Nonstandard methods in algebraic geometry

Christian Serpé University of Münster, Germany

1. Juni 2008

- joint work with Lars Brünjes from Regensburg, Germany
- slides of this talk and our articles will soon be available on my homepage wwwmath.uni-muenster.de/u/serpe/

Motivation

Many problems in algebraic geometry depend on the characteristic of the base field. The main reason for that is that

- in the characteristic zero case one can use transcendental methods,
- and in characteristic p > 0 case one has the Frobenius morphism.

A link between the apparently so different worlds might be provided by the ultra product

 $\prod_{p\in M,\mathcal{U}}\mathbb{F}_p$

of the finite fields \mathbb{F}_p where *M* is an infinite set of primes and \mathcal{U} is an ultra filter.

•
$$char(\prod_{p\in M,\mathcal{U}}\mathbb{F}_p)=0$$

• in some sense $\prod_{p \in M, U} \mathbb{F}_p$ behaves like a finite field.

Enlargements

Let $\hat{M} = \bigcup_{i=0}^{\infty} M_i$ be a superstructure, and $* : \hat{M} \to \widehat{*M}$ be an enlargement of superstructures. We assume that \hat{M} is large enough for all our purpose. Now the ultra product $\prod_{p \in M, \mathcal{U}} \mathbb{F}_p$ is replaced by the *finite field

$${}^*\mathbb{F}_{P}:={}^*\mathbb{Z}/P$$

where $P \in {}^*\mathbb{P} - \mathbb{P}$ is an infinite prime. We have

- char^{ext}(${}^*\mathbb{F}_P$) = 0
- $char^{int}(^*\mathbb{F}_P) = P$

Affine varieties

Consider:

- K algebraically closed field; $m, n \in \mathbb{N}$
- $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$ polynomials
- $I := (f_1, \ldots, f_m) \subset K[x_1, \ldots, x_n]$

$$V_{l}(K) := \{t = (t_{1}, \dots, t_{n}) \in K^{n} | f_{1}(t) = \dots = f_{m}(t) = 0\}$$

Such subsets are called **algebraic subsets** of K^n and if the ideal *I* is a prime ideal the subset is called **affine variety**. A **morphism** of two algebraic subsets/affine varieties is a map which is given by polynomials. So we have the category **AffVar/K**.

*Affine *varieties

Consider:

- K internal *algebraically closed field; $n, m \in *\mathbb{N}$
- $f_1, \ldots, f_m \in K^*[x_1, \ldots, x_n]$ *finitely many *polynomials
- $I := *(f_1, \ldots, f_m) \subset K^*[x_1, \ldots, x_n]$

$$V_{l}(K) := \{t = (t_{1}, \dots, t_{n}) \in K^{n} | f_{1}(t) = \dots = f_{m}(t) = 0\}$$

Such subsets are called ***algebraic subsets** of K^n and if the ideal *I* is a prime ideal the subset is called ***affine *variety**. A **morphism** of two *algebraic subsets/*affine *varieties is a map which is given by *polynomials. So we have the category ***AffVar/K**.

The functor N

If K is an internal *algebraically closed field, it is also just an algebraically closed field. Therefore we can consider:

AffVar/K

An important fact is that we can construct a functor

 $N: AffVar/K \rightarrow *AffVar/K$

Doing this for $\overline{*\mathbb{F}_P} := \overline{*\mathbb{Z}/P}$ for an infinite prime $P \in *\mathbb{P} - \mathbb{P}$ we get

$$N: AffVar/\overline{*\mathbb{F}_P} \to {}^*AffVar/\overline{*\mathbb{F}_P}$$

This gives a link between varieties over fields of characteristic zero and varieties over fields of charactereistic p > 0.

Enlargements of schemes

• affine varieties \rightsquigarrow schemes

Again for an internal field K we want to have a functor

$$N: Sch^{fp}/K \rightarrow {}^*Sch^{fp}/K.$$

What is $*Sch^{fp}/K$?

Enlargement of categories

- C category \rightsquigarrow (internal) category *C
- E a property morphism of C can have → *E a property morphism of *C can have
- {C_s}_{s∈S} family of categories indexed by a set S → {*C_s}_{s∈*S} family of categories indexed by the set *S
- here: $\{Sch^{fp}/k\}_{k\in S} \rightsquigarrow \{*Sch^{fp}/K\}_{K\in {}^*S}$

Construction of N

$$\textit{N}:\textit{Sch}^{\textit{fp}}/{}^*\mathbb{F}_{\textit{P}} \to {}^*\textit{Sch}^{\textit{fp}}/{}^*\mathbb{F}_{\textit{P}}$$

Construction of *N*: $X \in Sch^{fp}/^*\mathbb{F}_P$

find a subring A₀ ⊂ *F_P of finite type over Z and a scheme X₀ ∈ Sch^{fp}/A₀ such that X = X₀ ⊗_{A₀} *F_P

•
$$N(X) := {}^*X_0 {}^* \otimes_{{}^*A_0} {}^*\mathbb{F}_P$$

Properties of N

Proposition (B.-S.)

- $f: X \to Y$ smooth $\Rightarrow N(f): N(X) \to N(Y)$ *smooth
- $f: X \to Y$ étale $\Rightarrow N(f): N(X) \to N(Y)$ *étale

For schemes X, Y over an internal field we have:

- X is a variety if and only if N(X) is a *variety (uses a result of van den Dries/Schmidt about the map K[x₁,...,x_n] → K*[x₁,...,x_n])
- *f* : *X* → *Y* is birational if and only if *N*(*f*) : *N*(*X*) → *N*(*Y*) is
 *birational

char 0 ~> char p

Let Φ be a statement about schemes. Then assume that

- Φ is true in characteristic 0.
- $\Phi(X)$ is true $\Rightarrow {}^{*}\Phi(N(X))$ is true

Consider an subset S of schemes over fields such that *S is contained in the essential image of the functor

$$N: \mathit{Sch}^{\mathit{fp}}/^*\mathbb{F}_{\mathit{P}} \to {}^*\mathit{Sch}^{\mathit{fp}}/{}^*\mathbb{F}_{\mathit{P}}$$

Then it follows:

There is a cofinite set of primes $\mathbb{P}' \subset \mathbb{P}$ such that for all schemes *X* over a field of characteristic $p \in \mathbb{P}'$ with $X \in S$ the statement Φ holds.

Theorem (Eklof 69)

For any pair (n, d) of natural numbers, there exists a bound $C \in \mathbb{N}$ such that for any field of characteristic p > C and any closed subvariety X of \mathbb{P}_k^n of degree d, there exists a resolution of singularities of X.

Theorem (B.-S.)

A similar results holds for weak factorization

Étale cohomology and algebraic cycles

Algebraic cylces and étale cohomology are important invariants for schemes.

 $X \in \mathit{Sch^{fp}/k}$ a scheme over a field K and $i \in \mathbb{N}$

- $Z^i(X)$ groups of codimension *i* cycles
- $H^i_{et}(X, \mathbb{Z}/m)$ étale cohomology
- $H^i_{et}(X, \mathbb{Z}_I)$ l-adic cohomology

And there is a cycle class map

$$cl: Z^i(X) \rightarrow H^{2i}_{et}(X, \mathbb{Z}/m)$$

N for cycles and étale cohomology

Proposition (B.-S.)

It is possible to construct a canonical morphisms

$$N: H^i_{et}(X, \mathbb{Z}/m) \to {}^*H^i_{et}(N(X), {}^*\mathbb{Z}/m)$$

and

$$N: Z^i(X) \to {}^*Z^i(N(X))$$

which are compatable with *cl* and **cl*.

N for cycles and étale cohomology

Proposition (B.-S.)

Let X be a proper scheme over an internal separably closed field. Then the canonical morphism

$$N: H^i_{et}(X, \mathbb{Z}/m) \to {}^*H^i_{et}(N(X), {}^*\mathbb{Z}/m)$$

is an isomorphism.

For cycles the map N is far from being surjective.

Lifting divisors to characteristic zero

Theorem (B.-S.)

Let X be a smooth and proper variety over \mathbb{Q} , and let $\eta \in H^2_{et}(X_{\overline{Q}}, \mathbb{Z}_l)$ be a cohomology class. If there are infinitely many primes $p \in \mathbb{P}$ such that η lies in the image of

$$Z^1(X_{\overline{\mathbb{F}_p}}) o H^2_{et}(X_{\overline{\mathbb{F}_p}}, \mathbb{Z}_l) \simeq H^2_{et}(X_{\overline{\mathbb{Q}}}, \mathbb{Z}_l)$$

then η lies in the image of

$$Z^1(X_{\overline{\mathbb{Q}}}) \to H^2_{et}(X_{\overline{\mathbb{Q}}}, \mathbb{Z}_I).$$