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This talk is about the classical article [Mil61b] by John W. Milnor, in which
he disproves the Polyhedral Hauptvermutung. The Polyhedral Hauptvermu-
tung is the conjecture, that for two simplicial complexes which are home-
omorphic, there are subdivisions of those complexes which are piecewise-
linearly homeomorphic.

1 A brief history of the Hauptvermutung

This section is based on the Hauptvermutung book [RCS+96] edited by Andrew Ranicki.
The word Hauptvermutung is a short form of the german term Hauptvermutung der

kombinatorischen Topologie which means the main conjecture of combinatorial topology.
It was first stated in 1908 by Tietze [Tie08] and by Steinitz [Ste08]. Their formulation
was slightly different from the modern one, which is due to Rourke and Sanderson [RS70].

Before the appearing of Milnor’s article, the Hauptvermutung had been proven for
manifolds of dimension at most 3 and for polyhedra of dimension at most 2. Milnor then
gave counterexamples for all dimensions ≥ 3. His construction was later generalized by
Stallings [Sta65].

However, these counterexamples were not manifolds, so the question arose, whether
the Hauptvermutung was true for manifolds. This was called the manifold Hauptver-
mutung (and the original one is often called polyhedral Hauptvermutung to distinguish
the two). But also the manifold Hauptvermutung was proven not to hold, which was
done by Kirby and Siebenmann in 1969 [KS77].
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3 Lens manifolds

2 Milnor’s approach to falsifying the Polyhedral
Hauptvermutung

In his 1961 article [Mil61b], Milnor constructs simplicial complexes Xq as follows. For
Lq denoting the lens manifold of type (7, q) and dimension 3, Xq is the Lq×∆n (∆n the
standard n-simplex) with an adjoint cone over Lq × ∂∆n. He then proves the following
two main theorems.

Theorem 1. For n ≥ 3 the complexes X1 and X2 are homeomorphic.

Theorem 2. There are no finite cell subdivisions of the simplicial complexes X1 and
X2 which are isomorphic, so there is no piecewise-linear homeomorphism between those
complexes.

Additionally, Milnor’s proofs gave two other interesting examples, which are stated in
the following theorems.

Theorem 3. The manifolds-with-boundary L1×D5 and L2×D5 are not diffeomorphic,
but their interiors are.

Theorem 4. The manifolds L1×Sn and L2×Sn are h-cobordant, but not diffeomorphic.

3 Lens manifolds

At first we give a construction of lens manifolds. Let p and q be relatively prime positive
integers and p > q. We consider S3 =

{
(z1, z2) ∈ C2, |z1|2 + |z2|2 = 1

}
as the unit sphere

in C2. For ω = exp
(

2πi
p

)
the cyclic group Π := Z/pZ acts on S3 for a generator T of

Z/pZ by
T (z1, z2) = (ωz1, ω

qz2).

This action is differentiable and has no fixed points, so the quotient S3/Π is a manifold.

Definition 5. For p, q as above, the manifold S3/Π is called the lens manifold L(p, q).

The lens manifolds can be made both CW-complexes and simplicial complexes. As
for the CW-structure, there is one with only four cells. Those are given as the images
of the following subsets of S3.

• The 0-cell e0 = (1, 0),

• the 1-cell e1 =
{(
eiθ, 0

)
, 0 < θ < 2π

p

}
,

• the 2-cell e2 =

{(
z1,
√

1− |z1|2
)
, |z1| < 1

}
,

• the 3-cell e3 =

{(
z1, e

iθ

√
1− |z1|2

)
, 0 < θ < 2π

p
, |z1| < 1

}
.
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A simplicial structure for the lens manifold L(p, q) is for example this one: Let P be
the convex hull of the set

{
(ωj, 0), 0 ≤ j < p

}
∪
{

(0, ωk), 0 ≤ k < p
}

in C2. The boundary ∂P of this solid polyhedron is a simplicial complex which is
obviously homeomorphic to S3. The simplicial structure for L(p, q) is now obtained by
subdividing barycentrically twice and then dividing out the action of Π.

These simplicial structures, which were constructed by Tietze [Tie08], are compatible
with the differentiable structure and the CW-structure. Tietze also computed the fun-
damental group (which is Π) and the homology of the lens manifolds and showed the
following lemma.

Lemma 6. If the lens manifolds L(p, q) and L(p′, q′) are homotopically equivalent, then
p = p′.

A combinatorial classification of the lens manifolds is due to Kurt Reidemeister [Rei36].

Lemma 7. The lens manifolds L(p, q) and L(p, q ′) are combinatorially equivalent if and
only if

either q′ ≡ ±q mod p

or ± qq′ ≡ 1 mod p.

It was shown later that two lens manifolds are combinatorially equivalent if and only
if they are homeomorphic.

The classification of the lens manifolds up to homotopy equivalence is due to White-
head [Whi41]. He obtained the following lemma [Olu53].

Lemma 8. The lens manifolds L(p, q) and L(p, q ′) are homotopically equivalent if and
only if ±qq′ is a quadratic residue modulo p.

As a last fact on lens manifolds it should be noted, that all 3-dimensional ones are
parallelizable. This is because all compact orientable 3-manifolds are [Sti36], which can
for instance be seen by the Wu formula and obstruction theory.

4 Mazur’s theorem

In 1961, Barry Mazur [Maz61] dealt with the question, whether given a homotopy equiv-
alence φ : M1 → M2 of differentiable manifolds of the same dimension there is a diffeo-
morphism homotopic to φ. In this context he introduced a notion called k-equivalence
and proved a theorem, which will be useful to prove our first main theorem.

From now on letM1 andM2 be two k-dimensional closed differential manifolds, which
are parallelizable and homotopically equivalent.

Theorem 9. For n > k, M1 × Rn is diffeomorphic to M2 × Rn.
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4 Mazur’s theorem

To sketch a proof of Mazur’s theorem, we first state the main ingredient.

Lemma 10. For integers n, k satisfying n > k > 1, any embedding

h : M1 ×Dn −→ Int(M1 ×Dn)

which is homotopic to the identity can be extended to a diffeomorphism of pairs
(
M1 × 2Dn,M1 ×Dn

)
−→

(
M1 ×Dn, h(M1 ×Dn)

)
.

Sketch of proof. The main step is to show that h restricted to M1×{0} is differentiably
isotopic to the inclusion M1×{0} ↪→M1×Dn which follows from theorems of Haefliger
[Hae61] and Whitney [Whi36].

Sketch of proof of Mazur’s theorem. Let f : M1 → M2 be a homotopy equivalence and
choose a differential embedding f ′ : M1 → Int(M2 ×Dn) approximating x 7→

(
f(x), 0

)
.

Since M1 and M2 are parallelizable, we get from a theorem of Milnor [Mil61a], that (for
n > k) the normal bundle of f ′(M1) is trivial, so we can choose a tubular neighbourhood
of f ′(M1) in Int(M2×Dn) which is diffeomorphic toM1×Dn. Thus we get an embedding
i : M1×Dn →M2×Dn and by taking a homotopy inverse, another embedding j : M2×
Dn →M1 ×Dn.
The direct limit of the infinite sequence

M1 ×Dn i // M2 ×Dn j
// M1 ×Dn i // · · ·

shall be called V . Lemma 10 now tells us, that V is diffeomorphic to M1 × Rn which is
the union

M1 ×Dn ⊂ M1 × 2Dn ⊂M1 × 4Dn ⊂ · · ·
and to M2 × Rn. So these two manifolds are diffeomorphic.

Mazur’s theorem enables us to prove our first main theorem for the case n > 3. First
we state the following lemma which is easily obtained from the classification of the lens
manifolds.

Lemma 11. If ±qq′ is a quadratic residue modulo p and n > 3, then L(p, q)× Rn and
L(p, q′)× Rn are diffeomorphic.

Proof of theorem 1 for n > 3. If we remove the vertex of the cone in Xq, the remaining
part is clearly homeomorphic to Lq × Rn. So Xq is homeomorphic to the one-point
compactification of Lq ×Rn. Lemma 11 now shows that X1 and X2 are homeomorphic.

To proceed to the case of n = 3, we need another lemma, which in particular shows
that L1×S4 and L2×S4 are h-cobordant and thus gives us half of the proof of theorem 4.
First we define

W :=
(
M2 ×Dn

)
\ Int

(
i(M1 ×Dn)

)
.

This compact differentiable manifold is bounded by M2 × Sn−1 and i(M1 × Sn−1).
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Lemma 12. If n ≥ 3, then M2 × Sn−1 and i(M1 × Sn−1) are both deformation retracts
of W .

Sketch of proof. Let W1 := i(M1 × Sn−1) and W2 := M2 × Sn−1 be the boundary parts
of W . Any map of a 2-dimensional complex intoM2×Dn can be deformed into W , thus

π1(W )→ π1(M2 ×Dn)

π1(Wq)→ π1(W )

are isomorphisms for q = 1, 2. Whitehead’s theorem now yields thatW1 is a deformation
retract of W , and by additionally using Poincaré duality one sees that W2 is, too.

Corollary 13. For n > k > 1 the manifolds M1×Sn−1 and M2×Sn−1 are h-cobordant.

Remark 14. In particular L1 × S4 and L2 × S4 are h-cobordant, so half of theorem 4
is now proved.

We are now able to finish proving our first main theorem.

Proof of theorem 1 for n = 3. It has been proven by Haefliger [Hae61], that any homo-
topy equivalence L1 −→ (L2 × D3) is homotopic to an embedding f ′. We get from
obstruction theory that the normal bundle of f ′(L1) is trivial, so lemma 12 tells us, that
L2 × S2 and i(L1 × S2) are deformation retracts of

W =
(
L2 ×D3

)
\ Int

(
i(L1 ×D3)

)
,

i. e. L1 × S2 and L2 × S2 are h-cobordant. A theorem of Stallings [Sta65] now yields

W \ (L2 × S2) ≈ i(L1 × S2)× [0,∞),

which shows
(
L2 ×D3

)
\
(
L2 × S2

)
≈
(
L1 ×D3

)
∪
(
L1 × S2 × [0,∞)

)
.

So L1 × R3 and L2 × R3 and thus X1 and X2 are homeomorphic.

5 The torsion invariant

In this section we will construct an invariant which distinguishes simplicial complexes
combinatorially. We will then use this invariant to find combinatorially distinct simplicial
complexes which are nevertheless homeomorphic.

Definition 15. Let D be a principal ideal domain and M be a free D-module of rank
q. A generator of Λq

D(M) will be called a volume in M .

Remark 16. For q > 0, a volume can v can always be written as v = b1 ∧ · · · ∧ bq with
a suitable basis b1, . . . , bq of M .
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5 The torsion invariant

Definition 17. Let
0 // M ′ // M // M ′′ // 0

be a short exact sequence of finitely generated free D-modules and let v ′ = b′1 ∧ · · · ∧ b′p
and v′′ = b′′1 ∧ · · · ∧ b′′r be volumes in M ′ and M ′′ respectively. Lift each basis element b′′i
of M ′′ to a basis element bi of M and define a volume on M by

v := b1 ∧ · · · ∧ br ∧ b′1 ∧ · · · ∧ b′p.

In this situation write v′′ = v
v′ .

If we now take a long exact sequence

0 // Cn
∂ // Cn−1

∂ // · · · ∂ // C0
// 0

of free D-modules with a volume vi on each Ci, we can splice the sequence and compute
step by step the iterated quotient of the volumes which finally yields a unit

[v0v
−1
1 v2v

−1
3 · · · v±1

n ] ∈ D×.

Now consider a CW-complex K on which a group Π acts freely and cellurlaly such that
the quotient K/Π has only finitely many cells. Then the cellular chain groups Ci(K;Z)
are modules over the group ring ZD. Let h : Π→ D× be a homomorphism and consider
the chain complex

C∗ := P ⊗Π C∗(K;Z).

In this complex, each i-cell determines a basis element in Ci and by taking the exterior
product we obtain a volume on each Ci.
If we additionally assume the vanishing of all homology groups Hi(C∗), so that the

chain complex C∗ yields a long exact sequence, we can define the torsion

∆h(K) := [v0v
−1
1 v2v

−1
3 · · · v±1

n ] ∈ D∗.

For a CW-pair we can define a similar notion of torsion by using the relative chain
complex. This yields a combinatorial invariant, but this fact will be proven later.

Theorem 18. If the CW-pair (K ′, L′) is an equivariant subdivision of (K,L) and
∆h(K,L) is defined, then

∆h(K
′, L′) = ∆h(K,L).

If we now let Π be the cyclic group of order p acting on S3 as described in the
introduction of the lens manifolds and as D the complex numbers we get (depending on
the choice of h) for L(7, 1) as absolute value of ∆ the possible values of approximately
1.33 or 0.41 or 0.26 and for L(7, 2) approximately 0.74 or 0.59 or 0.33, so these manifolds
are combinatorially distinct. It should be noted here, that any homomorphism Π→ C×
takes a generator of Π to a p-th root of unity.
We are now ready to prove our second main theorem.
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Proof of theorem 2. Removing the top of the cone in Xq we obtain manifolds home-
omorphic to L(7, q) × Rn with fundamental group Z/7Z. Let Kq be the one-point
compactification of the universal covering of Xq \ x0. On those the fundamental group
Π operates with a single fixed point and the quotient space Kq/Π is just Xq. We can
lift any cell structure on Xq, x0 to an equivariant one on Kq.

We get a cell structure on Xq by the four cells of L(7, q) and the vertex x0, which
yields a cell structure on Kq with cells of the form T rei × Rn and one singe vertex k0.
The chain complex C∗(Kq, k0;Z) is free over the group ring ZΠ and has as preferred
generators ei×Rn Furthermore it is isomorphic to C∗

(
L̃(7, q);Z

)
with a dimension shift.

Thus
∆h(K − q, k0) = ∆h

(
L̃(7, q);Z

)±1
.

We conclude that (K1, k0; Π) and (K2, k0; Π) are combinatorially distinct and thus no
CW-subdivisions ofX1 andX2 are combinatorially equivalent. Since our given structures
are such subdivisions, we are done.

Invariance under subdivision

This subsection is devoted to a sketch of the proof of theorem 18. We first collect three
lemmas without proof.

Lemma 19. Let the following diagram of free D-modules of finite rank be commutative
with all rows and columns exact.

0

��

0

��

0

��

0 // M11
//

��

M12
//

��

M13
//

��

0

0 // M21
//

��

M22
//

��

M23
//

��

0

0 // M31
//

��

M32
//

��

M33
//

��

0

0 0 0

Then for volumes vij in Mij with i, j ≤ 2 the following identity holds.
v22

v12

v21

v11

= ±
v22

v21

v12

v11

Lemma 20. If Π operates freely on a CW-triple (K,L,M), then

∆h(K,M) = ∆h(K,L)∆h(L,M),

i. e. if two of these invariants are defined, then the third is, too, and the equation holds.
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Lemma 21. If Π acts on K \ L freely and cellularly, and if H∗(K,L;Z) = 0, then
∆h(K,L) = 1.

Proof of theorem 18. Let

L = K0 ⊂ K1 ⊂ · · · ⊂ Kr = K

be an increasing sequence of subcomplexes of K so that each Ki+1 \ Ki consists of a
single equivariant cell. Let I be the unit intervall (considered a CW-complex) on which
Π acts trivially.
If K ′ is a subdivision of K let (A,B) denote the CW-pair obtained by subdividing

K × {1} in (K × I, L × I). We obtain an increasing sequence for A similar to the one
above by subdividing Ki × {1} in (K × 0) ∪ (Ki × I).
Lemmas 20 and 21 now yield

∆h(A0, B) = ∆h(A1, B) = · · · = ∆h(Ar, B)

where Ar = A. So ∆h(A,B) = ∆h(K,L).
Letting now Āi be the subcomplex of A obtained from (K×1)∪(Ki×I) by subdividing

K × 1, we get ∆h(K
′, L′) = ∆h(Ā0, B) and

∆h(Ā0, B) = ∆h(Ā1, B) = · · · = ∆h(Ār, B)

with Ār = A. So
∆h(K ′, L′) = ∆h(A,B) = ∆h(K,L).

Lastly we state a theorem about the torsion of a product.

Theorem 22. Let A be a finite CW-complex on which Π acts trivially. If ∆h(K) is
defined then ∆h(K × A) is defined and is equal to ∆h(K)χ(A).

We will not prove this theorem but instead state two corollaries which complete the
proofs of the theorems 3 and 4.

Corollary 23. For any n the differentiable manifold L1 × Dn is not diffeomorphic to
L2 ×Dn.

Corollary 24. For n even the manifolds L1 × Sn and L2 × Sn are not diffeomorphic.
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