Übungen zur Vorlesung Lineare Algebra I Prof. Dr. U. Hartl

WS 2010/11 Blatt 8

Dr. J. Kohlhaase

Abgabetermin: Montag, 06.12.2010, 10:00 Uhr, Briefkästen

Aufgabe 1 (4 Punkte): Es seien V_1 und V_2 zwei endlich erzeugte Vektorräume über einem Körper K. Zeigen Sie:

- (i) Die durch $\iota_1(v) := (v,0)$ bzw. $\iota_2(w) := (0,w)$ definierten Abbildungen $\iota_1 : V_1 \to V_1 \times V_2$ bzw. $\iota_2 : V_2 \to V_1 \times V_2$ sind K-linear und injektiv. Es gilt $V_1 \times V_2 = \operatorname{im}(\iota_1) \oplus \operatorname{im}(\iota_2)$.
- (ii) Die durch $\operatorname{pr}_1((v,w)) := v$ definierte Abbildung $\operatorname{pr}_1 : V_1 \times V_2 \to V_1$ ist K-linear und surjektiv mit $\ker(\operatorname{pr}_1) = \operatorname{im}(\iota_2)$.

Folgern Sie aus jeder der beiden Aussagen (i) und (ii), dass $\dim(V_1 \times V_2) = \dim(V_1) + \dim(V_2)$ gilt.

Aufgabe 2 (4 Punkte): Gegeben wird im Folgenden eine Menge M und eine Relation \sim auf M. In welchen Fällen ist die Relation \sim reflexiv, in welchen symmetrisch und in welchen transitiv? Wenn es sich um eine Äquivalenzrelation handelt, dann geben Sie die Äquivalenzklasse [a] eines Elements $a \in M$ an und bestimmen Sie ein Repr"asentantensystem von M/\sim in M, d.h. eine Teilmenge $S \subset M$, so dass S aus jeder Äquivalenzklasse von \sim genau einen Repr"asentanten enthält.

- (i) $M = \mathbb{R}$: $a \sim b \Leftrightarrow a^2 = b^2$
- (ii) $M = \mathbb{R}$: $a \sim b \Leftrightarrow a b \in \mathbb{Z}$
- (iii) $M = \mathbb{Z}$; $a \sim b \Leftrightarrow a$ teilt b (d.h. es gibt ein Element $c \in \mathbb{Z}$ mit $b = a \cdot c$)

Aufgabe 3 (4 Punkte): Betrachten Sie auf der Menge $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ die Relation \sim , definiert durch $(a,b) \sim (c,d) \Leftrightarrow ad = cb$. Zeigen Sie, dass \sim eine Äquivalenzrelation ist, und setzen Sie $\mathbb{Q} := (\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})) / \sim$. Zeigen Sie, dass die Abbildungen

$$+: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}, \quad [(a,b)] + [(c,d)] := [(ad+cb,bd)], \text{ und}$$

 $\cdot: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}, \quad [(a,b)] \cdot [(c,d)] := [(ac,bd)],$

wohldefiniert sind und \mathbb{Q} zu einem Körper machen. Er heißt der Körper der rationalen Zahlen, und man schreibt auch $\frac{a}{b}$ für die Äquivalenzklasse [(a,b)].

Aufgabe 4 (4 Punkte): (Zweiter Isomorphiesatz) Es sei V ein Vektorraum über einem Körper K. Zeigen Sie, dass für zwei Untervektorräume U und W von V die Abbildung

$$(u + (U \cap W) \mapsto u + W) : U/(U \cap W) \longrightarrow (U + W)/W$$

wohldefiniert und ein K-linearer Isomorphismus ist.