The Tits building and the Bruhat–Tits building of $GL_{d+1}(K)$

Ralf Diepholz Oberseminar talk 21.05.08

Parts 1 and 2 of this talk explain the basic concepts "simplicial set" and "simplicial complex" which underlie many objects we work with in [4]. Part 3 defines the Tits building and the Bruhat–Tits building of $GL_{d+1}(K)$ as two special cases of the building of a (*B*, *N*)–pair. Sources are [2], [3] for part 1, [1], [2] for part 2, [1], [4] for part 3.

1. Simplicial objects

The category Ord. For $n \in \mathbb{N}$ put $\Delta_n = \{0, ..., n\}$. Let Ord be the category with the sets Δ_n $(n \in \mathbb{N})$ as objects and order–preserving maps as morphisms. A generating system for the morphisms is given by

$$d^{i} = d_{n}^{i} : \Delta_{n-1} \to \Delta_{n}, j \mapsto \begin{cases} j & ; j < i \\ j+1; & j \ge i \end{cases} \quad (n \ge 1, 0 \le i \le n) \text{ (face maps)},$$

$$s^{i} = s_{n}^{i} : \Delta_{n+1} \to \Delta_{n}, j \mapsto \begin{cases} j & ; j \le i \\ j-1; & j > i \end{cases} \quad (n \ge 0, 0 \le i \le n) \text{ (degeneracy maps)},$$

satifying the following relations:

$$d^{j} d^{i} = d^{i} d^{j-1} \text{ if } i < j$$

$$s^{i} s^{j} = s^{j-1} s^{i} \text{ if } i < j$$

$$s^{j} d^{i} = \begin{cases} d^{i} s^{j-1} ; \text{ if } i < j \\ \text{id} ; \text{ if } j \le i \le j+1 \\ d^{i-1} s^{j} ; \text{ if } i > j+1 \end{cases}$$

The topological space $|\Delta_n| := \{(x_0, ..., x_n) \in \mathbb{R}_{\geq 0}^{n+1}; \sum x_i = 1\}$ is called the **geometric** *n*-simplex. We define

$$\begin{aligned} d_*^i : |\Delta_{n-1}| \to |\Delta_n|, (x_0, \dots, x_{n-1}) \mapsto (x_0, \dots, \hat{x}_i, \dots, x_{n-1}) \quad (n \ge 1, 0 \le i \le n), \\ s_*^i : |\Delta_{n+1}| \to |\Delta_n|, (x_0, \dots, x_{n+1}) \mapsto (x_0, \dots, x_i + x_{i+1}, \dots, x_{n+1}) \quad (n \ge 0, 0 \le i \le n), \end{aligned}$$

obtaining a covariant functor $Ord \rightarrow \{topological spaces\}$.

Simplicial objects. Let \mathcal{K} be a category. A simplicial object in \mathcal{K} is a contravariant functor $\operatorname{Ord} \to \mathcal{K}$. We may think of a simplicial object as a family $M = (M_r)_{r \in \mathbb{N}}$ together with morphisms $d_r^{i*}: M_r \to M_{r-1}, s_r^{i*}: M_r \to M_{r+1}$ (the images of the above maps) satisfying the relations dual to (*). (Remark: the older terminology (e.g. in [2], [3]) is "semi-simplicial object".)

Example. Let *G* be an abelian group, $G_1, ..., G_m \subset G$ subgroups. Define

$$\begin{split} M_r &:= \bigoplus_{i_0, \dots, i_r \in \{1, \dots, m\}} G_{i_0} \cap \dots \cap G_{i_r}, \\ d^j &: M_r \to M_{r-1}, \left(g_{i_0 \dots i_r}\right)_{i_0, \dots, i_r} \mapsto \left(\sum_{1 \le i \le r} g_{i_0 \dots i_j i \, i_{j+1} \dots i_{r-1}}\right)_{i_0, \dots, i_{r-1}}, \\ s^j &: M_r \to M_{r+1}, \left(g_{i_0 \dots i_r}\right)_{i_0, \dots, i_r} \mapsto \left(g_{i_0 \dots \hat{i}_j \dots \hat{i}_{r+1}}\right)_{i_0, \dots, i_{r+1}}. \end{split}$$

These data constitute a simplicial abelian group (i.e. a simplicial object in the category of abelian groups). This example occurs in Section 2 of [4] where it is applied to the groups $G_i := H^0(X, U_i; I)$ $(U_1, ..., U_m$ open subvarieties of a rigid variety X, I any injective sheaf). In [4] Section 3 this will be used on $X := \mathbb{P}, U_i := \mathbb{P} - H_i(|\pi|^n)$ $(H_1, ..., H_m \in \mathcal{H}_n)$.

Geometric Realization. Let $M = (M_r)$ be a simplicial topological space. Define

$$X = \bigcup_{r \in \mathbb{N}} (M_r \times |\Delta_r|),$$

endowed with the sum topology (i.e. the final topology w.r.t. the inclusions $M_r \times |\Delta_r| \to X$). Consider the equivalence relation ~ on X generated by

$$\begin{array}{ll} (d^{i} a, x) \sim (a, d^{i}_{*} x) & (r \geq 1, a \in M_{r}, x \in |\Delta_{r-1}|, 0 \leq i \leq r), \\ (s^{i} a, x) \sim (a, s^{i}_{*} x) & (r \geq 0, a \in M_{r}, x \in |\Delta_{r+1}|, 0 \leq i \leq r). \end{array}$$

The quotient space $|M| := X / \sim$ is called the **geometric realization** of *M*.

The chain complex of a simplicial set with coefficients in an abelian group. Let $M = (M_r)$ be a simplicial set. For $r \in \mathbb{N}$ let $C_r(M)$ denote the free \mathbb{Z} -module with basis M_r . Let A be an abelian group. The groups

 $C_r(M; A) := C_r(M) \otimes A$ ("*r*-chains of *M* with coefficients in *A*"),

together with the differentials

$$d_r: C_r(M; A) \longrightarrow C_{r-1}(M; A)$$
$$a \longmapsto \sum_{i=0}^r (-1)^i d_r^i(a) \quad (a \in M_r) \quad .$$

form a complex $C_*(M; A)$ of abelian groups; its homology is denoted by $H_*(M; A)$.

2. Simplicial complexes. Buildings

Simplicial complexes. Let \mathcal{A} be an ordered set with the following properties:

(a) any two $A, B \in \mathcal{A}$ possess an infimum;

(b) for any $A \in \mathcal{A}$ there is an integer $n \ge -1$ such that the ordered set $\{B \in \mathcal{A}; B \le A\}$ is isomorphic to the power set $\mathcal{P}(\Delta_n)$ (ordered by inclusion).

Then \mathcal{A} is called a **simplicial complex**. The elements of \mathcal{A} are called **faces**. The relation " $B \le A$ " is spelled "*B* is a face of *A*". The (unique) number *n* in (b) is called the **dimension**, the number *n* + 1 the **rank** of *A*. The rank–1–faces are called **vertices**. The (unique) rank–0–face is called the **empty face** of \mathcal{A} . A subset $\mathcal{B} \subset \mathcal{A}$ is called a **subcomplex** if $A \in \mathcal{B}$ implies $B \in \mathcal{B}$ for all faces $B \le A$.

Then \mathcal{A} is called a **simplicial complex**. The elements of \mathcal{A} are called **faces**. The relation " $B \le A$ " is spelled "B is a face of A". The (unique) number n in (b) is called the **dimension**, the number n + 1 the **rank** of A. The rank–1–faces are called **vertices**. The (unique) rank–0–face is called the **empty face** of \mathcal{A} . A subset $\mathcal{B} \subset \mathcal{A}$ is called a **subcomplex** if $A \in \mathcal{B}$ implies $B \in \mathcal{B}$ for all faces $B \le A$.

Example. Let *K* be a set. Let \mathcal{A} be a set of finite subsets of *K* such that

• if $A \in \mathcal{A}$ and $B \subset A$ then $B \in \mathcal{A}$;

• $\{x\} \in \mathcal{A}$ for all $x \in K$.

Then (\mathcal{A}, \subseteq) is a simplicial complex, the faces of an element $A \in \mathcal{A}$ being its subsets, the vertices being the singletons $\{x\}$ ($x \in K$).

In fact, every simplicial complex (\mathcal{B}, \leq) is isomorphic to a simplicial complex of this kind: Consider $K := \{ \text{vertices of } \mathcal{B} \}, \mathcal{A} := \{ \{ V \in K; V \leq B \}; B \in \mathcal{B} \}.$

Simplicial complexes as simplicial sets. For $n \in \mathbb{N}$ let

 $\mathcal{A}_n := \{n + 1 - \text{tupels} (V_0, \dots, V_n) \text{ of vertices of } \mathcal{A}; \exists A \in \mathcal{A}: V_0, \dots, V_n \leq A \}.$

Then $(\mathcal{A}_n)_{n \in \mathbb{N}}$ is a simplicial set with face maps

$$d_n^i: \mathcal{A}_n \to \mathcal{A}_{n-1}, (V_0, \dots, V_n) \mapsto (V_0, \dots, \hat{V}_i, \dots, V_n)$$

and degeneracy maps

$$s_n^i: \mathcal{A}_n \to \mathcal{A}_{n+1}, (V_0, ..., V_n) \mapsto (V_0, ..., V_i, V_i, ..., V_n),$$

the so-called **simplicial set associated to** *K*. Up to isomorphy, \mathcal{A} may be recovered from $(\mathcal{A}_n)_{n \in \mathbb{N}}$: The set $\mathcal{A}' = \{\{V_0, ..., V_n\}; n \in \mathbb{N}, (V_0, ..., V_n) \in \mathcal{A}_n\}$, ordered by inclusion, is isomorphic to \mathcal{A} .

In particular, we may speak of the chain complex (with coefficients in some abelian group) and of the geometric realization of a simplicial set. E.g., the geometric realization of the power set $\mathcal{P}(\Delta_n)$ is isomorphic to the geometric *n*-simplex $|\Delta_n|$.

Dangerous curve. An element of \mathcal{A}_n is called an "*n*-simplex" or "*n*-dimensional simplex" of the simplicial complex \mathcal{A} . On the other hand many authors say "simplex" instead of "face", so an "*n*-dimensional simplex" in this latter sense is a certain subset of \mathcal{A} and not a tupel in \mathcal{A} . Don't mix it up.

Chamber complexes. Let \mathcal{A} be a simplicial complex with bounded dimensions such that every maximal face has the same dimension d. A face of dimension n is then said to have **codimension** d - n. A codimension–0–face is called a **chamber**. \mathcal{A} is called a **chamber complex** if any two chambers C, C' are "joined by a gallery", i.e. there is a sequence of chambers $C = C_0$, C_1 , ..., $C_n = C'$ such that C_i and C_{i-1} have a common codimension–1–face $(1 \le i \le n)$. \mathcal{A} is called **thin** if in addition every codimensional–1–face is a face of exactly two chambers.

Buildings. A simplicial complex \mathcal{B} is called a (**thick**) **building** if there exists a family $(\mathcal{A}_i)_{i \in I}$ of thin chamber–subcomplexes covering \mathcal{B} such that:

(B1) for any two faces $A, B \in \mathcal{B}$ there is an \mathcal{A}_i containing A and B;

(B2) for any two $\mathcal{A}_i, \mathcal{A}_j$ containing A and B there is an isomorphism $\mathcal{A}_i \to \mathcal{A}_j$ fixing A and B pointwise;

(B3) any codimension-1-face of \mathcal{B} is a face of at least 3 chambers ("thickness").

Such a family $(\mathcal{A}_i)_{i \in I}$ is called a **system of apartments** of \mathcal{B} . From (B2) (applied to the empty face) it follows that any two apartments are isomorphic.

3. The building of a (*B*, *N*)–pair

Let G be a group. Let B, $N \subset G$ be subgroups generating G and such that $B \cap N$ is normal in N. Let S be a generating set of the group $N/B \cap N$. The pair (B, N) is called a (B, N)-pair (or Tits system) if $\bullet s B w \subset B s B \bigcup B s w B \forall s \in S, w \in N$, $\bullet s B s^{-1} \neq B \forall s \in S$.

A subgroup $P \subset G$ containing a conjugate of *B* is called **parabolic**.

Theorem. The set $\mathcal{T}(B, N)$ of parabolic subgroups of G, ordered by inclusion, is a building.

The building $\mathcal{T}(B, N)$, together with the conjugation action of *G*, is called the **building of** (B, N). The parabolic subgroups of the form $w P w^{-1}$ ($w \in N, P \supset B$) form a subcomplex $\mathcal{A} \subset \mathcal{B}$, the so-called **fundamental apartment**. A system of apartments of $\mathcal{T}(B, N)$ is then given by $(g \mathcal{A} g^{-1})_{g \in G}$.

Example A. The **Tits building of** $G := GL_d(K)$ (*K* any field) is defined to be the building of the following (*B*, *N*)-pair:

B = upper triangular matrices in G),

N = monomial matrices in G.

The fundamental apartment of $\mathcal{T}(B, D)$ is finite and has d! chambers, namely the conjugates of the given Borel subgroup *B* under the *Weyl group* ${}^{\nu}W := N/B \cap N$ (isomorphic to the symmetric group S_d). Another construction of this building is obtained as follows: Let

$$\mathcal{T} := \text{set of all } K - \text{linear flags } 0 \subset W_0 \stackrel{\subset}{\underset{\neq}{\longrightarrow}} \dots \stackrel{\subset}{\underset{\neq}{\longrightarrow}} W_r \stackrel{\subset}{\underset{\neq}{\longrightarrow}} K^d,$$

ordered by inclusion, and endowed with the natural G-action. We have the isomorphism of ordered G-sets

$$\begin{array}{l} \mathcal{T} \quad \rightarrow \qquad \mathcal{T}(B, N) \\ \tau \quad \mapsto \quad \text{stabilizer } G_{\tau} \text{ of } \tau \end{array}$$

From now on let K be a local field, o the valuation ring, π a prime element.

Structure of a simplicial profinite set on \mathcal{T} : Recall that a profinite set is a topological space which is the limit of a projective system of finite discrete sets (equivalently: which is compact and totally disconnected). The simplicial set associated to \mathcal{T} is given by

$$\mathcal{T}_r := \text{set of all } K - \text{linear flags } 0 \subset W_0 \subseteq W_1 \subseteq \ldots \subseteq W_r \subset K^d \quad (r \in \mathbb{N})$$

together with the natural face and degeneracy maps. We topologize \mathcal{T}_r as follows: Endowing G with the p-adic topology the quotients G/G_{τ} ($\tau \in \mathcal{T}_r$) are profinite. This defines a topology on the orbits $G\tau \simeq G/G_{\tau}$, and we take the sum topology on $\mathcal{T}_r = \bigcup G\tau$ (finite disjoint union).

Example B. The Bruhat–Tits building of $G := SL_d(K)$ is the building of the following (B, N)–pair:

B = preimage of the upper triangular matrices in SL_d(o/π) under the map

$$SL_d(o) \rightarrow SL_d(o/\pi),$$

N = monomial matrices in G.

Remarks: (1) *B* is called the "Iwahori subgroup" of *G*; the parabolic subgroups in the above sense are called the "parahoric subgroups". The group $W := N/N \cap B$ is called the "affine Weyl group" of *G* and is a semi-direct product of the finite Weyl group "*W* (Example A) by a free abelian group of rank d - 1.

(2) The conjugation action of G on $\mathcal{T}(B, N)$ extends to $GL_d(K)$, and $\mathcal{T}(B, N)$, endowed with this extended action, is also called the "Bruhat–Tits building of $GL_d(K)$ ".

Here we also have another construction of the building: For an *o*-lattice $L \subset K^d$ let [L] denote its homothety class. Let \mathcal{BT} be the set of finite sets $\{[L_0], ..., [L_r]\}$ of classes of *o*-lattices with the property

 $L_0 \underset{\neq}{\subset} L_1 \underset{\neq}{\subset} \ldots \underset{\neq}{\subset} \pi^{-1} L_0$ (for suitable representatives L_i),

ordered by inclusion, and endowed with the natural G-action. We have the isomorphism

$$\mathcal{BT} \longrightarrow \mathcal{T}(B, N)$$

$$\tau = \{[L_0], \dots, [L_r]\} \longmapsto \text{ stabilizer of } \tau \text{ in } G$$

[1] Kenneth Brown, Buildings, Springer 1989

[2] Roger Godement, Topologie algébrique et théorie des faisceaux, Hermann 1958

[4] Schneider/Stuhler 1991

^[3] John Milnor, The realization of a semi-simplicial complex, Ann. of Math. 65, 1957