A SHARPLY 2-TRANSITIVE GROUP WITHOUT A NON-TRIVIAL ABELIAN NORMAL SUBGROUP

ELIYAHU RIPS1 YOAV SEGEV KATRIN TENT

Abstract. We show that any group G is contained in some sharply 2-transitive group \mathcal{G} without a non-trivial abelian normal subgroup. This answers a long-standing open question. The involutions in the groups \mathcal{G} that we construct have no fixed points.

1. Introduction

The finite sharply 2-transitive groups were classified by Zassenhaus in 1936 [Z] and it is known that any finite sharply 2-transitive group contains a non-trivial abelian normal subgroup.

In the infinite situation no classification is known (see [MK, Problem 11.52, p. 52]). It was a long standing open problem whether every infinite sharply 2-transitive group contains a non-trivial abelian normal subgroup. In [Ti] Tits proved that this holds for locally compact connected sharply 2-transitive groups. Several other papers showed that under certain special conditions the assertion holds ([BN, GMS, GIGu, M, T2, Tu, W]). The reader may wish to consult Appendix A for more detail, and for a description of our main results using permutation group theoretic language.

An equivalent formulation to the above problem is whether every near-domain is a near-field (see [Hall, K, SSS] and Appendix A below).

We here show that this is not the case. We construct a sharply 2-transitive infinite group without a non-trivial abelian normal subgroup. In fact, the construction is similar in flavor to the free completion of partial generalized polygons [T1].

We are grateful to Joshua Wiscons for pointing out an instructive counterexample to a first version of this paper, and for greatly simplifying parts of the proof in a later version. We are also grateful to Avinoam Mann for greatly simplifying the proof of Proposition 3.2 and for drawing our attention to a point in the proof that needed correction. We thank all the referees of this paper for carefully reading the manuscript and making very useful remarks that helped to improve the exposition.

Date: May 12, 2015.

2010 Mathematics Subject Classification. Primary: 20B22.

Key words and phrases. sharply 2-transitive, free product, HNN extension, malnormal.

1This research was partially supported by the Israel Science Foundation.
Recall that a proper subgroup A of a group G is *malnormal* in G if $A \cap g^{-1}Ag = 1$, for all $g \in G \setminus A$.

Theorem 1.1. Let G be a group with a malnormal subgroup A and an involution $t \in G \setminus A$ such that A contains no involutions. Then for any two elements $u, v \in G$ with $Au \neq Av$ there exist

- an extension $G \leq G_1$;
- a malnormal subgroup A_1 of G_1 such that A_1 does not contain involutions and satisfies $A_1 \cap G = A$;
- an element $f \in G_1$ such that $A_1f = A_1u$ and $A_1tf = A_1v$.

Remark 1.2. It is easy to see (see §2) that in Theorem 1.1 we may assume that $u = 1, v \notin AtA$ and that either: (1) $v^{-1} \notin AvA$ or: (2) v is an involution. If case (1) holds we take $G_1 = G * \langle f \rangle$ to be the free product of G with an infinite cyclic group generated by f, and $A_1 = \langle A, f, tfv^{-1} \rangle$. If case (2) holds we take $G_1 = \langle G, f \mid f^{-1}tf = s \rangle$ and HNN extension and $A_1 = \langle A, f \rangle$.

As a corollary to Theorem 1.1 we get the following.

Theorem 1.3. Let G be a group with a malnormal subgroup A such that A contains no involutions. Assume further that G is not sharply 2-transitive on the set of right cosets $A \setminus G$. Then G is contained in a group \mathcal{G} having a malnormal subgroup A such that

- $A \cap G = A$;
- \mathcal{G} is sharply 2-transitive on the set of right cosets $X := A \setminus G$;
- A contains no involutions (i.e. \mathcal{G} is of permutational characteristic 2);
- \mathcal{G} does not contain a non-trivial abelian normal subgroup;
- if G is infinite then G and \mathcal{G} have the same cardinality (similarly for X and $A \setminus G$).

As an immediate consequence of Theorem 1.3 we have

Theorem 1.4. Any group G is contained in a group \mathcal{G} acting sharply 2-transitively on a set X such that each involution in \mathcal{G} has no fixed point in X, and such that \mathcal{G} does not contain a non-trivial abelian normal subgroup.

Proof. For $|G| = 1, 2$ this is obvious. Otherwise take $A = 1$ in Theorem 1.3. □

In fact there are many other ways to obtain a group \mathcal{G} having a malnormal subgroup A and satisfying (2)–(4) of Theorem 1.3, e.g., take $G = \langle t \rangle * A$, where t is an involution, and A a non-trivial group without involutions, and apply Theorem 1.3. (Here the free product guarantees that A is malnormal in G.)

Theorem 1.4 shows that there exists a sharply 2-transitive group \mathcal{G} of *characteristic* 2 (see Definition A.2 in Appendix A) such that \mathcal{G} does not
contain a non-trivial abelian normal subgroup. Further as noted in Appendix A, if \(G \) is sharply 2-transitive of characteristic 3, then \(G \) contains a non-trivial abelian normal subgroup. The cases where \(\text{char}(G) \) is distinct from 2 and 3 remain open.

Finally we mention that the hypothesis that \(A \) does not contain involutions in Theorem 1.1 is used only in the case where we take \(G_1 \) to be an HNN extension of \(G \), and then, it is used only in the proof of the malnormality of \(A_1 \) in \(G_1 \).

2. SOME PRELIMINARIES REGARDING THEOREM 1.1

The following observations and remarks are here in order to explain to the reader the way we intend to prove Theorem 1.1, and to explain the main division between the two cases we deal with in §3 and §4.

In fact Lemma 2.1(3) and Lemma 2.2 below, together with Remark 2.3, show that we may assume throughout this paper that hypothesis 2.4 holds; and that hypothesis naturally leads to the division of the two cases dealt with in §3 and §4.

Lemma 2.1. Let \(A \) be a malnormal subgroup of a group \(G \) and let \(g \in G \setminus A \). Then

1. \(C_G(a) \leq A \), for all \(a \in A \), \(a \neq 1 \);
2. \(\langle g \rangle \cap A = 1 \);
3. \(AgA \) contains an involution iff \(g^{-1} \in AgA \).

Proof. (1): Let \(a \in A \) with \(a \neq 1 \), and let \(h \in C_G(a) \). Then \(a \in A \cap A^h \). So \(h \in A \), since \(A \) is malnormal in \(G \).

(2): Since \(g \in C_G(g^k) \) for all integers \(k \), part (2) follows from (1).

(3): If \(g^{-1} \notin AgA \), then clearly \(AgA \) does not contain an involution. Conversely, assume that \(g^{-1} \in AgA \). Then \(g^{-1} = ab \), for some \(a, b \in A \), so \((ag)^2 = ab^{-1} \in A \). Then, by (2), either \((ag)^2 = 1 \) or \(ag \in A \). But \(g \notin A \), so \(ag \notin A \), and we have \((ag)^2 = 1 \). Hence \(AgA \) contains the involution \(ag \). \(\square \)

We now make the following observation (and introduce the following notation):

Lemma 2.2. Let \(G \) be a group with a malnormal subgroup \(A \) and an involution \(t \in G \setminus A \). Let \(G_1 \) be an extension of \(G \), such that \(G_1 \) contains a malnormal subgroup \(A_1 \) with \(A_1 \cap G = A \). Let \(r, s \in G \) be such that \(Ar \neq As \). Then

1. there is at most one element \(f' \in G_1 \) with \(A_1f' = A_1r \) and \(A_1tf' = A_1s \), which we denote by \(f' = f_{r,s} \) (if it exists).

The convention in (2)–(4) below is that the left side exists if and only if the right side does and then they are equal:

2. \(f_{r,s}g = f_{rg,sg} \) for any \(g \in G \).
(3) $tf_{r,s} = f_{s,r}$.
(4) $f_{a_1 r, a_2 s} = f_{r,s}$ for all $a_1, a_2 \in A$.

Proof. (1): Let $f_1, f_2 \in G_1$ such that $A_1 f_1 = A_1 f_2 = A_1 r$ and $A_1 t f_1 = A_1 t f_2 = A_1 s$. Then $f_1 f_2^{-1} \in A_1$ and $tf_1 f_2^{-1} t \in A_1$. Since $t \in G_1 \setminus A_1$, and since A_1 is malnormal in G_1, we obtain that $f_1 f_2^{-1} = 1$, so $f_1 = f_2$.

(2): $A_1 f r, s g = A_1 r g = A_1 f r g, s g$ and $A_1 t f r, s g = A_1 s g = A_1 f r g, s g$. So, by (1), $f r g, s g = f r, s g$.

(3): $A_1 t f r, s = A_1 s$, and $A_1 t t f r, s = A_1 f r, s = A_1 r$. So, by (1), $f r, s = f s, r$.

(4): $A_1 f a_1 t r, a_2 s = A_1 a_1 r = A_1 r$, and $A_1 t f a_1 t r, a_2 s = A_1 a_2 s = A_1 s$. So, by (1), $f a_1 t r, a_2 s = f r, s$. □

Remark 2.3. Let the notation be as in Theorem 1.1. Notice that if there is an element $f \in G$ such that $Af = Au$ and $Af = Av$, we can just take $G_1 = G$ and $A_1 = A$ and there is nothing to prove in Theorem 1.1.

Hence we may assume throughout this paper that this is not the case. In view of (2) and (4) of Lemma 2.2, $f_{a, v} = f_{a, v}^{-1} u$, and $f_{a, a'} v = f_{a, a'}^{-1} a' v = f_{a, a'}$, for $a, a' \in A$. Hence we may assume that $u = 1$ (and hence $v \notin A$) and replace v by any element of the double coset AvA. By Lemma 2.1(3), we may assume that either $v^{-1} \notin AvA$, or v is an involution. Further, since $f_{1, t} = 1$ and since t is an involution, we may assume that $v \notin AtA$ and $v^{-1} \notin AtA$.

Hence it suffices to prove Theorem 1.1 under the following hypothesis which we assume for the rest of the paper.

Hypothesis 2.4. In the setting of Theorem 1.1, assume $u = 1, v, v^{-1} \notin AtA$ and either $v^{-1} \notin AvA$ or v is an involution.

3. THE CASE $v^{-1} \notin AvA$

The purpose of this section is to prove Theorem 1.1 of the introduction in the case where $v^{-1} \notin AvA$. We refer the reader to Hypothesis 2.4 and to its explanation in §2. Thus, throughout this section we assume that $v^{-1} \notin AvA$. Also, throughout this section we use the notation and hypotheses of Theorem 1.1.

Let $\langle f_1 \rangle$ be an infinite cyclic group. We let

$G_1 = G \ast \langle f_1 \rangle, \quad f_2 = tf_1 v^{-1}, \quad A_1 = \langle A, f_1, f_2 \rangle$.

In this section we will prove the following theorem.

Theorem 3.1. We have

(1) $A_1 = A \ast \langle f_1 \rangle \ast \langle f_2 \rangle$, with f_1, f_2 of infinite order;
(2) A_1 is malnormal in G_1.

Suppose Theorem 3.1 is proved. We now prove Theorem 1.1 in the case where $v^{-1} \notin AvA$.

Proof of Theorem 1.1 in the case where $v^{-1} \notin AvA$.

Let $f := f_1$. Then $A_1f = A_1f_1 = A_1$, and

$$A_1tf = A_1tf_1 = A_1tf_1v^{-1}v = A_1f_2v = A_1v.$$

By Theorem 3.1(2), A_1 is malnormal in G_1. By Theorem 3.1(1), $A_1 \cap G = A$, and f_2 is of infinite order. Since $A_1 = A \ast \langle f_1 \rangle \ast \langle f_2 \rangle$, and A does not contain involutions, A_1 does not contain involutions. \hfill \square

Proposition 3.2. f_2 is of infinite order in G_1, and $A_1 = A \ast \langle f_1 \rangle \ast \langle f_2 \rangle$.

Proof. We first show that f_2 is of infinite order. Indeed let $h := f_2^n$, for some $n \in \mathbb{Z}$, and write h in terms of f_1 and elements of G. If $n > 0$, then h starts with t and ends with v^{-1}, while if $n < 0$, then h starts with v and ends with t. In particular f_2 has infinite order.

Next let $F := \langle f_1, f_2 \rangle$. Then any element of F is a product of alternating powers of f_1 and f_2. As we saw in the previous paragraph of the proof, any non-zero power of f_2 starts with t or v and ends with t or v^{-1}. Since $G_1 = G \ast \langle f_1 \rangle$ there will be no cancellation between powers of f_1 and powers of f_2. It follows that F is a free group.

Now consider an element in $A_1 = \langle A, F \rangle$. It is an alternating product of elements of A and elements of F. When we express it as an element of $G_1 = G \ast \langle f_1 \rangle$, f_2 is written as tf_1v^{-1} and f_2^{-1} is written as $vf_1^{-1}t$. Accordingly, an element $1 \neq a \in A$ in this alternating product is multiplied with 1, v^{-1} or t on the left, and with 1, t or v on the right. The possibilities are:

- $v^{-1}a$, ta, at, av: all are distinct from 1 since t and v are not in A.
- tat, $v^{-1}av$: all are distinct from 1 since they are conjugate to a.
- tav, $v^{-1}at$: all are distinct from 1 since $v \notin AtA$. \hfill \square

Proposition 3.3. A_1 is a malnormal subgroup of G_1.

Proof. We will show that the existence of elements $a, b \in A_1$, and $g \in G_1 \setminus A_1$, such that $a \neq 1$ and $g^{-1}ag = b$ leads to a contradiction.

Let

$$a = a_1f_{\delta_1}^\epsilon_1a_2f_{\delta_2}^\epsilon_2 \cdots a_nf_{\delta_n}^\epsilon_n a_{n+1}, \ a \neq 1, \quad \text{and} \quad b = b_1f_{\gamma_1}^{\mu_1}b_2f_{\gamma_2}^{\mu_2} \cdots b_nf_{\gamma_n}^{\mu_n}b_{n+1},$$

where $a_i, b_j \in A$, $\epsilon_i, \mu_j = \pm 1$, $\delta_i, \gamma_j \in \{1, 2\}$, and if $\delta_i = \delta_{i-1}$ and $\epsilon_i = -\epsilon_{i-1}$ then $a_i \neq 1$ (i.e. there are no f_i-cancellations in a), and similarly there are no f_i-cancellations in b.

Write

$$g = g_1f_1^{\lambda_1}g_2f_1^{\lambda_2} \cdots g_mf_1^{\lambda_m}g_{m+1} \in G_1 \setminus A_1,$$

where $g_i \in G$, $\lambda_i = \pm 1$, and there are no f_1-cancellations in g.

Assume that m is the least possible. We have the picture as in Figure 1 below.

Case 1. $m = n = 0$.

In this case $b = g^{-1}a_1g \in A_1 \cap G$. By Proposition 3.2, $A_1 \cap G = A$, so $b \in A$, and we get a contradiction to the malnormality of A in G.

The next case to consider is:

Case 2. \(m = 0 \), and \(n > 0 \).

Since \(G_1 = G \ast \langle f_1 \rangle \), we must have \(n = \ell \). Consider Figure 1. By an analysis of the normal form in the free product \(G \ast \langle f_1 \rangle \) we see that the only way we can get the equality \(a_1 b_1 t = 1 \) is if both \(\epsilon_1 = \mu_1 \) and \(\epsilon_n = \mu_n \). We distinguish a number of cases as follows.

(i) \(\delta_1 = \gamma_1 \) or \(\delta_n = \gamma_n \).

(ii) \(\delta_1 \neq \gamma_1 \) and \(\delta_n \neq \gamma_n \).

(a) \(n = 1 \).

(b) \(n > 1 \).

Case (i). By symmetry we may consider only the case where \(\delta_1 = \gamma_1 \). In this case, regardless of whether \(\epsilon_1 = \mu_1 = 1 \) or \(\mu_1 = -1 \) and whether \(\delta_1 = 1 \) or 2, we get that \(g_1 a_1 b_1 t = 1 \), a contradiction.

Case (iia). By symmetry we may assume that \(\delta_1 = 1 \) and \(\gamma_1 = 2 \).

Suppose first that \(\epsilon_1 = \mu_1 = 1 \). Then from the left side of Figure 1 we get \(a_1^{-1} g_1 b_1 t = 1 \), and from the right side we get \(a_2 g_1 b_2^{-1} v = 1 \). This implies that \(t \in A g_1 A \) and \(v^{-1} \in A g_1 A \). But then \(v^{-1} \in A t A \), a contradiction.

Suppose next that \(\epsilon_1 = \mu_1 = -1 \). Then, from the left side of Figure 1 we get \(a_1^{-1} g_1 b_1 v = 1 \), and from the right side we get \(a_2 g_1 b_2^{-1} t = 1 \). Again this implies that \(v^{-1} \in A t A \), a contradiction.

Case (iib). By symmetry, we may assume without loss of generality that \(\delta_1 = 1 \) and \(\gamma_1 = 2 \).

Suppose first that

\[\epsilon_1 = \mu_1 = 1. \]
We may further assume that
\[a_1^{-1}g_1b_1t = 1 \quad \text{and} \quad \epsilon_2 = \mu_2. \]

We now separate the discussion according to the following cases:

- **Case 3.** \(g \) otherwise we must either have \(\delta_2 = \gamma_2 = 1 \) or \(\delta_2 = \gamma_2 = 2 \), we get that \(a_2^{-1}v^{-1}b_2 = 1 \), which is false since \(v \notin A \).
- **Case 4.** \(m > 0 \) and \(n > 0 \).

Next we consider:

We may further assume that
\[a_1^{-1}g_1b_1v = 1 \quad \text{and} \quad \epsilon_2 = \mu_2. \]

We now separate the discussion according to the following cases:

- **Case 3.** In this case, regardless of the sign of \(\epsilon_2 = \mu_2 \) and whether \(\delta_2 = \gamma_2 = 1 \) or \(\delta_2 = \gamma_2 = 2 \), we get that \(a_2^{-1}v^{-1}b_2 = 1 \), which is false since \(v \notin A \).
- **Case 4.** \(m > 0 \) and \(n > 0 \).

Notice that in this case there will be no cancellations in Figure 1, since otherwise we must either have \(g_1^{-1}a_1g_1 = 1 \), or \(g_m^{-1}b_1^{-1}g_{m+1} = 1 \), which is false.

Hence we may assume that either \(n > 0 \) or \(\ell > 0 \) or both. By symmetry we may consider the following case:

Case 4. \(m > 0 \) and \(n > 0 \).
Notice that f_i-cancellations have to occur in the product $g^{-1}agb^{-1}$, since it is equal to 1. Now f_i-cancellations can occur only if one of the following cases occurs:

(i) The product $f_{i_1}^{{-\lambda_1}}g_1^{-1}a_1f_{i_2}^{\epsilon_2}$ equals 1, v^{-1}, or t.
(ii) The product $f_{i_n}^{\epsilon_n}a_{n+1}g_1f_{i_1}^{\lambda_1}$ equals 1, t or v.
(iii) The product $f_{i_1}^{\lambda_1}g_{m+1}b_1f_{i_1}^{\mu_1}$ equals 1, v^{-1} or t.
(iv) The product $f_{i_1}^{\lambda_1}g_{m+1}b_1f_{i_1}^{\lambda_1}$ equals 1, t or v.

By symmetry, we may consider only case (i). If $f_{i_1}^{\lambda_1}g_1^{-1}a_1f_{i_1}^{\epsilon_1} = 1$, then $g_1f_{i_1}^{\lambda_1} = a_1f_{i_1}^{\epsilon_1}$. Let $h := g_2f_{i_2}^{\lambda_2} \cdots f_{i_1}^{\lambda_1}g_{m+1}$, and
\[a' = a_2f_{i_2}^{\lambda_2} \cdots f_{i_1}^{\lambda_1}g_{m+1}f_{i_1}^{\lambda_1} = a_2f_{i_2}^{\lambda_2} \cdots f_{i_1}^{\lambda_1}a_{n+1}A_1. \]
Notice that a' is conjugate to a, so $a' \neq 1$. Also $h = f_{i_1}^{-\lambda_1}g_1^{-1}g$, and $h \notin A_1$, since $f_{i_1}^{-\lambda_1}g_1^{-1} \in A_1$, while $g \notin A_1$. We get (see Figure 1) $g^{-1}ag = h^{-1}a'h \in A_1$, contradicting the minimality of m.

If $f_{i_1}^{\lambda_1}g_1^{-1}a_1f_{i_1}^{\epsilon_1} = v^{-1}$, then $g_1f_{i_1}^{\lambda_1} = a_1f_{i_1}^{\epsilon_1}v$. Let $h := vg_2f_{i_2}^{\lambda_2} \cdots f_{i_1}^{\lambda_1}g_{m+1}$, and
\[a' = a_2f_{i_2}^{\lambda_2} \cdots f_{i_1}^{\lambda_1}g_{m+1}f_{i_1}^{\lambda_1}v^{-1} = a_2f_{i_2}^{\lambda_2} \cdots f_{i_1}^{\lambda_1}a_{n+1}A_1. \]
As above, $1 \neq a' \in A_1$, and if $h \in A_1$, then $g = g_1f_{i_1}^{\lambda_1}v^{-1}h = a_1f_{i_1}^{\epsilon_1}h \in A_1$, which is false. We again get $g^{-1}ag = h^{-1}a'h \in A_1$, which contradicts the minimality of m.

Finally if $f_{i_1}^{\lambda_1}g_1^{-1}a_1f_{i_1}^{\epsilon_1} = t$, then $g_1f_{i_1}^{\lambda_1} = a_1f_{i_1}^{\epsilon_1}t$. Let $h := tg_2f_{i_2}^{\lambda_2} \cdots f_{i_1}^{\lambda_1}g_{m+1}$, and
\[a' = a_2f_{i_2}^{\lambda_2} \cdots f_{i_1}^{\lambda_1}g_{m+1}f_{i_1}^{\lambda_1}t = a_2f_{i_2}^{\lambda_2} \cdots f_{i_1}^{\lambda_1}a_{n+1}A_1. \]
As above we get $1 \neq a' \in A_1$, and $h \notin A_1$, and again we get the same contradiction.

Note that if $\ell = 0$, then no cancellation of the type (iii) or (iv) above can occur.

Proof of Theorem 3.1.

By Proposition 3.2, part (1) holds, and by Proposition 3.3 part (2) holds.

4. **The Case v is an Involution and $v \notin AtA$**

The purpose of this section is to prove Theorem 1.1 of the introduction in the case where v is an involution. We refer the reader to Hypothesis 2.4 and to its explanation in §2. Thus, throughout this section we assume that v is an involution and that $v \notin AtA$. Further, throughout this section we use the notation and hypotheses of Theorem 1.1.

Let $\langle f \rangle$ be an infinite cyclic group. We define an HNN extension
\[G_1 = \langle G, f \mid f^{-1}tf = v \rangle, \quad A_1 = \langle A, f \rangle. \]
In this section we will prove the following theorem.

Theorem 4.1. We have

1. \(A_1 = A \ast \langle f \rangle \);
2. \(A_1 \) is malnormal in \(G_1 \).

Suppose Theorem 4.1 is proved. We now use it to prove Theorem 1.1 in the case where \(v \) is an involution.

Proof of Theorem 1.1 in the case where \(v \) is an involution.

We have \(A_1f = A_1 \) and \(A_1f = A_1fv = A_1v \). By Theorem 4.1(2), \(A_1 \) is malnormal in \(G_1 \). By Theorem 4.1(1), \(A_1 \cap G = A \). Also \(A_1 \) does not contain involutions since \(A_1 = A \ast \langle f \rangle \), and \(A \) does not contain involutions. \(\square \)

Remark 4.2. Any element of \(G_1 \) has the form

\[
g = g_1 f^{\delta_1} g_2 \cdots g_m f^{\delta_m} g_{m+1},
\]

where \(g_i \in G, \ i = 1, \ldots, m + 1, \ \delta_i = \pm 1, \ i = 1, \ldots, m \). According to Britton’s lemma we say that there are no \(f \)-cancellations in \(g \) if the equality \(\delta_i = -\delta_{i-1} \) implies that if \(\delta_i = 1 \), then \(g_i \neq 1, t \), while if \(\delta_i = -1 \), then \(g_i \neq 1, v \).

Further let \(g \) be as above, let \(h \in G_1 \), and write:

\[
h = h_1 f^{\eta_1} h_2 \cdots h_k f^{\eta_k} h_{k+1},
\]

where \(h_j \in G, \ j = 1, \ldots, k + 1, \ \eta_j = \pm 1, \ j = 1, \ldots, k \), and there are no \(f \)-cancellations in \(g \) and \(h \).

Then \(g = h \) if and only if \(m = k, \ \delta_i = \eta_i, \ i = 1, \ldots, m \), and there are elements \(w_0, z_1, w_1, z_2, w_2, \ldots, z_m, w_m, z_{m+1} \) such that for every oriented loop in Figure 2 the product of edges is 1, that is:

1. \(h_i = w_{i-1} g_z z_i, \ i = 1, \ldots, m + 1; \)
2. \(w_0 = 1, \ z_{m+1} = 1; \)
3. if \(\delta_i = 1 \), then either \(z_i = 1, \ w_i = 1, \) or \(z_i = t, \ w_i = v; \)
4. if \(\delta_i = -1 \), then either \(z_i = 1, \ w_i = 1, \) or \(z_i = v, \ w_i = t. \)
Proposition 4.4. $A_1 = A * \langle f \rangle$.

Proof. We will show that the existence of elements $A \ni z_i$ implies $A \ni \delta_i$, α_i, β_i where $w_i \notin (a)-(d)$ of Remark 4.2, since $w_i \notin A$, we have $z_i = 1$, so $h_1 = g_1$, and then, by Remark 4.2 (e) and (d), $w_i = 1$.

Assume $w_i = 1$. Then $h_i+1 = w_i g_i z_{i+1} = g_i z_{i+1}$. Since $t, v \notin A$, this implies $z_{i+1} = 1$, and then $w_{i+1} = 1$. So $g_i = h_i$ for $i = 1, \ldots, m+1$. Hence $A_1 = A * \langle f \rangle$. \qed

Lemma 4.3. $A_1 = A * \langle f \rangle$.

Proof. Suppose that
\[g_1 f_1^a g_2 \cdots g_m f_m^{b_m} g_{m+1} = h_1 f_1^a h_2 \cdots h_m f_m^{b_m} h_{m+1}, \]
and $h_i, g_i \in A$, $i = 1, \ldots, m+1$. By Remark 4.2, $h_1 = g_1 z_1$, hence, by (a)-(d) of Remark 4.2, since $t, v \notin A$, we have $z_1 = 1$, so $h_1 = g_1$, and then, by Remark 4.2 (c) and (d), $w_1 = 1$.

Assume $w_i = 1$. Then $h_i+1 = w_i g_i z_{i+1} = g_i z_{i+1}$. Since $t, v \notin A$, this implies $z_{i+1} = 1$, and then $w_{i+1} = 1$. So $g_i = h_i$ for $i = 1, \ldots, m+1$. Hence $A_1 = A * \langle f \rangle$.

Proposition 4.4. A_1 is malnormal in G_1.

Proof. We will show that the existence of elements $a, b \in A_1, g \in G_1 \setminus A_1$ such that $a \neq 1$ and $g^{-1} a g = b$ leads to a contradiction. Let
\[a = a_1 f_1^{a_1} a_2 \cdots a_m f_1^{a_m} a_{m+1}, \quad b = b_1 f_1^{b_1} b_2 \cdots b_m f_1^{b_m} b_{m+1}, \]
where $a_i, b_i \in A$, $\alpha_i, \beta_i = \pm 1$, and if $\alpha_i = -\alpha_{i-1}$, then $\alpha_i \neq 1$, and if $\beta_i = -\beta_{i-1}$, then $\beta_i \neq 1$. Recall that by Lemma 4.3, $A_1 = A * \langle f \rangle$, and therefore in the above expressions for a and b there are no f-cancellations. We also have
\[g = g_1 f_1^{a_1} g_2 \cdots g_k f_1^{a_1} g_{k+1}, \]
where $g_i \in G$, $\delta_i = \pm 1$, and $\delta_i = -\delta_{i-1}$ implies that if $\delta_i = 1$, then $g_i \neq 1, t$, and if $\delta_i = -1$, then $g_i \neq 1, v$.

We assume that k is the least possible.

Case 1. $k = 0$.

Then $g = g_1$, so we have
\[g_1^{-1} a_1 f_1^{a_1} a_2 \cdots a_m f_1^{a_m} a_{m+1} g_1 = b_1 f_1^{b_1} b_2 \cdots b_m f_1^{b_m} b_{m+1}. \]
We conclude that $n = m$, $\alpha_i = \beta_i$, for $i = 1, 2, \ldots, m$. If $m = n = 0$, then $a = a_1 \neq 1$, $b = b_1$, so $g_1^{-1} a_1 g_1 = b_1$ which is impossible because A is malnormal in G.

Let $m = n > 0$. We obtain Figure 3 below, where
\[(4.1) \quad \text{if } \alpha_i = 1, \text{ then either } p_i = q_i = 1, \text{ or } p_i = t, \ q_i = v, \]
and if $\alpha_i = -1$, then either $p_i = q_i = 1$, or $p_i = v$, $q_i = t$.

\[+ \]

\[+ \]
We have $p_1 = a_1^{-1} g_1 b_1 \notin A$ since $g_1 \notin A$. Now assume $p_i \notin A$. Then $q_i \notin A$ by (4.1) and by Britton’s Lemma $p_{i+1} = a_i^{-1} q_i b_{i+1}$ is not in A either. In particular $p_i, q_i \neq 1$ for all $i \leq m$.

If $m = n \geq 2$, consider Figure 4:

We now use equation (4.1). If $\alpha_1 = 1$, $\alpha_2 = 1$, then $q_1 = v$, $p_2 = t$, so $v = a_2 t b_2^{-1} \in AtA$, a contradiction.

If $\alpha_1 = 1$, $\alpha_2 = -1$, then $a_2 \neq 1$, $q_1 = v$, $p_2 = v$. Then $va_2 v = b_2$, contradicting the malnormality of A in G.

If $\alpha_1 = -1$, $\alpha_2 = 1$, then $a_2 \neq 1$, $q_1 = t$, $p_2 = t$, and $ta_2 t = b_2$, again contradicting the malnormality of A in G.

If $\alpha_1 = -1$, $\alpha_2 = -1$, then $q_1 = t$, $p_2 = v$, and $v = a_2^{-1} t b_2 \in AtA$, a contradiction.

So we are left with the possibility $m = n = 1$. In Figure 3 above, after cutting and pasting we obtain the following figure 5:

If $\alpha_1 = 1$, then $p_1 = t$, $q_1 = v$, and if $\alpha_1 = -1$, then $p_1 = v$, $q_1 = t$. In both cases $v \in AtA$, contrary to the choice of v.

Case 2. $k > 0$.

Consider Figure 6 below.
Notice that f-cancellations have to occur in the product $g^{-1}a_1gb^{-1}$, since it is equal to 1. Therefore, at least one of the following cases must happen:

1. $m = 0$, $a = a_1$, and $f^{-\delta_1}$ cancels with f^{δ_1} in the product $f^{-\delta_1}g_1^{-1}a_1g_1f^{\delta_1}$;
2. $n = 0$, $b = b_1$ and f^{δ_k} cancels with $f^{-\delta_k}$ in the product $f^{\delta_k}g_{k+1}b_1g_{k+1}^{-1}f^{-\delta_k}$;
3. $m > 0$, and $f^{-\delta_1}$ cancels with f^{α_1} in the product $f^{-\delta_1}g_1^{-1}a_1f^{\alpha_1}$;
4. $m > 0$, and f^{α_m} cancels with f^{δ_k} in the product $f^{\alpha_m}a_{m+1}g_1f^{\delta_1}$;
5. $n > 0$, and f^{δ_k} cancels with f^{δ_1} in the product $f^{\delta_k}g_{k+1}b_1f^{\delta_1}$;
6. $n > 0$, and f^{β_n} cancels with $f^{-\delta_k}$ in the product $f^{\beta_n}b_{n+1}g_{k+1}^{-1}f^{-\delta_k}$.

In case (1), $a = a_1 \neq 1$, so $g_1^{-1}a_1g_1 = t$ or v. Hence a_1 is conjugate to an involution, which is impossible, as A does not contain involutions.

Similarly, in case (2) $b = b_1 \neq 1$, so $g_{k+1}b_{k+1}^{-1} = t$ or v, again a contradiction.

In case (3) we have Figure 7 below, where $p, q \in \{1, t, v\}$ by Britton’s Lemma. We define

$$a' = a_2 \cdots a_m f^{\alpha_m}a_{m+1}f^{\alpha_1}$$

and

$$h = qg_2 \cdots g_k f^{\delta_k}g_{k+1}.$$

We have $h^{-1} a' h = b$, a' is conjugate to a. So $a \neq 1$ implies $a' \neq 1$. Also the f-length of h is $k - 1$. Notice that $h = f^{-\alpha_1}a_1^{-1}g$, and $h \notin A_1$ since $f^{-\alpha_1}a_1^{-1} \in A_1$, and $g \notin A_1$. We obtained a contradiction to the minimality of k.

The remaining cases are handled in entirely the same way. □

Proof of Theorem 4.1.
By Lemma 4.3, part (1) holds, and by Proposition 4.4, part (2) holds.

5. The proof of Theorem 1.3

In this section we show how Theorem 1.3 of the introduction follows from Theorem 1.1.

Let G be a group with a malnormal subgroup A such that A contains no involutions. Assume that G is not 2-transitive on the set of right cosets $A \setminus G$. If there exists an involution $t \in G \setminus A$, set $G_0 := G$, $A_0 := A$. Otherwise, let $G_0 := G \ast \langle t \rangle$, where t is an involution, and let $A_0 = A$. Then, by [MaKS, Corollary 4.1.5], G is malnormal in G_0, and then since A is malnormal in G, it is malnormal in G_0.

We now construct a sequence of groups G_i and of subgroups $A_i \leq G_i$, $i = 0, 1, 2, \ldots$, having the following properties for all $i \geq 0$:

1. $G_i \leq G_{i+1}$, and $A_i \leq A_{i+1}$;
2. A_i is malnormal in G_i and $t \in G_i \setminus A_i$;
3. A_i does not contain involutions;
4. $A_{i+1} \cap G_i = A_i$;
5. for each $v \in G_i \setminus A_i$ there exists an element $f_v \in A_{i+1}$ such that $A_{i+1}tf_v = A_{i+1}v$.

In order to construct G_{i+1}, A_{i+1} from G_i, A_i we enumerate the set $G_i \setminus A_i = \{v_\alpha : \alpha < \rho\}$ for some ordinal ρ. For each ordinal $\alpha < \rho$ we construct the pair G^α_i, A^α_i and the element $f_{v_\alpha} \in A^\alpha_i$ having the following properties:
(i) $G_i^\beta \leq G_i^\alpha$, for all ordinals $\beta < \alpha$;
(ii) A_i^α is malnormal in G_i^α and $t \in G_i^\alpha \setminus A_i^\alpha$;
(iii) A_i^α contains no involutions;
(iv) $A_i^\alpha \cap G_i^\beta = A_i^\beta$ for all $\beta < \alpha$;
(v) $f_{v_\alpha} \in A_i^\alpha$ and $A_i^\alpha t f_{v_\alpha} = A_i^\alpha v_\alpha$.

We let $G_i^0 = G_i$ and $A_i^0 = A_i$. If $\alpha = \beta + 1$, we construct $(G_i^\alpha, A_i^\alpha, f_{v_\alpha})$ from (G_i^β, A_i^β) as follows: If there is some $f \in A_i^\beta$ with $A_i^\beta t f = A_i^\beta v_\alpha$ we let $G_i^\alpha = G_i^\beta$, $A_i^\alpha = A_i^\beta$ and $f_{v_\alpha} = f$. Otherwise apply Theorem 1.1 to G_i^β, A_i^β with $u = 1$ and $v = v_\alpha$ to obtain the groups G_i^α, A_i and the element $f_{v_\alpha} \in A_i^\alpha$. Of course, by construction, A_i^α contains no involutions and $A_i^\alpha \cap G_i^\beta = A_i^\beta$. So (i)–(v) hold.

For a limit ordinal α we put $G_i^{(\alpha,1)} = \bigcup_{\beta < \alpha} G_i^\beta$, $A_i^{(\alpha,1)} = \bigcup_{\beta < \alpha} A_i^\beta$. We now show that when α is a limit ordinal $A_i^{(\alpha,1)}$ is malnormal in $G_i^{(\alpha,1)}$. Notice that for each ordinal $\beta < \alpha$ and each $g \in G_i^\beta \setminus A_i^\beta$, we have $g \in G_i^{(\alpha,1)} \setminus A_i^{(\alpha,1)}$. Indeed else take the minimal $\gamma < \alpha$ such that $g \in A_i^\gamma$. Then, by definition, γ is not a limit ordinal, and $g \in G_i^{\gamma - 1} \setminus A_i^{\gamma - 1}$. So $g \in A_i^{\gamma - 1} \cap G_i^{\gamma - 1} = A_i^{\gamma - 1}$, a contradiction. This means that $A_i^{(\alpha,1)} \cap G_i^\beta = A_i^\beta$, for all ordinals $\beta < \alpha$.

Suppose now that $g^{-1} a g = b$ with $g \in G_i^{(\alpha,1)} \setminus A_i^{(\alpha,1)}$ and $a, b \in A_i^{(\alpha,1)}$. Then, by the previous paragraph, there exists $\beta < \alpha$ so that $a, b \in A_i^\beta$ and $g \in G_i^\beta \setminus A_i^\beta$ and then we get a contradiction to the malnormality of A_i^β in G_i^β. Clearly $A_i^{(\alpha,1)}$ contains no involutions. Next if there exists $f \in A_i^{(\alpha,1)}$ such that $A_i^{(\alpha,1)} t f = A_i^{(\alpha,1)} u_\alpha$ then we let $G_i^\alpha = G_i^{(\alpha,1)}$, $A_i^\alpha = A_i^{(\alpha,1)}$ and $f_{v_\alpha} = f$. Else we construct G_i^α, A_i^α and f_{v_α} from $G_i^{(\alpha,1)}$, $A_i^{(\alpha,1)}$ using Theorem 1.1 with $u = 1$ and $v = v_\alpha$ (just as in the construction above in the case of a non-limit ordinal). Again we see that (i)–(v) hold.

Finally put

$$G_{i+1} = \bigcup_{\alpha < \rho} G_i^\alpha, \quad A_{i+1} = \bigcup_{\alpha < \rho} A_i^\alpha,$$

and set

$$\mathcal{G} = \bigcup_{i < \omega} G_i, \quad \mathcal{A} = \bigcup_{i < \omega} A_i \quad \text{and} \quad X = \mathcal{A} \setminus \mathcal{G}.$$

As in the construction of $G_i^{(\alpha,1)}$, $A_i^{(\alpha,1)}$ in the case where α is a limit ordinal, we see that \mathcal{A} is malnormal in \mathcal{G} and that $\mathcal{A} \cap G_i = A_i$, for each $i < \omega$. To see that the action of G on X is 2-transitive just note that any $v \in \mathcal{G} \setminus \mathcal{A}$ is contained in some G_i so that there is some $f_v \in A_{i+1} \subseteq \mathcal{A}$ with $A_{i+1} t f_v = A_{i+1} v$. Since $A_{i+1} \subseteq \mathcal{A}$ we see that $A t f_v = A v$ as required. Since \mathcal{A} is malnormal in \mathcal{G} the action of \mathcal{G} on X is sharply 2-transitive. By construction, \mathcal{A} contains no involutions.

Finally, as is well known, if \mathcal{G} contains a non-trivial abelian normal subgroup, then necessarily all involutions in \mathcal{G} commute with each other (see,
A NON-SPLIT SHARPLY 2-TRANSITIVE GROUP

e.g., [GMS, Remark 4.4]). But, by our construction, this is not the case in G. Indeed, if $G_{1} = G_{0} * \langle f_1 \rangle$ is a free product, then t does not commute with $f_1^{-1}tf_1$. Suppose that $G_1 = \langle G, f \mid f^{-1}tf = v \rangle$ is an HNN extension. Let $s \in G$ be an involution distinct from t (notice that t is not in the center of G since A is malnormal in G, so such s exists). Then $sf^{-1}sf$ and $f^{-1}sf$ are in canonical form, so they are distinct, and the involutions s and $f^{-1}sf$ do not commute. This completes the proof of Theorem 1.3.

Appendix A. Some background and a permutation group theoretic point of view

Recall that a permutation group G on a set X is regular if it is transitive and no non-trivial element of G fixes a point. G is a Frobenius group on X, if G is transitive on X, no non-trivial element in G fixes more than one point, and some non-trivial elements of G fix a point. G is sharply 2-transitive if G is transitive on X, and for any two ordered pairs $(x_1, x_2), (x_1', x_2') \in X \times X$ of distinct points in X, there exists a unique element $g \in G$ such that $x_ig = x_i'$, $i = 1, 2$.

Remarks A.1

Let G be a group and let A be a subgroup of G. Let $X := A \setminus G$ be the set of right cosets of A in G. Then the following are equivalent

1. A is malnormal in G.
2. Either
 - (a) $A = 1$, and G is regular on X, or
 - (b) G is a Frobenius group on X (so $A \neq 1$).

If a sharply 2-transitive group G on X contains a non-trivial normal abelian subgroup B, then B is necessarily regular on X and $G = HB$ with $H \cap B = 1$, where H is the stabilizer in G of some point in X. In this case we say that G splits, otherwise we say that G is non-split.

The primary example of sharply 2-transitive groups are the 1-dimensional affine groups. Given a field F, the 1-dimensional affine group over F is the group $G := \{ x \mapsto ax + b \mid a, b \in F, a \neq 0 \}$ of functions on $X = F$. So G is Frobenius on X.

If G is a 1-dimensional affine group over F, then G splits. Indeed if we let $B = \{ x \mapsto x + b \mid b \in F \}$ and $H = \{ ax \mid a \in F, a \neq 0 \}$, the stabilizer of 0 in G, then B is an abelian normal subgroup of G and $G = BH$. In fact in §6 of [K] it is shown that sharply 2-transitive groups can be completely characterized by means of “one-dimensional affine” transformations $x \mapsto ax + b$ on an algebraic structure called a near-domain defined in [K].

1. Note that we could start with a group G_0 which already contains an involution that does not commute with t. Then it would immediately follow that G does not split. We thank Uri Bader for pointing this out.
Definition, p. 21]. Further, the notion of a near-field is defined below the Definition in p. 21 of [K]. And in [K, Thm. 7.1, p. 25] it is shown that the assertion that every sharply 2-transitive group splits is equivalent to the assertion that every near-domain is a near field (see also [Hall, subsection 20.7, p. 382], [SSS, chapter 3]).

However, for an infinite sharply 2-transitive group G it was a long standing problem whether or not G splits. It is known that a sharply 2-transitive group splits in the following cases:

- G is locally compact connected [Ti];
- G is locally finite [W];
- G is definable in an o-minimal structure [T2];
- G is linear (with certain additional restrictions) [GlGu];
- G is locally linear (with some additional restrictions) [GMS];
- Further splitting results can be found in [BN] and [SSS].

To state some additional splitting results we need to introduce some more definitions. So let G be an infinite sharply 2-transitive group on a set X. Then G contains “many” involutions. Let $I \subset G$ be the set of involutions in G. Then I is a conjugacy class in G. If $i \in I$ has no fixed points in X we say that G is of characteristic 2 and we write $\text{char}(G) = 2$. Otherwise each $i \in I$ fixes a unique point. In this case the set of all products of distinct involutions: $I^2 \setminus \{1\}$ form a conjugacy class in G, and a nontrivial power of an element in $I^2 \setminus \{1\}$ belongs to $I^2 \setminus \{1\}$. It follows that the elements in $I^2 \setminus \{1\}$ either have an odd prime order p, or are of infinite order. In the former case we say that the characteristic of G is p and in the latter case we say that the characteristic of G is 0. Hence we have the following definition.

Definition A.2. Let G be a sharply 2-transitive group on a set X, and let I be the set of involutions in G. Let $I^2 = \{ts \mid t, s \in I\}$. We define the characteristic of G, denoted $\text{char}(G)$ as follows:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Characteristic of G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i \in I$ has no fixed point in X</td>
<td>$\text{char}(G) = 2$</td>
</tr>
<tr>
<td>Each $g \in I^2 \setminus {1}$ is of infinite order</td>
<td>$\text{char}(G) = 0$</td>
</tr>
<tr>
<td>Each $g \in I^2 \setminus {1}$ has order p</td>
<td>$\text{char}(G) = p$, where p is an odd prime</td>
</tr>
</tbody>
</table>

- In [K, Thm. 9.5, p. 42] and in [Tu] it was shown that if $\text{char}(G) = 3$, then G splits.
- In [M] it was shown that if the exponent of the point stabilizer is 3 or 6, then G splits.

Using the above terminology, we can now rephrase Theorem 1.3 as follows.

Theorem A.3. Every Frobenius or regular permutation group which is not sharply 2-transitive, and whose involutions do not have any fixed point, has a non-split sharply 2-transitive extension of characteristic 2.

Here, by an “extension” we mean an extension of both the given set and the given permutation group.
Acknowledgment. We would like to thank Martina Pfeifer for meticulously and efficiently preparing the figures of this paper.

References

Eliyahu Rips, Einstein Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel

E-mail address: eliyahu.rips@mail.huji.ac.il

Yoav Segev, Department of Mathematics, Ben-Gurion University, Beer-Sheva 84105, Israel

E-mail address: yoavs@math.bgu.ac.il

Katrin Tent, Mathematisches Institut, Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany

E-mail address: tent@wwu.de