Low-tech notes on group extensions

Katrin Tent*

March 23, 2015

Abstract

These are notes explaining in a low-tech way how to describe and understand group extensions.

1 Introduction

It is well known that group extensions of a group N by a group H can be understood via the second cohomology groups of certain associated modules. We here give an easy description of the class of possible group extensions E of N by G, i.e. groups E containing N (or an isomorphic copy of N) as a normal subgroup such that $E/N \simeq G$. We write this as

$$1 \rightarrow N \rightarrow E \rightarrow G \rightarrow 1.$$

Suppose that G has a presentation

$$G = \langle s_1, \ldots, s_k, r_1, \ldots, r_m \rangle \cong F_k / R$$

where F_k is the free group of rank k on generators s_1, \ldots, s_k and R is the normal subgroup of F_k generated (as a normal subgroup) by r_1, \ldots, r_m.

Now suppose we have an extension E such that

$$N \rightarrow E \rightarrow G = \langle s_1, \ldots, s_k \rangle.$$

Let $\hat{s}_1, \ldots, \hat{s}_k \in E$ be lifts of $s_1, \ldots, s_k \in G$, i.e. $\pi(\hat{s}_i) = s_i, i = 1, \ldots, k$.

*Partially supported by SFB 878
Then clearly $\hat{s}_i, i = 1, \ldots, k$ act on N by conjugation and hence any word $w = w(s_1, \ldots, s_k)$ in the free group F_k with generators s_1, \ldots, s_k acts on N (as an automorphism of N) via the natural action of $w(\hat{s}_1, \ldots, \hat{s}_k) \in E$. Hence any group extension E of N by a k-generated group $G = \langle s_1, \ldots, s_k \rangle$ comes with an action of $F_k = F(s_1, \ldots, s_k)$ on N. In order to describe E we will have to express this F_k action on N.

Define $\varphi_E : R \longrightarrow N : w(s_1, \ldots, s_k) \mapsto w(\hat{s}_1, \ldots, \hat{s}_k)$.

Lemma 1.1. Using the previous notation we have $\varphi_E \in \text{Hom}_{F_k}(R, N)$.

Proof. This is clear. \(\square\)

The next lemma states that the group E is determined – up to isomorphism over N – by the action of F_k on N and the homomorphism φ_E:

Lemma 1.2. Using the previous notation suppose that E^1, E^2 are groups with a common normal subgroup N such that $E^i/N \cong H, i = 1, 2$. Let $\hat{s}_i^j \in E^j, j = 1, 2, i = 1, \ldots, k$ be lifts of s_1, \ldots, s_k, respectively.

Suppose that the induced F_k-actions agree, i.e. for all $a \in N$ we have

$$a^{\hat{s}_i^1} = a^{\hat{s}_i^2}.$$

If $\varphi_{E^1} = \varphi_{E^2}$, then E^1 and E^2 are isomorphic over N.

Proof. First suppose that $\varphi_{E^1} = \varphi_{E^2}$. Define

$$f : E_1 \longrightarrow E_2, w(\hat{s}_1^1, \ldots, \hat{s}_k^1) n \mapsto w(\hat{s}_1^2, \ldots, \hat{s}_k^2) n.$$

Note that

$$w(\hat{s}_1^1, \ldots, \hat{s}_k^1) n = w'(\hat{s}_1^1, \ldots, \hat{s}_k^1) n'$$

if and only if

$$w(\hat{s}_1^1, \ldots, \hat{s}_k^1)(w'(\hat{s}_1^1, \ldots, \hat{s}_k^1))^{-1} \in N$$

if and only if

$$w(s_1, \ldots, s_k)(w'(s_1, \ldots, s_k))^{-1} \in R.$$

Since $\varphi_{E^1} = \varphi_{E^2}$, we see that indeed f is well-defined and injective.

Note that f is a homomorphism because the F_2-actions on N agree. Since $E^j, j = 1, 2$, is generated by N and $\hat{s}_1^j, \ldots, \hat{s}_k^j$, this now implies that f is surjective and hence an isomorphism.

For the other direction, suppose that $g : E_1 \longrightarrow E_2$ is an isomorphism over N, so $gN = \text{id}$. For any $w(s_1, \ldots, s_k) \in R$ we thus have $g(w(\hat{s}_1^1, \ldots, \hat{s}_k^1)) =$
\[w(s_1, \ldots, s_k) = \varphi_{E_1}(w(s, t)) = w(s_1, \ldots, s_k) = \varphi_{E_2}(w(s_1, \ldots, s_k)), \] proving the claim.

Recall that a group action is called \textit{regular} if it is transitive and point stabilizers are trivial.

\textbf{Lemma 1.3.} Let \(C = \text{Cen}(N) \). The group \(\text{Hom}_F(R, C) \) acts regularly on the set

\[X = \{ \varphi_E : E \text{ is extension of } N \text{ by } H \text{ with prescribed } F_2\text{-action on } N \} \]

\[\text{via } \varphi_E^\psi(w(s, t)) = \varphi_E(w(s, t))\psi(w(s, t)) \text{ for } \psi \in \text{Hom}_F(R, C) \text{ and } \varphi_E \in X \]

\textbf{Proof.} To see that the action is transitive just notice that for extensions \(E_1, E_2 \) of \(N \) by \(H \) with the given \(F_2 \)-action on \(N \), and lifts \(\hat{s}_i, \hat{t}, i = 1, 2 \) as before we have for all \(n \in N \)

\[n^{\varphi_{E_1}(w(s, t))} = n^{w(s_1, t_1)} = n^{w(s, t)} = n^{w(s_2, t_2)} = n^{\varphi_{E_2}(w(s, t))} \]

and hence \(\varphi_{E_1}(w(s, t))(\varphi_{E_2}(w(s, t)))^{-1} \in C \) and so \(\varphi_{E_1} \) and \(\varphi_{E_2} \) differ by an element in \(\text{Hom}_F(R, C) \).

To see that \(\varphi_\psi = \varphi_E \) for some extension with prescribed \(F_2 \)-action on \(N \), define \(E' \) by choosing a transversal \(T \) for \(F_2/R \) so that any element \(w(s, t) \in F_2 \) can be written uniquely as \(w(s, t) = v(s, t)r(s, t) \) where \(v(s, t) \in T, r(s, t) \in R \).

We now define the elements of \(E' \) as \(nw(s, t) = nv(s, t)\varphi_E(r(s, t))\psi(r(s, t)) \) with the induced multiplication. Then \(E' \) is an extension with prescribed \(F(s, t) \) action \(\varphi_{E'} = \varphi_\psi \).

\[\Box \]

\textbf{References}

Katrin Tent,
Mathematisches Institut,
Universität Münster,
Einsteinstrasse 62,
D-48149 Münster,
Germany,
tent@wwu.de