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1 Right derived functors

Let M be a category and let S be a class of morphisms in M. The localiza-
tion M γ−→ Mloc of M with respect to S (see [GZ]) is characterized by the
universal property that γ(s) for any s ∈ S is an isomorphism and that for
any functor F : M → B which transforms the morphisms in S into isomor-
phisms in B there is a unique functor F : Mloc → B such that F = F ◦ γ.
Now let F : M → B be an arbitrary functor. We then want at least a functor
RF : Mloc → B such that RF ◦ γ is as “close” as possible to F .

Definition 1.1. A right derivation of F is a functor

RF : Mloc −→ B

together with a natural transformation η : F → RF ◦ γ such that, for any
functor G : Mloc → B, the map

natural transf. (RF,G)
∼−−→ natural transf. (F,G ◦ γ)

ϵ 7−→ (ϵ ∗ γ) ◦ η

is bijective.

Since the pair (RF, η) if it exists is unique up to unique isomorphism we
usually will refer to RF as the right derived functor of F . There seems to be
no completely general result about the existence of right derived functors;
in various different situations one has different methods to construct them.
In the following we will discuss an appropriate variant of the method of
“resolutions” which will be applicable in all situations of interest to us.

From now on we always assume that the class S satisfies the condition
that

in any commutative diagram
↗↘−→ in M

(∗) in which two arrows represent morphisms in S
also the third arrow represents a morphism in S.

Suppose we are given:
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1. a full subcategory I
i
↪→ M such that F (s) for any s ∈ I ∩ S is an

isomorphism in B; here I ∩ S denotes the class of morphisms in I
which lie in S;

2. a “resolution”, i.e.:
a) maps ObM r−→ Ob I and HomM(M,N)

r−→ HomI(r(M), r(N))
for any two objects M,N in M such that γ ◦r : M → Iloc is a functor;
here Iloc denotes the localization of I with respect to I ∩ S;
b) a morphism ηM : M → r(M) in S for any object M in M such
that, for any morphism m : M → N in M, the diagram

M
ηM //

m

��

r(M)

r(m)

��
N

ηN // r(N)

is commutative.

According to 1. there is a unique functor F : Iloc → B such that the diagram

I
i //

γ   A
AA

AA
AA

A M F // B

Iloc
F

>>||||||||

is commutative. Because of 2.a) we have that γ ◦ r : M → Iloc and therefore
also

F ◦ i ◦ r = F ◦ (γ ◦ r) : M −→ B

are functors. And from 2.b) we deduce that η induces a natural transforma-
tion

Fη : F −→ F ◦ i ◦ r

and a natural isomorphism

γη : γ
∼−−→ γ ◦ i ◦ r .

Remark 1.2. We have r(s) ∈ I ∩ S for any s ∈ S.

Proof. In the commutative diagram

M
ηM //

s

��

r(M)

r(s)
��

N
ηN // r(N)

all morphisms besides possibly r(s) lie in S. The condition (∗) then implies
that r(s) ∈ I ∩ S.
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Consequently there is a unique functor r : Mloc → Iloc such that the
diagram

M

γ
""E

EEEEEEE
γ◦r // Iloc

Mloc

r

<<xxxxxxxx

is commutative. We define

RF := F ◦ r : Mloc −→ B .

Because of RF ◦ γ = F ◦ i ◦ r we can view Fη as a natural transformation

Fη : F −→ RF ◦ γ .

Proposition 1.3. The pair (RF,Fη) is a right derivation of F .

Proof. Let G : Mloc → B be a functor and let ζ : F → G ◦ γ be a natural
transformation. The natural transformation

RF ◦ γ = F ◦ i ◦ r ζ∗(i◦r)−−−−→ G ◦ γ ◦ i ◦ r G∗γη−1

−−−−−→ G ◦ γ

can be viewed as a natural transformation

ϵ0 : RF −→ G ;

for that we only have to observe that any morphism in Mloc can be written
as a finite composition of morphisms of the form γ(m) and γ(s)−1 with
s ∈ S. The commutative diagram

F
ζ //

Fη

��

G ◦ γ

G∗γη
��

id

))RRRRRRRRRRRRRRR

F ◦ i ◦ r
ζ∗(i◦r)

// G ◦ γ ◦ i ◦ r
G∗γη−1

// G ◦ γ

shows that
(ϵ0 ∗ γ) ◦ Fη = ζ .

Now let ϵ : RF → G be any natural transformation such that (ϵ∗γ)◦Fη = ζ.
We have to show that ϵ = ϵ0. Because of 2.b) every object in Mloc is
isomorphic to an object of the form γ(N) for some N in I. It therefore
suffices to prove that

(ϵ ∗ γ)N = (ϵ0 ∗ γ)N for any N in I .

But in that case, by 1. and 2.b), (Fη)N is an isomorphism so that we get

(ϵ ∗ γ)N = ζN ◦ (Fη)−1
N = (ϵ0 ∗ γ)N .

3



Remark 1.4. 1) Fη|I is a natural isomorphism.

2) The functors Iloc
i−→ Mloc and Mloc

r−→ Iloc are quasi-inverse to
each other.

In homological algebra one considers the following situation (compare
[Har] and [Ver]). Given is an additive functor f : A → A′ between two
abelian categories where A is assumed to have enough injective objects. Put

M := the category C+(A) of bounded below complexes of objects
in A, and

S := the class of quasi-isomorphisms in C+(A) .

Then Mloc = D+(A) is the usual derived category. The functor f induces
a functor

F : C+(A) −→ D+(A′)

to which the above considerations apply: Let I be the full subcategory in
M of complexes of injective objects. Since in I quasi-isomorphisms already
are homotopy equivalences 1. is granted by the additivity of f . Furthermore
it is a basic fact that we can fix:

i. for any complex M in C+(A) an injective quasi-isomorphism

ηM : M −→ r(M)

into a complex r(M) in I, and

ii. for any homomorphism m : M → N in C+(A) a homomorphism
r(m) : r(M) → r(N) such that the diagram

M
ηM //

m

��

r(M)

r(m)
��

N
ηN // r(N)

is commutative.

Since r(m) is unique up to homotopy these choices define a resolution in our
sense. Therefore the right derived functor

R+f := RF : D+(A) −→ D+(A′)

of F exists. We mostly will be interested in the case where A := Shab(X ) is
the category of abelian sheaves on some site X , A′ := (ab) is the category
of abelian groups, and f := ΓX is the section functor in some object X in
X . Then

H+(X, .) := R+ΓX(.) : D+(Shab(X )) −→ D+(ab)

is the usual hypercohomology of bounded below complexes of abelian sheaves.
In the next section we will briefly recall Quillen’s generalization ([Qui])

of the concepts of homological algebra to what is called homotopical algebra.
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2 Model categories

Let M be a category together with three distinguished classes of morphisms
called weak equivalences, fibrations, and cofibrations. Furthermore, a fibra-
tion, resp. a cofibration, which also is a weak equivalence will be called a
trivial fibration, resp. a trivial cofibration.

Definition 2.1. ([Qui]) M is a model category if it satisfies the following
axioms:

(M1) M is closed under finite projective and inductive limits.

(M2) In any commutative diagram
↗↘−→ in M in which two of the arrows rep-

resent weak equivalences also the third arrow represents a weak equiv-
alence.

(M3) a. Fibrations and trivial fibrations are stable under composition and
base change.
b. Cofibrations and trivial cofibrations are stable under composition
and cobase change.
c. Any isomorphism is a trivial fibration and cofibration.

(M4) Given any commutative solid arrow diagram

A //

i
��

M

p

��
B //

>>}
}

}
}

N

in M where i is a cofibration and p is a fibration and either i or p
is a weak equivalence then the dotted arrow exists making the diagram
commute.

(M5) Any morphism f in M may be factored as
a. f = p ◦ i, where p is a fibration and i is a trivial cofibration,
and
b. f = q ◦ j, where q is a trivial fibration and j is a cofibration.

The localization of M with respect to the class of weak equivalences is
called the associated homotopy category and is denoted by Ho(M).

Example 2.2. C+(A) is a model category if we define a weak equivalence to
be a quasi-isomorphism, a cofibration to be a monomorphism, and a fibration
to be an epimorphism whose kernel is a complex of injective objects. The
associated homotopy category Ho(C+(A)) is the derived category D+(A).

By (M1) M has a final and an initial object. We call an object M in
M fibrant, resp. cofibrant, if the canonical morphism from M into a final
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object, resp. from an initial object into M , is a fibration, resp. a cofibration.
Now let F : M → B be any functor which transforms weak equivalences
between fibrant objects into isomorphisms. By (M5) a. we can fix, for any
object M in M, a trivial cofibration

ηM : M −→ r(M) such that r(M) is fibrant.

By (M4) we also can fix, for any morphism m in M, a commutative diagram

M
ηM //

m

��

r(M)

r(m)
��

N
ηN // r(N) .

We claim that taking I to be the full subcategory of fibrant objects in M
the above choices define a resolution in the sense of section 1. We have to
show that whenever

M
ηM //

m

��

r(M)

r̃(m)

��
N

ηN // r(N)

is another such commutative diagram then γ(r(m)) = γ(r̃(m)) holds true in
Iloc. For that we consider the commutative diagram

M
ηN◦m //

ηM
��

r(N)

diagonal ))RRRRRRRRRRRRRRR
trivial cofibration // L

fibration
��

r(M)
(r(m),r̃(m))

// r(N)× r(N)

where the right triangle arises from an application of (M5) a. to the diagonal
morphism. Obviously we can apply (M4) to the outer rectangle getting a
lifting h : r(M) → L. Since according to (M3) a. the object L is fibrant we
then have a commutative diagram

L

))SSSSSSSSSSSSSSSSS r(N)
trivial cofibrationoo

diagonal

��
r(M)

h

OO

(r(m),r̃(m))
// r(N)× r(N)

in which all objects are fibrant. Reading this diagram in Iloc we see that
γ(r(m)) = γ(r̃(m)) in Iloc. We thus have established the following result.
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Proposition 2.3. ([Qui]) If M is a model category then the right derived
functor

RF : Ho(M) −→ B
exists for a functor F : M → B which transforms weak equivalences between
fibrant objects into isomorphisms.

Later on we will need to know how the formation of the right de-
rived functor is behaved with respect to the composition of functors. Let
F : M → B be, as above, a functor which transforms weak equivalences
between fibrant objects into isomorphisms. In addition let G : M′ → M
be a functor bet- ween model categories which respects fibrant objects and
weak equivalences between fibrant objects. Then the right derived functors

RG : Ho(M′) −→ Ho(M) of γ ◦G ,
RF : Ho(M) −→ B of F , and

R(F ◦G) : Ho(M′) −→ B of F ◦G

exist and by the universal property of right derived functors there is a canon-
ical natural transformation

R(F ◦G)
∼−−→ RF ◦RG

which easily can be shown to be an isomorphism.
Next we gather a few more facts which will be of constant use later on.

Lemma 2.4. (Brown) In a model category M we have:

i. Any morphism f between fibrant objects can be factored as f = p ◦ i
where p is a fibration and i is right-inverse to a trivial fibration;

ii. any morphism f between cofibrant objects can be factored as f = q ◦ j
where q is left-inverse to a trivial cofibration and j is a cofibration;

iii. any base change of a weak equivalence between fibrant objects by a
fibration is a weak equivalence;

iv. any cobase change of a weak equivalence between cofibrant objects by a
cofibration is a weak equivalence.

Proof. [Bro] p. 421 and p. 428.

Corollary 2.5. Let F : M′ → M be a functor between model categories.
If F respects trivial fibrations, resp. trivial cofibrations, it transforms weak
equivalences between fibrant, resp. cofibrant, objects into weak equivalences.

Definition 2.6. ([Qui]) A model category M is closed if it satisfies the
additional axiom:

(CM) Weak equivalences, fibrations and cofibrations are stable under
retracts in the category of arrows of M .
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Remark 2.7. In a closed model category the axiom (M3) is a consequence
of the others and consequently can be omitted.

The main interest in this axiom (CM) lies in the fact that in a closed
model category any two of the distinguished classes of morphisms determine
the third class. We say that a morphism i : A → B in M has the LLP (left
lifting property) with respect to a morphism p : M → N , resp. that p has
the RLP (right lifting property) with respect to i, if in any commutative
solid arrow diagram

A //

i
��

M

p

��
B //

>>}
}

}
}

N

the dotted arrow (the lifting) exists.

Proposition 2.8. In a closed model category we have:

i. A morphism is a fibration if and only if it has the RLP with respect to
all trivial cofibrations;

ii. a morphism is a trivial fibration if and only if it has the RLP with
respect to all cofibrations;

iii. a morphism is a cofibration if and only if it has the LLP with respect
to all trivial fibrations;

iv. a morphism is a trivial cofibration if and only if it has the LLP with
respect to all fibrations.

Proof. [Qui] I §5.

Combining that with Brown’s lemma 2.4 we obtain a manageable crite-
rion for when a functor respects weak equivalences between fibrant objects.

Proposition 2.9. Let F : M′ → M be a functor between model categories
and let M be closed. If F has a left adjoint G : M → M′ then we have:

i. If G respects cofibrations, then F transforms weak equivalences between
fibrant objects into weak equivalences;

ii. if G respects trivial cofibrations, then F respects fibrations and, in
particular, fibrant objects.

Proof. i. By the Corollary 2.5 to Brown’s lemma 2.4 it suffices to show that
F respects trivial fibrations. This is a standard argument which we include
for the convenience of the reader. Let p : M → N be a trivial fibration in
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M′. Since M is closed F (p) will be a trivial fibration if in any commutative
solid arrow diagram

A //

i

��

F (M)

F (p)
��

B //

<<z
z

z
z

z
F (N)

in M where i is a cofibration the dotted arrow exists. Applying G to it we
get the commutative diagram

G(A) //

G(i)

��

GF (M)

GF (p)

��

adjunction // M

p

��
G(B) // GF (N)

adjunction // N

where G(i) by assumption again is a cofibration. Since the dotted arrow
exists in the commutative diagram

G(A) //

G(i)
��

M

p

��
G(B) //

<<z
z

z
z

z
N

applying F to it gives the wanted dotted arrow in the original diagram

A
adjunction //

i

��

FG(A) //

FG(i)
��

F (M)

F (p)
��

B
adjunction // FG(B) //

66mmmmmmm
F (N) .

ii. This is proved by an analogous argument.

Finally we have to recall the “stabilization” of model categories — a
construction due to Bousfield/Friedlander ([BF]).

Definition 2.10. A category M with weak equivalences, fibrations, and cofi-
brations is proper if it satisfies (M1) and the axiom:

(PM) a. Any base change of a weak equivalence by a fibration is a weak
equivalence.
b. Any cobase change of a weak equivalence by a cofibration is a
weak equivalence.

Now let M be a model category and suppose we are given a functor

Q : M −→ M
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together with a natural transformation

τ : idM −→ Q .

We call a morphism m in M

a Q-weak equivalence , if Qm is a weak equivalence,
a Q-cofibration , if m is a cofibration, and
a Q-fibration , if m has the RLP with respect to all

Q-trivial cofibrations.

Let MQ denote the category M together with these three distinguished
classes of morphisms.

Proposition 2.11. If M is a proper closed model category such that

a. Q respects weak equivalences and final objects,

b. τQM and QτM : QM → QQM are weak equivalences for any object M
in M, and

c. MQ is proper,

then MQ is a proper closed model category, too. Furthermore we have:

i. Weak equivalences are Q-weak equivalences and Q-fibrations are fibra-
tions;

ii. a morphism is a Q-trivial Q-fibration if and only if it is a trivial fibra-
tion;

iii. an object M is Q-fibrant if and only if it is fibrant and τM : M → QM
is a weak equivalence;

iv. Q-weak equivalences between Q-fibrant objects are weak equivalences.

Proof. [BF] App. A.

How does this construction behave with respect to derived functors? As-
sume that M, Q, and τ fulfil the assumptions of the above Proposition 2.11
and assume that F : M → B is a functor which transforms weak equiv-
alences between fibrant objects into isomorphisms. Then we have its right
derived functor RF : Ho(M) → B. According to i. and iv. in Proposition
2.11 the functor F also transforms Q-weak equivalences between Q-fibrant
objects into isomorphisms so that we have the right derived functor

RQF : Ho(MQ) −→ B

of F : MQ → B, too. In order to relate RF and RQF we only have to
observe that the functor id : MQ → M induced by the identity has the
following properties:
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- It transformsQ-weak equivalences betweenQ-fibrant objects into weak
equivalences (by iv. in Prop. 2.11);

- it transforms Q-fibrations into fibrations (by i. in Prop. 2.11);

- the diagram MQ F //

id ""E
EE

EE
EE

E B

M
F

>>~~~~~~~~

is commutative.

Therefore the right derived functor R id : Ho(MQ) → Ho(M) of γ ◦ id exists
and, according to our earlier discussion, we have

RQF ∼= RF ◦R id .

It remains to compute R id. Since the functor Q : MQ → M, by definition,
transforms Q-weak equivalences into weak equivalences it induces a functor

Q : Ho(MQ) −→ Ho(M) .

By the universal property of right derived functors τ then induces a natural
transformation

R id
∼−→ Q

which is an isomorphism as we immediately conclude from iii. in Proposition
2.11. Altogether we therefore get a canonical natural isomorphism

RQF ∼= RF ◦Q .

In many applications one is in a slightly different type of situation where F :
M → M is a functor into another model category M which also is equipped
with a functor Q : M → M and a natural transformation τ : idM → Q
fulfilling the assumptions of the above Proposition 2.11. We assume that F
transforms weak equivalences between fibrant objects into weak equivalences
so that we have the right derived functor

RF : Ho(M) −→ Ho(M)

of γ ◦ F . Viewing F as a functor FQ : MQ → MQ
we also have, similarly

as above, the right derived functor

RFQ : Ho(MQ) −→ Ho(MQ
)

of γ ◦ FQ.
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Lemma 2.12. Under the assumption made above the diagram

Ho(M)
RF // Ho(M)

id
��

Ho(MQ)

Q

OO

RFQ
//
Ho(MQ

)

is commutative up to a canonical natural isomorphism. If we assume in ad-
dition that Q respects fibrant objects and that there is a natural isomorphism
F ◦Q ∼= Q ◦ F , then the diagram

Ho(M)
RF //

id

��

Ho(M)

Q
��

Ho(MQ)
RFQ

//
Ho(MQ

)

is commutative up to a natural isomorphism.

Proof. In the diagram

Ho(M)

id

��

RF //

Q

%%KKKKKKKKKK Ho(M)

Q
��

Ho(M)
RF // Ho(M)

id
��

Ho(MQ)

Q

99tttttttttt

RFQ
//
Ho(MQ

)

the lower part is commutative up to a natural isomorphism by the above
discussion and the upper part because of the additional assumptions.

3 Simplicial sheaves

We fix a small site X which we assume has enough points. This assumption
is not really necessary but it is technically very convenient and is fulfilled in
most situations. Let SSh(X ) be the category of simplicial sheaves (of sets)
on X together with the following three classes of morphisms:

- The weak equivalences are the morphisms which stalkwise induce weak
equivalences between simplicial sets ([Qui] II §3 Prop. 4);

- the cofibrations are the monomorphisms;
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- the fibrations are the morphisms with the RLP with respect to all
trivial cofibrations.

Proposition 3.1. (Joyal) SSh(X ) is a closed model category.

Proof. [Ja1] Cor. 2.7.

Now we fix an object X in X and we let

ΓX : SSh(X ) −→ sS
F 7−→ F(X)

be the section functor. Here sS = SSh(∗) denotes the usual model category
of simplicial sets (compare [Qui] II §3 Prop. 2).

Lemma 3.2. ΓX transforms weak equivalences between fibrant simplicial
sheaves into weak equivalences in sS.

Proof. According to Proposition 2.9 it suffices to show that ΓX has a left
adjoint which respects monomorphisms. But it is well-known that the func-
tor

sS −→ SSh(X )
A 7−→ AX := sheafification of the presheaf U 7→

⨿
U→X A

is left adjoint to ΓX .

Therefore the right derived functor

H̃(X, .) : Ho(SSh(X )) −→ Ho(sS)

of γ ◦ ΓX exists and is called generalized cohomology of simplicial sheaves.
The immediate question which we have to answer of course is in which
sense this functor generalizes the usual cohomology of abelian sheaves. Let
C≤0(Shab(X )) be the category of (cohomological) complexes in degrees ≤ 0
of abelian sheaves on X together with the following three classes of homo-
morphisms:

- The weak equivalences are the quasi-isomorphisms;

- the cofibrations are the monomorphisms;

- the fibrations are the homomorphisms with the RLP with respect to
all trivial cofibrations.

Proposition 3.3. i. C≤0(Shab(X )) is a closed model category;

ii. the section functor ΓX : C≤0(Shab(X )) −→ C≤0(ab) transforms quasi-
isomorphisms between fibrant objects into quasi-isomorphisms.
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Proof. Completely analogous to the proof of the corresponding results for
SSh(X ).

The homotopy category associated to C≤0(Shab(X )) is the derived cate-
gory
D≤0(Shab(X )). The right derived functor of γ ◦ ΓX will be denoted by

H≤0(X, .) : D≤0(Shab(X )) −→ D≤0(ab) .

First we want to compare the functors H̃ and H≤0. Let SShab(X ) be the
category of simplicial abelian sheaves on X ; a homomorphism in SShab(X )
is called a weak equivalence if it is a weak equivalence in SSh(X ). The
Dold-Puppe equivalence (?) provides us with two natural functors

C≤0(Shab(X ))
s̃ //

N
// SShab(X )

which are quasi-inverse to each other and under which quasi-isomorphisms
correspond to weak equivalences. The faithful functor

s : C≤0(Shab(X ))
s̃−→ SShab(X )

⊆−−→ SSh(X )

therefore transforms quasi-isomorphisms into weak equivalences and induces
a functor

s : D≤0(Shab(X )) −→ Ho(SSh(X )) .

Proposition 3.4. The diagram

D≤0(Shab(X ))
H≤0(X,.) //

s

��

D≤0(ab)

s

��
Ho(SSh(X ))

H̃(X,.) // Ho(sS)

is commutative (up to a canonical natural isomorphism).

Proof. From the definition of the Dold-Puppe equivalence it is easy to see
that s ◦ ΓX

∼= ΓX ◦ s holds true. But this implies

s ◦H≤0(X, .) ∼= R(s ◦ ΓX) ∼= R(ΓX ◦ s) ∼= H̃(X, .) ◦ s

provided s respects fibrant objects. By Proposition 2.9 this will certainly
be the case if s has a left adjoint which respects trivial cofibrations. The
functor

Z : SSh(X ) −→ SShab(X )
F 7−→ simplicial sheaf of free

abelian groups over F
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obviously is left adjoint to the inclusion functor SShab(X )
⊆−−→ SSh(X ).

Therefore NZ is left adjoint to s; furthermore NZ clearly respects monomor-
phisms. It remains to show that Z respects weak equivalences. In case X = ∗
this is a standard fact in homotopy theory. The general case then follows
since Z commutes with the formation of stalks ([Mil] II. 3.20 (a)).

Next we have to discuss how the functor H≤0 is related to the usual
hypercohomology functor H+. Both functors can be evaluated on bounded
below complexes in C≤0(Shab(X )).

Lemma 3.5. If the complex F · in C≤0(Shab(X )) is fibrant, then Fn is an
injective abelian sheaf for any n < 0.

Proof. Fix a n < 0 and an exact diagram

0 // A
j //

a
!!B

BB
BB

BB
B B

Fn

in Shab(X ). We then have the solid arrow diagram

[. . . → 0 → A =−−→ A → 0 → . . .]

(j,j)

��

(a,da) // [. . . → Fn d−→ Fn+1 → . . .]

[. . . → 0 → B =−−→ B → 0 → . . .]

33gggggggggg

in C≤0(Shab(X )) in which (j, j) is a trivial cofibration. Since the complex F ·

is fibrant the dotted arrow making the diagram commutative exists by the
RLP. In particular, the original diagram can be completed to a commutative
diagram

0 // A
j //

a
""D

DD
DD

DD
D B

}}zz
zz

zz
zz

Fn .

Notation: For any (unbounded) complex F · = [. . . → Fm d−→ Fm+1 → . . .]
of objects in some abelian category we have the truncations

t≥nF · : . . . → 0 → Fn/ im d → Fn+1 → . . . and
t≤nF · : . . . → Fn−1 → ker d → 0 → . . .

Lemma 3.6. A bounded below complex F · in C≤0(Shab(X )) is fibrant if
and only if Fn is an injective abelian sheaf for any n < 0.
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Proof. Fix an n0 ≤ 0 such that Fn = 0 for all n < n0. We have to show
that any diagram

A· //

i
��

F ·

B·

in C≤0(Shab(X )) with a trivial cofibration i can be completed to a commu-
tative diagram

A· //

i
��

F ·

B· .

<<xxxxxxxx

One easily checks that with i its truncation t≥n0i is a trivial cofibration, too.
We therefore can assume that An = Bn = 0 for all n < n0. Furthermore if

0 −→ F0 −→ F̃0 −→ F̃1 −→ . . .

is an exact injective resolution of the abelian sheaf F0 then we can replace
the complex F · by the complex

F̃ · : ... → 0 → Fn0 → ... → F1 → F̃0 → F̃1 → ...

which is a complex of injective abelian sheaves. In this way we end up with
a solid arrow diagram

A· //

i
��

F̃ ·

B·

>>}
}

}
}

in the model category C+(Shab(X )) in which i is a trivial cofibration and
F̃ · is a fibrant object. The wanted dotted arrow then exists by the RLP in
C+(Shab(X )).

Proposition 3.7. For any bounded below complex F · in C≤0(Shab(X )) we
have a natural isomorphism

H≤0(X,F ·) ∼= t≤0H+(X,F ·) .

Proof. Let F · → I · be a trivial cofibration into a fibrant complex I · in
C+(Shab(X )) so that we have H+(X,F ·) ∼= γ ◦ ΓX(I ·). The induced ho-
momorphism F · → t≤0I

· then is a trivial cofibration in C≤0(Shab(X ))
and, according to the above Lemma 3.6, the complex t≤0I

· is fibrant in
C≤0(Shab(X )). We therefore have H≤0(X,F ·) ∼= γ ◦ ΓX(t≤0I

·). The asser-
tion then follows from the identity

ΓX(t≤0I
·) = t≤0ΓX(I ·)

which is an immediate consequence of the left exactness of ΓX .
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This result also shows that the cohomology theories H̃ and H≤0 are some-
what unsatisfactory. The reason for that will become more transparent in
section 5 where we will discuss cohomology theories on the larger categories
of spectra of sheaves, resp. of unbounded complexes of abelian sheaves.

We finish the present discussion about the relation between H̃ and H≤0

with a few more remarks on the characterization of those complexes F · in
C≤0(Shab(X )) which are fibrant, resp. which have a fibrant image sF · in
SSh(X ).
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