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1 Prerequisites

Throughout this talk we �x a local �eld K in the sense of [Nk], i.e. a �eld which is
complete with respect to a non-trivial non-archimedean discrete valuation |·| and such
that its associated residue �eld is �nite. We assume |·| to be normalized. Furthermore we
let p > 0 be the characteristic of its residue �eld, o the valuation of K, π a uniformizing

element and ˆ̄K the completion of a �xed algebraic closure K̄ of K. We also �x a natural
number d and denote by Pd

K the d-dimensional projective space as a K-analytic variety.

2 Main Proposition

If we denote by H the set of all K-rational hyperplanes in Pd
K (which is by de�nition the

kernel of a linear form de�ned over K, i.e. maps Kd+1 into K), then our object of interest
is

Ω(d+1) := Pd
K −

⋃
H∈H

H.

Proposition 1 (Aim of the talk).

(i) We �rst construct a canonical admissible covering of open a�noid subvarieties of P d
K

to show that Ω(d+1) is an admissible open subset and consequently an open analytic
subvariety of Pd

K.

(ii) Then we show that this covering (by a slight modi�cation) is already nice enough to
attest that Ω(d+1) is even a Stein space (recall that a Stein space is a rigid analytic
variety which is covered by a strictly increasing �ltration of certain well-behaved open
a�noid subvarieties).

As we soon want to speak of the norm of the coordinates of a point in Pd
K , we introduce

the following conventions:
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1. If not indicated otherwise, we assume the representing vector of z = [z0 : · · · : zd] ∈
P d
K to be of unit length (unimodular), i.e. max{|zi| |i = 0, . . . , d} = 1.

2. For any hyperplane H ∈H , we let lH ∈ L∗0 with L0 := od+1 always be a unimodular

vector such that H( ˆ̄K) is its kernel in P d
K( ˆ̄K), i.e.

H( ˆ̄K) = {z ∈ P d
K( ˆ̄K) : lH(z) = 0}.

The admissible covering of Ω(d+1) will consist of the complement of ε-neighborhoods of
the hyperplanes H ∈H with ε tending to 0. Each of those is a �nite intersection of open
d-dimensional polydiscs and therefore an admissible open subdomain.

De�nition 1. If ε > 0 is a rational number, the set

H(ε) := {z ∈ P d( ˆ̄K) : |lH(z)| ≤ ε}

is called the ε-neighborhood of the hyperplane H ∈H .

This de�nition is independent of the choices of lH and z if we restrict ourselves to the
above conventions.

From now on, we speak of any subset of P d( ˆ̄K) as a subset of the underlying point set

of P d
K by replacing ˆ̄K through the orbits of the absolute Galois group of K in K̄. Note that

there is no ambiguity in the de�nition of the norm of a Galois orbit of K̄ as all Galois
automorphisms are isometries.

De�nition 2. Two hyperplanes H,H ′ ∈ H are called congruent mod (πn) if their ap-
propriate representing vectors lH and lH′ in L

∗
0 are congruent modulo πnL∗0.

If Hn denotes the set of equivalence classes of hyperplanes H ∈ H mod (πn), then
we have

Hn = (L∗0/π
nL∗0)/scalars in o∗ = P(L∗0/π

nL∗0)

and H = lim←−Hn (as L∗0 is π-adically complete and H = P(L∗0)). In this manner H
inherits a natural pro�nite topology.

When do have two hyperplanes the same ε-neighborhood? The next lemma gives an
answer to this question.

Lemma 1. Two hyperplanes are congruent mod (πn) if they have the same ε-neighborhoods
for ε = |πn|.

Proof. Let H and H ′ be those hyperplanes.
If their representing linear forms di�er only by a multiple of πn, then we �nd that |lH(z)| ≤
max{|lH(z)− lH′(z)| , |lH′(z)|} ≤ |πn| if z ∈ H ′(|πn|) and vice versa.
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The other way around, we �rst note generally that since lH and lH′ are unimodular, they
induce surjective linear maps

l̄H , l̄H′ : L0/π
nL0 → o/πno.

If we assume that H(|πn|) = H ′(|πn|), then l̄H and l̄H′ have the same kernel. As a linear
map which vanishes on a certain submodule is the same as a linear map on the quotient
module, which in this case is free of rank one, we have l̄H′ = ᾱ · l̄H for some unit ᾱ ∈ o/πno
(by surjectivity). If therefore α ∈ o represents ᾱ, then lH′ − αlH ∈ πnL∗0, i.e. H and H ′

are congruent mod (πn) (as αlH represents H as well). �

Note that somewhat counter-intuitively, the ε-neighborhoods of hyperplanes are more
likely to coincide as they become thicker. I.e., if their ε0-neighborhoods coincide for some
ε0, they also coincide for all ε > ε0. As a slogan, one could phrase the lemma as follows:
as soon as the thickness of the neighborhoods of two hyperplanes becomes larger than the
deviation of their orthogonal vectors, they coincide.

An immediate consequence (already by the obvious direction) is

Lemma 2. ⋃
H∈Hn

H(|πn|) ⊇
⋃
H∈H

H.

Now the road to triumph is paved: We show that increasing sequence of subsets

Ωn := Ω(|πn|) := Pd
K −

⋃
H∈Hn

H(|πn|)

of Ω(d+1) (by Lemma 2) constitute an admissible covering of Ω(d+1) by admissible open
subvarieties.

Proposition 2. The Ωn are admissible open subsets in Pd
K (and therefore rigid-analytic

varieties).

Proof. Ωn is a �nite intersection of subsets of the form Pd
K −H(|πn|). It therefore su�ces

to show by the axioms of the G-topology to show that those subsets are admissible open.
Now up to a linear isomorphism , P d

K−H is the standard open subset U0 = {[z0 : · · · : zd] :
z0 6= 0} of P d

K −H. Explicitly, if lH = v∗ for a vector v ∈ L0, then we complete {v} to a
basis of L0 and map this to the canonical basis of L0, sending v to e0 := (1, 0, . . . , 0) ∈ L0.
Therefore we may assume that P d

K(H(|πn|) = {[z0 : · · · : zd] ∈ P d
K : |z0| > |πn|} ⊂ U0.

Under the usual identi�cation of U0 with A
d,rig
K via [z0 : · · · : zd] 7→ ( z1

z0
, . . . , zd

z0
), this becomes

the open polydisc of radius |πn|−1, which can be seen to be admissible open by choosing a
sequence of n-th roots of unity of the value group of K̄ converging to |πn| (cf. [BoschLec],
�1.10 Prop.7 or even more explicitly [SnBN]). �

We proceed by showing that these constitute an admissible covering of Ω(d+1).
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Proposition 3. The family {Ωn : n ∈ N} is an admissible covering of Ω(d+1).

Proof. Unwinding the de�nition of an admissible covering, we have to show that any mor-
phism f on a K-a�noid variety such that im f ⊂ Ω(d+1) already satis�es im f ⊂ Ωn for an
n ∈ N.
Now just as in the construction of Ad,rig

K , one sees that the family {P d
K − H(|πn|) : n ∈

N} ' Bd
<|πn|−1,K

is even an admissible covering of P d
K −H ' Ad,rig

K (needs the maximum

modulus principle). Therefore by the universal property in the de�nition of an admissible
covering, if f : Y → Pd

K is any K-morphism form a K-a�noid variety Y into Pd
K such

that im(f) ⊂ Pd
K −H, then there exists an n(H) ∈ N such that im f ⊂ Pd −H(

∣∣πn(H)
∣∣).

We hence see that im f ⊂ Pd
K −

⋃
H∈H H(

∣∣πn(H)
∣∣); thus if we could bound {n(H) : H ∈

H }, we would be done since then im f ⊂ Pd
K −

⋃
H∈Hn

H(|πn|), where n is a upper bound
of the n(H).

We now cover H =
⋃
H∈calH = {H ′ ∈ H : H ′ ⊂ H(

∣∣πn(H)
∣∣)}. As by Lemma 1 the sets

{H ′ ∈ H : H ′ ⊂ H(
∣∣πn(H)

∣∣)} are just the sets of hyperplanes congruent to H mod (πn),
these sets in this covering of H are by de�nition open in H = lim←−Hn. Thus the union
above actually runs over a union of a family of open subsets in H . As H (= P(L∗0)) is
compact (pro�nite topological spaces being the same as compact and totally disconnected
ones), we �nd �nitely many hyperplanes H1, . . . , Hr ∈H such that⋃

H∈H

H(
∣∣πn(H)

∣∣) =
⋃

i=1,...,r

Hi(
∣∣πni)

∣∣);
where ni = min{n(H ′) : H ′ ⊂ Hi(

∣∣πn(Hi)
∣∣)}. In particular n(H) is bounded by max{n1, . . . , nr}.

�

We have thus �nished Proposition 1 (i) and move on by recalling the de�nition of a
Stein space:

De�nition 3. An analytic space X is called Steinsch, if there is an admissible covering
by an increasing sequence U1 ⊆ U2 ⊆ . . . of open a�noid subdomains such that Ui is a
Weierstrass-domain of a diameter in the value group of K less than 1, i.e.

Ui = Ui+1(f
(i)
1 ≤ |ai| , . . . , f (i)

ri
≤ |ai|) ⊆ Ui+1 = Spec(Ai+1)

for an element ai ∈ K of norm less than 1.

As a slogan, a Stein space if �ltered by a sequence of Weierstrass-domains such that
the previous one is obtained by cutting out points of norm less than 1 in the value group
of K (identifying a system of a�noid generators with the coordinate functions).

We now proceed showing that those Ω̄n actually witness that Ω(d+1) is Steinsch.

Here and later on we will always identify the elements of a reduced a�noid algebra as
functions on the orbits of the absolute Galois group of K in K̄.
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Proposition 4. Ω(d+1) is Steinsch.

Proof. We have

Ω̄n = {z ∈ P d( ˆ̄K) : |lH(z)| ≥ |πn| for all H ∈H }.

For any pair H,H ′ ∈H , we have the well-de�ned function

fH,H′ :=
lH
lH′
∈ O(P d

K −H).

It therefore restricts to a function in O(Ω(d+1)) as we have (platonistically spoken) just
discovered Ω(d+1) to be admissible open. For each n ∈ N we choose a set H̄n of represen-
tatives for the equivalence classes of hyperplanes in Hn+1 in such a way that it contains
the coordinate hyperplanes Hi = {zi = 0} for i = 0, . . . , d. Note that it su�ces to demand
H ∈ H̄n in the de�nition of Ω̄n as lH(z) < |πn| exactly if lH′(z) < |πn| for H,H ′ lying in
the same equivalence class of Hn+1 (cf. Lemma 1). We see that

Ω̄n = {z ∈ Ω(d+1) : |fH,H′ | ≤ |π|−n for all H,H ′ ∈ H̄n}
= {z ∈ Ω(d+1) : |fHi,H′| ≤ |π|

−n for all i = 0, . . . , d and H ′ ∈ H̄n}
= {z ∈ Ω̄n+1 :

∣∣πn+1fHi,H′
∣∣ ≤ |π| for all H,H ′ ∈ H̄n}.

Regarding the �rst equality, note that by our conventions all linear forms are bounded by
norm 1 on Pd

K and all z ∈ Pd
K have unit length, i.e. 1 = max{|z0| , . . . , |zd|}; this is just

emphasized in the second equality; for the third one, note that, by the original de�nition
of Ω̄n, we surely �nd Ω̄n ⊂ Ω̄n+1 and that H̄n+1 just as well constitutes (a �ner) system of
representatives of Hn+1 containing H0, . . . , Hd.

Now by the last characterization of Ω̄n, we would be done if we could generally show
that these πnfH,H′ for H,H

′ ∈ H̄n constitute a system of a�noid generators of O(Ω̄n).
We thus have to determine O(Ω̄n) explicitly. Our candidate is the following: De�ne the
a�noid K-algebra An to be the free Tate algebra over K in the in indeterminates TH,H′
for H,H ′ ∈ H̄n divided by the closed ideal generated by

TH,H′ − πn for H ∈ H̄n, (1)

TH,H′ · TH′,H′′ − πnTH,H′′ for H,H ′, H ′′ ∈ H̄n, (2)

TH,Hj
−
∑

i=0,...,d

λiTHi,Hj
if lH(z) =

∑
i=0,...,d

λizi for H ∈ H̄n and j = 0, . . . , d. (3)

We then have the K-morphisms

φn : Ω̄n → Spec(An) given by An 3 TH,H′ 7→ πnfH,H′ ∈ O(Ω̄n)
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and

ψ̃n : Spec(An) → Pd
K

x 7→ [TH0,Hj
(x) : · · · : THd,Hj

(x)] (not necessarily unimodular),

the latter map being independent of the particular choice of j ∈ {0, . . . , d}. (Note that a
priori Spec(An) is an a�noid subdomain of a polydisc of rather large dimension).

First of all note that im ψ̃n does not intersect any of the hyperplanes of H̄n+1 (partic-
ularly ψ̃n is well-de�ned) and therefore none of the coordinates of the points in im ψ̃n
vanishes as TH,Hj

(x) · TH,Hi
= π2n 6= 0 for any H ∈ H̄n by (1).

We check that indeed im ψ̃n ⊂ Ω̄n. To begin with, recall that fHk,Hl
=

e∗k
e∗l
, where e∗i is

the i-th coordinate evaluation map. Therefore fHk,Hl
(ψ̃n(x)) =

THk,Hj
(x)

THl,Hj
(x)

= πnTHk,Hl
(x) by

(2) and consequently fH,Hl
(ψ̃n(x)) = πnTH,Hl

(x) for arbitrary H ∈ H̄n by (3). Finally

fH,H′(ψ̃n(x)) = πnTH,H′(x) for H,H ′ ∈ H̄n, again by (2). It follows that
∣∣∣fH,H′(ψ̃n(x))

∣∣∣ ≤
|π|−n for all H,H ′ ∈ H̄n and therefore im ψ̃n ⊂ Ω̄n.

Therefore ψ̃n factors through a K-morphism Ψn : Spec(An)→ Ω̄n. To prove O(Ω̄n) ' An,
it su�ces to show that the K-morphisms ψn and φn are inverse to each other on their
point sets as these uniquely determine those in the case of (reduced) varieties (for example
ψn = O(Ω̄n) 3 f 7→ f ◦ ψn ∈ O(Spec(An)) if we use the identi�cation as remarked above).

Now let x ∈ Spec(An). Then for arbitrary H,H ′ ∈ H̄n we �nd

TH,H′(φn(ψn(x))) = TH,H′ ◦ φn(ψn(x))

= π−nfH,H′(ψn(x))

= TH,H′(x)

as we have just proven the last equality. Vice versa let z ∈ Ω̄n. Then

ψn(φn(z))i = ψn((πnfH,H′(z))H,H′∈H̄n
)i

= [πnfH0,Hj
(z) : · · · : πnfHd,Hj

(z)]

= z.

�

There are two other facts that need to be mentioned. Recall that an abstract simplical
complex is merely a family of subsets of a �xed point set closed under taking subsets.
The �rst one is that there is a natural map from Ω(d+1) to the geometric realization of a
simplicial complex whose vertices are given by homothety classes of lattices of o-lattices in
Kd+1.

6



De�nition 4. BT is the simplicial complex whose vertices are the homothety classes [L] of
o-lattices in Kd+1 and whose q-simplices are given by families {[L0], . . . , [Lq]} of homothety
classes such that

L0 ( L1 ( . . . ( Lq ( π−1L0.

Remark 1. As modulo L0 this yields a sequence of proper inclusions of vector spaces over
the residue �eld of K, we �nd q ≤ d.

Recall that the geometric realization of a simplicial complex is obtained by adjoining
formal sums

∑
i=0,...,q λiLi with |λi| ≤ 1 and

∑
i=0,...,q λi = 1 for all adjacent points of a face

(an element of the family of subsets). Here this looks like a tree for d = 1 and like some
wildly attached triangles in 3-dimensional space if d = 2. Now it is important that the
topological space of homothety classes of real norms on Kd+1 can be identi�ed GLd+1(K)-
equivariantly with the geometric realization |BT | of the simplical complex BT . Ralph
gave a taste of this for the case d = 1 in last term's Oberseminar. I will brie�y recall this
construction.

If L and L′ are adjacent (i.e. πL ( L′ ( L), then there exists a basis e1, e2 ∈ K2

such that L = oe1 + oe2 and L′ = oe1 + oπe2 (as L′ = τ−1l for a line over the residue
�eld of K and τ denoting the canonical projection modulo L0). Each lattice L de�nes a
canonical norm on K2 by putting |a1e1 + a2e2|L := max{|a1| , |a2|}. Then the map is given
as follows:

|BT | → { Homothety classes of norms on K2}
s · L+ s′ · L′ 7→ [|a1e1 + a2e2|sL+s′L′ := max |a1| , qt

′ |a2|.

This was seen to be a bijection. The other canonical (but only surjective) map from
Ω(d+1) to the set of homothety classes of norms is given by

ρ : z = [z0 : . . . : zd] 7→ [|w|ρ(z) :=

∣∣∣∣∣ ∑
i=0,...,d

wizi

∣∣∣∣∣ for w = (w0, . . . , wd) ∈ Kd+1].

Ralph used the �bres of the composed map Ω(d+1) → |BT | to construct another admissi-
ble covering of Ω(d+1).

The second fact concerns the �bres of the projection from the complement of the com-
mon point set of �nitely many ε-neighborhoods of hyperplanes H0(|π|n), . . . , Hr(|π|n) in
Ω(d+1) onto Ps

K for a certain s < d. These are locally open polydiscs in Ad−s,rig
K :

Proposition 5. Let M̄ :=
∑

i=0,...,r(o/π
no)lHi

⊂ L∗0/π
nL∗0. De�ne s = rank M̄ − 1 (the

minimal number of generators of M̄ as an o/πno-module). We have a (in the rigid sense)
locally trivial �bration

Pd
K − (H0(|π|n) ∩ . . . ∩Hr(|π|n))→ Ps

K

over K with �bres open polydiscs in Ad−s,rig
K .
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Recall that in this context a surjective map of rigid analytic varieties π : E → B is said
to have a locally trivial �bration if for any point b ∈ B there exists a so called trivializing
neighborhood U 3 b which is admissible open such that the its preimage π−1(U) is as a rigid
analytic variety isomorphic to the product space U ×D for an open polydisc D ⊂ Ad−s,rig

K .
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