
INTRODUCTION TO BOUNDED COHOMOLOGY

MARCO SCHMIDT

We will give an introduction to bounded cohomology for spaces as well as for discrete groups.

1. DEFINITION OF BOUNDED COHOMOLOGY

1.1. Bounded Cohomology of Spaces. Let X be a topological space and Sn(X) = {σ : ∆n →
X : σ continuous} the set of singular n-simplices in X . Denote by C•(X;R) = R[S•(X)] the real
chain complex of X and by

C•(X;R) = homR
(
C•(X;R),R

)
= map

(
S•(X),R

)
the real cochain complex of X .

Definition 1.1. A cochain ϕ ∈ C•(X;R) is called bounded if there is a constant Cϕ > 0 such that
|ϕ(σ)| < Cϕ holds for all σ ∈ S•(X). We set

Ĉ•(X) = {ϕ ∈ C•(X;R) : ϕ bounded}

and define the bounded cohomology of X as the cohomology of the subcomplex Ĉ•(X). It will be
denoted by Ĥ•(X).

It is easy to see that bounded cohomology is homotopy invariant. But the excision axiom does
not hold for bounded cohomology as we will see later. The proof for ordinary cohomology fails
since a cochain need not stay bounded during the process of subdivision. It is a nice exercise to
show that the first bounded cohomology Ĥ1(X) of each space X vanishes.

1.2. Bounded Cohomology of Groups. As in the case of topological spaces we define bounded
cohomology of groups by attaching a boundedness condition to the cochain complex which de-
fines ordinary group cohomology.

Definition 1.2. Let G be a discrete group and B(G•) = {ϕ : G• → R : ϕ bounded}. Define
coboundary maps

R
δ0−→ B(G1) δ1−→ B(G2) δ2−→ · · ·

by δ0(t) = 0 for all t ∈ R and

δk(ϕ)(g0, . . . , gk) = ϕ(g1, . . . , gk)

+
k∑
i=1

(−1)iϕ(g0, . . . , gi−1gi, . . . , gk)(1)

+(−1)k+1ϕ(g0, . . . , gk−1)

for k ≥ 1. The bounded cohomology of G is defined as the cohomology of the complex B(G•) and
is denoted by Ĥ•(G).
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Remark.
(i) 1-cocycles are just group homomorphisms ϕ : G → R. Therefore Ĥ1(G) = 0 for each

group G since a bounded homomorphism into R is trivial.
(ii) The dual concept of bounded cohomology is l1-homology: One definesCl

1

• (X) = l1
(
S•(X)

)
with the usual boundary for spaces and Cl

1

• (G) = l1(G•) with boundary dual to the one
in (1) for groups. There are Kronecker products

Ĥn(X)⊗H l1

n (X) −→ R

Ĥn(G)⊗H l1

n (G) −→ R.

We will give another definition of bounded cohomology for discrete groups later. Next we
will calculate the bounded cohomology in two special cases.

2. TWO EXAMPLES

We will study the second bounded cohomology group of the free group with two generators
and the bounded cohomology of amenable groups.

2.1. Bounded Cohomology of Free Groups. The following result appeared in [1], but the proof
given there is not entirely correct, compare the remark in [3]. The proof given here is due to
Mitsumatsu ([7]).

Proposition 2.1. The second bounded cohomology group Ĥ2(Z ∗ Z) of the free group on two generators
is not finitely generated as an R-vector space.

Proof. We give the idea of the proof. Let w be a reduced word of length `(w) ≥ 2. The 1-cochain
fw given by

fw(g) = (number of times w occurs in g)− (number of times w−1 occurs in g)

is clearly unbounded. But it is not hard to check that

δ1(fw)(g0, g1) = fw(g1)− fw(g0g1) + fw(g0) ≤ `(w)

holds for all g0, g1 ∈ Z ∗ Z. Hence δ1(fw) is a bounded 2-cocycle. Consider δ1(f[an,bn]) for n ≥ 1,
where a, b are the generators of Z ∗ Z. Now we define l1-cycles

Ek =
∞∑
i=0

2−i−1
(
[ak, bk]2

i

, [ak, bk]2
i)

−(ak, a−kb−k) + (b−k, bka−kb−k)− (ak, bka−kb−k)

in Cl
1

2 (Z ∗ Z) for each k ≥ 1 and check that〈
[δ1(f[an,bn])], [Ek]

〉
= δn,k.

This shows that the
(
[δ1(f[an,bn])]

)
n∈N is a linearly independent system. �

Brooks and Series ([2]) generalized this method to show that Ĥ2(G) is not finitely generated
when G is the fundamental group of a compact oriented surface of genus at least two.

2.2. Bounded Cohomology of Amenable Groups. The situation in the case of amenable groups
is quite different: One has the following result of Trauber (unpublished, for a proof see for exam-
ple [4] or [5]).

Theorem 2.2. Let G be an amenable group. Then Ĥn(G) = 0 for all n ≥ 1.

Since this result follows easily from the theory developed in later talks we will not present any
proof here.

3. BOUNDED COHOMOLOGY VIA INJECTIVE RESOLUTIONS

The following approach to bounded cohomology of discrete groups is due to Ivanov ([5]). It
contains our definition above as a special case. First we need some definitions.
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3.1. Strong Relatively Injective Resolutions.

Definition 3.1. A bounded left G-module is a Banach space V with a left G-action by linear oper-
ators of norm not greater than one, in other words ‖g.v‖ ≤ ‖v‖ holds for all g ∈ G, v ∈ V . A
morphism of bounded left G-modules is a bounded linear operator which commutes with the
G-action.

If W is any Banach space then

B(G,W ) = {ϕ : G→W : ∃c > 0 ∀g ∈ G ‖ϕ(g)‖ ≤ c}

is a bounded leftG-module where theG-action is given by g.ϕ(h) = ϕ(hg). The norm onB(G,W )
is given by ‖ϕ‖∞ = sup{‖ϕ(g)‖ : g ∈ G}. Note that

B(Gn+1,R) ∼= B
(
G,B(Gn,R)

)
,

where the G-action on B(Gn+1,R) is given by g.ϕ(g0, . . . , gn) = ϕ(g0, . . . , gn−1, gng).
Often we will call bounded left G-modules simply G-modules.

Definition 3.2. An injective G-morphism i : V1 → V2 of G-modules is called strongly injective if
there is a bounded linear operator p : V2 → V1 such that p◦i = idV1 and ‖p‖ ≤ 1. Note that p is not
assumed to beG-equivariant. AG-module U is called relatively injective if for all strongly injective
G-morphisms i : V1 → V2 and all G-morphisms f : V1 → U there is a G-morphism h : V2 → U
such that h ◦ i = f and ‖h‖ ≤ ‖f‖. The following diagram should clarify the definition:

(2) V1

i //

f

��

V2
p
oo

h~~}
}

}
}

U

Lemma 3.3. Let V be a Banach space. Then the G-module B(G,V ) is relatively injective. It follows that
B(Gn,R) is relatively injective for all n ≥ 1.

Proof. In the situation of (2) with U = B(G,V ) we define h : V2 → B(G,V ) as follows:

h(v)(g) = f
(
p(g.v)

)
(e),

where e is the unit element of G. The calculation which shows that h satisfies the desired proper-
ties is given in [5]. �

Definition 3.4. A G-resolution of aG-module V is an exact sequence ofG-modules andG-morphisms

0→ V
d−1−−→ V0

d0−→ V1
d1−→ V2

d2−→ · · · .

A G-resolution is called relatively injective if the modules V0, V1, . . . are relatively injective. A
G-resolution is called strong if there is a sequence of operators

V
k0←− V0

k1←− V1
k2←− · · ·

with ‖kn‖ ≤ 1 such that dn−1kn + kn+1dn = idVn for n ≥ 0 and k0d−1 = idV . The operators ki are
not required to be G-equivariant.

The following lemma is a routine exercise in homological algebra.

Lemma 3.5. Let U, V be two G-modules,

0 // U
d−1 //

U0
k0

oo
d0 //

U1
k1

oo
d1 // . . .
k2

oo

a strong resolution of U and

0→ V
c−1−−→ V0

c0−→ V1
c1−→ V2

c2−→ · · · .
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a complex of relatively injective G-modules. Then any G-morphism u : U → V can be extended to a
G-morphism of complexes, in other words there are G-morphisms ui : Ui → Vi such that the following
diagram commutes:

0 // U
d−1 //

u

��

U0
d0 //

u0

���
�
� U1

d1 //

u1

���
�
�

. . .

0 // V
c−1 // V0

c0 // V1
c1 // . . .

Any two such extensions are G-chain homotopic.

3.2. A new definiton of bounded cohomology. Now we can state another definition of bounded
cohomology which gives the same groups but turns out to be more flexible.

Definition 3.6. Let
0 //

R
//
V0oo //

V1oo //
V2oo // . . .oo

be a strong relatively injective resolution of R considered as a trivial G-module. The bounded
cohomology Ĥ∗(G) of G is defined to be the cohomology of the induced complex

0→ V G0 → V G1 → V G2 → . . . ,

where V G• denotes the fixed points under the G-action in V•.

Lemma 3.5 ensures that this definition does not depend on the choice of the resolution. By the
next Lemma our old definition of bounded cohomology fits into the world of injective resolutions.

Lemma 3.7. The sequence

(3) 0→ R
d−1−−→ B(G) d0−→ B(G2) d1−→ · · ·

with d−1(c)(g) = c and

dn(ϕ)(g0, . . . , gn+1) = (−1)n+1ϕ(g1, . . . , gn+1)

+
n∑
i=0

(−1)n−iϕ(g0, . . . , gigi+1, . . . , gn+1)

is a strong relatively injective resolution of the trivial G-module R. The G-action on B(Gn) is given by
g.ϕ(g1, . . . , gn) = ϕ(g1, . . . , gn−1, gng).

Proof. The contracting homotopy is given by

R
k0←− B(G) k1←− B(G2) k2←− · · ·

with kn(ϕ)(g0, . . . , gn−1) = ϕ(g0, . . . , gn−1, e). The induced complex after taking G-fixed points is
just the complex used in the definition of section 1.2. �

The resolution (3) is called the standard resolution of the trivial G-module R.

4. A SEMINORM ON BOUNDED COHOMOLOGY

4.1. Definition of the Seminorm.

Definition 4.1. Each Ĉn(X) is a Banach space with respect to the norm

‖ϕ‖∞ = sup{|ϕ(σ)| : σ ∈ Sn(X)}.

Define a seminorm on Ĥn(X) by

‖ψ‖ = inf{‖ϕ‖∞ : ϕ is a cocycle in Ĉn(X) with [ϕ] = ψ}.

The situation for groups is slightly more difficult: Each strong relatively injective resolution
induces its own seminorm on Ĥn(G). This problem is resolved by the following definition.
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Definition 4.2. For a given strong relatively injective resolution of the trivial G-module R

0 //
R

//
V0oo //

V1oo //
V2oo // . . .oo

define a seminorm

‖ψ‖ = inf{‖ϕ‖ : ϕ is a cocycle in V Gn with [ϕ] = ψ}

on Ĥn(G). Define the canonical seminorm on Ĥn(G) as the infimum over the seminorms given by
all strong relatively injective resolutions of the trivial G-module R.

The next result implies that this infimum is achieved by the standard resolution.

Theorem 4.3. Let

0 //
R

d−1 //
V0

k0

oo
d0 //

V1
k1

oo
d1 // . . .
k2

oo

be a strong resolution of the trivial G-module R. There is a morphism of this resolution to the standard
resolution

0 //
R

//

idR

��

V0
//

v0

��

V1
//

v1

��

. . .

0 //
R

// B(G) // B(G2) // . . .

such that ‖vn‖ ≤ 1 for all n ≥ 0.

Proof. We define vn by

vn(v)(g0, . . . , gn) = k0

(
g0.k1(. . . kn−1(gn−1.kn(gn.v)) . . . )

)
.

vn is G-equivariant and ‖vn‖ ≤ 1 holds (since ‖ki‖, ‖g. ‖ ≤ 1). For the proof that v• is a chain
map we refer to [5]. �

4.2. When is the Seminorm a Norm? It is a natural question if the seminorm on Ĥn is in fact a
norm. This is the case if and only if the image of the coboundary map in dimension n is closed.

In dimension zero the image is trivial and therefore closed, so the seminorm is a norm. The
situation in dimension one is even easier but uninteresting: As mentioned above Ĥ1 = 0 for each
space or group, hence the seminorm is a norm. The question in dimension two is not that clear.
Ivanov showed that the canonical seminorm on Ĥ2(G) is a norm for each groupG by constructing
a bounded operator Q : B(G2) → B(G) with im(δ1) = ker(Q) ([6]). For higher dimensions there
is the following result of Soma ([8]).

Theorem 4.4. (i) The canonical seminorm on Ĥ3(Z ∗ Z) is not a norm.
(ii) For each n ≥ 5 there is a discrete group G such that the canonical seminorm on Ĥn(G) is not a

norm.

5. THE BOUNDED COHOMOLOGY OF A SPACE AND ITS FUNDAMENTAL GROUP COINCIDE

In this section we prove that the bounded cohomology of of a space and the bounded coho-
mology of its fundamental group are isometrically isomorphic. The main technical work is done
in the proof of the following striking result which is due to Gromov ([4]). We will sketch a proof
of Ivanov ([5]).

Theorem 5.1. Let X be a connected countable CW-complex with π1(X) = 1. Then Ĥn(X) = 0 for all
n ≥ 1. Moreover there is a chain homotopy

R
k0←− Ĉ0(X) k1←− Ĉ1(X) k2←− Ĉ2(X) k3←− · · ·

between id and 0 such that ‖ki‖ ≤ 1.
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Proof. (i) Let G be a topological Abelian group and p : Y → Z a principal G-bundle. Then
there is a chain map A• : Ĉ•(Y )→ Ĉ•(Z) with A• ◦ p∗ = id bC•(Z).

The construction ofAn uses a left invariant mean onG(∆n) = {f : ∆n → G : f is continuous}
which exists since G(∆n) is Abelian and hence amenable.

(ii) LetG be a topological Abelian group which is aK(π, n)-space. Then there is a homotopy
equivalence of fibrations

EG //

��

PK(π, n+ 1)

��
BG

' // K(π, n+ 1).

(iii) Dold-Thom construction: Let π be a countable Abelian group and n ≥ 1. Then there is a
topological Abelian group which is a model for K(π, n).

(iv) Now we can construct a sequence

· · · pn−→ Xn
pn−1−−−→ Xn−1

pn−2−−−→ · · · p1−→ X1 = X

with Xn n-connected, πi(Xn) = πi(X) for i > n, and pn : Xn+1 → Xn a principal Gn-
bundle, where Gn is a topological Abelian group which is a K(πn+1(X), n)-space.

By point (i) we know that p∗n : Ĥ•(Xn) → Ĥ•(Xn+1) is injective. Hence we are done
if some Xn is contractible.

(v) We will construct a partial contracting homotopy

R
kn0←−− Ĉ0(Xn)

kn1←−− Ĉ1(Xn)
kn2←−− · · · knn←−− Ĉn(Xn).

For this it suffices to construct

{1} L−1−−−→ S0(Xn) L0−−→ S1(Xn) L1−−→ · · · Ln−1−−−→ Sn(Xn)

with ∂Li(σ) = σ −
∑i
j=0 Li+1(σj), where σj is the j-face of σ. Then one defines kni =

L∗i−1. Such an L will be constructed by induction making use of the fact that Xn is n-
connected.

(vi) Now we can define a partial contracting homotopy

R
k0←− Ĉ0(X) k1←− Ĉ1(X) k2←− · · · kn←− Ĉn(X)

by
ki = Ai1 ◦ . . . ◦Ain−1 ◦ kni ◦ p∗n−1 ◦ . . . ◦ p∗1

with A•n : Ĉ•(Xn+1)→ Ĉ•(Xn) the map of point (i). It is possible to make the definition
of ki independent of n and to construct a complete contracting homotopy (ki)i≥0. �

Now we can prove the main result of this section. It is also due to Gromov, but the proof
presented here is taken from Ivanov’s paper [5].

Theorem 5.2. Let X be connected countable CW-complex. Then there is an isometric isomorphism
Ĥ•
(
π1(X)

) ∼=−→ Ĥ•(X).

Proof. Let p : X̃ → X be the universal covering. Since X̃ is simply connected

(4) 0 //
R

//
Ĉ0(X̃)oo //

Ĉ1(X̃)oo //
Ĉ2(X̃)oo // . . .oo

is a strong resolution of R as a trivial π1(X)-module by Theorem 5.1. The π1(X)-action on Ĉ•(X̃)
is induced by π1(X) action on X̃ . The resolution is relatively injective by the following argument.
Let F ⊂ X̃ be a fundamental domain for the π1(X)-action and Sn(X̃, F ) be the set of those singu-
lar n-simplices which carry the first vertex of ∆n into F . Then Ĉn(X̃) is isometrically isomorphic
to B

(
π1(X), B(Sn(X̃, F ),R)

)
, and that is relatively injective by Lemma 3.3.
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By definition the bounded cohomology of π1(X) is given by the cohomology of the complex

0→ Ĉ0(X̃)π1(X) → Ĉ1(X̃)π1(X) → Ĉ2(X̃)π1(X) → · · · .

But p∗ : Ĉ•(X)→ Ĉ•(X̃) induces an isometric chain isomorphism between Ĉ•(X) and Ĉ•(X̃)π1(X).
It remains to prove that we really get an isometric isomorphism. If we denote the canonical semi-
norm by ‖ · ‖ and the one given by the resolution (4) by ‖ · ‖X we have to show that ‖ · ‖X ≤ ‖ · ‖
(the other inequality is obvious by the definition of the canonical seminorm). It suffices to con-
struct a π1(X)-morphism of the standard resolution into the resolution (4) of norm not exceeding
one.

For each simplex σ : ∆n → X̃ define Sn(σ) = (g0, . . . , gn) where

gn.σ(v0) ∈ F

gn−1gn.σ(v1) ∈ F

...
g0g1 . . . gn.σ(vn) ∈ F

Here vi denotes the i-th vertex of ∆n. Now define a map

un : B
(
π1(X)n+1

)
→ Ĉn(X̃)

f 7→
(
σ 7→ f

(
Sn(σ)

))
.

One checks that u• is a π1(X)-equivariant chain map and ‖u•‖ ≤ 1. This proves the theorem. �
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