The Tits building and the Bruhat-Tits building of $\mathbf{G L}_{d+1}(K)$

Ralf Diepholz
Oberseminar talk 21.05.08

Parts 1 and 2 of this talk explain the basic concepts "simplicial set" and "simplicial complex" which underlie many objects we work with in [4]. Part 3 defines the Tits building and the Bruhat-Tits building of $\mathrm{GL}_{d+1}(K)$ as two special cases of the building of a (B,N)-pair. Sources are [2], [3] for part 1, [1], [2] for part 2, [1], [4] for part 3.

1. Simplicial objects

The category Ord. For $n \in \mathbb{N}$ put $\Delta_{n}=\{0, \ldots, n\}$. Let Ord be the category with the sets $\Delta_{n}(n \in \mathbb{N})$ as objects and order-preserving maps as morphisms. A generating system for the morphisms is given by

$$
\begin{aligned}
& d^{i}=d_{n}^{i}: \Delta_{n-1} \rightarrow \Delta_{n}, j \mapsto\left\{\begin{array}{cc}
j & ; j<i \\
j+1 ; & j \geq i
\end{array} \quad(n \geq 1,0 \leq i \leq n) \quad\right. \text { (face maps), } \\
& s^{i}=s_{n}^{i}: \Delta_{n+1} \rightarrow \Delta_{n}, j \mapsto\left\{\begin{array}{cc}
j & ; j \leq i \\
j-1 ; & j>i
\end{array} \quad(n \geq 0,0 \leq i \leq n) \quad\right. \text { (degeneracy maps), }
\end{aligned}
$$

satifying the following relations:
(*)

$$
\begin{aligned}
d^{j} d^{i} & = & d^{i} d^{j-1} \quad \text { if } i<j \\
s^{i} s^{j} & = & s^{j-1} s^{i} \text { if } i<j
\end{aligned}
$$

$$
s^{j} d^{i}=\left\{\begin{array}{cc}
d^{i} s^{j-1} & ; \text { if } i<j \\
\text { id } & \text {;if } j \leq i \leq j+1 \\
d^{i-1} s^{j} & ; \text { if } i>j+1
\end{array}\right.
$$

The topological space $\left|\Delta_{n}\right|:=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}_{\geq 0}^{n+1} ; \sum x_{i}=1\right\}$ is called the geometric n-simplex. We define

$$
\begin{aligned}
& d_{*}^{i}:\left|\Delta_{n-1}\right| \rightarrow\left|\Delta_{n}\right|,\left(x_{0}, \ldots, x_{n-1}\right) \mapsto\left(x_{0}, \ldots, \hat{x}_{i}, \ldots, x_{n-1}\right) \quad(n \geq 1,0 \leq i \leq n), \\
& s_{*}^{i}:\left|\Delta_{n+1}\right| \rightarrow\left|\Delta_{n}\right|,\left(x_{0}, \ldots, x_{n+1}\right) \mapsto\left(x_{0}, \ldots, x_{i}+x_{i+1}, \ldots, x_{n+1}\right) \quad(n \geq 0,0 \leq i \leq n),
\end{aligned}
$$

obtaining a covariant functor Ord \rightarrow \{topological spaces $\}$.

Simplicial objects. Let \mathcal{K} be a category. A simplicial object in \mathcal{K} is a contravariant functor Ord $\rightarrow \mathcal{K}$. We may think of a simplicial object as a family $M=\left(M_{r}\right)_{r \in \mathbb{N}}$ together with morphisms $d_{r}^{i *}: M_{r} \rightarrow M_{r-1}, s_{r}^{i *}: M_{r} \rightarrow M_{r+1}$ (the images of the above maps) satisfying the relations dual to (*). (Remark: the older terminology (e.g. in [2], [3]) is "semi-simplicial object".)

Example. Let G be an abelian group, $G_{1}, \ldots, G_{m} \subset G$ subgroups. Define

$$
\begin{aligned}
& M_{r}:=\underset{i_{0}, \ldots, i_{r} \in\{1, \ldots, m\}}{\oplus} G_{i_{0}} \cap \ldots \cap G_{i_{r}}, \\
& d^{j}: M_{r} \rightarrow M_{r-1},\left(g_{i_{0} \ldots i_{r}}\right)_{i_{0}, \ldots, i_{r}} \mapsto\left(\sum_{1 \leq i \leq r} g_{i_{0} \ldots i_{j} i_{j+1} \ldots i_{r-1}}\right)_{i_{0}, \ldots, i_{r-1}}, \\
& s^{j}: M_{r} \rightarrow M_{r+1},\left(g_{i_{0} \ldots i_{r}}\right)_{i_{0}, \ldots, i_{r}} \mapsto\left(g_{i_{0} \ldots \hat{i}_{j} \ldots i_{r+1}}\right)_{i_{0}, \ldots, i_{r+1}} .
\end{aligned}
$$

These data constitute a simplicial abelian group (i.e. a simplicial object in the category of abelian groups). This example occurs in Section 2 of [4] where it is applied to the groups $G_{i}:=H^{0}\left(X, U_{i} ; I\right)$ (U_{1}, \ldots, U_{m} open subvarieties of a rigid variety X, I any injective sheaf). In [4] Section 3 this will be used on $X:=\mathbb{P}, U_{i}:=\mathbb{P}-H_{i}\left(|\pi|^{n}\right)\left(H_{1}, \ldots, H_{m} \in \mathcal{H}_{n}\right)$.

Geometric Realization. Let $M=\left(M_{r}\right)$ be a simplicial topological space. Define

$$
X=\dot{U}_{r \in \mathbb{N}}\left(M_{r} \times\left|\Delta_{r}\right|\right)
$$

endowed with the sum topology (i.e. the final topology w.r.t. the inclusions $M_{r} \times\left|\Delta_{r}\right| \rightarrow X$). Consider the equivalence relation \sim on X generated by

$$
\begin{array}{cc}
\left(d^{i} a, x\right) \sim\left(a, d_{*}^{i} x\right) & \left(r \geq 1, a \in M_{r}, x \in\left|\Delta_{r-1}\right|, 0 \leq i \leq r\right), \\
\left(s^{i} a, x\right) \sim\left(a, s_{*}^{i} x\right) & \left(r \geq 0, a \in M_{r}, x \in\left|\Delta_{r+1}\right|, 0 \leq i \leq r\right) .
\end{array}
$$

The quotient space $|M|:=X / \sim$ is called the geometric realization of M.

The chain complex of a simplicial set with coefficients in an abelian group. Let $M=\left(M_{r}\right)$ be a simplicial set. For $r \in \mathbb{N}$ let $C_{r}(M)$ denote the free \mathbb{Z}-module with basis M_{r}. Let A be an abelian group. The groups

$$
C_{r}(M ; A):=C_{r}(M) \otimes A \quad(" r-c h a i n s \text { of } M \text { with coefficients in } A "),
$$

together with the differentials

$$
\begin{aligned}
d_{r}: C_{r}(M ; A) & \longrightarrow \quad C_{r-1}(M ; A) \\
a & \longmapsto \sum_{i=0}^{r}(-1)^{i} d_{r}^{i}(a) \quad\left(a \in M_{r}\right)
\end{aligned}
$$

form a complex $C_{*}(M ; A)$ of abelian groups; its homology is denoted by $H_{*}(M ; A)$.

2. Simplicial complexes. Buildings

Simplicial complexes. Let \mathcal{A} be an ordered set with the following properties:
(a) any two $A, B \in \mathcal{A}$ possess an infimum;
(b) for any $A \in \mathcal{A}$ there is an integer $n \geq-1$ such that the ordered set $\{B \in \mathcal{A} ; B \leq A\}$ is isomorphic to the power set $\mathcal{P}\left(\Delta_{n}\right)$ (ordered by inclusion).

Then \mathcal{A} is called a simplicial complex. The elements of \mathcal{A} are called faces. The relation " $B \leq A$ " is spelled " B is a face of A ". The (unique) number n in (b) is called the dimension, the number $n+1$ the rank of A. The rank-1-faces are called vertices. The (unique) rank-0-face is called the empty face of \mathcal{A}. A subset $\mathcal{B} \subset \mathcal{A}$ is called a subcomplex if $A \in \mathcal{B}$ implies $B \in \mathcal{B}$ for all faces $B \leq A$.

Example. Let K be a set. Let \mathcal{A} be a set of finite subsets of K such that

- if $A \in \mathcal{A}$ and $B \subset A$ then $B \in \mathcal{A}$;
- $\{x\} \in \mathcal{A}$ for all $x \in K$.

Then (\mathcal{A}, \subseteq) is a simplicial complex, the faces of an element $A \in \mathcal{A}$ being its subsets, the vertices being the singletons $\{x\}(x \in K)$.
In fact, every simplicial complex (\mathcal{B}, \leq) is isomorphic to a simplicial complex of this kind: Consider $K:=\{$ vertices of $\mathcal{B}\}, \mathcal{A}:=\{\{V \in K ; V \leq B\} ; B \in \mathcal{B}\}$.

Simplicial complexes as simplicial sets. For $n \in \mathbb{N}$ let

$$
\mathcal{A}_{n}:=\left\{n+1 \text {-tupels }\left(V_{0}, \ldots, V_{n}\right) \text { of vertices of } \mathcal{A} ; \exists A \in \mathcal{A}: V_{0}, \ldots, V_{n} \leq A\right\}
$$

Then $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ is a simplicial set with face maps

$$
d_{n}^{i}: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n-1},\left(V_{0}, \ldots, V_{n}\right) \mapsto\left(V_{0}, \ldots, \hat{V}_{i}, \ldots, V_{n}\right)
$$

and degeneracy maps

$$
s_{n}^{i}: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n+1},\left(V_{0}, \ldots, V_{n}\right) \mapsto\left(V_{0}, \ldots, V_{i}, V_{i}, \ldots, V_{n}\right),
$$

the so-called simplicial set associated to K. Up to isomorphy, \mathcal{A} may be recovered from $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$: The set $\mathcal{A}^{\prime}=\left\{\left\{V_{0}, \ldots, V_{n}\right\} ; n \in \mathbb{N},\left(V_{0}, \ldots, V_{n}\right) \in \mathcal{A}_{n}\right\}$, ordered by inclusion, is isomorphic to \mathcal{A}.

In particular, we may speak of the chain complex (with coefficients in some abelian group) and of the geometric realization of a simplicial set. E.g., the geometric realization of the power set $\mathcal{P}\left(\Delta_{n}\right)$ is isomorphic to the geometric n-simplex $\left|\Delta_{n}\right|$.

Dangerous curve. An element of \mathcal{A}_{n} is called an " n-simplex" or " n-dimensional simplex" of the simplicial complex \mathcal{A}. On the other hand many authors say "simplex" instead of "face", so an " n-dimensional simplex" in this latter sense is a certain subset of \mathcal{A} and not a tupel in \mathcal{A}. Don't mix it up.

Chamber complexes. Let \mathcal{A} be a simplicial complex with bounded dimensions such that every maximal face has the same dimension d. A face of dimension n is then said to have codimension $d-n$. A codimension- 0 -face is called a chamber. \mathcal{A} is called a chamber complex if any two chambers C, C^{\prime} are "joined by a gallery", i.e. there is a sequence of chambers $C=C_{0}, C_{1}, \ldots, C_{n}=C^{\prime}$ such that C_{i} and C_{i-1} have a common codimension-1-face $(1 \leq i \leq n)$. \mathcal{A} is called thin if in addition every codimensional-1-face is a face of exactly two chambers.

Buildings. A simplicial complex \mathcal{B} is called a (thick) building if there exists a family $\left(\mathcal{A}_{i}\right)_{i \in I}$ of thin chamber-subcomplexes covering \mathcal{B} such that:
(B1) for any two faces $A, B \in \mathcal{B}$ there is an \mathcal{A}_{i} containing A and B;
(B2) for any two $\mathcal{A}_{i}, \mathcal{A}_{j}$ containing A and B there is an isomorphism $\mathcal{A}_{i} \rightarrow \mathcal{A}_{j}$ fixing A and B pointwise;
(B3) any codimension-1-face of \mathcal{B} is a face of at least 3 chambers ("thickness").
Such a family $\left(\mathcal{A}_{i}\right)_{i \in I}$ is called a system of apartments of \mathcal{B}. From (B2) (applied to the empty face) it follows that any two apartments are isomorphic.

3. The building of a (B, N)-pair

Let G be a group. Let $B, N \subset G$ be subgroups generating G and such that $B \bigcap N$ is normal in N. Let S be a generating set of the group $N / B \bigcap N$. The pair (B, N) is called a (\boldsymbol{B}, N)-pair (or Tits system) if
$\cdot s B w \subset B s B \bigcup B s w B \quad \forall s \in S, w \in N$,

- $s B s^{-1} \neq B \forall s \in S$.

A subgroup $P \subset G$ containing a conjugate of B is called parabolic.
Theorem. The set $\mathcal{T}(B, N)$ of parabolic subgroups of G, ordered by inclusion, is a building.

The building $\mathcal{T}(B, N)$, together with the conjugation action of G, is called the building of (\boldsymbol{B}, N). The parabolic subgroups of the form $w P w^{-1}(w \in N, P \supset B)$ form a subcomplex $\mathcal{A} \subset \mathcal{B}$, the so-called fundamental apartment. A system of apartments of $\mathcal{T}(B, N)$ is then given by $\left(g \mathcal{A} g^{-1}\right)_{g \in G}$.

Example \boldsymbol{A}. The Tits building of $\boldsymbol{G}:=\mathbf{G L}_{\boldsymbol{d}}(\boldsymbol{K})$ (K any field) is defined to be the building of the following (B, N)-pair:
$B=$ upper triangular matrices in G),
$N=$ monomial matrices in G.
The fundamental apartment of $\mathcal{T}(B, D)$ is finite and has d ! chambers, namely the conjugates of the given Borel subgroup B under the Weyl group ${ }^{v} W:=N / B \bigcap N$ (isomorphic to the symmetric group S_{d}). Another construction of this building is obtained as follows: Let

$$
\mathcal{T}:=\text { set of all } K \text {-linear flags } 0 \subset W_{0} \stackrel{\subset}{\neq} \cdots \underset{\neq}{\subset} W_{r} \stackrel{\subset}{\neq} K^{d},
$$

ordered by inclusion, and endowed with the natural G-action. We have the isomorphism of ordered G-sets

$$
\begin{array}{clcc}
\mathcal{T} & \rightarrow & \mathcal{T}(B, N) \\
\tau & \mapsto & \text { stabilizer } G_{\tau} \text { of } \tau .
\end{array}
$$

From now on let K be a local field, o the valuation ring, π a prime element.

Structure of a simplicial profinite set on \mathcal{T} : Recall that a profinite set is a topological space which is the limit of a projective system of finite discrete sets (equivalently: which is compact and totally disconnected). The simplicial set associated to \mathcal{T} is given by

$$
\mathcal{T}_{r}:=\text { set of all } K \text {-linear flags } 0 \underset{\neq}{\subset} W_{0} \subseteq W_{1} \subseteq \ldots \subseteq W_{r} \subset K^{d} \quad(r \in \mathbb{N})
$$

together with the natural face and degeneracy maps. We topologize \mathcal{T}_{r} as follows: Endowing G with the p-adic topology the quotients $G / G_{\tau}\left(\tau \in \mathcal{T}_{r}\right)$ are profinite. This defines a topology on the orbits $G \tau \simeq G / G_{\tau}$, and we take the sum topology on $\mathcal{T}_{r}=\bigcup G \tau$ (finite disjoint union).

Example B. The Bruhat-Tits building of $\boldsymbol{G}:=\mathbf{S L}_{\boldsymbol{d}}(\boldsymbol{K})$ is the building of the following (B, N)-pair:
$B=$ preimage of the upper triangular matrices in $\mathrm{SL}_{d}(o / \pi)$ under the map

$$
\mathrm{SL}_{d}(o) \rightarrow \mathrm{SL}_{d}(o / \pi)
$$

$$
N=\text { monomial matrices in } G .
$$

Remarks: (1) B is called the "Iwahori subgroup" of G; the parabolic subgroups in the above sense are called the "parahoric subgroups". The group $W:=N / N \cap B$ is called the "affine Weyl group" of G and is a semi-direct product of the finite Weyl group ${ }^{v} W$ (Example A) by a free abelian group of rank $d-1$.
(2) The conjugation action of G on $\mathcal{T}(B, N)$ extends to $\mathrm{GL}_{d}(K)$, and $\mathcal{T}(B, N)$, endowed with this extended action, is also called the "Bruhat-Tits building of $\mathrm{GL}_{d}(K)$ ".

Here we also have another construction of the building: For an o-lattice $L \subset K^{d}$ let [L] denote its homothety class. Let $\mathcal{B T}$ be the set of finite sets $\left\{\left[L_{0}\right], \ldots,\left[L_{r}\right]\right\}$ of classes of o-lattices with the property

$$
L_{0} \underset{\neq}{\subset} L_{1} \underset{\neq}{\subset} \ldots \subset \pi^{-1} L_{0} \quad\left(\text { for suitable representatives } L_{i}\right),
$$

ordered by inclusion, and endowed with the natural G-action. We have the isomorphism

$$
\begin{array}{clc}
\mathcal{B T} & \longrightarrow & \mathcal{T}(B, N) \\
\tau=\left\{\left[L_{0}\right], \ldots,\left[L_{r}\right]\right\} & \longmapsto & \text { stabilizer of } \tau \text { in } G
\end{array}
$$

[1] Kenneth Brown, Buildings, Springer 1989
[2] Roger Godement, Topologie algébrique et théorie des faisceaux, Hermann 1958
[3] John Milnor, The realization of a semi-simplicial complex, Ann. of Math. 65, 1957
[4] Schneider/Stuhler 1991

