter II, Proposition 4.9].

Proposition 10.16. Let S € Nz’lquM and let G be a z-divisible local Anderson module over S. Then
the following conditions are equivalent.

(a) G is a z-divisible local Anderson module.

(b) G is an extension of an (ind-)étale z-divisible local Anderson module G by an ind-infinitesimal
z-divisible local Anderson module G'.

(c) G is an extension of an (ind-)étale z-divisible local Anderson module G" by a z-divisible formal
Fq[z]-module G'.

(d) For all n, G[z"] is an extension of a finite étale group by a finite locally-free radicial group.
(e) G[z] is an extension of a finite étale group by a finite locally-free radicial group.
(f) the map S — Z, s +— ord(G|z]s)et =: separable rank (G|z]s) is a locally constant function on S.

Proof. The proof proceeds in the same way as [Mes72, Chapter II, Proposition 4.9] using Corollary
and Lemma in |(a)k={(b)| Corollary and wg = we in [(b)k=i(c)} and Lemma 1] in
(d)F=(c)) O

Corollary 10.17. If S is the spectrum of a field L every z-divisible local Anderson-module G =
lii>nG[z"] over S is canonically an extension of an (ind-)étale divisible local Anderson-module G by

a z-divisible formal F,[z]-module G
0o — G — G — G — 0.

G® is the largest (ind-)étale quotient of G. With notation as in Proposition[J-4 we have G = hi>n G[z")"
and G =1lim G [z"]ét. If L is perfect the extension splits canonically.
—

This decomposition is compatible with the decomposition of the local shtuka M q(G) from Proposi-
tion[2.9 under the functors M, and Dry from Theorem [8.3.

Proof. Proposition [[0.16, whose condition is trivially satisfied, provides the extension and the
equalities G = lii>nG[z”]0 and G = lii>nG[z”]ét. From this the characterization of G¢* and the
canonical splitting for perfect L follows; see Proposition Finally the compatibility with the
decomposition of the local shtuka M (G) from Proposition follows from the characterization of

G® being (ind-)étale, respectively G being a formal F,[z]-module in terms of their associated local
shtukas proved in Theorem [B.3] O

A Review of the cotangent complex

In this appendix we carry out the elementary exercise to compare the definitions of the cotangent com-
plex given by Illusie [II72) § VIL.3.1], Lichtenbaum and Schlessinger [LS67, §2.1], and Messing [Mes72),
Chapter 11, § 3.2] for a finite locally free group scheme G = Spec A over S = Spec R. Recall that G is
a relative complete intersection by [SGA 3| Proposition I11.4.15]. This means that locally on S we can
take A = R[X},...,X,]/I where the ideal I is generated by a regular sequence (fi,..., f,) of length
n; compare [EGAL IV, Proposition 19.3.7].
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The cotangent complex in the sense of Lichtenbaum and Schlessinger

We follow the notation of Lichtenbaum and Schlessinger [LS67, §2.1] and take the free R[X]-module
F=RX| - 1®...®R[X] gn Weset U:=ker(j: F— I, g, f,) and let Uy be the image of the
R[X-linear map F' @px) F' = F, 2@y — j(z)y — j(y)=.

Lemma A.1. There is an exact sequence of R[X]-modules

@1§,u<u§n RIX]- Py S @Z:l RIX]- gy —l—7——0. (A.11)

huu’%'fugu_fugua g ——fu

In particular the ideal I is finitely presented and U = Uy.

Proof. By definition the map j in (A.1T]) is surjective. To prove exactness in the middlelet >~"_, a,g, €
ker j, that is >, ay f, = 0 in R[X]. This implies ayf, = 0 in R[X]/(f1,..., fa—1). Since f, € I
is a non-zero-divisor in R[X]/(f1,..., fn—1) we have a,, = 0 in R[X]/(f1,..., fn—1). Thus there exist
by € R[X] for 1 <y <n—1 such that a, = Zz;} bnyfu- It follows that

n n n—1
Z ayg, = Z ay Gy — Z(Z bnuhnu> = (a1 +bufn)gr + ...+ (@n—1 + by n—1fn)gn—1 mod im(7).

v=1 v=1 pn=1

Continuing in this way we get

Zaugu = (al + bnlfn + bn—l,lfn—l +...+ b2,1f2)gl mod 1m(z),

v=1

and hence (a1 + bp1fn + bp—1.1fn—1+ ... +b21f2)f1 = 0 in R[X]. Since f; is a non-zero-divisor in
R[X] we conclude Y | a,g, € im(¢). This proves that I is finitely presented over R[X]. Moreover,
U = ker(j) = im(i) = Up. O

Consequently the cotangent complex of Lichtenbaum and Schlessinger [LS67, Definition 2.1.3] is
the complex of Og-modules concentrated in degrees —1 and 0 given by

LLS(G/S): 0— 1/12 — QR[X}/R ®R[X] A—0.

By [II71) Corollaire I11.3.2.7] this complex is quasi-isomorphic to the cotangent complex L;; /s defined
by Hlusie [III71), I1.1.2.3], which we considered in Section Bl before Definition [3.7.

The cotangent complex in the sense of Messing

We next recall the definition of the cotangent complex of G/S given by Messing [Mes72l, Chapter II,
§3.2]. Since G is a group scheme, A is a bi-algebra with comultiplication A: A - A®pr A and counit
£4: A— R. Then A = Homp \od(A, R) carries an R-algebra structure via the dual morphisms A of
A and €4 of e4.

Definition A.2. We let U(G) := Spec(Sym% A). It represents the contravariant functor from S-
schemes to rings, sending an S-scheme T to the ring T'(T, A @ Or); see [EGA] II, 1.7.9].

We let U(G)* be the contravariant functor from S-schemes to abelian groups whose points with
values in an S-scheme T are the invertible elements in the ring U(G)(T) = T(T, A ®r Or).
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So U(G)* is defined by the fiber product diagram
U(G)* =5 xy(e) (U(G) xU(G)) —=U(G)

L

€A

Since U(G) is affine and of finite presentation over .S, its unit section &4 is a closed immersion of
finite presentation by [EGA| IV;, Proposition 1.6.2], and the same is true for U(G)* — U(G) x
U(G). Therefore U(G)* is an affine group scheme of finite presentation over S. By [EGAL TV,
Proposition 19.3.7] the unit section of the smooth S-scheme U(G) is a regular immersion. Therefore
the immersion U(G)* — U(G) x U(G) is also regular by [EGAl IV, Proposition 19.1.5].

U(G)* is smooth over S because U(G) is and the inclusion U(G)* — U(G) is a smooth monomor-
phism (and hence an open immersion by [EGAL IV4, Théoréme 17.9.1]). Indeed, smoothness can be
tested by the infinitesimal lifting criterion [BLRI0, § 2.2, Proposition 6] as follows. Let I C B be an
ideal in a ring B with I? = 0 and let b € A®r B = U(G)(B) be a point with (b mod I) € U(G)*(B/I).
Then any lift ¥ € A®p B of (b mod I)~! € U(G)*(B/I) C A®p B/I satisfies b/ — 1 € A®pg I and
0= (bb —1)% =1 bb'(2 — b¥'). It follows that b € U(G)* (B).

Messing considers the natural monomorphism i: G < U(G)* which is defined by viewing a T-
valued point of G as a homomorphism of Op-algebras A ® g Or — Op and hence as an element of
(T, A ®r Or). The fact that such a homomorphism when viewed as an element of U(G)(T) is
invertible, follows from the commutativity of the following diagram

G(T) x G(T) —=L~ T(T, Awo, Or) x I(T, A®o, Or)
lSpec A J{A
G(T) Z’ (T, A0, Or)

This diagram is commutative because both the left and right vertical arrow come from A. For every
f € G(T) there exists a g € G(T) such that (Spec A)(f,g) = 1. Since i(f) -i(g) = Ao (i x i)(f,g) =
i o (SpecA)(f,g) = i(1), it is enough to prove that i(1) = 1. Now 1 € G(T) is equivalent to
ea: A®og Or — Orp which in turn is equivalent to (€4: Op — A ®os Or) =1 € I'(T, A ®og Or).
This shows (1) = 1. Also it shows that the morphism i: G — U(G)* is a homomorphism of group
schemes. Since G is a relative complete intersection and finite over S, it follows that the monomorphism
i: G — U(G)* is a regular closed immersion; see [Mes72, Chapter II, Lemmas 3.2.5 and 3.2.6]. Let
J be the ideal defining G in U(G)*. Then Messing [Mes72, Chapter II, Definition 3.2.8] defines the
cotangent complex of G over S as the complex of Og-modules concentrated in degrees —1 and 0

Proposition A.3. The cotangent complezes Lj(G/S) and Ly (G/S) are homotopically equivalent.

Proof. The scheme U(G)xU(G) is locally on S of the form U(G) x U(G) = Spec R[X] for a polynomial
algebra and we can form the cotangent complex Lj ¢(G/S) using R[X]. We set U(G)* = Spec R. Let
I be the ideal defining G in U(G) x U(G) and let K be the ideal defining U(G)* in U(G) x U(G).

Then J = I/K. By [EGA]| IV, Proposition 19.1.5] the composition G —= U(G)* — U(G) x U(G)

is a regular closed immersion and the canonical sequence

(=1)
0 — i"(K/K?) — I/I? 2— J/J? —0
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is also exact on the left. We have denoted the third map by ¢(-. Since U(G)* is smooth over S,
[EGAL IV, Proposition 17.2.5] yields an exact sequence of finite locally free R-modules

0 — K/K? — Qpxy/p Orix) B — Qp )y — 0

/

which we tensor with A to get an exact sequence of A-modules

" ©
0 — i*(K/K?) — Qpixy/r @rix) A — Q}?/R QA —0.

We have denoted the third map by ¢(®). Since Q% IR ®z A is a finite locally free A-module we may
choose a section f(© of ¢(©). In the diagram with commuting solid arrows

0 0
*(K/K?) *(K/K?)
A A
s o AT NORINO)
L -
2
0 IA/I D R[X]/R ®R[X} A 0
FoD gt 7O [ 4©
2 1
0 J)J — k/r®RA 0
0 0

we define the section s(© of a9 by id — f(©¢(0) = @050 Then s(-1) := sOd(=1 gatisfies s(-Val- =
sOd=Da=0 = 50040 = idg(g/K2). We define the section FED of ¢t by id —al=Ds(D =
fEDGED . Then dED DD = gD (id —a(YDs(ED) = g1 — o050)g(=1) = £(0)4(0)g(=1) =
FOFED gD and hence d-Y f(1 = £04(-1) This means that we obtain homomorphisms of com-
plexes

Lig(G/S): 0 1/ Qpix/r @rix) A—>0
leg F= Tlg(l) f(O)H/g(O)
Lyp(G/S): 0 J)J? Q%/R ®r A 0

with ¢f = id. We define the homotopy A=Y := oY s Then

ld _f(o)g(o) — a(o)s(o) e d(_l)a(_l)s(o) e d(_l)h(_l) and
id—fEDgE = oD = (D0 = p(=Dg=1)
This proves that f and g form a homotopy equivalence between Lj«(G/S) and Ly (G/S). O
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