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1 Prerequisites

Throughout this talk we fix a local field K in the sense of [Nk]|, i.e. a field which is
complete with respect to a non-trivial non-archimedean discrete valuation |-| and such
that its associated residue field is finite. We assume |-| to be normalized. Furthermore we
let p > 0 be t}le characteristic of its residue field, o the valuation of K, 7w a uniformizing
element and K the completion of a fixed algebraic closure K of K. We also fix a natural
number d and denote by P% the d-dimensional projective space as a K-analytic variety.

2 Main Proposition

If we denote by 7 the set of all K-rational hyperplanes in P4 (which is by definition the
kernel of a linear form defined over K, i.e. maps K%*! into K), then our object of interest
is
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Proposition 1 (Aim of the talk).

(i) We first construct a canonical admissible covering of open affinoid subvarieties of PE
to show that QY s an admissible open subset and consequently an open analytic
subvariety of P4

(ii) Then we show that this covering (by a slight modification) is already nice enough to
attest that QY s even a Stein space (recall that a Stein space is a rigid analytic
variety which is covered by a strictly increasing filtration of certain well-behaved open
affinoid subvarieties).

As we soon want to speak of the norm of the coordinates of a point in P, we introduce
the following conventions:



1. If not indicated otherwise, we assume the representing vector of z = [z9 : -+ : z4] €
P¢ to be of unit length (unimodular), i.e. max{|z]||i =0,...,d} = 1.

2. For any hyperplane H € 7, we let ly € L} with Ly := 0%*! always be a unimodular
vector such that H(K) is its kernel in PE(K), i.e.

H(K) = {z € PLK) : ly(z) = 0}.
The admissible covering of Q@1 will consist of the complement of e-neighborhoods of
the hyperplanes H € 57 with € tending to 0. Each of those is a finite intersection of open
d-dimensional polydiscs and therefore an admissible open subdomain.

Definition 1. If € > 0 is a rational number, the set

A

H(e) :={z € PYK) : |lg(2)] <€}
is called the e-neighborhood of the hyperplane H € €.

This definition is independent of the choices of [ and z if we restrict ourselves to the
above conventions.

A

From now on, we speak of any subset of PY(K) as a subset of the underlying point set
of PE by replacing K through the orbits of the absolute Galois group of K in K. Note that

there is no ambiguily in the definition of the norm of a Galois orbit of K as all Galois
automorphisms are isometries.

Definition 2. Two hyperplanes H, H' €  are called congruent mod (n™) if their ap-
propriate representing vectors lgy and lg in Ly are congruent modulo 7" L.

If 77, denotes the set of equivalence classes of hyperplanes H € . mod (7"), then
we have

6, = (Lj/m" Lg) /scalars in o™ = P(Lgy/7" L§)

and 7 = lim 77, (as Lg is m-adically complete and ¢ = P(Lg)). In this manner ¢
inherits a natural profinite topology.

When do have two hyperplanes the same e-neighborhood? The next lemma gives an
answer to this question.

Lemma 1. Two hyperplanes are congruent mod (™) if they have the same e-neighborhoods
for e = |m"|.

Proof. Let H and H’ be those hyperplanes.
If their representing linear forms differ only by a multiple of 7", then we find that |(y(2)| <
max{|lg(z) — lg ()], |lg(2)|} < |7"| if z € H'(|]7"|) and vice versa.



The other way around, we first note generally that since [y and [y are unimodular, they
induce surjective linear maps

lir, Ly = Lo/7" Lo — o/7"o0.

If we assume that H(|7"|) = H'(|7"|), then [;; and [z have the same kernel. As a linear
map which vanishes on a certain submodule is the same as a linear map on the quotient
module, which in this case is free of rank one, we have [y = a- [y for some unit & € o/7"0
(by surjectivity). If therefore o € o represents &, then ly — aly € 7L, i.e. H and H'
are congruent mod (7") (as aly represents H as well). |

Note that somewhat counter-intuitively, the e-neighborhoods of hyperplanes are more
likely to coincide as they become thicker. I.e., if their ¢)-neighborhoods coincide for some
€o, they also coincide for all € > ¢). As a slogan, one could phrase the lemma as follows:
as soon as the thickness of the neighborhoods of two hyperplanes becomes larger than the
deviation of their orthogonal vectors, they coincide.

An immediate consequence (already by the obvious direction) is
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Lemma 2.

Now the road to triumph is paved: We show that increasing sequence of subsets

Q= Q|7")) =Pk — | H(|7"))

Hext,

d+1

of Q) (by Lemma 2) constitute an admissible covering of Q@+ by admissible open

subvarieties.

Proposition 2. The Q, are admissible open subsets in P4 (and therefore rigid-analytic
varieties).

Proof. , is a finite intersection of subsets of the form P% — H(|7"|). Tt therefore suffices
to show by the axioms of the G-topology to show that those subsets are admissible open.
Now up to a linear isomorphism , P% — H is the standard open subset Uy = {[20 : =+ - : 24] :
20 # 0} of P& — H. Explicitly, if Iy = v* for a vector v € Lg, then we complete {v} to a
basis of Ly and map this to the canonical basis of Lo, sending v to ¢y := (1,0,...,0) € L.

Therefore we may assume that Pg(H(|7"|) = {[z0 : -+ : z4] € Pf : 2] > |7"|} C U.
Under the usual identification of Uy with AR via [z : -+ : z4] — (%, ..., %), this becomes

the open polydisc of radius |7r”|71, which can be seen to be admissible open by choosing a
sequence of n-th roots of unity of the value group of K converging to || (cf. [BoschLec],

§1.10 Prop.7 or even more explicitly [SnBN]). |

We proceed by showing that these constitute an admissible covering of Q1.



Proposition 3. The family {Q, : n € N} is an admissible covering of Q4+,

Proof. Unwinding the definition of an admissible covering, we have to show that any mor-
phism f on a K-affinoid variety such that im f C Q) already satisfies im f C ©,, for an
n € N. _

Now just as in the construction of A%"8 one sees that the family {Pft — H(|7"[) : n €
N} ~ B<‘ w1 18 even an admissible covering of P4 — H ~ A%™ (needs the maximum
modulus pr1n61p1e). Therefore by the universal property in the definition of an admissible
covering, if f : Y — P% is any K-morphism form a K-affinoid variety Y into P% such
that im(f) C P% — H, then there exists an n(H) € N such that im f C P? — H(|z"()|).

We hence see that im f C Pg — Uy H(|7"H)]); thus if we could bound {n(H) : H €
A}, we would be done since then im f C P% — ¢ H(|7"|), where n is a upper bound
of the n(H).

We now cover ¢ = UHEmlH ={H' € # : H C H(|7="®]|)}. As by Lemma 1 the sets
{H' € o : H C H(|m"")|)} are just the sets of hyperplanes congruent to H mod (7"),
these sets in this covering of ¢ are by definition open in % = lim ;. Thus the union
above actually runs over a union of a family of open subsets in . As H (= P(Lg)) is
compact (profinite topological spaces being the same as compact and totally disconnected
ones), we find finitely many hyperplanes Hy,..., H, € S such that

U #(x @)= | H()y
Hesr i=1,...,r

where n; = min{n(H') : H' C H;(|x""

(H) is bounded by max{ny,...,n,}.
|

We have thus finished Proposition 1 (i) and move on by recalling the definition of a
Stein space:

Definition 3. An analytic space X s called Steinsch, if there is an admissible covering

by an increasing sequence Uy C Uy C ... of open affinoid subdomains such that U; is a
Weierstrass-domain of a diameter in the value group of K less than 1, i.e.
Ui = U (f7 < laif -, S < lasl) € Usir = Spec(Aiga)

for an element a; € K of norm less than 1.

As a slogan, a Stein space if filtered by a sequence of Weierstrass-domains such that
the previous one is obtained by cutting out points of norm less than 1 in the value group
of K (identifying a system of affinoid generators with the coordinate functions).

We now proceed showing that those €, actually witness that Q@+ is Steinsch.

Here and later on we will always identify the elements of a reduced affinoid algebra as
functions on the orbits of the absolute Galois group of K in K.
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Proposition 4. Q) s Steinsch.

Proof. We have
= {z € PUK) : lg(z)| > |="| for all H € ).

For any pair H, H' € ¢, we have the well-defined function
l
uw = e o1t~ 1)
H/

It therefore restricts to a function in @(Q@+Y) as we have (platonistically spoken) just
discovered QY to be admissible open. For each n € N we choose a set ., of represen-
tatives for the equivalence classes of hyperplanes in 7, in such a way that it contains
the coordinate hyperplanes H; = {z; = 0} for i = 0,...,d. Note that it suffices to demand
H € J, in the definition of Q as ly(z) < |7 exactly if lg(2) < |7"| for H, H' lying in
the same equivalence class of 7,1 (cf. Lemma 1). We see that

Q, = {z€ QU | fym| <|n|™" for all H, H' € )}
= {2 QY | fy | <|n| ™" foralli=0,...,dand H' € )}
= {2 € Qupr: |7 fu, | < || for all H, H' € 7,}.

Regarding the first equality, note that by our conventions all linear forms are bounded by
norm 1 on P and all 2 € P% have unit length, i.e. 1 = max{|z|,...,|zq|}; this is just
emphasized in the second equality; for the third one, note that, by the original definition
of Q,, we surely find Q,, C Q,,,, and that JZ,,, just as well constitutes (a finer) system of
representatives of ¢, .1 containing Hy, ..., Hy.

Now by the last characterization of ,, we would be done if we could generally show
that these 7" fy s for H, H' € %, constitute a system of affinoid generators of &((,).
We thus have to determine €((2,) explicitly. Our candidate is the following: Define the
affinoid K-algebra A, to be the free Tate algebra over K in the in indeterminates Ty g
for H, H' € 7, divided by the closed ideal generated by

TH7H/—7TTL fOFHE%, (1)

THH/ Ty H! —WnTHH// for H, Hl H" ¢ %L, (2)

T, — Y N, i la(2) = Y Nz for He A, and j=0,... .d. (3)
1=0,...,d 1=0,...,d

We then have the K-morphisms

bn : Qn — Spec(A,) given by A, > Ty — 7" fam € O(Qy)



and

ﬁn : Spec(4,) — Pf(

v+ [Twuym,(x): - : Ty, m(x)] (not necessarily unimodular),

the latter map being independent of the particular choice of j € {0,...,d}. (Note that a
priori Spec(A4,,) is an affinoid subdomain of a polydisc of rather large dimension).

First of all note that im ¥, does not intersect any of the hyperplanes of H (partic-
ularly v, is well-defined) and therefore none of the coordinates of the points in imy,
vanishes as Ty g, (¢) - Ty, = 7" # 0 for any H € 7, by (1).

We check that indeed im @n C Q,. To begin with, recall that fo,.m = Z—E, where e is
l

the 4-th coordinate evaluation map. Therefore fy g (1, (z)) = Z’;TH]J(%) = 7"Ty, m,(x) by
(2) and consequently fg g, (¢, (7)) = ™ Ty u,(z) for arbitrary H € %, by (3). Finally
fH,H/<IZn(JI)) = Ty g (x) for H, H' € J,, again by (2). It follows that fHH/(z/;n(x))’ <

7| ™" for all H, H' € 7, and therefore im v, C Q,,.

Therefore 1, factors through a K-morphism ¥, : Spec(A,) — Q,. To prove 0(Q,) ~ A,,
it suffices to show that the K-morphisms 1, and ¢, are inverse to each other on their
point sets as these uniquely determine those in the case of (reduced) varieties (for example

UV =0(Q,) > fr— foi, € O(Spec(A,)) if we use the identification as remarked above).
Now let = € Spec(A,,). Then for arbitrary H, H' € %, we find

Tr,r (fn(thn(2))) = T,m © ¢n(¥n(z))
= T " (Yn (1)
= TH,H’ (:13)

as we have just proven the last equality. Vice versa let z € ,,. Then

Un(¢n(2)): = Un (7" fr,10(2)) e e, )i
= [ﬂ-anOij (Z) P ﬂanmH.;'(z)]

There are two other facts that need to be mentioned. Recall that an abstract simplical
complex is merely a family of subsets of a fixed point set closed under taking subsets.
The first one is that there is a natural map from Q@Y to the geometric realization of a
simplicial complex whose vertices are given by homothety classes of lattices of o-lattices in
Kd—i—l.



Definition 4. BT is the simplicial complex whose vertices are the homothety classes [L] of
o-lattices in K and whose q-simplices are given by families {[Lo], ..., [Ly]} of homothety
classes such that

LiCLiC...C L, Cn L.

Remark 1. As modulo Lg this yields a sequence of proper inclusions of vector spaces over
the residue field of K, we find q < d.

Recall that the geometric realization of a simplicial complex is obtained by adjoining
formal sums >, AL with [A;] <Tand },_, A =1 forall adjacent points of a face
(an element of the family of subsets). Here this looks like a tree for d = 1 and like some
wildly attached triangles in 3-dimensional space if d = 2. Now it is important that the
topological space of homothety classes of real norms on K91 can be identified GLg 1 (K)-
equivariantly with the geometric realization |2.7| of the simplical complex #.7. Ralph
gave a taste of this for the case d = 1 in last term’s Oberseminar. T will briefly recall this
construction.

If L and L' are adjacent (i.e. wL C L' C L), then there exists a basis e;,e; € K2
such that L = oe; + oey and L' = oe; + omey (as L' = 771 for a line over the residue
field of K and 7 denoting the canonical projection modulo Lg). Each lattice L defines a
canonical norm on K? by putting |aje; + ases|; := max{|a;]|,|az|}. Then the map is given
as follows:

\BT| — { Homothety classes of norms on K?*}
s-L+s-L'w— larer + azesl,; oy o= max|ai], ¢ |as|.

This was seen to be a bijection. The other canonical (but only surjective) map from
Q@+ to the set of homothety classes of norms is given by

E Wiz;

i=0,...,d

prz=l20:...1 2] = [Jw],, = for w = (wy, ..., wg) € K]

Ralph used the fibres of the composed map Q@) — |2.7| to construct another admissi-
ble covering of QU1

The second fact concerns the fibres of the projection from the complement of the com-
mon point set of finitely many e-neighborhoods of hyperplanes Hy(|7|"),..., H,(|7|") in
QU+ onto P3. for a certain s < d. These are locally open polydiscs in A% *"¢:

Proposition 5. Let M := >ico..o0/m"0)lm, C Lg/m"Li. Define s = rank M — 1 (the
minimal number of generators of M as an o/7"o-module). We have a (in the rigid sense)
locally trivial fibration

Pic — (Ho(|z[") ... n Hy(|7[")) — P

. . . d—s,ri
over K with fibres open polydiscs in A% """,
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Recall that in this context a surjective map of rigid analytic varieties 7 : E — B is said
to have a locally trivial fibration if for any point b € B there exists a so called trivializing
neighborhood U > b which is admissible open such that the its preimage 7' (U) is as a rigid
analytic variety isomorphic to the product space U x D for an open polydisc D C ACII{_S’“g.
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