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Abstract In this article we use our previous constructions (L. Brünjes, C. Serpé,
Theory Appl. Categ. 14:357–398, 2005) to lay down some foundations for the appli-
cation of A. Robinson’s nonstandard methods to modern algebraic geometry. The
main motivation is the search for another tool to transfer results from characteristic
zero to positive characteristic and vice versa. We give applications to the resolution of
singularities and weak factorization.

Mathematics Subject Classification (2000) 03H05 · 14A20 · 14F20

1 Introduction

The difficulty of many problems about algebraic varieties depends on the characteris-
tic of the base field. Resolution of singularities (proved in characteristic zero, open in
characteristic p) and Grothendieck’s standard conjecture on the rationality of Künneth
components (proved over finite fields, open in characteristic zero) are prominent exam-
ples. This is mostly due to the fact that some tools – like transcendental methods – are
only available in characteristic zero while others – like Frobenius morphisms – only
exist in characteristic p.

A link between the apparently so different worlds of characteristic zero and charac-
teristic p is provided by internal fields of infinite characteristic, for example the *finite
field ∗Z/P , where ∗Z is an enlargement of Z and P ∈ ∗Z is an infinite prime:

C. Serpé (B)
Sonderforschungsbereich 478 “Geometrische Strukturen in der Mathematik”,
Mathematisches Institut, Westfälische Wilhelms-Universität Münster,
Hittorfstr. 27, 48149 Münster, Germany
e-mail: serpe@math.uni-muenster.de

L. Brünjes
e-mail: lbrunjes@gmx.de

123



2 L. Brünjes, C. Serpé

Let� be a first order statement in the language of fields. If� is true for all fields of
characteristic zero, it is in particular true for ∗Z/P (which externally has characteristic
zero), so by the permanence principle it is true for Fp for infinitely many finite primes
p ∈ Z. If, on the other hand, � is true for almost all Fp, it is also true for ∗Z/P , a
field of characteristic zero.

Unfortunately, being first order is a strong condition in whose absence the above
reasoning fails, and the language of fields is ill adapted to dealing with schemes,
sheaves and cohomology in Grothendieck’s modern language of algebraic geometry.

Building on our paper [2], we therefore use the notion of enlargement of categories
to establish a more flexible method of transferring properties from characteristic zero
to characteristic p and vice versa in the framework of schemes:

Starting from a category B of rings, we consider the fibred category Sch fp
B /B of

finitely presented schemes over objects of B and enlarge it to get the category of
*schemes ∗Sch fp

B , fibred over ∗B . Here the main point is the following:

An object A of ∗B is also an ordinary ring, and we can consider the category Sch fp
A

of finitely presented schemes over A. The notion of scheme is not first order, so an
object X of Sch fp

A is not an A-*scheme. Nevertheless, X is given by finitely many
equations in finitely many unknowns, and these define a *scheme N X over A (in fact,
we construct a canonical fibred functor from Sch fp

∗B to ∗Sch fp
B , which turns out to be

a fibred Kan extension and is therefore unique up to unique isomorphism). Similarly,
any finitely presented OX -module F defines a *finitely presented ON X -*module given
by “the same” presentation. For modules, there is even a canonical functor S in the
opposite direction, sending ON X -*modules to OX -modules, and the functors N and
S turn out to have many nice properties.

The main part of our paper is devoted to proving that many properties of X (like
for example being smooth or proper) translate into corresponding properties of N X .
Let us stress the fact that this is not simply an application of the transfer principle.

Especially in the case where A is a field, properties of N X often also imply corre-
sponding properties of X – for example, N X is *irreducible or *integral if and only
if X is irreducible or integral.

Furthermore, we can give criteria (mostly of cohomological nature) for whether
a given *scheme or *module lies in the essential image of N , thus enabling us to
deduce the existence of schemes and modules with certain properties from the exis-
tence of *schemes and *modules with the corresponding properties (note that there are
many *scheme which do no lie in the essential image of N , for example *schemes of
*finite but infinite *dimension and *schemes given by equations of *finite but infinite
*degree).

The announced method of transfer between characteristic zero and characteristic
p now roughly works as follows: let � be a statement of schemes. Assume first that
� holds in characteristic zero, and consider a class C of *schemes over *fields which
lie in the essential image of N (i.e., a class of “bounded complexity”, for example the
class of *projective *schemes whose *dimension and *degree is bounded by a finite
number). If k is a *field in ∗B of infinite *characteristic, � holds for schemes over k
(which has characteristic zero as a field), and using properties of N , it will often be
possible to show that ∗� then holds for *schemes in C , hence � holds for (certain)
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Enlargements of schemes 3

schemes over fields of finite characteristic (by the permanence principle). We will give
two applications of this method, namely to the problems of resolution of singularities
and of weak factorization in characteristic p.

If, on the other hand,� holds for schemes in characteristic p, by transfer ∗� holds
for *schemes over *fields k in ∗B of infinite *characteristic, so if X is a scheme over
k, ∗� holds for N X . Again, using properties of N , it will often be possible to use
this fact to prove that � holds for X , a scheme in characteristic zero. For example, if
the (modified) Jacobian conjecture was proven is characteristic p, this method, com-
bined with an easy application of the Lefschetz principle, would imply the Jacobian
conjecture over Q.

At this point, let us mention Angus Macintyre’s “many sorted” approach to the
application of Model Theory to Algebraic Geometry in [19], where he considers
ultraproducts of varieties (and algebraic cycles) of fixed complexity. Though a direct
comparison between Macintyre’s approach and ours is difficult due to the different
languages used, *schemes and *schemes in the essential image of N correspond to
ultraproducts of varieties of arbitrary and of bounded complexity. Often our methods
will lead to questions about uniform bounds of complexities, and it would be inter-
esting to compare our systematic approach with other work on such bounds like the
article [21] of Schoutens.

Further we would like to remark that in [3], we apply the same enlargement con-
struction from [2] to étale cohomology, and we get interesting new cohomology the-
ories for algebraic varieties. Yet that work is somehow independent of the things we
do here, because there we only apply those constructions to the coefficients of sheaf
cohomology and not to the schemes themselves.

In subsequent papers, we plan to define similar functors N for K -theory, cycles
and étale cohomology, and even though we demonstrate the usefulness of our method
as it stands in the present paper (and it will not be hard to find other applications along
similar lines), our main motivation for this paper is to lay the ground for that future
work, from which we hope to gain new insights into the theory of algebraic cycles
over varieties in characteristic zero and characteristic p.

The paper is organized as follows: in the second section we give basic definitions;
in particular we define the fibration Sch fp

B /B of finitely presented schemes over a small

category of rings B and consider the enlargement ∗Sch fp
B /

∗B .
In the third section we relate schemes and *schemes. For that, we define a func-

tor N : Sch fp
∗B/

∗B → ∗Sch fp
B /

∗B which extends the canonical functor Sch fp
B /B →

∗Sch fp
B /

∗B . In particular, for an internal ring A, we get a functor N : Sch fp
/A →

∗Sch fp
/A.

Section 4 discusses more properties of the functor N and shows that it respects
many properties of morphism between schemes.

In Sect. 5 we define and investigate an analogous functor N for coherent modules.
That is, for a scheme X of finite presentation over an internal ring, we define a functor
from coherent modules on X to *coherent modules on N X .

Section 6 specializes to the case where the internal ring A is actually an internal
field. Mainly, we apply a theorem of van den Dries and Schmidt to show – among other
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4 L. Brünjes, C. Serpé

things – that the functor N on modules is exact and that the functor N on schemes is
compatible with Quot- and Hilbert-schemes.

In Sect. 7 we show that N is compatible with higher direct images of coherent
sheaves for proper morphisms (the proof of this is similar to the proof of the theorem
on formal functions in Algebraic Geometry). One main application of this theorem is
that N is fully faithful on coherent modules and induces an injection on Picard groups.

Section 8 shows that it is possible to define a kind of shadow map for varieties over
an internal valued field with locally compact completion.

In Sect. 9 finally we give two standard applications of the theory: first we reprove a
result on resolution of singularities in characteristic p by Eklof, and second we show
a similar result for the factorization of birational morphisms.

We would like to thank the referees for their useful remarks and comments.

2 Basic definitions

Let Rings be the category of rings, let B ⊂ Rings be a small (not necessarily full)
subcategory, let R be the small full subcategory of Rings containing every object of
B and (an isomorphic image of) every ring finitely presented over Z or over an object
of B , and let S be the small full subcategory of the category of schemes containing
(an isomorphic image of) every scheme which is finitely presented over an object of
R .

Choose a universe U such that S is U-small, and choose a superstructure M̂ con-
taining U (such that any U-small category is M̂-small – compare [2, A.3]).

Let ∗ : M̂ → ∗̂M be an enlargement. Since S is M̂-small, so are B and R , and
we can consider the enlargements ∗B ⊆ ∗R and ∗S , all ∗̂M-small categories, where
∗B and ∗R can be thought of as categories of (internal) rings with (internal) ring
homomorphisms as morphisms (compare [2, 4.7]).

We call objects of ∗R *rings and objects of ∗S *schemes.
Define Sch to be the category whose objects are morphisms X → Spec (S) (with

X an arbitrary scheme and S an arbitrary ring) and whose morphisms [X ′ πX ′−−→
Spec (S′)] → [X πX−→ Spec (S)] are pairs 〈X ′ f−→ X, S

ϕ−→ S′〉 such that the fol-
lowing square commutes:

X ′ f ��

πX ′
��

X

πX

��
Spec (S′)

Spec (ϕ)�� Spec (S).

(If the morphism X → Spec (S) is understood, we often denote the object X →
Spec (S) by X/S or – if S is understood as well – simply by X .)

Projection onto the second component defines a functor Sch → Ringsop which is
obviously a bifibration: For a ring homomorphism ϕ : S → S′, inverse and direct
image are given by
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Enlargements of schemes 5

ϕ∗[X → Spec (S)] = [X ×S S′ → Spec (S′)] and

ϕ∗[X ′ → Spec (S′)] = [X ′ → Spec (S′) Spec (ϕ)−−−−→ Spec (S)].

The fibre over a ring S is obviously the category Sch S of S-schemes.
Let Sch fp be the full subcategory of Sch consisting of morphisms X → Spec (S)

with X a finitely presented S-scheme. Then Sch fp is a subfibration of Sch over Rings
(but no longer a bifibration, because for a ring homomorphism S → S′, not every
finitely presented S′-scheme will in general be finitely presented as an S-scheme). Of
course, the fibre over a ring S is the category Sch fp

S of finitely presented S-schemes.
For an arbitrary subcategory C of Rings , we can form the pullbacks of Sch →

Ringsop and Sch fp → Ringsop along C op → Ringsop, and we denote the resulting

bifibration, the fibration over C op by SchC and Sch fp
C .1

Applying this to C := B and C := ∗B , we get bifibrations SchB → Bop and
Sch ∗B → ∗Bop and fibrations Sch fp

B → Bop and Sch fp
∗B → ∗Bop.

Since the fibrations Sch fp
R → R op and Sch fp

B → Bop are obviously M̂-small, we
can consider their enlargements

∗Sch fp
∗B

� � ��

��

∗Sch fp
∗R

��
∗Bop � � �� ∗R op

which are again fibrations (compare [2, 7.3]), whose fibres we denote by ∗Sch fp
S for

objects S of ∗R .

Definition 2.1

(i) For a *ring S, we call the category ∗Alg S := ∗R \S of objects under S the
category of S-*algebras.

(ii) By transfer we have a functor ∗Spec : ∗R op → ∗S from *rings to *schemes,
and we call *schemes in the essential image of this functor *affine.

(iii) For a *scheme X , we call the category ∗Sch X := ∗S/X of objects over X the
category of X-*schemes or – if X = ∗Spec (A) is *affine – the category ∗Sch A

of A-*schemes.
(iv) Let P be a property of rings (schemes, morphisms of rings, morphisms of

schemes). When considering P as a predicate on the set of objects of R (of
objects of S ,…), we get a predicate ∗P on the set of objects of ∗R (of objects of
∗S ,…), i.e., a property of *rings (*schemes, morphisms of *rings, morphisms
of *schemes).

1 When we view Sch and Sch fp as pseudo-functors from Ringsop to the category of categories, then SchS
and Sch fp

S are just the restrictions of these functors to C op.
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6 L. Brünjes, C. Serpé

Remark 2.2 It follows immediately from transfer that objects of ∗Sch fp
∗S are morphisms

of *schemes X → ∗Spec (S), where S is a *ring and X is a *scheme. Morphisms
[X ′ → ∗Spec (S′)] → [X → ∗Spec (S)] are pairs 〈 f, ϕ〉 with f ∈ Mor∗S (X ′, X) and
ϕ ∈ Mor∗R (S, S′) such that the following square commutes in ∗S :

X ′ f ��

��

X

��∗Spec (S′)
∗Spec (ϕ) �� ∗Spec (S).

In particular, for a *ring S, the fibre ∗Sch fp
S is the full subcategory of the category of S-

*schemes defined in Definition 2.1 consisting only of *finitely presented S-*schemes.

Definition 2.3 Consider the functor Pol : N0 × R → R [where N0 is the category
associated to the partially ordered set (N0,≤)], sending a pair (n, S) to the polyno-
mial ring S[X1, . . . , Xn]. This is a functor between M̂-small categories, so we can
enlarge it to a functor ∗Pol : ∗N0 × ∗R → ∗R . For a (not necessarily finite) natural
number n ∈ ∗N0 and a *ring S, we denote ∗Pol(n, S) by S∗[X1, . . . , Xn] and call it
the *polynomial ring over S in n unknowns.

Remark 2.4 Schemes were partly invented to introduce some kind of infinitesimal
objects into algebraic geometry, but the “new objects” introduced here via enlarge-
ments go far beyond this. In some sense our construction is similar to the construction
of formal schemes, but offering better formal properties. Let us illustrate this with a
simple example: let k be an internal field, and consider the affine line Spec (k[x])with
zero point Spec (k) ↪→ Spec (k[x]). The so called n-th infinitesimal neighborhood is
given by the subscheme

Spec (k[x]/(xn)) ↪→ Spec (k[x]),

and the formal completion is (in some sense) the limit of all these infinitesimal neigh-
borhoods. This completion contains all infinitesimal neighborhoods but it is not a usual
scheme anymore. In the category of *schemes, which inherits automatically all formal
properties of the category of schemes, we can take an infinite number h ∈ ∗

N−N and
consider the *subscheme

∗Spec (k∗[x]/(xh)) ↪→ ∗Spec (k∗[x]),

and this contains all infinitesimal neighborhoods of finite order. For a further analogy
between formal schemes and *schemes, we again refer to the proof of the coherence
theorem in Sect. 7 and its similarity to the proof of the theorem of formal functions.

Remark 2.5 Let (n, S) be an object of ∗N0 × ∗R as above.

(i) The morphism ∗Pol(0 ≤ n,1S) : S = S∗[] → S∗[X1, . . . , Xn] canonically
turns S∗[X1, . . . , Xn] into an S-*algebra.
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Enlargements of schemes 7

(ii) It is easy to see that S∗[X1, . . . , Xn] has the following explicit description when
viewed as an internal ring: elements are internal *finite S-linear combinations of
*monomials in n unknowns, i.e., of internal products of the form Xd1

1 · · · · · Xdn
n

with exponents di ∈ ∗N0. These elements are added and multiplied in the
obvious way.

(iii) Transfer immediately shows that S∗[X1, . . . , Xn] has the following universal
property: if T is an S-*algebra and if (t1, . . . , tn) is an internal family of elements
of T , then there is a unique morphism of S-*algebras from S∗[X1, . . . , Xn] to
T which sends Xi to ti for all i .

(iv) Let n be a finite natural number. Then by the universal property of usual poly-
nomial rings, we have a canonical morphism of S-algebras (not S-*algebras)
S[X1, . . . , Xn] → S∗[X1, . . . , Xn] which sends Xi to Xi . This map is easily
seen to be injective, but is (for n ≥ 1) not bijective: for example, for an infinite
h ∈ ∗N0, the monomial Xh

1 is obviously not contained in the image.

Definition 2.6 Let X be a *scheme, and let n be a *natural number. We define the
n-dimensional *affine space over X as the X -*scheme X∗×∗Z∗Z∗[X1, . . . , Xn] (note
that the fibre product exists by transfer).

Remark 2.7 For every scheme X and every natural number n ∈ N0, we have the
finitely presented X -scheme Pn

X = Pn
Z ×Z X , the n-dimensional projective space

over X , which is covered by (n +1) copies of An
X , glued together by certain universal

morphisms.
By transfer, for every *scheme X and every *natural number n ∈ ∗N0, we get a

*finitely presented X -scheme ∗Pn
X , covered by (n + 1) copies of ∗An

X , the n-dimen-
sional *projective space over X .

If n is finite, then these *affine spaces are glued together by the enlargements of the
corresponding morphisms from the standard world.

Definition 2.8 If S is a ring in R , and if { f1, . . . , fm} ⊆ S is a finite set of elements,
then the category of S-algebras A ∈ Ob(R ) with f1 = · · · = fm = 0 ∈ A has
an initial object, namely the S-algebra S/( f1, . . . , fm) (which is obviously finitely
presented).

It follows by transfer that for every *ring S and any *finite internal subset
{ f1, . . . , fm} ⊆ S, there is a S-*algebra S/∗( f1, . . . , fm) which is initial in the cate-
gory of S-*algebras in which the fi are mapped to zero. We call S/∗( f1, . . . , fm) the
*factor ring of S with respect to the *ideal ∗( f1, . . . , fm).2

Remark 2.9 Let S be a *ring, and let ( f1, . . . , fm) be an ideal of S with m finite. Then
it follows by easy transfer that

∗( f1, . . . , fm) = ( f1, . . . fm) · S ⊆ S.

2 By transfer, it is obvious that a *ideal of a *ring S is in particular an ideal of S.
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8 L. Brünjes, C. Serpé

3 Relating schemes and *schemes

Let A be a *ring in ∗B . On the one hand, when considering A simply as a ring, we
have the category Sch fp

A of finitely presented A-schemes. On the other hand, we have

the category ∗Sch fp
A of *finitely presented *schemes over A.

Intuitively, every finitely presented A-scheme determines a *finitely presented A-
*scheme which is “defined by the same relations”, and every morphism between
finitely presented A-schemes gives a morphism between the associated A-*schemes.

In this section, we want to make this intuition precise by defining a morphism
N : Sch fp

∗B → ∗Sch fp
B of fibrations over ∗Bop. In particular, by restricting to the fibre

over A, this then gives us the desired functor Sch fp
A → ∗Sch fp

A .

Lemma 3.1 Let ϕ : A → B be a ring homomorphism in R . Then the diagram

A
ϕ ��

� �

∗
��

B� �

∗
��∗A ∗ϕ

�� ∗B

(1)

commutes in Rings .

Proof This follows immediately from elementary properties of enlargements. �
Proposition/Definition 3.2 Let A be an object of R .

(i) Let B = A[X1, . . . , Xn]/( f1, . . . , fm) be a finitely presented A-algebra. Then

∗B = ∗A∗[X1, . . . , Xn]/∗( f1, . . . , fm).

(ii) Let Alg A and Alg fp
A denote the category of A-algebras and that of finitely pre-

sented A-algebras. The canonical functors

(

Alg fp
A

)op × ∗Alg ∗ A −→ Sets

(B,C) �→
⎧

⎨

⎩

Mor∗Alg∗A
(∗B,C)

MorAlg A
(B,C),

induced by ∗ : Alg fp
A → ∗Alg ∗ A and the forgetful functor ∗Alg ∗ A → Alg A,

are canonically isomorphic via

τA,B,C : Mor∗Alg∗A
(∗B,C) −→ MorAlg A

(B,C),
[∗B

ϕ−→ C
] �→ [

B
∗−→ ∗B

ϕ−→ C
]

.
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Proof By transfer, Remark 2.5 (iii) and Definition 2.8, both ∗B and ∗A∗[X1, . . . , Xn]/∗( f1, . . . , fm) have the same universal property in the category of ∗A-algebras, which
proves (i).

To show (ii), we must first check that τA,B,C is indeed functorial in the arguments
B and C . For argument C this is trivial, and for argument B it follows immediately
from Lemma 3.1.

To see that τA,B,C is a bijection, let B = A[X1, . . . , Xn]/( f1, . . . , fm). Then

Mor∗Alg∗ A
(∗B,C)

(i)= Mor∗Alg∗ A
(∗A∗[X1, . . . , Xn]/∗( f1, . . . , fm),C)

Remark 2.5 (iii), Definition 2.8=
{

(c1, . . . , cn) ∈ Cn
∣

∣

∣∀i ∈ {1, . . . ,m} : fi (c1, . . . , cn) = 0 ∈ C
}

= MorAlg A
(B,C),

where this identification of the two sets is obviously just given by τA,B,C . �

Definition 3.3 For every ring A in R , base change along the (external) ring homomor-
phism ∗ : A → ∗A defines a functor T : Sch A → Sch ∗ A (which respects schemes of
finite presentation), and if ϕ : A → A′ is a ring homomorphism, the diagram

Sch A′

T
��

Sch A
ϕ∗��

T
��

Sch ∗ A′ Sch ∗ A
(∗ϕ)∗
��

commutes because of Lemma 3.1. Consequently, we get “base change”-functors T of
fibrations

Sch fp
R

T ��
� �

��

Sch fp
∗R� �

��
SchR

T ��

��

Sch ∗R

��
R op

∗ �� ∗R op.

For every ring A in R , base change along Spec (∗A)
Spec (∗)−−−−→ Spec (A) defines for

every A-scheme X a morphism ρX : T X → X of schemes which is clearly functorial,
i.e., the ρX define a 2-morphism ρ of fibrations as follows:
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10 L. Brünjes, C. Serpé

Sch ∗R
� �

��
ρ

��

SchR

��

T ��

� � �� Sch

��

∗R op � �

��
ρ

��

R op

∗ ��

� �
��
Ringsop

Theorem 3.4 There is an essentially unique functor N : Sch fp
∗R → ∗Sch fp

R of fibra-

tions over ∗R op such that the following diagram of fibrations commutes:

Sch fp
R T

��

∗
��

��

Sch fp
∗R N

��

��

∗Sch fp
∗R

��
R op

∗ �� ∗R op ∗R op

(2)

In particular, by restriction to ∗B , we get a canonical functor N : Sch fp
∗B → ∗Sch fp

B of
fibrations over ∗Bop.

Proof Let A be a *ring, and let X be a scheme of finite presentation over A. Accord-
ing to [13, 8.9.1], there exist a subring A0 ⊆ A, finitely generated over Z, and a
finitely generated (and hence finitely presented) A0-scheme X0, such that X0 ×A0 A
is isomorphic to X over A.

So A0 is an object of R , and X0/A0 is an object of Sch fp
A0

. According to Proposition/
Definition 3.2(ii), we get the following cartesian diagram of schemes:

X

��

�� T X0

��

�� X0

��
Spec (A)

Spec (τ−1
Z,A0,A

[A0↪→A])
��

Spec (A0↪→A)

		Spec (∗A0)
Spec (∗) �� Spec (A0).

(3)
Therefore, in order to get a morphism of fibrations that makes (2) commute, we must
define

N X
(3):=

(

τ−1
Z,A0,A

[A0 ↪→ A]
)∗
(N T X0)

(2):=
(

τ−1
Z,A0,A

[A0 ↪→ A]
)∗
(∗X0).
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Now let Y/S be another scheme of finite presentation, and let f : X → Y be an S-
morphism. As before, there is a finitely generated ring B0 ⊆ A and a finitely presented
B0-scheme Y0 such that Y ∼= Y0 ×B0 A.

Let I be the partially ordered set of finitely generated subrings of A containing both
A0 and B0, and put XC := X0 ×A0 C and YC := Y0 ×B0 C for C ∈ I .

Then A = lim−→C∈I C , X = lim←−C∈I XC and Y = lim←−C∈I YC , and by [13, 8.8.2] we
have

lim−→
C∈I

MorSchC
(XC ,YC ) = MorSch A

(X,Y ). (4)

In particular, there exists a C0 ∈ I and a C0-morphism f0 : XC0 → YC0 such that
f = f0 × 1A. Therefore we get the following cartesian diagram of schemes

X

f

��

�� T XC0

T f0

��

�� XC0

f0

��
Y

��

�� T YC0

��

�� YC0

��
Spec (A)

Spec (τ−1
Z,C0,A

[C0↪→A])
��

Spec (C0↪→A)

		Spec (∗C0)
Spec (∗) �� Spec (C0),

and we are forced to set

N f
(3):=

(

τ−1
Z,C0,A

[C0 ↪→ A]
)∗
(N T f0)

(2):=
(

τ−1
Z,C0,A

[C0 ↪→ A]
)∗
(∗ f0).

To check that this is well defined, let C1 ∈ I be another subring of A that admits a
C1-morphism f1 : XC1 → YC1 with f = f1 × 1A.

Using (4) again, we find a subring C2 of A containing both C0 and C1 with f0 ×
1C2 = f1 × 1C2 : XC2 → YC2 , and Proposition/Definition 3.2(ii) implies that the
diagram

∗C0



������������� τ−1
Z,C0,A

[C0↪→A]

��∗C2

τ−1
Z,C2,A

[C2↪→A]
�� A

∗C1

���������������
τ−1
Z,C1,A

[C1↪→A]
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12 L. Brünjes, C. Serpé

commutes. Therefore we have

(

τ−1
Z,C0,A

[C0 ↪→ A]
)∗
(∗ f0) =

(

τ−1
Z,C2,A

[C2 ↪→ A]
)∗
(∗ f0 × 1C2)

=
(

τ−1
Z,C2,A

[C2 ↪→ A]
)∗
(∗ f1 × 1C2)

=
(

τ−1
Z,C1,A

[C1 ↪→ A]
)∗
(∗ f1).

Thus N f is well defined, and since this definition is obviously functorial, we get
a functor N : Sch fp

A → ∗Sch fp
A which furthermore is uniquely determined (up to

isomorphism) by the conditions stated in the theorem.
It remains to show that this functor is compatible with inverse images and hence

defines a morphism of fibrations N : Sch fp
∗R → ∗Sch fp

R as claimed: If ϕ : A → A′ is
any morphism of *rings, we have to show that N ϕ∗ f = ϕ∗N f (for f : X → Y as
above). With D0 := ϕ(C0) ⊆ A′ we have

ϕ∗ f = ( f0 × 1A)× 1A′ = f0 × 1A′ = ( f0 × 1D0)× 1A′ ,

so

N ϕ∗ f =
(

τ−1
Z,D0,A′ [D0 ↪→ A′]

)∗∗( f0 × 1D0)

=
(

τ−1
Z,D0,A′ [D0 ↪→ A′]

)∗(∗C0 → ∗D0

)∗
(∗ f0)

=
(∗C0 → ∗D0

τ−1
Z ,D0,A

′ [D0↪→A′]
−−−−−−−−−−→ A′)∗(∗ f0)

3.2(ii)=
(

τ−1
Z ,C0,A′ [C0 → D0

ϕ−→ A′]
)∗
(∗ f0)

=
(

τ−1
Z ,C0,A′ [C0 ↪→ A

ϕ−→ A′]
)∗
(∗ f0)

3.2(ii)=
(∗C0

τ−1
Z ,C0,A

[C0↪→A]
−−−−−−−−−→ A

ϕ−→ A′)∗(∗ f0)

= ϕ∗
(

τ−1
Z ,C0,A

[C0 ↪→ A]
)∗
(∗ f0) = ϕ∗N f.

�

Remark 3.5 The uniqueness of N in Theorem 3.4 can be made precise as follows:
It is easy to see that N is a right Kan extension of * along T in the 2-category
of fibrations (compare [18, XII.4]), therefore enjoys a universal property and conse-
quently is uniquely determined up to a canonical 2-isomorphism between morphisms
of fibrations.

Example 3.6 Let A be a *ring, and let B = A[X1, . . . , Xn]/( f1, . . . , fm) be a finitely
presented A-algebra. Let A0 be the subring of A generated by the (finitely many)
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coefficients of the fi . Then we can consider the fi as elements of A0[X1, . . . , Xn],
and we have B = A0[X1, . . . , Xn]/( f1, . . . , fm)⊗A0 A. Hence

N Spec (B) = (

τ−1
Z,A0,A

[A0 ⊆ A])∗
[∗(Spec (A0[X1, . . . , Xn]/( f1, . . . , fm))

)]

Proposition 3.2(i)= (

τ−1
Z,A0,A

[A0⊆ A])∗
[∗Spec (∗A0

∗[X1,. . ., Xn]/∗( f1,. . ., fm))
]

transfer= ∗Spec (A∗[X1, . . . , Xn]/∗( f1, . . . , fm)). (5)

In particular, for n ∈ N0 we get N An
A = ∗An

A and – taking n = 0 – N Spec (A) =
∗Spec (A).

Proposition 3.7 Let A be a *ring, let X be a finitely presented A-scheme, and let
n ∈ N0 be a natural number. Then

N
(

Pn
X

can−→ X
) = ∗Pn

N X
can−→ N X.

Proof We know from the proof of Theorem 3.4 that there exist a finitely generated
subring A0 of A and a finitely presented A0-scheme X0 with X = X0 ×A0 A. Then

(

Pn
X

can−→ X
) = (

Pn
X0

can−→ X0
)× 1A,

and

N
(

Pn
X

can−→ X
) =

(

τ−1
Z,A0,A

[A0 ↪→ A]
)∗[∗Pn∗X0

can−→ ∗X0
] = ∗Pn

N X
can−→ N X.

�

4 Properties of the functor N

Let A be a *ring in ∗B .

Proposition 4.1 The functor N : Sch fp
A → ∗Sch fp

A

(i) is left exact, i.e., commutes with finite limits;
(ii) commutes with finite gluing data, i.e., if I is a finite set, if

∐

i, j∈I Ui j ⇒
∐

i∈I Ui

with Ui j , Ui finitely presented A-schemes is gluing data for an A-scheme X,
then

∐

i, j∈I N Ui j ⇒
∐

i∈I N Ui is gluing data for N X;
(iii) sends the empty scheme to the empty *scheme;
(iv) commutes with finite sums.

Proof Let I be a finite category, and let F : I → Sch fp
A , i �→ Xi be an arbitrary

functor. According to [13, 8.8.3], there exist a finitely generated subring A0 of A and
a functor F0 : I → Sch fp

A0
, i �→ Xi

0, such that (lim←−i∈I Xi
0)×A0 A = lim←−i∈I Xi . Since

* is exact by [2], and since inverse image functors in ∗Sch fp
R are left exact by transfer,

we get N
(

lim←−i∈I Xi
)

= lim←−i∈I N Xi by Theorem 3.4. Therefore (i) holds.
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Now let I be a finite set, and let
∐

i, j∈I Ui j ⇒
∐

i∈I Ui and X be as in (ii). By
[13, 8.8.2, 8.10.5], there are a finitely generated subring A0 of A and gluing data
∐

i, j∈I Vi j ⇒
∐

i∈I Vi , where the Vi j and Vi are finitely presented A0-schemes and
where base change with A0 ↪→ A gives back the original gluing data over A – let X0
be the finitely presented A0-scheme defined gluing the Vi along the Vi j .

It follows from the construction of fibre products in [7, 3.2.6.3] that base changes
in the category of schemes respect gluing data. This implies firstly that X0×A0 A = X

and secondly (by transfer) that inverse image functors in ∗Sch fp
R commute with glu-

ing data as well. Combining this with the exactness of * (note that “commuting with
gluing data” means commuting with certain finite colimits) completes the proof of (ii)
using the same reasoning as for (i).

Let 0 denote the trivial ring, and let ∅ = Spec (0) be the empty (finitely presented)
A-scheme. Then ∅ = [∗Z → A]∗Spec (0), so

N ∅ Theorem 3.4= [∗Z → A]∗(N Spec (0)
)

Example 3.6= [∗Z → A]∗(∗Spec (0)
) transfer= ∗Spec (0),

which is the empty *scheme.
Finally, (iv) is just the special case of (ii) where all the Ui j are empty, and combining

(ii) with (iii) immediately finishes the proof. �
Remark 4.2 Combining 3.6 with 4.1(ii) provides us with an alternative description of
the functor N , at least when we restrict our attention to separated A-schemes of finite
presentation:

Every finitely presented A-scheme X admits a finite open affine covering X =
⋃

i∈I Ui , and if X/A is separated, the intersections Ui j := Ui ∩ U j are affine as well
by [7, 5.5.6]. So in this case, we can compute the N Ui j and N Ui using Example 3.6,
and we know from Proposition 4.1(ii) that N X is obtained by glueing the N Ui along
the N Ui j .

Corollary 4.3 Let G be a finitely presented (commutative) A-group scheme. Then
N G is a *finitely presented (commutative) A-*group *scheme, i.e., a (commutative)
group object in ∗Sch fp

A .

Proof The data defining a (commutative) group scheme structure on G can be
expressed with diagrams involving only A, G, G ×A G and G ×A G ×A G, and
these products are respected by N according to Proposition 4.1(i). �
Proposition 4.4 Let f : X → Y be a morphism of finitely presented A-schemes, and
let P be one of the following properties of morphisms of schemes:

• isomorphism,
• monomorphism,
• immersion,
• open immersion,
• closed immersion,
• separated,
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• surjective,
• radicial,
• affine,
• quasi-affine,
• finite,
• quasi-finite,
• proper,
• projective,
• quasi-projective.

If f has property P, then N f : N X → N Y has property ∗P.

Proof Let P be one of the above properties. By [13, 8.8.2, 8.10.5], there exist a
finitely generated ring A0 ⊆ A and a morphism f0 : X0 → Y0 of finitely presented
A0-schemes such that X0 ×A0 A = X , Y0 ×A0 A = Y , f0 × 1A = f and such that f0
has property P.

Then ∗ f0 : ∗X0 → ∗Y0 has property ∗P, and since property ∗P is stable under base

change (by transfer, because P is stable under base change), we see that N f
3.4=(

τ−1
Z,A0,A

[A0 ⊆ A])∗(∗ f0) has property ∗P as well. �
Remark 4.5 Let X be a finitely presented A-scheme, and let U ⊆ X be an open sub-
scheme. According to [11, 1.6.2(i),(v)], U is a finitely presented A-scheme if and only
if U is quasi-compact. It follows that N U is defined (and then a *open *subscheme
of N X by Proposition 4.4) if and only if U is quasi-compact.

Note that the quasi-compact open subsets of X form a basis for the Zariski topology
(since affine open sets are quasi-compact), so that there will be no harm in restricting
our attention to quasi-compact open subschemes.

Corollary 4.6 Let f : X → Y be a morphism of finitely presented A-schemes, and let
U ⊆ Y be a quasi-compact open subscheme of Y . Then N U is an open *subscheme
of N Y , and

N
(

f | f −1(U )

) = (N f )|(N f )−1(N U ) ∈ Mor∗Sch fp
A
(N ( f −1(U )), N U )

Proof This follows immediately from the fact that N is left exact by Proposition 4.1(i)
and respects open immersions by Proposition 4.4, applied to the cartesian diagram

f −1(U )� �

��

f | f −1(U ) �� U� �

��
X

f
�� Y.

�
Corollary 4.7 Let X = ⋃

i∈I Ui be a finite (affine) covering by quasi-compact open

subschemes. Then N X = ⋃

i∈I N Ui is a *open (*affine) *covering in ∗Sch fp
A .

Proof If the Ui are affine, the N Ui are *affine by Example 3.6. The N Ui are open
subschemes of N X by Proposition 4.4, and since
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16 L. Brünjes, C. Serpé

∐

i∈I
N Ui

4.1= N

(

∐

i∈I
Ui

)

4.4
� N X,

they cover N X . �

Lemma 4.8 Let X be a finitely presented A-scheme, let Y ⊆ X be a closed, finitely
presented subscheme, and assume that the open complement U := X \ Y is quasi-
compact. Then N U is [N X ] \ [N Y ], the *complement of N Y in N X.

Proof Since the diagram

∅ � � ��
� �

��
�

U� �

��
Y

� � �� X

is cartesian, Proposition 4.1(i), (iii) imply that

∅ � � ��
� �

��
�

N U� �

��
N Y

� � �� N X

is also cartesian, i.e., N U lies in [N X ] \ [N Y ]. For the other inclusion, note that the
surjectivity of Y

∐

U → X implies the *surjectivity of [N Y ]∐[N U ] → N X by
Propositions 4.1(iv) and 4.4. �

Let ϕ : R → S be a ring homomorphism, let X be an R-scheme, and let Y be
an S-scheme. Then it is common practice to simply write X (Y ) for the set of those
morphisms f : Y → X of schemes that make the diagram

Y
f ��

��

X

��
Spec (S)

Spec (ϕ)
�� Spec (R)

commute, thus dropping R, S and ϕ from the notation. In other words, when R, S and
ϕ are understood, X (Y ) denotes the subset of those morphisms in Sch which project
to ϕ in the bifibration Sch → Ringsop.

In analogy to this practice, we make the following definition:

Definition 4.9 Let X be a *scheme in ∗Sch fp
A , let ϕ : A → B be a morphism of *rings,

and let Y be a *scheme in ∗Sch fp
B .
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Enlargements of schemes 17

Then we denote the set of those morphisms in Mor∗Sch fp
R
(Y/B, X/A) which are

projected to ϕ under ∗Sch fp
R → ∗R op by X (Y ) and call it the set of Y -valued points

of X (where we assume that A, B and ϕ are understood).
In the special case Y = ∗Spec (B), we put X (B) := X (Y ) and call X (B) the set

of B-valued points of X .

Remark 4.10 Let X be a finitely presented A-scheme, let ϕ : A → B be a morphism
of *rings, and let T be a finitely presented B-scheme.

Then the functor N induces a canonical map

X (T )
N ��

� �

��

(N X)(N T )� �

��
MorSch fp

B
(T/B, X/A)

N
�� Mor∗Sch fp

B
(N T/B, N X/A)

(note that N , restricted to X (T ), factorizes over (N X)(N T ), because N is a mor-
phism of fibrations and hence in particular a morphism of categories over ∗R op).

Since N Spec (B) = ∗Spec (B) by Example 3.6, we in particular get a map N :
X (B)→ (N X)(B) from B-valued points of X to B valued points of N X .

Definition 4.11 As we have seen in Example 3.6, the functor N : Sch fp
A → ∗Sch fp

A

sends affine schemes to *affine schemes and thus induces a functor Alg fp
A → ∗Alg fp

A
– which we want to denote by N as well – satisfying

∀B ∈ Ob(Alg fp
A ) : N Spec (B) = ∗Spec (N B). (6)

If B = A[Xi ]/( f j ), then we have calculated in Example 3.6 that N B = A∗[Xi ]/∗( f j ).
It follows from Remark 2.5 (iii) and Definition 2.8 that sending Xi to Xi defines a
canonical morphism of A-algebras σB : B → N B, which is obviously functorial: If
ϕ : B → C is a morphism of A-algebras, then

B
σB ��

ϕ

��

N B

N ϕ

��
C σC

�� N C

(7)

commutes in the category of A-algebras.

Lemma 4.12 Let k be an A-*algebra, and let B be a finitely presented A-algebra.
Then the canonical map

(σB)∗ : Mor∗Alg A
(N B, k) −→ MorAlg A

(B, k), [N B
ϕ−→ k] �→ [B σB−→ N B

ϕ−→ k]

is bijective.
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18 L. Brünjes, C. Serpé

Proof Let B = A[Xi ]/( f j ). We can argue as in the proof of Proposition 3.2(ii): A
morphism ϕ : N B → k in ∗Alg A is precisely given by a tuple (x1, . . . , xn) ∈ kn sat-
isfying f j (x1, . . . , xn) = 0 ∈ k for all j , and the exact same data defines a morphism
ϕ′ : B → k of A-algebras. It is clear that this identification between the two sets of
morphisms is just the one given in the lemma. �
Theorem 4.13 Let k be a *artinian A-*algebra, and let X be a finitely presented
A-scheme. Then the canonical map N : X (k)→ (N X)(k) is bijective.

Proof We choose a finite affine open covering X =⋃

i∈I Ui , so that N X =⋃

i∈I N Ui

is a *open *affine *covering of N X by Corollary 4.7.
To prove surjectivity, let f : ∗Spec (k) → N X be an arbitrary k-valued point of

N X . By transfer, since k is *artinian, f factorizes over one of the N Ui , so without
loss of generality, we can assume that X = Spec (B) is affine.

Then N X
(6)= ∗Spec (N B), and f corresponds to a morphism ϕ : N B → k of

A-*algebras which induces a morphism ϕ′ := ϕσB : B → k of A-algebras as in Prop-
osition 4.12, hence a k-valued point f ′ := Spec (ϕ′) of X . It is clear that N f ′ = f ,
so N is indeed surjective.

For injectivity, let f, g ∈ X (k) be two k-valued points of X with N f = N g ∈
(N X)(k).

If Xk denotes the inverse image of X under A → k, then the canonical map
Xk(k)→ X (k) is a bijection, so that we can assume A = k without loss of generality.
As above, it follows that f factorizes over one of the Ui , say over Ui0 – then N f
factorizes over N Ui0 . Let us assume that g does not factorize over Ui0 . This would
imply that the following diagram of finitely presented k-schemes is cartesian:

∅ ��

��

Ui0� �

��
Spec (k) g

�� X.

Then Proposition 4.1(i) and (iii) imply that

∗∅ ��

��

N Ui0� �

��∗Spec (k)
N g=N f

�� N X

is cartesian as well, a contradiction to the fact that N f factorizes over N Ui0 .
Therefore both f and g factorize over Ui0 , and we can again assume that X =

Spec (B) is affine. But then f and g correspond to k-algebra morphismsϕ,ψ : B → k,
and N f = N g means that the induced morphisms of k-*algebras ϕ′, ψ ′ : N B → k
are the same. But then ϕ and ψ must be the same as well according to Lemma 4.12.

�
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Proposition 4.14 Let f : X → Y be a morphism of finitely presented A-schemes.
If f is étale (unramified, smooth), then N f : N X → N Y is *étale (*unramified,
*smooth).

Proof First consider the case where f : X → Y is unramified. By [14, 17.4.2],
a morphism f : X → Y of (locally) finite presentation is unramified if and only

if the diagonal 
X/Y : X
( f, f )−−−→ X ×Y X is an open immersion. So in our case,


X/Y is an open immersion, and Proposition 4.1(i) and 4.4 show that the *diagonal


N X/N Y : N X
(N f,N f )−−−−−−→ N X ×N Y N X is a *open immersion, hence transfer-

ring [14, 17.4.2] proves that N f is *unramified (since it is *finitely presented by
construction).

Now let f : X → Y be étale. By [14, 17.1.6], Corollarys 4.6 and 4.7, we can
assume without loss of generality that X and Y are affine and that f is given by a
morphism ϕ : B → C of finitely presented A-algebras. Furthermore, by [20, I.3.16],
we can assume that C = B[T1, . . . , Tn]/(P1, . . . , Pn) with d := det(∂Pi/∂Tj ) ∈ C×
and that ϕ is the canonical morphism, and we have to show that N ϕ : N B → N C =
(N B)∗[Ti ]/∗(Pj ) is *étale. By transfer of [20, I.3.16], for this it suffices to show that
d ′ := ∗ det(∗∂Pi/

∗∂Tj ) is a *unit in N C .
Since partial derivatives of polynomials and determinants of matrices are given by

universal polynomials in the coefficients, it follows easily that the diagrams

B[T1, . . . , Tn ]
∂/∂T j ��

σB[Ti ]
��

B[T1, . . . , Tn ]

σB[Ti ]
��

B[T1, . . . , Tn ]n×n det ��

σ
n×n
B[Ti ]

��

B[T1, . . . , Tn ]

σB[Ti ]
��

B∗[T1, . . . , Tn ] ∗∂/∗∂T j

�� B∗[T1, . . . , Tn ] B∗[T1, . . . , Tn ]n×n
∗ det

�� B∗[T1, . . . , Tn ]

commute, which implies d ′ = σC (d) ∈ N C . Since σC is a ring homomorphism, it
maps units to units, so d ′ is a unit in N C . But being a unit is obviously a first order
property, so units and *units are the same thing, and we are done in the case where f
is étale.

Finally, let f : X → Y be smooth. By [20, 3.24], this is equivalent to the existence
of a (finite) open affine covering Ui of X , such that for every i the restriction f |Ui

factorizes as

Ui
f |Ui ��

gi

��

Y

An
Vi can

�� Vi
	�

��

with gi étale and n ∈ N0. Since the functor N respects open affine coverings by
Corollary 4.7, restrictions by Proposition 4.6, open immersions by Proposition 4.4,
affine spaces (over affine bases) by Example 3.6 and étale morphisms by the second
part of the proof, transfer of [20, 3.24] shows that N f is indeed *smooth. �
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Lemma 4.15 Let B be a finitely presented A-algebra, and let C = B[Y1, . . . ,Yk]/J
be a finitely presented B-algebra. Then N C = (N B)∗[Y j ]/∗J .

Proof Let B = A[X1, . . . , Xn]/I be a finite presentation of B as an A-algebra. Then

N C = N
(

A[Xi ,Y j ]/(I + J )
)

Example 3.6= A∗[Xi ,Y j ]/∗(I + J )

transfer=
(

A∗[Xi ]/∗I
)∗[Y j ]/∗J Example 3.6= (N B)[Y j ]/∗J .

�
Proposition 4.16 Let B be a finitely presented A-algebra, and let C be a finite
B-algebra. Then the canonical ring homomorphism C ⊗B N B −→ N C induced
by (7) is an isomorphism.

Proof First consider the case where C = B/I is a quotient of B. Then

C ⊗B N B = (N B)/I · N B = (N B)/∗I Lemma 4.15= N C.

Next let C = B[c]/(cn + bn−1cn−1 + · · · + b0) with n ∈ N+ and b0, . . . , bn−1 ∈ B.
Consider the following true statement in M̂ :

For every object R of R and for every tuple (r0, . . . , rn−1) ∈ Rn , sending ei to
X̄ i−1 defines an isomorphism of R-modules Rn ∼−→ R[X ]/(Xn + rn−1 Xn−1 +
· · · + r0).

By transfer and the fact that an isomorphism of *modules is in particular an isomor-
phism of modules, we get:

For every *ring R and for every tuple (r0, . . . , rn−1) ∈ Rn , sending ei to X̄ i−1

defines an isomorphism of R-modules Rn ∼−→ R∗[X ]/∗(Xn+rn−1 Xn−1+· · ·+r0).

By Lemma 4.15, we have N C = (N B)∗[c]/∗(cn + bn−1cn−1 + · · · + b0), so we get
the following commutative diagram of N B-modules:

c̄i−1 ⊗ 1 ∈ C ⊗B N B �� N C � c̄i−1

ei
�

��

∈ N Bn

�
��

∼ �� N Bn

�
��

� ei ,
�

��

and we are done in this case as well.
Now let C = B[c]/I . Then the element c̄ of C is integral over B, because C/B

is finite, so there is a relation c̄n + bn−1c̄n−1 + · · · + b0 = 0 in C , which means that
B → C factorizes as

B → B[c]/(cn + bn−1cn−1 + · · · + b0)
︸ ︷︷ ︸

=:C ′

c �→c̄� C,
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and we get

N C
1.case= C ⊗C ′ N C ′ 2.case= C ⊗C ′ C ′ ⊗B N B = C ⊗B N B.

Finally, in the general case, let C = B[X1, . . . , Xn]/I for an n ∈ N+. We prove the
proposition by induction on n: The case n = 1 has been proven above, so let C =
B[X1, . . . , Xn+1]/I for n ≥ 1. Let C ′ be the subring of C generated by X̄1, . . . , X̄n

as a B-algebra. Then C = C ′[Xn+1]/J , and

N C
3.case= C ⊗C ′ N C ′ induction= C ⊗C ′ C ′ ⊗B N B = C ⊗B N B.

�

5 *Modules over *schemes

Let Mod be the category whose objects are pairs 〈F , X/A〉, consisting of an A-scheme
X and an OX -module G , and whose morphisms from 〈F , X/A〉 to 〈G ,Y/B〉 are pairs
〈α, 〈 f, ϕ〉〉 with 〈 f, ϕ〉 a morphism from X/A to Y/B in Sch and α : f ∗G → F a
morphism of OX -modules.

Projection onto the second component defines an abelian bifibration Mod → Sch
(or Mod → Ringsop after composing with Sch → Ringsop): For a morphism 〈 f, ϕ〉 :
X/A → Y/B, direct and inverse image functor are given by 〈 f, ϕ〉∗〈F , X/A〉 =
〈 f∗F ,Y/B〉 and 〈 f, ϕ〉∗〈G ,Y/B〉 = 〈 f ∗G , X/A〉, and the fibre over an object X/A
is the opposite of the category Mod X of OX -modules.

Let Mod U
R → Sch fp

R be the full subcategory of the pullback of this fibration along

Sch fp
R ↪→ Sch consisting of U-sheaves, i.e., sheaves in our chosen universe U. –

this is an abelian, M̂-small bifibration where the opposite of each fibre has enough
injective objects.

For a scheme X , denote the category of quasi-projective (or finitely presented) OX -
modules by QCoh X (or Mod fp

X ). Recall from [7, 5.2.5] that an OX -module F is called
finitely presented if for every x ∈ X , there is an open neighborhood U ⊆ X of x and
an exact sequence Om

U → On
U → F |U → 0 of OU -modules with natural numbers m

and n. If X is locally noetherian, this is equivalent to F being a coherent OX -module.
Let QCoh (or Mod fp) be the full subcategory of Mod whose fibre over X/A is the

opposite of QCoh X (or of Mod fp
X ).

Pulling back along Sch fp
R → Sch and restricting to U-sheaves, we get M̂-small

fibrations QCohU
R and Mod fp

R over Sch fp
R (note that any finitely presented OX -module

for X in S is automatically a U-sheaf). We sum up the situation in the following
diagram of additive fibrations:
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Mod fp
R

� � ��

��

QCohU
R

� � ��

��

Mod U
R

� � ��

��

Mod

��
Sch fp

R

��

Sch fp
R

��

Sch fp
R

� � ��

��

Sch

��
R op R op R op Ringsop

The first three columns in this diagram are M̂-small, and we enlarge them to get
an additive fibration ∗Mod fp

R /
∗R , an abelian fibration ∗QCohR /

∗R and an abelian

bifibration ∗Mod R /
∗R .

For a *scheme X , we denote the opposite of the fibre of ∗Mod R (or ∗Mod fp
R

or ∗QCohR ) over X by ∗Mod X (or ∗Mod fp
X or ∗QCoh X ), and we call the objects

of this fibre OX -*modules (or *finitely presented OX -*modules or *quasi-coherent
OX -*modules).

If X is *locally noetherian, we also say *coherent instead of *finitely presented,
and ∗Coh X := ∗Mod fp

X is an abelian category.

Lemma/Definition 5.1 Sending 〈F , X/A〉 to 〈ρ∗X F , T X/∗A〉 induces a canonical

morphism of additive fibrations T : Mod fp
R → Mod fp

∗R :

Mod fp
R

T ��

��

Mod fp
∗R

��
Sch fp

R T
��

��

Sch fp
∗R

��
R op

∗ �� ∗R op

Proof This is obvious. �

Theorem 5.2 There is an (essentially) unique morphism N : Mod fp
∗R → ∗Mod fp

R of

additive fibrations over ∗SchR that makes the following diagram commute:
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Mod fp
R

∗
��

T
��

��

Mod fp
∗R N

��

��

∗Mod fp
R

��
Sch fp

R T
��

��

Sch fp
∗R N

��

��

∗Sch fp
R

��
R op

∗ �� ∗R op ∗R op

In particular, for every *ring A and every finitely presented A-scheme X, we get a
canonical additive functor N : Mod fp

X → ∗Mod fp
N X .

Proof This follows from [13, 8.5.2] in the same way as 3.4 follows from [13, 8.8.2].
�

From now on for the rest of this section, let A be a *ring, and let X be a finitely
presented A-scheme.

Proposition 5.3 Let F → G → H → 0 be a sequence in Mod fp
X which is exact

in Mod X . Then the sequence N F → N G → N H → 0 of *finitely-presented
ON X -*modules is exact in ∗Mod N X .

In particular, if A is noetherian (for example a *field), then the functor N from
coherent OX -modules to *coherent ON X -*modules is right exact.

Proof This follows from [13, 8.5.6] and the construction of N . �
Proposition 5.4 For n ∈ N0, we have N On

X = On
N X .

Proof Since N is additive, we only have to consider the case n = 1. Because A is
a *ring, we have a canonical morphism of *rings ∗Z → A and hence a canonical
morphism f : X/A → Spec (∗Z)/∗Z in Sch fp

∗R . Then OX = f ∗OSpec (∗Z), so

N OX
Theorem 5.2= (N f )∗N OSpec (∗Z)

= (N f ∗)N T OSpec (Z) = (N f )∗O∗Spec (Z) = ON X .

�
Corollary 5.5 Let E be a vector bundle of rank n ∈ N0 on X. Then N E is a *vector
bundle of rank n on N X.

Proof This follows immediately from Proposition 5.4. �
Lemma/Definition 5.6 For an ON X -*module F , sending a quasi-compact open
subscheme U of X to F (N U ) defines an abelian sheaf N∗F on X. In this way,
we get an additive functor N∗ from ∗Mod N X to the category of abelian sheaves
on X.
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Proof First of all, N∗F is clearly an abelian presheaf on the category of quasi-
compact open subsets of X , because N is a functor from that category to the category
of *open *subschemes of N X . By Remark 4.5, such a presheaf defines a sheaf on X ,
provided the sheaf-condition with respect to finite, quasi-compact, open coverings is
satisfied.

So let U ⊆ X be quasi-compact and open, and let U = U1 ∪ . . . ∪ Un be a finite,
quasi-compact, open covering of U . Then by Corollary 4.7, [N U ] = [N U1] ∪ . . . ∪
[N Un] is a *open covering of N U , which is internal because it is finite. By transfer,
since F is a ON X -*module, we get the following exact sequence (of abelian *groups):

0 −→ F (N U ) −→ ∗
n
∏

i=1

F (N Ui ) −→ ∗
n
∏

i, j=1

F (N Ui ∩ N U j ).

But n is finite, and finite *products are simply products, so we get the following
sequence of abelian groups

0 −→ [N∗F ](U ) −→
n
∏

i=1

[N∗F ](Ui ) −→
n
∏

i, j=1

[N∗F ](Ui ∩ U j ),

which is just the sheaf condition we wanted to prove, so N∗F is indeed an abelian
sheaf on X .

Finally, since N is a functor, we really get an additive functor N∗ as desired. �
Definition 5.7 Since N∗ON X is a sheaf of rings on X by Lemma/Definition 5.6, we
get a ringed space

X̂ := (X,OX̂ ) := (X, N∗ON X ),

and from now on, we want to consider N∗ as an additive functor from ∗Mod N X to
Mod X̂ .

If U = Spec (B) is an affine, open subscheme of X , then we have a canonical
morphism of A-algebras

OX (U ) = B
σB−→ N B = ON X (N U ) = OX̂ (U ),

which is functorial in U by (7), i.e., we get a morphism of sheaves of rings σ : OX →
OX̂ on X and hence a canonical morphism of ringed spaces σ ∗ : X̂ → X , which
in turn defines a canonical additive functor σ∗ : Mod X̂ → Mod X . We denote the
composition

∗Mod N X
N∗−→ Mod X̂

σ∗−→ Mod X

by S .
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Proposition 5.8 The functors N∗ : ∗Mod N X → Mod X̂ and S : ∗Mod N X →
Mod X are left exact, and their restrictions to ∗QCoh N X are exact and faithful.

Proof The functor σ∗ : Mod X̂ → Mod X is exact and faithful, because it is the
identity functor on the underlying abelian sheaves, so if S is left exact or exact and
faithful, so is N∗.

Let 0 → F ′ → F → F ′′ → 0 be an exact sequence of ON X -*modules. If U is a
*open *subscheme of N X , then by transfer the sequence

0 −→ F ′(U ) −→ F (U ) −→ F ′′(U )

is exact (in the category of internal ON X (U )-modules and hence in particular in the
category of abelian groups), which proves that S is left exact.

Now let F ′, F and F ′′ be *quasi-coherent. Let x ∈ X be an arbitrary point, and let
tx ∈ [S F ′′]x be an arbitrary element in the stalk. There is an affine open subscheme
U of X with a local section tU ∈ [S F ′′](U )which represents tx . Since F ′, F and F ′
are *quasi-coherent and since N U is *affine, it follows by transfer that

0 −→ F ′(N U ) −→ F (N U ) −→ F ′′(N U ) −→ 0

is exact, so that there is a preimage sU ∈ F (N U ) = [S F ](U ) of tU which then
represents a preimage sx ∈ [S F ]x of tx . This shows that S is also right exact and
hence exact.

Now let F
ϕ−→ G be a morphism of *quasi-coherent ON X -*modules with S ϕ = 0.

For faithfulness, we have to show ϕ = 0. Choose a finite affine open covering X =
U1 ∪ . . .∪Un of X . Then [N X ] = [N U1]∪ . . .∪[N Un] is a finite *affine *open cov-
ering by 4.7, and it suffices to show ϕ|N Ui = 0 for all i ∈ {1, . . . , n} or equivalently –
because F and G are *quasi-coherent – ϕN Ui = 0 for all i . But ϕN Ui = [S ϕ]Ui = 0,
and we are done. �

Let F and G be ON X -*modules. Then N induces a canonical morphism

N∗HomON X (F ,G)→ HomOX̂
(N∗F , N∗G) (8)

of OX̂ modules by

[

N∗HomON X (F ,G)
]

(U ) = HomON U (F |N U ,G |N U )

N∗−→ HomOÛ
(N∗F |U , N∗G |U ) =

[

HomOX̂
(N∗F , N∗G)

]

(U )

for quasi-compact, open subschemes U of X .

Proposition 5.9 Let F be a finitely presented OX -module, and let G be an
ON X -*module. Then the canonical morphism (8) (for N F and G )

N∗HomON X (N F ,G) −→ HomOX̂
(N∗N F , N∗G)
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of OX̂ -modules is an isomorphism. Taking global sections, this in particular implies
that

HomON X (N F ,G) N∗−→ HomOX̂
(N∗N F , N∗G)

is an isomorphism.

Proof The question whether a given morphism of sheaves on X is an isomorphism is
local on X , so we can assume that X is affine. If F = On

X , then N F = On
N X and

N∗N F = On
X̂

, i.e., HomON X (N F ,G) is canonically isomorphic to Gn (by transfer),

and HomOX̂
(N∗N F , N∗G) is canonically isomorphic to N∗Gn , so that the statement

is obviously true in this case.
In the general case – since X is affine – there is a finite presentation

Om
X −→ On

X −→ F −→ 0

of F , which (by Propositions 5.3 and 5.4) induces an exact sequence

Om
N X −→ On

N X −→ N F −→ 0

of ON X -*modules and (by Proposition 5.8) an exact sequence

Om
X̂
−→ On

X̂
−→ N∗N F −→ 0

of OX̂ -modules. Since the functors

HomON X (_,G) : ∗Mod N X → ∗Mod N X ,

HomOX̂
(_, N∗G) : Mod X̂ → Mod X̂ and

N∗ : ∗Mod N X → Mod X̂

are left exact, we get the following commutative diagram of OX̂ -modules with exact
rows:

0 �� N∗HomON X
(N F ,G) ��

α

��

N∗HomON X
(On

N X ,G) ��

β

��

N∗HomON X
(Om

N X ,G)

γ

��
0 �� HomO

X̂
(N∗N F , N∗G) �� HomO

X̂
(On

X̂
, N∗G) �� HomO

X̂
(Om

X̂
, N∗G).

According to the first case, β and γ are isomorphisms. But then α must be an isomor-
phism as well, and we are done. �

Let F be a finitely OX -module. Choose a subring A0 of A of finite type over Z, a
scheme X0 of finite type over A0 and a finitely presented OX0 -module F0 such that
〈F , X/A〉 is the pullback of 〈F0, X0/A0〉 along ϕ := A0 ↪→ A.

By Theorems 3.4 and 5.2, we get the following diagram (where we put ϕ̄ :=
τ−1
Z,A0,A

[ϕ]):
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F

����
��

��
��

�

��
��

��
��

� N F

��
��

��
��

��

���
��������

F0

��
��

��
��

� � X

f
����

��
��

��
�

��	
		

		
		

		
N X

��

















f̄ ���
��

��
��

��
� � ∗F0

���������

X0

���
��

��
��

��
� A

ϕop

��







ϕ̄op

���
��

��
��

��
� ∗X0

����
��

��
��

��

A0 ∗ �� ∗A0.

The squares are cartesian (in Sch fp and Mod fp on the left, in ∗Sch fp
∗R and ∗Mod fp

∗R

on the right), and we have isomorphisms f ∗F0
∼−→ F and f̄ ∗(∗F0)

∼−→ N F and their
adjoints F0 → f∗F and ∗F0 → f̄∗N F .

Now let U0 be an open subscheme of X0, and put U := U0 ×X0 X . We get an
OX0(U0)-linear map

F0(U0)
∗−→ [∗F0](∗U0) −→ [ f̄∗N F ](∗U0)

= [N F ](N U ) = [S N F ](U ) = [ f∗S N F ](U0)

which is clearly functorial in U0, so that we get a morphism of OX0 -modules F0 −→
f∗S N F and hence – by adjunction – a canonical morphism of OX -modules F −→
S N F .

This morphism is clearly functorial in F , so that we get a canonical morphism of
functors

Mod fp
X

⇓

can

��

S N

��Mod X (9)

and – again taking adjoints – a canonical morphism of functors

Mod fp
X

⇓

_⊗OX OX̂

��

N∗N

��
Mod X̂ . (10)

Proposition 5.10 The canonical morphism of functors (10) is an isomorphism.

Proof Let F be a finitely presented OX -module. We claim that the canonical morphism
F ⊗OX OX̂ −→ N∗N F of OX̂ -modules (or of abelian sheaves on X ) is an isomor-
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phism. This claim is local in X , so we can assume that X is affine and choose a finite
presentation

Om
X −→ On

X −→ F −→ 0.

By Propositions 5.3, 5.4 and 5.8, we get the following commutative diagram of
OX̂ -modules with exact rows:

Om
X̂

��

�
��

On
X̂

��

�
��

F ⊗OX OX̂
��

��

0

Om
X̂

�� On
X̂

�� N∗N F �� 0.

The first two vertical morphisms are obviously simply the identity, so the third vertical
morphism must be an isomorphism. �
Proposition 5.11 For any affine open subscheme U = Spec (B) of X, there is a
canonical isomorphism of functors

Mod fp
X

�U (_)⊗B N B





�N U ◦N

��⇓ � [N B]-Mod. (11)

Proof Using (9), composed with �U , defines a canonical morphism of functors

Mod fp
X

can ��

N ���
��������

⇓(9)

Mod X
�U ��

=
B-Mod

∗Mod fp
N X

S

������������

�N U

�� [N B-Mod]
can

��������������

and thus by adjunction the morphism of functors (11). To see that this is an isomor-
phism, let F be a finitely presented OX -module, and choose a finite presentation

Bm −→ Bn −→ F (U ) −→ 0.

Taking associated sheaves and applying N , we get an exact sequence of *finitely
presented ON U -*modules

Om
N U −→ On

N U −→ [N F ]|N U −→ 0.

By transfer, �N U : Mod fp
N U −→ [N B]-Mod is exact, so we get the exact sequence

of N B-modules
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N Bm −→ N Bn −→ [N F ](N U ) −→ 0

and hence the following commutative diagram of N B-modules with exact rows:

Bm ⊗B N B ��

α

��

Bn ⊗B N B ��

β

��

F (U )⊗B N B ��

γ

��

0

N Bm �� N Bn �� [N F ](N U ) �� 0.

Since α and β are clearly isomorphisms, so is γ , and we are done. �
Corollary 5.12 The canonical functors

(

Mod fp
X

)op × ∗Mod N X −→ Sets

(F ,G) �→
{

HomON X (N F ,G)

HomOX (F , S G)

are canonically isomorphic via

τX,F ,G : HomON X (N F ,G) −→ HomOX (F , S G),
[

N F
ϕ−→ G

] �→ [

F (9)−→ S N F
S ϕ−→ S G

]

.

Proof Let F be a finitely presented OX -module, and let G be an ON X -*module. Then

HomON X (N F ,G)
Proposition 5.9∼= HomOX̂

(N∗N F , N∗G)
Proposition 5.10∼= HomOX̂

(F ⊗OX OX̂ , N∗G)
adj.∼= HomOX (F , S G),

and it is clear that the composition of these canonical isomorphisms is just τX,F ,G . �
Remark 5.13 Note that the functoriality of the isomorphism from Corollary 5.12 in

particular implies the following: if F
ϕ−→ F ′ is a morphism of finitely presented

OX -modules, if G
ψ−→ G ′ is a morphism of ON X -*modules, and if

N F
N ϕ ��

f
��

N F ′

g

��
G

ψ
�� G ′

(12)

is a diagram of ON X -*modules, then (12) commutes if and only if the corresponding
diagram
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F
ϕ ��

τX,F ,G ( f )

��

F ′

τX,F ′,G ′ (g)
��

S G
S ψ

�� S G ′

(13)

of OX -modules commutes.

Corollary 5.14 Let F and G be two finitely presented OX -modules. There is a canon-
ical isomorphism of *finitely presented ON X -modules

N
(

F ⊗OX G
) ∼−→ N F ⊗ON X N F .

Proof For a quasi-compact open subscheme U of X , we have a canonical OX (U )-
linear map

F (U )⊗OX (U ) G(U ) (9)−→ [S N F ](U )⊗[S N OX ](U ) [S N G ](U )
= [N F ](N U )⊗ON X (N U ) [N G ](N U )

can−→ [

N F ⊗ON X N G
]

(N U )

= S
[

N F ⊗ON X N G
]

(U ),

which is clearly functorial in U and consequently defines a functorial morphism of
presheaves of OX -modules

[

U �→ F (U )⊗OX (U ) G(U )
]

−→ S
[

N F ⊗ON X N G
]

and then, by the universal property of the associated sheaf, a functorial morphism of
OX -modules

F ⊗OX G −→ S
[

N F ⊗ON X N G
]

,

which by Corollary 5.12 and Remark 5.13 corresponds to a functorial morphism of
ON X -*modules

N
[

F ⊗OX G
] −→ N F ⊗ON X N G . (14)

To prove that (14) is an isomorphism, choose a quadruple 〈A0, X0,F0,G0〉, where

A0
ϕ
↪→ A is a finitely generated subring of A, X0 is an A0-scheme of finite type

with X ∼= ϕ∗X0 and F0 and G0 are coherent sheaves on X0 with F ∼= ϕ∗F0 and
G ∼= ϕ∗G0. Then of course we also have ϕ∗[F0 ⊗OX0

G0] ∼= F ⊗OX G and therefore

(with ϕ̄ := τ−1
Z,A0,A

[ϕ])

N [F ⊗OX G ] ∼= ϕ̄∗
(∗[F0 ⊗OX0

G0
]

)

= ϕ̄∗
(∗F0 ⊗O∗X0

∗G0

)

∼= ϕ̄∗
(∗F0

)⊗ON X ϕ̄
∗(∗G0

) ∼= N F ⊗ON X N G

by construction of N . �
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Corollary 5.15 The functor N : Mod fp
X −→ ∗Mod fp

N X induces a canonical group
homomorphism N : Pic(X) −→ ∗Pic(N X) between the Picard group of X and the
*Picard group of N X.

Proof By Corollary 5.5, N sends line bundles to line bundles, so we get a map
N : Pic(X) −→ ∗Pic(N X). This map is a group homomorphism by Corollary 5.14.

�
Corollary 5.16 Let F and G be two finitely presented OX -modules with the property
that the OX -module HomOX (F ,G) is also finitely-presented, which is for example the
case if

• F is a vector bundle or
• F and G are coherent.

Then there is a canonical morphism of *finitely presented ON X -*modules

N HomOX (F ,G) −→ HomON X (N F , N G) (15)

which is an isomorphism if F is a vector bundle.

Proof Look at the following canonical map of sets of morphisms:

MorMod fp
X
(HomOX (F,G),HomOX (F,G))∼=MorMod fp

X
(HomOX (F ,G)⊗OX F,G)

N−→ Mor∗Mod fp
N X
(N [HomOX (F ,G)⊗OX F ], N G)

Corollary 5.14∼= Mor∗Mod fp
N X
(N HomOX (F ,G)⊗ON X N F , N G)

∼= Mor∗Mod fp
N X
(N HomOX (F ,G),HomON X (N F , N G)),

and take the identity’s image under this map to get (15).
Now let F be a vector bundle. Since the question whether (15) is an isomorphism

is local, we can assume that F = On
X is trivial, and we have

N HomOX (F ,G) ∼= N Gn
transfer∼= HomN X (On

N X , N G)
Proposition 5.4∼= HomN X (N On

X , N G)

as desired. �
Corollary 5.17 For a vector bundle E on X, there is a canonical isomorphism
N (E∨) ∼= (N E)∨.

Proof This follows immediately from Proposition 5.4 and Corollary 5.16:

N (E∨) = N HomOX (E ,OX )
Corollary 5.16∼= HomON X (N E , N OX )

Proposition 5.4= HomON X (N E ,ON X ) = (N E)∨.
�
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Proposition 5.18 Let n ∈ N+ be a natural number, and let k ∈ Z be an integer.

(i) Under the functor N , the invertible OPn
X

-module OPn
X
(k) is mapped to the

*invertible O∗Pn
N X

-*module O∗Pn
N X
(k).

(ii) Let i : Y ↪→ Pn
X be a closed immersion of finitely presented A-schemes, and

let F be a finitely presented OY -module. Then N [F (k)] = [N F ](k), where
the twists are taken with respect to i or N i.

Proof Choose a finitely generated subring A0
ϕ
↪→ A of A and an A0-scheme X0 of

finite type with ϕ∗X0 = X . Then ϕ∗Pn
X0

= Pn
X , so

N (OPn
A
(k)) =

[

τ−1
Z,A0,A

[ϕ]
]∗

O∗Pn
X0
(k) = ON (Pn

X )
(k)

3.7= O∗Pn
N X
(k),

and this is *invertible by Corollary 5.5 (or by transfer), so we have (i).
For (ii) we get:

N [F (k)] = N
[

F ⊗OY
i∗OPn

X
(k)

] Corollary 5.14= [N F ]∗⊗ON Y

[

N
[

i∗OPn
X
(k)

]

]

= [N F ]∗⊗ON Y

[

(N i)∗
[

N OPn
X
(k)

]

]

(i)= [N F ]∗⊗ON Y

[

(N i)∗
[

O∗Pn
N X

(k)
]

]

= [N F ](k).

�
If Z is a finitely presented closed subscheme of X , given by a finitely presented

sheaf of ideals I on X , then we know from Proposition 4.4 that N Z is a *closed *sub-
scheme of N X . As final result in this section, we want to determine the relationship
between N I and the *ideal on N X defining N Z :

Proposition 5.19 Let Z be a finitely presented closed subscheme of X, given by a
finitely presented sheaf of ideals I . Then the *closed *subscheme N Z of N X is given
by the *ideal Im (N I → ON X ).

Proof Let N Z be given by the *ideal J on N X . If U ⊆ X is a quasi-compact open
subscheme of X , then the *closed *subscheme N [Z ∩ U ] of N U is given by J |N U ,
so we can assume without loss of generality that X is affine, say X = Spec (B) for a
finitely presented A-algebra B. Then Z = Spec (B/b) for a finitely presented ideal b
of B, and I = b̃.

Using Lemma 4.15, we have

N [B/b] = [N B]/∗b = [N B] / b · [N B],

so that N Z is given by the *ideal J = ˜b · [N B] of N X , and we have to prove that
this *ideal equals Im (N I → ON X ) or – equivalently – that the global sections of
these two *ideals agree (as ideals of N B). Using Proposition 5.11, this is easy:

�N X

[

Im (N I → ON X )
]

= Im (�N X [N I ] → N B)
(11)= Im (b ⊗B [N B] → N B)

= b · N B = �N X [J ].

�
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6 The case of varieties

Let k be a *field in ∗R , i.e., a *ring which is an (internal) field. Then k is of course a
noetherian ring, so that a k-scheme X is finitely presented if and only if it is of finite
type, and an OX -module F is finitely presented if and only if it is coherent.

Definition 6.1 We can consider “dimension” as a function dim : {schemes} −→
{−∞} � N0 � {∞}, so by restriction to Ob(S ) and enlarging we get an induced
function

∗ dim : {∗schemes} −→ {−∞} � ∗N0 � {∞}.

For a *scheme X , we call ∗ dim X the *dimension of X .

For the proof of Theorem 6.4 below, we will need the following results of van den
Dries and Schmidt which we state here – in our notation – for the convenience of the
reader:

Theorem 6.2 (Lou van den Dries, K. Schmidt)
Let I ⊆ k[X1, . . . , Xn] be an ideal. Then

(i) The ring homomorphism k[Xi ] → k∗[Xi ] is faithfully flat.
(ii) I is prime if and only if ∗I ⊆ k∗[Xi ] is *prime or – what amounts to the same,

since for an ideal being prime is clearly a first order property – prime.
(iii) If p1, . . . , pm are the distinct minimal primes of I , then ∗p1, . . . ,

∗pm are the
distinct minimal primes of ∗I (in particular, all minimal primes of ∗I are *ide-
als, hence the notions of “minimal prime ideal of ∗I ” and “minimal prime
*ideal of ∗I ” coincide).

(iv) ∗√∗I = ∗[√I
]

.

Proof Part (i) is [23, 1.8], part (ii) is [23, 2.5], and parts (iii) and (iv) are [23, 2.7];
that van den Dries and Schmidt’s formulation agrees with the one given here follows
immediately from Remark 2.9. �
Corollary 6.3 Let A be a k-algebra of finite type. ThenσA : A → N A is faithfully flat.

Proof Let A = k[X1, . . . , X N ]/I . Then

σA = σk[Xi ] ⊗k[Xi ] k[Xi ]/I : A = k[Xi ]/I −→ k∗[Xi ]/I · k∗[Xi ]
Remark 2.9= k∗[Xi ]/∗I = N A,

and σk[Xi ] is faithfully flat by Theorem 6.2(i), so σA – as a base change of σk[Xi ] –
must be faithfully flat as well. �
Theorem 6.4 Let X be a scheme of finite type over k.

(i) X is the empty scheme if and only if N X is the *empty scheme.
(ii) ∗ dim N X = dim X.
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(iii) X is reduced (irreducible, integer) if and only if N X is *reduced (*irreducible,
*integer).

(iv) The functor N from coherent OX -modules to (the abelian category of) *coher-
ent ON X -modules is faithful and exact.

Proof If X = ∅, then N X = ∗∅ by Proposition 4.1(iii), so let N X = ∗∅. Let
us assume that X  = ∅. Then X contains a K -valued point for a finite field extension
K/k, and applying N gives us an N K -valued point of N X . If K = k[X1, . . . , Xn]/I
is a finite presentation of K , it follows from 6.2(i) that N K = k∗[Xi ]/∗I is not zero,
so the existence of an N K -valued point of N X proves the existence of a *topological
point of N X , a contradiction to N X = ∗∅.

Having settled (i), for (ii) and (iii) we can assume that X  = ∅. For (ii), we use [12,
4.1.2], according to which dim X = n is equivalent to the existence of a diagram

U
� � j ��

f
����

X

An
k

of k-schemes of finite type with an open immersion j and a finite and surjective f .
But then (ii) follows from 4.4 and from the transfer of [12, 4.1.2].

For (iii), note that we only have to prove the claim for “reduced” and “irreducible”,
since “integer” is just the conjunction of those two.

Let us first consider the case where X = Spec (k[X1, . . . , Xn]/I ) is affine. We
have

X reduced ⇐⇒ √
I = I ⇐⇒ √

I /I = (0)
Theorem 6.2(i)⇐⇒ √

I · k∗[Xi ]/I ·
k∗[Xi ] = (0)

Remark 2.9⇐⇒ ∗[√I
] = ∗I Remark 6.2(iv)⇐⇒ ∗√∗I = ∗I

⇐⇒ N X *reduced

and

X irreducible ⇐⇒ I has exactly one minimal prime ideal
Theorem 6.2(iii)⇐⇒ ∗I has exactly one minimal prime *ideal ⇐⇒ N X *irreducible.

In the general case, let (U j ) j∈J be a finite open covering of X by affine schemes U j

which are not empty. The scheme X is reduced if and only if the U j are reduced,
which we have just proven to be equivalent to the N U j being *reduced, which in turn
is equivalent to N X being *reduced by Corollary 4.7 and transfer.

Let X be irreducible. Then all U j are irreducible, and their intersection is an open
non-empty subscheme of X . Then by i, the *scheme

N
⋂

j∈J
U j

Proposition 4.1(i)=
⋂

j∈J
N U j
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is not *empty. Since we already know that the N U j are *irreducible and therefore
*connected, this implies that N X is *connected.

Assume that N X is *reducible. Since N X is *connected, there must be a *topo-
logical point of N X where two *irreducible components of N X intersect, and since
the N U j cover N X , this *topological point lies in one of the U j which consequently
cannot be *irreducible, a contradiction.

Now let N X be *irreducible, and assume that X is not irreducible. Since N X is
*irreducible, the N U are *irreducible, and their intersection is not *empty, so by (i)
and Proposition 4.1(i), the scheme X is connected. Reasoning as above, we see this
implies that one of the U j is reducible, which contradicts the fact that the N U j are
*irreducible.

For (iv), we have to show that a short sequence of coherent OX -modules

0 −→ F ′ −→ F −→ F ′′ −→ 0

is exact if and only if the induced sequence of *coherent ON X -modules

0 −→ N F ′ −→ N F −→ N F ′′ −→ 0

is exact, which by Proposition 5.8 and 5.10 is equivalent to the exactness of

0 −→ F ′ ⊗OX OX̂ −→ F ⊗OX OX̂ −→ F ′′ ⊗OX OX̂ −→ 0.

Taking stalks, it is enough to show that for every point x ∈ X ,

0 −→ F ′
x −→ Fx −→ F ′′

x −→ 0

is exact if and only if

0 −→ F ′
x ⊗OX,x OX̂ ,x −→ F ⊗OX,x OX̂ ,x −→ F ′′ ⊗OX,x OX̂ ,x −→ 0

is exact. But since

OX̂ ,x = lim−→
x∈U⊆X

OX̂ (U ) = lim−→
x∈U⊆X

N [OX (U )],

where the limit is taken over all affine neighborhoods of x in X , we see from Corol-
lary 6.3 that OX,x −→ OX̂ ,x is faithfully flat, and the claim follows. �
Corollary 6.5 Let X be a k-scheme of finite type, and let F and G be coherent
OX -modules. Then the canonical morphism (15) is an isomorphism:

N HomOX (F ,G) ∼−→ HomON X (N F , N G).

Proof Since the question is local, we can assume that there exists a global presentation

Om
X −→ On

X −→ F −→ 0,
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and since N is exact by 6.4(iv), the functors N HomOX (_,G) and HomON X (N _, N G)
from Coh X to ∗Coh N X are both left exact, so that we get the following commutative
diagram with exact rows:

0 �� N HomOX
(F ,G) ��

α

��

N HomOX
(On

X ,G) ��

�β

��

N HomOX
(Om

X ,G)

�γ

��
0 �� HomON X

(N F , N G) �� HomON X
(N On

X , N G) �� HomON X
(N Om

X , N G)

with the vertical morphisms given by (15). By Corollary 5.16, both β and γ are iso-
morphisms, so α must be an isomorphism as well. �
Corollary 6.6 Let X be a k-scheme of finite type, and let Z be a closed subscheme of
X corresponding to a sheaf of ideals I on X. Then the *closed *subscheme N Z of
N X is given by the *ideal N I .

Proof According to Proposition 5.19, N Z is given by the *ideal Im (N I → ON X ).
But I → OX is a monomorphism and N is exact by Theorem 6.4(iv), so N I ↪→ ON X ,
and the corollary follows. �
Lemma 6.7 Let A be a finitely generated k-algebra, let I be an ideal of A, and let
f ∈ A. Consider the ideals (I : f n) := {a ∈ A| a f n ∈ I } (for n ∈ N+) and
(I : f ∞) := ⋃

n∈N+(I : f n) of A. Then

∀n ∈ N+ : (I : f n) · N A = (I · N A : f n) (16)

and
(I : f ∞) · N A = ∗⋃

n∈∗N+
(I · N A : f n) = (I · N A : f ∞). (17)

Proof By definition, the diagram

(I : f n) ��

��
�

I � �

��
A

f n
�� A

is cartesian in the category of A-modules for every n ∈ N+. Since A
σA−→ N A is

(faithfully) flat by Corollary 6.3, this implies (16). For (17) note that (I : f ∞) is
finitely generated, because A is noetherian. Consequently, there is an N ∈ N+ with
(I : f N ) = (I : f N+1) and hence (I : f n) = (I : f N ) for all n ≥ N and
(I : f ∞) = (I : f N ). Then

(I · N A : f N )
(16)= (I : f N ) · N A = (I : f N+1) · N A

(16)= (I · N A : f N+1),

and hence (I · N A : f n) = (I · N A : f N ) for all ∗N+ � n ≥ N by transfer – so
(17) holds. �
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Proposition 6.8 Let X be a k-scheme of finite type, let Y ⊆ X be a subscheme, and let
Ȳ ⊆ X be the scheme theoretic closure of Y in X. Then N Ȳ is the *scheme theoretic
closure of N Y in N X.

Proof If U ⊆ X is an open subscheme, then Y ∩ U , the closure of Y ∩U in U , equals
Ȳ ∩U . Therefore we can assume without loss of generality that X = Spec (A) is affine
and that Y = Spec (A/I ) ∩ D( f1) ∩ . . . ∩ D( fn) for an ideal I ⊆ A and elements
f1, . . . , fn ∈ A. Then Ȳ = Spec (A/J ) with J = ⋂n

i=1 ker
[

A
can−→ A fi /I A fi

]

. For
any f ∈ A, we have

ker
[

A → A f /I A f
] = {

a ∈ A
∣

∣ ∃n ∈ N+ : f na ∈ I
} =

∞
⋃

n=1

(I : f n) = (I : f ∞),

so J = ⋃n
i=1(I : f ∞i ). Let J̃ ⊆ N A be the *ideal corresponding to the *schema

theoretic closure of N Y in N X . By transfer, we have

J̃ =
n
⋂

i=1

(I · N A : f ∞i )
Lemma 6.7=

n
⋂

i=1

(I : f ∞i ) · N A = J · N A,

so [N A]/J̃ = N [A/J ], and we are done. �
Proposition 6.9 Let X be a k-scheme of finite type, let Y ⊆ X be a closed subscheme,
and let f : Z → X be the blow-up of X in Y . Then N f : N Z → N X is the *blow-up
of N X in N Y .

Proof First note that N Y is a *closed *subscheme of N X by 4.4, so the statement
makes sense. Next, by [13, 8.8.2, 8.10.5] there exist a finitely generated subring k0 of
k, a k0-scheme X0 of finite type with X = X0 ×k0 k and a closed subscheme Y0 of X0
with Y = Y0 ×k0 k.

Let Z0 → X0 be the blow-up of X0 in Y0, and let W be defined by the cartesian
diagram of k-schemes

W
� � ��

��
�

X ×X0 Z0

π

��

��

�

Z0

π0

��
X \ Y � � �� X �� X0.

(18)

If Z := W̄ denotes the scheme theoretic closure of W in X ×X0 Z0, then f := π |Z :
Z → X is the blow-up of X in Y (compare [4, IV-21]).

Applying the functor N to the left square of (18) and using Proposition 4.1(i) and
4.8, we get a cartesian square of k-*schemes

N W
� � ��

��
�

[N X ] ×∗X0
∗Z0

N π

��
[N X ] \ [N Y ] � � �� N X,
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and by transfer, the *blow-up of N X in N Y is the *scheme theoretic closure of N W
in [N X ] ×∗X0

∗Z0. But according to 6.8, this is just N W̄ = N Z , which completes
the proof. �
Definition 6.10 For every field K , every K -scheme X and every K -rational point
x ∈ X , we have the K -vector space TX,x , the (Zariski) tangent space of X at x ,
defined as the K -dual of mx/m

2
x .

By transfer, for every *field K , every *scheme X over K and every K -valued point
x of X , we thus have an internal K -vector space TX,x which we also call the (Zariski)
tangent space of X at x .

Proposition 6.11 Let X be a k-scheme of finite type, and let x ∈ X be a k-rational
point. Then N induces a canonical functorial k-isomorphism of Zariski tangent spaces

N : TX,x
∼−→ TN X,N x .

Proof Identify x with a k-morphism x : Spec (k) → X , and let e : Spec (k) →
Spec (k[ε]/ε2) be the k-morphism induced by sending ε to zero.

It is well known that there is a canonical functorial isomorphism of k-vector spaces

TX,x ∼= {

t ∈ X (k[ε]/ε2)
∣

∣ e∗t = x
}

. (19)

By transfer, we get a canonical functorial isomorphism of internal k-vector spaces

TN X,N x ∼= {

t ∈ (N X)(k∗[ε]/ε2)
∣

∣ (N e)∗t = N x
}

. (20)

But by Proposition 4.16 we have k∗[ε]/ε2 = k[ε]/ε2, and we get the following
commutative diagram of sets:

X (k[ε]/ε2)
e∗ ��

N �
��

X (k)

N�
��

(N X)(k[ε]/ε2)
(N e)∗ �� (N X)(k),

where the vertical maps are bijections because of Theorem 4.13. From this, (19) and
(20) the claim immediately follows. �
Corollary 6.12 Assume that k is *algebraically closed, and let X be a k-scheme of
finite type. If N X is *nonsingular, then X is nonsingular.

Proof Let d := dim X , and let x ∈ X be a closed point. Since k is *algebraically
closed, k is externally an algebraically closed field, and x is a k-rational point. Since
N X is *nonsingular of *dimension d [by Theorem 6.4(ii)], the tangent space TN X,N x

has *dimension d, and the tangent space TX,x has dimension d by Proposition 6.11.
This shows that all tangent spaces of X at closed points have dimension d, which
means that X is nonsingular. �
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Proposition 6.13 Let X be a k-scheme of finite type, and let Y and Z be two sub-
schemes of X. If N Y ↪→ N X factors through N Z ↪→ N X, then Y ↪→ X factors
through Z ↪→ X. In particular, if N Y and N Z are the same *subschemes of N X,
then Y and Z are the same subschemes of X.

Proof Factor Z ↪→ X as Z
iZ
↪→ V

jZ
↪→ X with a closed immersion iZ and an open

immersion jZ . We claim that Y ↪→ X factors through jZ : Equip Y \V with its reduced
structure and consider the cartesian diagram

∅ � � ��
� �

��
�

Y \ V� �

��
V

� �

j
�� X.

Applying N and using Proposition 4.1(i) and (iii), we get a cartesian diagram

∅ � � ��
� �

��
�

N [Y \ V ]� �

��
N V

� �

N j
�� N X.

(21)

If Y \ V was not empty, then N [Y \ V ] also would not be empty by Theorem 6.4(i).
But a *point of N [Y \ V ] is a point of N Y which – because (21) is cartesian – is not
a point of N V , a contradiction to the fact that N Y ⊆ N Z ⊆ N V by assumption.

So without loss of generality (by replacing X with V ), we can assume that Z is a

closed subscheme of X . Factoring Y ↪→ X as Y
iY
↪→ U

jY
↪→ X with a closed immersion

iY and an open immersion jY and replacing X with U and Z with Z ∩ U , we can
furthermore assume that Y is also a closed subscheme of X .

Finally, since the question is local on X , we can assume that X = Spec (A) is
affine and that Y and Z are given by ideals I and J of A. By assumption, we have
J · N A ⊆ I · N A, and using Corollary 6.3, we conclude

J = A ∩ [J · N A] ⊆ A ∩ [I · N A] = I .

�

Remark 6.14 Let C be a category with fibred products and a terminal object T , let
X and Y be two objects of C , and let f, g : X → Y be two morphisms. Then the
equalizer

Eq( f, g)
eq( f,g) �� X

f ��
g

�� Y
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of f and g exists – it is given by the cartesian diagram

Eq( f, g)
eq( f,g) ��

��

�

X

( f,g)

��
Y 〈1Y ,1Y 〉

�� Y ×T Y

(22)

Lemma 6.15 Let S be a scheme, let X and Y be two S-schemes, and let f, g : X → Y
be two S-morphisms. Then the equalizer

Eq( f, g)
eq( f,g) �� X

f ��
g

�� Y

of f and g exists in the category of S-schemes and is an immersion.

Proof The category of S-schemes has fibred products and the terminal object S, so
the equalizer of f and g exists by Remark 6.14. It is an immersion by the construction

given in (22), because Y
〈1Y ,1Y 〉−−−−→ Y ×S Y is an immersion. �

Corollary 6.16 The functor N : Sch fp
k −→ ∗Sch fp

k is faithful.

Proof Let X and Y be k-schemes of finite type, and let f, g : X → Y be k-morphisms
with N f = N g. By Corollary 6.16, f and g are equal if and only if Eq( f, g) equals
X as subschemes of X . By assumption, Eq(N f, N g) is the *subscheme N X of N X ,
and Eq(N f, N g) = N Eq( f, g) by Proposition 4.1(i), so the claim follows from
Proposition 6.13. �

Let S be a noetherian scheme, let X/S be projective with very ample sheaf O(1), let
F be a coherent sheaf on X , and let P ∈ Q[t] be a rational polynomial. Then we have
the Quot-scheme QuotP

F /X/S , projective over S, which represents the contravariant

functor T �→ QuotP (FX×S T /XT /T ) that maps a locally noetherian S-scheme T to
the set of those quotients FX×S T � G with G flat over T and Hilbert polynomial P
in every fibre t ∈ T (compare [10, 221.3]).

By transfer, for a *noetherian *scheme S, a *projective S-*scheme X with *very
ample *sheaf O(1), a *coherent *sheaf F on X and a *polynomial P ∈ ∗Q∗[t], we
have a canonical *projective S-*scheme ∗QuotP

F /X/S which represents the enlarged

functor T �→ ∗QuotP (FX×S T /XT /T ) on *locally noetherian S-*schemes.
In the special case F = OX , the Quot-scheme QuotP

OX /X/S is called the Hilbert

scheme and denoted by HilbP
X/S (its T -valued points correspond to closed subschemes

of XT which are flat over T and have Hilbert polynomial P in every fibre). Similarly,
we call ∗HilbP

X/S := ∗QuotP
OX /X/S the *Hilbert scheme.

In the following proposition, we want to show that the formation of Quot-schemes
and Hilbert schemes is compatible with the functor N:
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Proposition 6.17 Let X be a projective k-scheme with very ample sheaf O(1), let F
be a coherent sheaf on X, and let P ∈ Q[t] be a rational polynomial.

(i) We have N QuotP
F /X/k = ∗QuotP

N F /N X/k and in particular N HilbP
X/k =

∗HilbP
N X/k , where P is considered as a *polynomial via Q[t] ↪→ ∗Q∗[t].

(ii) Let T be a k-scheme of finite type, and let f : T → QuotP
F /X/k be a T -valued

point, corresponding to a quotient ϕ : FX×k T � G . Then [N f ], which
is a [N T ]-valued point of ∗QuotP

N F /N X/k by i, corresponds to the quotient
[N F ][N X ]×k [N T ] � N G.
In particular, if g : T → HilbP

X/k corresponds to the subscheme Z ⊆ X ×k T ,
then [N g] corresponds to the *subscheme [N Z ] ⊆ [N X ] ×k [N T ].

Proof By [13, 8.5.2, 8.8.2, 8.10.5], there exist a finitely generated subring A0 of k, a
projective A0-scheme X0 with X = X0 ×A0 k and a coherent sheaf F0 on X0 with
[A0 ↪→ k]∗F0 = F .

Then QuotP
F /X/k = QuotP

F0/X0/A0
×A0 k, and putting α := τ−1

Z,A0,k
[A0 ↪→ k] :

∗A0 → k, we get

N QuotP
F /X/k

Theorem 3.4= α∗
(∗[QuotP

F0/X0/A0

]

)

= α∗
[∗QuotP∗F0/∗X0/∗ A0

]

= ∗QuotP
α∗[∗F0]/α∗[∗X0]/α∗[∗ A0]

Theorems 3.4,5.2= ∗QuotP
N F /N X/k,

which settles (i).
By [13, 8.8.2], after a possible change of A0, X0 and F0, we find an A0-scheme T0

of finite type with T = T0×A0 k and an A0-morphism f0 : T0 → Q := QuotP
F0/X0/A0

with [A0 ↪→ k]∗ f0 = f . Let FX0×A0 Q � Guniv be the universal quotient. Then f0

corresponds to the quotient [F0]X0×A0 T0 � [1X0 × f0]∗Guniv =: G0, and f corre-
sponds to the quotient ϕ : FX×k T � [A0 ↪→ k]∗G0 = G . So

N G 5.2= α∗
(∗G0

) = α∗
(∗[[1X0 × f0]∗Guniv

])

Theorem 3.4= [

1N X × [N f ]]∗(α∗(∗Guniv)
)

,

and since [N F ][N X ]×k
∗QuotP

N F /N X/k
� α∗(∗Guniv) obviously is the universal quo-

tient, this proves (ii). �
Corollary 6.18 Let X be a projective k-scheme with very ample sheaf O(1), and let
F be a coherent OX -module.

Then the Hilbert polynomial of F [with respect to O(1)] coincides with the *Hilbert
polynomial of N F [with respect to N O(1)] in ∗Q∗[t].
Proof Denote the Hilbert polynomial of F by PF ∈ Q[t] ⊂ ∗Q∗[t]. If F corresponds

to the k-valued point f of Quot
PF
F /X/k , then N F corresponds to the k-valued point

[N f ] of ∗Quot
PF
N F /N X/k according to Proposition 6.17(ii). But by its very definition,
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∗Quot
PF
N F /N X/k parameterizes sheaves with *Hilbert polynomial PF ∈ ∗Q∗[t], so

we are done. �
Theorem 6.19 Let X be a projective k-scheme with very ample sheaf O(1), and let
G be a *coherent *sheaf on N X. Then the following two statements are equivalent:

(i) There is a coherent sheaf H on X with N H ∼= G .
(ii) There is a coherent sheaf F on X, such that G is a quotient of N F , and the

*Hilbert polynomial of G (with respect to N O(1)) lies in Q[t] ⊂ ∗Q∗[t].
Proof The implication “(i)⇒(ii)” is easy: We can simply put F := H , and by 6.18,
the *Hilbert polynomial of G ∼= N H equals the Hilbert polynomial of H and conse-
quently lies in Q[t].

For “(ii)⇒(i)”, let P ∈ Q[t] ⊂ ∗Q∗[t] be the *Hilbert polynomial of G . Then
N F � G corresponds to a k-valued point g of ∗QuotP

N F /N X/k . Since

[

QuotP
F /X/k

]

(k)
N−→

[

N QuotP
F /X/k

]

(k)
Proposition 6.17(i)=

[∗QuotP
N F /N X/k

]

(k)

is bijective by Theorem 4.13, there exists a k-valued point h of QuotP
F /X/k with

g = N h. If F � H is the quotient given by h, then N H ∼= G by Proposition 6.17(ii).
�

Corollary 6.20 Let X be a projective k-scheme with very ample sheaf O(1), and let
Z be a *closed *subscheme of N X. Then the following two statements are equivalent:

(i) There is a closed subscheme W of X with N W = Z.
(ii) The *Hilbert polynomial of Z (with respect to N O(1)) lies in Q[t] ⊂ ∗Q∗[t].

Proof This follows immediately from Theorem 6.19, applied to the special case G :=
OZ and F := OX . �
Corollary 6.21 Let X be a projective k-scheme with very ample sheaf O(1), and let Z
be a *closed *integral *subscheme (i.e., a *prime cycle) of N X that has finite *degree
(with respect to [Z ↪→ N X ]∗O(1)). Then there exists an integral subscheme (i.e., a
prime cycle) W of X with N W = Z.

Proof As Z is a subscheme of N X , we have ∗ dim Z ≤ ∗ dim N X
Theorem 6.4(ii)=

dim X , so Z is a *projective *integral *scheme of finite *degree and of finite *dimen-
sion. Then transfer of [6, XIII.6.11(i)] shows that the *Hilbert polynomial of Z has
finite coefficients and consequently lies in Q[t] ⊂ ∗Q∗[t], and the corollary follows
from Corollary 6.20. �
Corollary 6.22 Let n ∈ N+, and let Z be a *integral *closed *subscheme of ∗Pn

k of
finite *degree. Then there is an integral closed subscheme W of Pn

k with N W = Z.

Proof This follows immediately from Corollary 6.21 for X := Pn
k and O(1) :=

N OPn
k
(1). �
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Let S be a scheme, and let f : X → Y be an S-morphism. Then the graph of f is

the S-morphism � f : X
〈1X , f 〉−−−−→ X ×S Y . It is easy to see that the diagram

X
� f ��

f

��
�

X ×S Y

f ×1Y

��
Y 〈1Y ,1Y 〉

�� Y ×S Y

is cartesian, which shows that � f is an immersion (and can hence be considered as a
subscheme of X ×S Y , isomorphic to X ), which is closed if Y/S is separated.

Now let S be noetherian, let X and Y be projective S-schemes with X/S flat, let
O(1) be a very ample sheaf on X ×S Y , and let P ∈ Q[t] be a polynomial. Con-
sider the functor T �→ HomP

S (X,Y )(T ) that maps an S-scheme T to the set of those
T -morphisms f : X×S T → Y×S T whose graph� f ↪→ X×S Y , a closed subscheme
since Y/S is separated, has Hilbert polynomial P with respect to O(1).

It is well known (compare [17, I.1.10]) that this functor is represented by an open
subscheme HomP

S (X,Y ) of HilbP
X×SY/S , where HomP

S (X,Y ) ↪→ HilbP
X×SY/S is given

by sending a morphism to its graph. Similar to the case of Quot- and Hilbert schemes,
the formation of HomP

S (X,Y ) is compatible with the functor N in the following sense:

Proposition 6.23 Let X and Y be projective k-schemes, let O(1) be a very ample
sheaf on X ×k Y , and let P ∈ Q[t] be a rational polynomial.

(i) We have N HomP
k (X,Y ) = ∗HomP

k (N X, N Y ), where P is considered as a
*polynomial via Q[t] ↪→ ∗Q∗[t].

(ii) Let T be a k-scheme of finite type, and let f : T → HomP
k (X,Y ) be a T -valued

point, corresponding to a T -morphism g : X ×k T → Y ×k T . Then [N f ],
which is a [N T ]-valued point of ∗HomP

k (N X, N Y ) by i, corresponds to the
morphism [N g] : N X∗×k N T → N Y ∗×k N T .

Proof This is completely analogous to the proof of Proposition 6.17. �
Theorem 6.24 Let X and Y be projective k-schemes, let O(1) be a very ample sheaf
on X ×k Y , and let g : N X → N Y be a morphism of k-*schemes. Then the following
two statements are equivalent:

(i) There is a k-morphism f : X → Y with N f = g.
(ii) The *Hilbert polynomial of the *graph of g [with respect to N O(1)] lies in

Q[t] ⊂ ∗Q∗[t].
Proof This follows from Proposition 6.23 in the same way as Theorem 6.19 follows
from Proposition 6.17. �
Corollary 6.25 Let X and Y be projective k-schemes with X integral, let O(1) be
a very ample sheaf on X ×k Y , and let g : N X → N Y be a morphism of k-
*schemes whose *graph has finite degree [with respect to N O(1)]. Then there exists
a k-morphism f : X → Y with N f = g.
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Proof By transfer, the *graph ∗�g of g is isomorphic to N X and hence *integral.
Then by Corollary 6.21, there is a closed subscheme � of X ×k Y with N � = ∗�g ,
and it follows from Corollary 6.20 that the *Hilbert polynomial of ∗�g lies in Q[t].
Then the corollary follows from Theorem 6.24. �
Corollary 6.26 The restriction of N : Sch fp

k → ∗Sch fp
k to the full subcategory of

projective k-schemes reflects isomorphisms.

Proof Let f : X → Y be a morphism of projective k-schemes such that N f is an
isomorphism with inverse g̃ : N Y → N X . Choose a very ample sheaf O(1) on
X ×k Y . If τ : Y ×k X

∼−→ X ×k Y denotes the transposition, τ ∗O(1) is a very ample
sheaf on Y ×k X . Let P ∈ Q[t] be the Hilbert polynomial of � f with respect to
O(1), which by 6.18 is also the *Hilbert polynomial of ∗�N f , the *graph of N f ,
with respect to N O(1). If follows from transfer that the transpose [N τ ]∗[∗�N f ] is
the *graph of g̃ and that its *Hilbert polynomial with respect to N [τ ∗O(1)] equals P .
Thus by Theorem 6.24, there is a k-morphism g : Y → X with N g = g̃. Now

N [ f ◦ g] = [N f ] ◦ [N g] = [N f ] ◦ g̃ = 1N Y = N 1Y

and

N [g ◦ f ] = [N g] ◦ [N f ] = g̃ ◦ [N f ] = 1N X = N 1X ,

so f ◦ g = 1Y and g ◦ f = 1X (because N : Sch fp
k → ∗Sch fp

k is faithful by
Corollary 6.16), and we see that f is indeed an isomorphism (with inverse g). �
Lemma 6.27 Let ϕ : B ↪→ C be a finite, injective morphism of integral k-algebras
of finite type. Then N ϕ : N B → N C is an injective, finite morphism of integral
k-algebras, and

[Quot(N C) : Quot(N B)] = [Quot(C) : Quot(B)] ∈ N+.

Proof The (internal) k-algebras N B and N C are integral by Theorem 6.4(iii), and
N ϕ is injective and finite, because

B
� � ϕ ��

σB

��

C

σC

��
N B

N ϕ
�� N C

is cocartesian by Proposition 4.16 and because σB is faithfully flat by 6.3. Since
Quot(C) = C ⊗B Quot(B) and

Quot(N C) = [N C] ⊗N B Quot(N B)
Proposition 4.16= C ⊗B Quot(N B)

= [

C⊗B Quot(B)
]⊗Quot(B) Quot(N B)=Quot(C)⊗Quot(B)Quot(N B).
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Using this, we get

[Quot(N C) : Quot(N B)] = dimQuot(N B) Quot(N C)

= dimQuot(N B)
[

Quot(C)⊗Quot(B) Quot(N B)
]

= dimQuot(B) Quot(C) = [Quot(C) : Quot(B)],

and this degree is of course finite, because ϕ is finite. �
Proposition 6.28 Let f : X → Y be a morphism of integral k-schemes of finite type.
Then f is birational if and only if N f : N X → N Y is *birational.

Proof Assume first that f is birational. Then by definition, there is a commutative
diagram

U
 �
j1

��





� �

j2

��	
		

		
		

X
f

�� Y

of k-morphisms with open immersions j1 and j2. So

N U �

N j1

����������
� �

N j2

���
�������

N X
N f

�� N Y

is a commutative diagram of k-*schemes, where N j1 and N j2 are *open immersions
by Proposition 4.4, which shows that N f is *birational.

For the other implication, assume now that N f is *birational. Then N X and N Y
have the same *dimension, and Theorem 6.4(ii) implies that dim X = dim Y . Let
us first show that f is dominant: If it were not, there would be a non-empty open
subscheme U of Y and a cartesian diagram

∅ ��

�

� �

��

U� �

�
X

f
�� Y.

But then by Propositions 4.1(i), 4.4, and Theorem 6.4(i), N U would be a non-empty
*open *subscheme of N Y disjoint from [N f ](N X); this means that N f would
not be *dominant and consequently could not be *birational – a contradiction. So
ϕ is indeed dominant, and if we denote the generic points of X and Y by ξ and η,
respectively, then ξ is contained in the generic fibre Xη. Since we saw above that
dim X = dim Y , we must have Xη = {ξ} by [12, 4.1.2(i)].
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In particular, Xη/η is of finite type and discrete, so by [7, 6.4.4] it is finite. Then
by [13, p. 6 and 8.10.5(x)], there is an affine, open, dense subset V = Spec (B) ⊆ Y ,
such that f |U : U → V [with U := f −1(V )] is finite. Then U = Spec (C) is
affine, and f ∗ : B → C is a finite, injective morphism of integral k-algebras of finite
type. By hypothesis we have Quot(N B)

∼−→ Quot(N C), so Lemma 6.27 implies
k(Y ) = Quot(B)

∼−→ Quot(C) = k(X), which means that f induces an isomorphism
of the function fields of X and Y and is therefore birational. �

7 The coherence theorem

For any scheme X , sheaf of OX -modules F and natural number i ∈ N0, we can
consider the Zariski cohomology group Hi (X,F ). If X is an A-scheme for a ring A,
then Hi (X,F ) canonically carries the structure of an A-module.

If f : X → Y is a proper morphism of schemes and if F is a coherent OX -module,
then we have the higher direct image Ri f∗F , a coherent OY -module by [9, 3.2.1].

By transfer, if X is a *scheme, F a *finitely presented OX -module and i ∈ ∗N0
a *natural number, we get the *Zariski cohomology Hi (X,F ) which is an internal
A-module if X is an A-*scheme for a *ring A.

Similarly, if f : X → Y is a *proper morphism of *schemes and if F is a *coherent
OX -module, we have the *higher direct image Ri f∗F , a *coherent OY -module.

Lemma 7.1 Let A be a *noetherian *ring, and let f : X → Y be a morphism of
*schemes over A. Then the left exact functor f∗ : ∗QCoh X −→ ∗Mod Y factorizes over
∗QCohY and admits a right derived functor R( f )∗ : D+(∗QCoh X ) −→ D+(∗QCohY ).

Furthermore, the class of flasque3 *quasi-coherent sheaves of OX -*modules is
adapted to f∗.

Proof Let B be a noetherian ring in R , and let g : Z → W be a morphism of
finitely presented B-schemes. Then Z and g are quasi-separated (by [11, 1.2.8]) and
quasi-compact. It follows from [22, B.3] that QCohU

Z has enough injective objects and
from [22, B.6] that Ri g∗F is quasi-coherent for all quasi-coherent OZ -modules F
and all i ∈ N0.

Furthermore, by [22, B.4], an injective object in QCohU
Z is also an injective (and

hence flasque) object of Mod U
Z , so that the class of flasque quasi-coherent OZ -modules

is adapted to g.
Since all this is true for arbitrary B, Z , W and g, the transferred statements are also

true, and the lemma follows. �

Lemma 7.2 Let A be a *noetherian *ring, and let f : X → Y be a morphism of
finitely presented A-schemes. Then the following diagram of exact functors between
derived categories commutes (up to canonical isomorphism):

3 Note that being flasque is obviously first-order and hence is the same as being *flasque.
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D+(∗QCoh N X )
R[N f ]∗ ��

S

��

D+(∗QCoh N Y )

S

��
D+(Mod X ) R f∗

�� D+(Mod Y ).

Proof First of all, note that R[N f ]∗ exists by Lemma 7.1 and that S : ∗QCoh N X →
Mod X and S : ∗QCoh N Y → Mod Y are exact by Proposition 5.8.

The composition S ◦R[N f ]∗ is canonically isomorphic to R[S ◦ [N f ]∗], because
S is exact. The composition R f∗ ◦ S is canonically isomorphic to R[ f∗ ◦ S ], because
S is exact and obviously maps flasque *sheaves to flasque sheaves, which are adapted
to f∗.

It follows immediately from the definition of S , f∗ and [N f ]∗ that S ◦ [N f ]∗ =
f∗ ◦ S , so we have

S ◦ R[N f ]∗ ∼= R[S ◦ [N f ]∗] = R[ f∗ ◦ S ] ∼= R f∗ ◦ S .

�

Let k be a *field, and let f : X −→ Y be a proper morphism of k-schemes of finite
type.

Lemma 7.3 We have a commutative diagram of exact functors

Db(∗Coh N X )
R[N f ]∗ ��

� �

ι

��

Db(∗Coh N Y )� �

ι

��
Db(∗QCoh N X )

R[N f ]∗��

S
��

Db(∗QCoh N Y )

S
��

Db(Mod X ) R f∗
�� Db(Mod Y )

Db(Coh X ) R f∗
��

	�

ι

��

Db(CohY )
	�

ι

��

Proof Since X is finitely presented over a field, it is finite-dimensional, which implies
that f∗ : QCoh X → QCohY has finite cohomological dimension and hence induces
R f∗ : Db(QCoh X )→ Db(QCohY ).
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By Theorem 6.4(ii) and transfer, [N f ]∗ : ∗QCoh N X → ∗QCoh N Y has the
same finite cohomological dimension and induces R[N f ]∗ : Db(∗QCoh N X ) →
Db(∗QCoh N Y ). So the middle square is well-defined, and it commutes by Lemma 7.2.

The bottom square is well-defined and commutes by [15, II.2.2] and [6, II.2.2.2], the
top square is well-defined and commutes by transfer of [15, II.2.2] and [6, II.2.2.2.1].

�

Proposition 7.4 There is a canonical morphism of exact functors

Db(Coh X )

ι◦R f∗





S ◦R[N f ]∗◦N

��
⇓ Db(Mod Y ) (23)

which induces a canonical morphism of δ-functors

Coh X

(N ◦Rn f∗)n∈N0

��

(Rn [N f ]∗◦N )n∈N0


⇓ ∗Coh N Y . (24)

Proof Morphism (23) is given by the following diagram in the 2-category of
triangulated categories

Db(CohY )

ι

���
��

��
��

��
��

��
��

��
��

⇓
Db(Coh X )

R f∗
�������������������������� ι ��

N



�����������

⇓
Db(Mod X )

R f∗ 

�����������

⇓Db(∗Coh N X )

S

��������������

R f∗



������������ Db(Mod Y )

Db(∗Coh N Y ),

S
�������������

where the three 2-morphisms are given by (9) and Lemma 7.3 (note that N : Coh X →
∗Coh N X ) is exact by Theorem 6.4(iv).
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Applying (23) to objects concentrated in degree zero (i.e., objects coming from
Coh X ) and taking cohomology gives us a morphism of δ-functors

Coh X

(Rn f∗)n∈N0

��

(S ◦Rn[N f ]∗◦N )n∈N0


⇓ ϕ Mod Y .

Using Corollary 5.12, we then get the morphism from (24) for a coherent OX -module
F and an n ∈ N0 by

N Rn f∗F
τ−1

Y,Rn f∗F ,Rn [N f ]∗N F (ϕ)−−−−−−−−−−−−−−→ Rn[N f ]∗N F .

That this is indeed a morphism of δ-functors follows immediately from the exactness
of N , from Remark 5.13 and from the fact that ϕ is a morphism of δ-functors. �
Theorem 7.5 The canonical morphism of functors (24) is an isomorphism. In particu-
lar, N Rn f∗F is canonically isomorphic to Rn[N f ]∗N F for all coherent
OX -modules F and all n ∈ Z.

Proof Because the statement is local in Y , we can assume without loss of generality
that Y = Spec (B) is affine for a finitely presented A-algebra B. We split the proof in
several cases:

First consider the case where f : X = Pd
Y → Y is the structural morphism of

projective d-space over Y . By [9, 2.1.15, 2.1.16], for any m, n ∈ Z, we have canoni-
cal isomorphisms

Rn f∗OX (m) =
⎧

⎨

⎩

OY [T0, . . . , Td ]m if n = 0,
OY [T0, . . . , Td ]∨−d−1−m if n = d,

0 otherwise,

where OY [T0, . . . , Td ] denotes the graded free symmetric algebra over OY with gen-
erators T0, . . . , Td (so that its part of degree m is just the free OY -module with basis
the homogenous monomials of degree m in the Ti ). By Propositions 3.7, 5.18(i) and
transfer, we have

Rn[N f ]∗[N OX (m)] =
⎧

⎨

⎩

ON Y
∗[T0, . . . , Td ]m if n = 0,

ON Y
∗[T0, . . . , Td ]∨−d−1−m if n = d,

0 otherwise.

Since a *monomial of degree m is the same as a monomial of degree m, and since N
respects duals by Corollary 5.17, we see that N Rn f∗OX (m) = Rn[N f ]∗[N OX (m)]
for all m and n. By additivity, the theorem is hence true for our special choice of f
and for all F of the form OX (m)l for l ∈ N0 and m ∈ Z.
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As a next step, we prove the theorem for all coherent sheaves on Pd
Y by decreasing

induction on n (this part closely resembles Hartshorne’s proof of the “Theorem on
Formal Functions” in [16]): Since Rn f∗ and Rn[N f ]∗ both vanish for n > d, the
theorem holds trivially in those cases. For the inductive step, assume that the theorem
holds for all n′ > n ∈ N0, and let F be an arbitrary coherent sheaf on X . By [9,
2.2.2(iv)], there exists an epimorphism G := OX (m)l � F for suitable l ∈ N0 and
m ∈ Z, so that we have a short exact sequence

0 −→ H −→ G −→ F −→ 0

of coherent OX -modules. By Proposition 7.4, we get an induced commutative diagram
of *coherent ON X -modules with exact rows as follows:

N Rn f∗H ��

α

��

N Rn f∗G ��

β �

��

N Rn f∗F ��

γ

��

N Rn+1 f∗H ��

δ �

��

N Rn+1 f∗G

ε �

��
Rn [N f ]∗[N H ] �� Rn [N f ]∗[N G ] �� Rn [N f ]∗[N F ] �� Rn+1[N f ]∗[N H ] �� Rn+1[N f ]∗[N G ]

By the first part of the proof, β and ε are isomorphisms, and by our inductive hypoth-
esis, δ is an isomorphism. Then by the five lemma, since β and δ are epimorphisms
and ε is a monomorphism, γ is an epimorphism.

Since F was chosen arbitrarily, this conclusion also applies to H , i.e., α is also an
epimorphism. But then we can apply the five lemma again, using that α is an epimor-
phism and that β and δ are monomorphisms, to conclude that γ is a monomorphism
and hence an isomorphism as desired.

Having settled the theorem for projective space, we now consider the second case
where f : X ↪→ Y is a closed immersion, i.e., X = Spec (B/b) for an ideal b of B.
Since f∗ and [N f ]∗ are exact in this case (note that N f is a *closed immersion by
Proposition 4.4), we only have to show N f∗M̃ ∼= [N f ]∗[N M̃] for all B/b-modules
M of finite type or – equivalently – that

[

N f∗M̃
]

(N Y ) ∼= [[N f ]∗[N M̃]](N Y ).
Now

[

N f∗M̃
]

(N Y )
Proposition 5.11∼= [ f∗M̃](Y )⊗B N B = M̃(X)⊗B N B = M ⊗B N B

and (since B −→ C := B/b is a finite ring homomorphism)

[[N f ]∗[N M̃]](N Y ) = [N M̃](N X)
Proposition 5.11∼= M̃(X)⊗C N C

= M ⊗C N C
4.16∼= M ⊗C

(

C ⊗B N B
) ∼= M ⊗B N B,

so the theorem is true for closed immersions as well.
As a third case, we take an arbitrary projective morphism f : X → Y . Since Y

is affine, it admits an ample bundle, which implies (see [8, 5.5.4(ii)]) that there is a
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d ∈ N0 for which f factorizes as X
i
↪→ Pd

Y
π−→ Y , where i is a closed immersion

and π is the structural morphism. Then for every coherent OX -modules F and every
n ∈ Z, we have (because i∗ and [N i]∗ are exact)

N Rn f∗F =N Rn[π i]∗F =N Rnπ∗i∗F
1.case∼= Rn[N π ]∗N i∗F
2.case∼= Rn[N π ]∗[N i]∗N F =Rn[N f ]∗N F,

and the proof of this case is complete.
Finally we consider the general case of an arbitrary proper morphism f : X → Y

and imitate Grothendieck’s proof of the finiteness theorem for coherent modules [9,
3.2.1]. Consider the full subcategory C of Coh X consisting of those coherent sheaves
for which the theorem holds. We claim that C has the following properties:

(i) C is exact, i.e., if 0 → F ′ → F → F ′′ → 0 is a short exact sequence in
Coh X and if two of the three sheaves F ′, F and F ′′ belong to C , then so does
the third (compare [9, 3.1.1]).

(ii) If a coherent OX -module F belongs to C , then every direct factor of F also
belongs to C .

Let 0 → F ′ → F → F ′′ → 0 be a short exact sequence as in (i). Applying the
morphism of δ-functors (24), we get the following commutative diagram with exact
rows

. . . �� N Rn−1 f∗F ′′ δ ��

γn−1

��

N Rn f∗F ′ ��

αn

��

N Rn f∗F ��

βn

��

N Rn f∗F ′′ δ ��

γn

��

N Rn+1 f∗F ′ ��

αn+1

��

. . .

. . . �� Rn−1[N f ]∗N F ′′
δ

�� Rn [N f ]∗N F ′ �� Rn [N f ]∗N F �� Rn [N f ]∗N F ′′
δ

�� Rn+1[N f ]∗N F ′ �� . . .

If two of F ′, F and F ′′ belong to C , then for every n, two of αn , βn and γn are
isomorphisms. The five lemma shows that then all αn , βn and γn are isomorphisms
and hence F ′, F and F ′′ all belong to C , which proves (i).

For (ii), let F be a coherent OX -module in C , and let F1 be a direct factor of F .
Putting F2 := F /F1, we get a split short exact sequence

0 −→ F1 −→ F = F1 ⊕ F2 −→ F2 −→ 0

and hence for any n a morphism of split short exact sequences

0 �� N Rn f∗F1 ��

αn

��

N Rn f∗F = N Rn f∗F1 ⊕ N Rn f∗F2 ��

αn⊕βn�

��

N Rn f∗F1 ��

βn

��

0

0 �� Rn [N f ]∗N F1 �� Rn [N f ]∗N F = Rn [N f ]∗N F1 ⊕ Rn [N f ]∗N F2 �� Rn [N f ]∗N F1 �� 0
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with an isomorphism αn ⊕βn (because F is in C ). It follows immediately that αn and
βn must also be isomorphisms, i.e., F1 and F2 also belong to C , which proves (ii).

In order to finish the proof of the theorem, we have to show that every coherent
OX -module belongs to C , and we want to do so by using dévissage: By [9, 3.1.3], a
full subcategory C of Coh X satisfying (i) and (ii) contains all coherent OX -modules
if (and only if) for every irreducible closed subscheme Z of X , there is a sheaf with
support Z in C .

Let Z
i
↪→ X be a closed immersion with Z irreducible. Assume that we have found

a coherent sheaf FZ of OZ -modules with support Z such that the theorem holds for FZ

and the (obviously proper) morphism f ◦ i : Z → Y . Then F := i∗FZ is a coherent
sheaf of OX -modules with support Z , and

N Rn f∗F ∼= N Rn[ f i]∗FZ ∼= Rn[N ( f i)]∗N FZ

∼= Rn[N f ]∗
[

(N i)∗N FZ
]

2.case∼= Rn[N f ]∗N F,

i.e., F belongs to C . Thus without loss of generality, we only have to consider the
case Z = X and therefore must exhibit a sheaf in C with support X .

By Chow’s lemma [8, 5.6.2], there is a projective and surjective morphism
g : X ′ −→ X , with X ′ irreducible, such that the composition f ◦ g : X ′ −→ Y
is projective. Let OX ′(1) be a very ample bundle for g. Then by [9, 2.2.1] and [8,
3.4.7], there is an m ∈ N0 such that F := g∗OX ′(m) has support X and such that

∀n > 0 : Rng∗OX ′(m) = 0. (25)

From (25), we learn two things. First, using the spectral sequence Rp f∗Rq g∗OX ′(m)⇒
Rp+q [ f g]∗OX ′(m), we get

∀n ∈ Z : Rn f∗F ∼= Rn[ f g]∗OX ′(m). (26)

Second, applying the third case to OX ′(m) and g, we get

∀n > 0 : Rn[N g]∗N OX ′(m) ∼= N Rng∗OX ′(m)
(25)= 0,

and then, using the spectral sequence Rp[N f ]∗Rq [N g]∗N OX ′(m)⇒Rp+q [N ( f g)]∗
N OX ′(m),

∀n ∈ Z : Rn[N f ]∗N F ∼= Rn[N ( f g)]∗N OX ′(m). (27)

Combining these and applying the third case again, this time to OX ′(m) and f g, we
get

N Rn f∗F
(26)∼= N Rn[ f g]∗OX ′(m)

3.case∼= Rn[N ( f g)]∗N OX ′(m)
(27)∼= Rn[N f ]∗N F

for all n ∈ Z, i.e., F belongs to C , and the proof of the theorem is complete. �
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Corollary 7.6 If k is a *field and if X is a proper k-scheme, we have a canonical
isomorphism

Hn(X,F ) ∼−→ Hn(N X, N F )

of finite dimensional k-vector spaces for every coherent OX -module F and every
n ∈ N0,

Proof This follows immediately from Theorem 7.5, applied to f : X → Spec (k),
and from Proposition 5.10:

Hn(X,F ) = Hn(X,F )⊗k k = Hn(X,F )⊗k N k
Proposition 5.10= N∗N Rn f∗F 7.5= N∗Rn[N f ]∗N F = Hn(N X, N F ).

�
Corollary 7.7 For a *field k and a proper k-scheme X, the functor N : Coh X −→
∗Coh N X is exact and fully faithful.

Proof We already know that N is exact (and faithful) from Theorem 6.4(iv), even if
X is not proper over k.

If f : X → Spec (k) is proper, and if F and G are coherent OX -modules, we have

HomON X (N F , N G) =
[

HomON X (N F , N G)
]

(N X)

Corollary 6.5∼=
[

N HomOX (F ,G)
]

(N X)

= H0(N X, N HomOX (F ,G))
Corollary 7.6∼= H0(X,HomOX (F ,G)) = HomOX (F ,G),

which proves fully faithfulness. �
Corollary 7.8 For a *field k and a proper k-scheme X, the canonical group homo-
morphism N : Pic(X) −→ ∗Pic(N X) from 5.15 is injective.

Proof This follows immediately from the fact that N : Mod fp
X −→ ∗Mod fp

N X is fully
faithful by Corollary 7.7. �
Example 7.9 Let k be a *field, and consider projective d-space over k for a d ∈ N+.
Then the monomorphism Pic(Pd

k ) ↪→ Pic(∗Pd
k ) from Corollary 7.8 is explicitly given

by the following commutative diagram of abelian groups:

m ∈�

��

Z
� � ∗ ��

�
��

∗Z �

�
��

m�

��
OPd

k
(m) ∈ Pic(Pd

k )
� �

N
�� ∗Pic(∗Pd

k ) � O∗Pd
k
(m)
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Corollary 7.10 Let X be proper over a *field k, and let F be a coherent OX -mod-
ule. Then χ(F ), the Euler-Poincaré characteristic of F , equals χ(N F ), the *Euler-
Poincaré characteristic of N F .

Proof We have

χ(N F ) =
∗ dim(N X)∗∑

n=0

(−1)n · ∗ dim
[

Hn(N X, N F )
]

Theorem 6.4(ii)=
dim X
∑

n=0

(−1)n · ∗ dim
[

Hn(N X, N F )
]

Corollary 7.6=
dim X
∑

n=0

(−1)n · dim
[

Hn(X,F )
]

= χ(F ).

�

Corollary 7.11 Let X be a k-scheme of finite type, and let I and J be two sheaves of
ideals in OX . Then N [I · J ] = [N I ] · [N J ] as *ideals of ON X .

Proof Let Z be the closed subscheme of X given by I · J , and let i : Z ↪→ X be
the corresponding closed immersion. Then we have an exact sequence of coherent
OX -modules

I ⊗OX J −→ OX −→ i∗OZ −→ 0

and hence by Proposition 5.4, Corollary 5.14, Theorems 6.4(iv) and 7.5 an exact
sequence

[N I ] ⊗ON X [N J ] ϕ−→ ON X −→ [N i]∗ON Z −→ 0

of *coherent ON X -*modules. By transfer, the image of ϕ is [N I ] · [N J ] and the ideal
defining N Z , which in turn is N [I · J ] by Corollary 6.6. �

8 The shadow map

Let 〈K , |.| : K → R≥0〉 be a non-trivially valued field with locally compact comple-
tion 〈K̂ , |.|〉. Examples of such fields are Q, R and C with their usual absolute value,
Q or Qp, equipped with the p-adic value |.|p for a prime p or – more generally – local
fields.

Assume that 〈K̂ , |.|〉 is an element of our superstructure M̂ (which is no restriction,
since we can always choose an appropriately large M).
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Then 〈∗K , |.|〉 and 〈∗ K̂ , |.|〉 are elements of ∗̂M , where ∗K ⊆ ∗ K̂ are fields, and
|.| : ∗K → ∗R≥0 and |.| : ∗ K̂ → ∗R≥0 are maps such that

∗K
� � ��

|.|
���

�������
∗ K̂

|.|
����

��
��

��

∗R≥0

R≥0
	�

��

K
� � ��	�

∗

��

|.|

�����������
K̂
	�

∗

��

|.|

�����������

commutes. By transfer we have

∀x ∈ ∗ K̂ : |x | = 0 ⇐⇒ x = 0, (M1)

∀x, y ∈ ∗ K̂ : |x · y| = |x | · |y| and (M2)

∀x, y ∈ ∗ K̂ : |x + y| ≤ |x | + |y|. (M3)

Define the set of finite elements of ∗K by

∗K fin :=
{

x ∈ ∗K
∣

∣

∣ ∃C ∈ R≥0 : |x | < C
}

and the set of infinitesimal elements of ∗K by

∗K inf :=
{

x ∈ ∗K
∣

∣

∣ ∀ε ∈ R>0 : |x | < ε
}

.

Proposition 8.1 ∗K fin
�

∗K is a valuation ring with maximal ideal ∗K inf and residue
field canonically isomorphic to K̂ . We call the projection ∗K fin � K̂ the shadow map,
denote it by sh, and consequently get a commutative diagram of ring homomorphisms
with exact row

K
∗

����
��

��
��

� �

��
0 �� ∗K inf �� ∗K fin

� �

��

sh �� K̂ �� 0

∗K .

(28)

Proof (M2) and (M3) immediately imply that ∗K fin is a subring of ∗K . Since the
value on K is non-trivial, the set of values is not bounded, so by transfer ∗K contains
elements of infinite value, and ∗K fin is a proper subring of ∗K .
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If x ∈ ∗K is not finite, it in particular satisfies |x | > 1. Then | 1
x | < 1 (by (M2)),

i.e., 1
x is finite. This proves that ∗K fin is indeed a valuation ring.

For a finite x ∈ ∗K fin \ {0}, 1
x is obviously infinite if and only if x is infinitesimal,

which shows that ∗K inf is the maximal ideal of ∗K fin.
Choose an infinite natural number h. We define a ring homomorphism α : K̂ −→

∗K fin/∗K inf by sending the class of a Cauchy sequence (xn) in K to xh . This is well-
defined, because Cauchy sequences are bounded (so that xh ∈ ∗K fin) and because
limn→∞ xn = 0 implies xh ∈ ∗K inf . Furthermore, α does not depend on h: If h′ is
another infinite natural number, and if (xn) is a Cauchy sequence in K , then xh − xh′
is infinitesimal. Since K̂ is a field, α is automatically injective.

To prove that it is also surjective, we need the fact that K̂ is locally compact: This
fact implies that there exists an ε ∈ R>0 and a compact subset A of K̂ such that

Uε(0, K̂ ) := {

x ∈ K̂
∣

∣ |x | < ε
} ⊆ A.

Now let x be an arbitrary element of ∗K fin, let C ∈ R≥0 with |x | < C , let π ∈ K with
|π | > 1, and let n ∈ N+ with |πn| = |π |n >= C

ε
. Because multiplication by πn is a

homeomorphism from K̂ to itself, B := πn A is also compact, and we have

UC (0, K̂ ) ⊆ Uε|πn |(0, K̂ ) ⊆ B

and hence

x ∈ {

y ∈ ∗ K̂
∣

∣ |y| < C
} = ∗UC (0, K̂ ) ⊆ ∗B ⊆ ∗ K̂ .

According to the nonstandard characterization of compactness, applied to B, any ele-
ment of ∗B is infinitesimally close to an element of B, so there is an x̂ in K̂ with
x − x̂ ∈ ∗K inf , i.e., x = α(x̂). �
Corollary 8.2 Let X be a proper scheme over ∗K . Then the canonical map
X (∗K fin) −→ X (∗K ) is bijective.

Proof This follows immediately from Proposition 8.1 and the valuative criterion of
properness [16, II.4.7]. �
Corollary 8.3 Let X be a proper scheme over K . Then there is a canonical shadow
map shX : [∗X ](∗K ) −→ X (K̂ ), induced by sh : ∗K fin −→ K̂ , such that the follow-
ing diagram commutes:

X (K )

����
��

��
��

��
��

��
��

�

��
X (K̂ )

X (∗K ) ∼
4.13 �� [∗X ](∗K ).

shX

��
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Proof Applying the functor X (_) to (28), we get the following commutative diagram,
in which α is bijective by Corollary 8.2, so that we can define shX as (sh ◦α−1 ◦β−1):

X (K )

  ����������

��
X (∗K fin)

� α

��

sh �� X (K̂ )

X (∗K ) ∼
β �� [∗X ](∗K ).

shX

��

�
Example 8.4 Let X ⊆ Pd

K be a projective variety over K , and let x = (x0 : . . . : xd)

be a ∗K -valued point of ∗X . Put C := max{|x0|, . . . , |xd |} ∈ ∗R>0. Then

shX (x) =
(

sh
[ x0

C

]

: . . . : sh
[ xd

C

])

∈ X (K̂ ) ⊆ Pd
K (K̂ ).

9 Resolution of singularities and weak factorization

For us, a variety over a field k is an integral, separated k-scheme of finite type. Simi-
larly, if k is internal, a *variety over k is a *integral, *separated *scheme in ∗Sch fp

k .

Lemma 9.1 Let k be a *field in ∗R , and let X be a k-variety. Then N X is a k-*variety.

Proof This follows immediately from Proposition 4.4 and Theorem 6.4(iii). �
Let k be a field, and let X be a projective k-variety. Then for us, a resolution (of sin-

gularities) of X is a proper, birational k-morphism X ′ → X , where X ′ is a projective,
smooth k-variety.

Proposition 9.2 Let k be a *field in ∗R of external characteristic zero, let n ∈ N+,
and let X be a *projective k-*variety which admits a *closed embedding into ∗Pn

k of
finite *degree. Then there exists a *resolution f : X ′ → X of X.

Proof By Corollary 6.22, there is a projective k-variety Y with N Y = X , and by
Hironaka’s celebrated result on resolutions of singularities in characteristic zero, there
exists a resolution g : Y ′ → Y of Y .

Then X ′ := N Y ′ is a *projective, *smooth k-*variety by Propositions 4.4, 4.14 and
Lemma 9.1, and f := N g : X ′ → X is *proper and *birational by Propositions 4.4
and 6.28. �

Using Proposition 9.2, we can now easily give a conceptual proof of the following
classical result of Eklof (see [5]):

Corollary 9.3 For any pair (n, d) of natural numbers, there exists a bound C ∈ N+,
such that for any field k of characteristic p ≥ C and any closed subvariety X of Pn

k
of degree d, there exists a resolution of singularities of X.
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Proof Assume the statement is false. Then for every i ∈ N+, we find a field ki of
characteristic pi ≥ i and a closed subvariety Xi of Pn

ki
of degree d which does not

admit a resolution.
We then take the full subcategory of Rings with objects (ki )i∈N+ as our base cate-

gory B , choose an infinite j ∈ ∗N and get a *field k j of *characteristic p j ≥ j in ∗R
and a *closed *subvariety X j of ∗Pn

k of *degree d which does not admit a *resolution.
But since p j is infinite, the external characteristic of k j is zero, and Proposition 9.2

states that there can be no such X j . Thus our assumption leads to a contradiction, and
the corollary is proven. �
Definition 9.4 Let k be a field, let U be an open subscheme of a projective k-variety
X , and let n ∈ N0 be a natural number. We say that U has complexity n if X \ U ,
equipped with its reduced structure, has at most n irreducible components and if all
those components have degree at most n.

Lemma 9.5 Let k be *field in ∗R , let X be a projective k-variety, and let U ′ be a
*open subscheme of N X of finite *complexity. Then there is an open subscheme U
of X with N U = U ′.

Proof By definition of complexity, there is an n ∈ N0, such that [N X ] \ U ′ =
Z ′

1 ∪ . . . ∪ Z ′
n with *integral *closed *subschemes Z ′

i of N X of *degree at most n,
and by 6.21, there exist integral closed subschemes Z1, . . . , Zn of X with N Zi = Z ′

i
for all i . Put U := X \⋃n

i=1 Zi = ⋂n
i=1[X \ Zi ]. Then

N U = N

(

n
⋂

i=1

[X \ Zi ]
)

Proposition 4.1(i)=
n
⋂

i=1

N [X \ Zi ]

Lemma 4.8=
n
⋂

i=1

(

[N X ] \ [N Zi ]
)

=
n
⋂

i=1

(

[N X ] \ Z ′
i

)

= U ′.

�
Definition 9.6 Let� : X ��� Y be a birational map between proper nonsingular vari-
eties over a field k, and let U ⊆ X be an open subscheme where� is an isomorphism.
Then a weak factorization of � with respect to U is a factoring of � into a sequence
of blow-ups and blow-downs with nonsingular irreducible centers disjoint from U .
The length of a weak factorization is the number of blow-ups and blow-downs in the
sequence.

Lemma 9.7 Let k be a *field in ∗R , let � : X → Y be a birational morphism
between proper, smooth k-varieties, and let U ⊆ X be an open subscheme where� is
an isomorphism. If � admits a weak factorization with respect to U of length n, then
N � : N X → N Y admits a *weak *factorization with respect to N U of *length n.

Proof The statement makes sense, because N X and N Y are *proper, *nonsingular
k-*varieties by Propositions 4.4, 4.14 and Lemma 9.1, N � is *birational by Proposi-
tion 6.28, and [N �]|N U is trivially an isomorphism.
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Furthermore, it follows immediately from Proposition 4.14, Theorem 6.4(iii) and
Proposition 6.9 that N maps any weak factorization of � with respect to U of length
n to a *weak *factorization with respect to N U of *length n. �
Proposition 9.8 Let k be a *algebraically closed *field in ∗R of external character-
istic zero, let n ∈ N+, let X and Y be *projective, *nonsingular k-schemes which
admit a *closed embedding into ∗Pn

k of finite *degree, let� : X → Y be a *birational
morphism of k-*schemes whose *graph has finite *degree, and let U be a *open *sub-
scheme of X of finite *complexity where� is an isomorphism. Then� admits a *weak
*factorization with respect to U of finite *length.

Proof By Corollaries 6.12, 6.22, 6.25, Proposition 6.28 and Lemma 9.5, there are
projective, nonsingular k-varieties X ′ and Y ′, a birational morphism �′ : X ′ → Y ′
and an open subscheme U ′ of X ′, such that N X ′ = X , N Y ′ = Y , N �′ = � and
N U ′ = U . Since k is an algebraically closed field of characteristic zero and since
�′|U ′ is an isomorphism by Corollary 6.26, we know from [1, 0.1.1] that �′ admits
a weak factorization with respect to U ′. The claim now follows immediately from
Lemma 9.7. �
Definition 9.9 Let k be a field. A WF-datum over k is a pair 〈�,U 〉, where� : X → Y
is a birational morphism between projective, nonsingular k-varieties and where U is
an open subscheme of X where� is an isomorphism. A weak factorization of 〈�,U 〉
(of length n) is a weak factorization of � with respect to U of length n.

Let N ∈ N0 be a natural number. We say that the WF-datum 〈�,U 〉 has complexity
n if X and Y are (isomorphic to) closed subschemes of Pn

k of degree at most n, if the
graph of � has degree at most n and if U has complexity n.

Corollary 9.10 For any N ∈ N0, there exists a bound C ∈ N+, such that for any
algebraically closed field k of characteristic p ≥ C, any WF-datum of complexity N
has a weak factorization.

Proof This follows from Proposition 9.8 in the same way as Corollary 9.3 follows
from Proposition 9.2. �
Corollary 9.11 For any N ∈ N0, there exists a bound D ∈ N+, such that for any
algebraically closed field k of characteristic zero, any WF-datum of complexity N has
a weak factorization of length at most D.

Proof This, again, follows in the same way as Corollaries 9.3 and 9.10, using the fact
that the *weak *factorization whose existence is proven in Proposition 9.8 has finite
*length. �
Acknowledgment Parts of this work have been written under hospitality of the Mathematical Research
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