Dr. J. Kohlhaase

Abgabetermin: Montag, 08.11.2010, 10:00 Uhr, Briefkästen

Aufgabe 1 (4 Punkte): Es sei $V := \mathbb{R}^2$. Betrachten Sie die beiden Verknüpfungen $+: V \times V \to V$ und $\cdot: \mathbb{R} \times V \to V$ gegeben durch

$$\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} := \begin{pmatrix} a_1 + b_2 \\ a_2 + b_1 \end{pmatrix} \quad \text{und} \quad \lambda \cdot \begin{pmatrix} a \\ b \end{pmatrix} := \begin{pmatrix} \lambda \cdot a \\ -\lambda \cdot b \end{pmatrix}.$$

Welche der Axiome (V1) - (V5) eines \mathbb{R} -Vektorraumes werden von diesen Verknüpfungen erfüllt und welche verletzt?

Aufgabe 2 (4 Punkte): Welche der folgenden Teilmengen des \mathbb{Q} -Vektorraumes \mathbb{Q}^3 sind Untervektorräume?

(i)
$$\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{Q}^3 \mid x_1 = x_2 = 2x_3 \right\}$$

(ii)
$$\left\{ \begin{pmatrix} \nu + \mu \\ \lambda \\ 2\nu - 3\lambda \end{pmatrix} \mid \lambda, \mu, \nu \in \mathbb{Q} \right\}$$

(iii)
$$\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mid x_1 + x_2 - x_3 \le 1 \right\}$$

Aufgabe 3 (8 Punkte): (Direktes Produkt und direkte Summe) Es sei I eine Menge und K ein Körper. Für jedes Element $i \in I$ sei V_i ein K-Vektorraum. Zeigen Sie, dass das direkte Produkt $\prod_{i \in I} V_i$ durch die Verknüpfungen

$$(v_i)_{i \in I} + (w_i)_{i \in I} := (v_i + w_i)_{i \in I} \quad \text{und} \quad \lambda \cdot (v_i)_{i \in I} := (\lambda \cdot v_i)_{i \in I}$$

wieder zu einem K-Vektorraum wird. Betrachten Sie die Teilmenge

$$\bigoplus_{i \in I} V_i := \{(v_i)_{i \in I} \in \prod_{i \in I} V_i \mid \text{Für fast alle } i \in I \text{ gilt } v_i = 0\}$$

des direkten Produktes. Zeigen Sie, dass $\bigoplus_{i\in I} V_i$ ein Untervektorraum von $\prod_{i\in I} V_i$ ist. Er heißt die direkte Summe der K-Vektorräume $V_i, i\in I$.