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Abstract

We describe a scenario for proving that if any two projective sets are Wadge com-
parable, then Projective Determinacy holds.

0 Introduction

For A, B € “w we write A <w B iff A is Wadge reducible to B, i.e., if there is some
continuous f:%“w — “w such that for all z € “Yw, € A iff f(z) € B. We say that A,
B € “w are Wadge comparable if A <w B or else B <y “w \ A.

In this paper, we shall be interested in projective sets of reals. Wadge's classical theorem
(cf. [9]) yields that if Projective Determinacy holds, then any two projective sets are Wadge
comparable. On the other hand, Harrington (cf. [1, Theorem 4.3]) showed that if any two
analytic sets are Wadge comparable, then every analytic set is determined. Later, Hjorth
(cf. [2, Theorem 3.15]) proved that if any two II} sets are Wadge comparable, then every
IT} set is determined.

It is a well-known open problem to show that following.

Conjecture. (Folklore) If any two projective sets are Wadge comparable, then Pro-
jective Determinacy holds.

In what follows we shall describe a scenario for verifying this conjecture. A key building
block of this scenario is a formulation of two “correctness hypotheses for the core model
K” one of which generalizes Steel’s L} correctness result for K (cf. [8]), which in turn
was used by Hjorth in his proof of {2, Theorem 3.15]. We’ll present a proof of Hjorth’s
theorem which, in our opinion and in contrast to his own proof from [2], brings in the
right perspective to hopefully enable us finding a generalization of his argument.

1 Two correctness conjectures
Definition 1.1 Let n <w. We let
Tns1 = {z € “w : z codes a Il -iterable premouse M with M |= ZFC}.

Obviously, Zn4+1 is IIL . (Cf. [7] on the concept of II} |, iterability.) We shall also be
interested in the following theories in the language of premice over a real, which express
“I'm M (z)” and “I'm ]\/[7];(1'),” respectively.




Deﬁniﬂ:ion 1.2 Let n < w.

U, = I am an -premouse which is not n-small,
but whose proper tnitial segments are all n-small.

®, = I am an active -premouse with n Woodin cardinals
and a measurable cardinal above, but there is no active proper initial segment
with ¢ Woodin cardinal and a measurable cardinal above.

The following statement, &, is the first one of our correctness hypotheses.

Definition 1.3 Let n < w. By &, we denote the following statement.
Suppose that for every z € Yw, ]\/[# (x) exists, but also suppose that ]\/[,]; does not exist
(or just assume that ]\/[7;“ does not exist). Let z € “w, and let (M, zp: k < w) be a sequence

with the following properties.

1. zg = 2, and for all k < w, xp41 is a real which codes the transitive structure My,
2. My, is an zy-premouse which is a model of U,

3. M1 E “My is iterable, i.e., Mk = (2x)#,” and

4. KMs € Ty,

Then for each k < w, My is n-Neeman iterable.

In the situation of Definition 1.3, KM* is the core model of M}, of height x, where & is
the critical point of the top measure of My, in the sense of [6]. Notice that if n > 0, then
KM#k will have Woodin cardinals. The concept of being “n-Neeman iterable” is basically
due to L. Neeman, cf. [3].

Definition 1.4 Let M be a premouse, and let § € M. Then M is 0-Neeman iterable
above & iff there is some measure EXM with critical point above § such that M is linearily
iterable with respect to EM and its images. For n < w, M is (n + 1)-Neeman iterable
above & iff for every iteration tree T on M of length w (sic!) which is above & there is
some cofinal branch b through T such that MbT is transitive and n-Neeman iterable above

(7).
The following is basically due to Neeman, cf. [3].

Theorem 1.5 Let n < w, and let M be an n-Neeman iterable premouse. Suppose that
M is a model of Uy, if n is even, and suppose that M is a model of ®,, if n is odd. Then
M —<Eh+2 V.




ProOF. See [6, Lemma 2.4]. d

We would like to have that the iterability of KM* witnesses the iter ability of My, but
this would probably be too much to ask for. We showed in [4] that &, is true for n = 0.

Theorem 1.6 ([4]) &g holds true.

PRrROOF. Let us fix (M, zx: k < w), a sequence as in &g. For an ordinal o, we write
(]\/[,i,w,v 1 <j < a) for the putative iteration of My, of length a (if it exists); and if so,
then we write f-’\‘, for the critical point of the top measure of My : (or for sup{/ﬂk Jj < i}
ifi=aisa hmlt ordinal and Mg is not well-founded). We say that o is a uniform
indiscernible iff for every k < w, a = &}, for some i (in fact i = a). By (%), we denote
the statement that Mg, the ot iterate of M, (via its unique measure and its images) is
well-founded.

We are now going to prove, by induction on «, simultaneously f01 all £ < w, that ( )
holds true for every o < wj.

Let us first suppose that « is not a uniform indiscernible. Let k < w. Let us write
Kk = k{1 for the moment. Let (7, U) denote the coiteration of K Telzel with KMwe+1, As
Mit1 | “My = (z)#,” there must be some proper initial segment of KMk+1 which
iterates past J¢7x[zx], (It is not hard to verify that some such P must exist, as otherwise
there is an inner model with a strong cardinal. One can even show that otherwise 0Y
would exist, cf. [4].) We may therefore construe I as an iteration tree (of length x) on P,

Now let, for § < a, 75 = Wkﬁl(’f) and Ug = ka_l(U). We then have that for each

Jo ok
B < a, (Tg,Up) is the coiteration of K e with P. (Notice that a = k¢, ,.) Let us
write (7*,U*) = (Ta,Uy). The key point is that, because KMr+1 (and hence P) is in Iy,
P is iterable, so that MY, the last model of /* , is well-founded.

Let us now fix v < B < «, and let us write k = KZ 41 and A= K,f +1 for the moment.

Let us also assume that v and 8 are “typical,” i.e., that x = k) and A = /ﬁfj as well.

Claim 1. m}” [ (P(k) N Jafza]) = 772 [ (P(k) N Jalzi]).

PROOF. Let X € P(k) N Jalzy), and let X = 7i'(X), where i < . Then Wzﬁ(X) =
me (X) = im0 =, () () = mf, ().

Claim 2. 74 1 (P(x) N MYy = szl [ (P(k) N MY).

PROOF. Let X € P(x) N MY P and let X = 74" (X), where ¢ < k. Then ng\i(X) =
Y,
D) = a2, ()00 = 2 (i () =, ().

Now notice that . .
pHME = oictelad o e MTT M

(Here, the first equality is true by covering.)




Therefore, Claims 1 and 2 imply that for “typical” v < 8 < «,

' My My - M
”Zﬂ f("Z+1)+ = ”zil f("iZ+1)+‘ F=al | ("G}ZH)Jr k.

This bliys us that Mg must be well-founded, i.e., (2) is true. O
We now turn to our second correctness conjecture, which comes from [6].

Definition 1.7 Let n < w. By lIH, we denote the following statement.

Suppose that for every z € “w, ]\/.f,];(m) exists, but also suppose that M f +1 does not
exist. :
Let P be a z-premouse such that P | ®, and such that K¥ € T,.5. Then PIQ s
n-Neeman iterable, where Q is the critical point of the top measure of P.

Here, “llH” stands for “Iterability Inheritance Hypothesis.” In the situation of Defini-
tion 1.7, by K we mean the core model of P of height  in the sense of [6].

Steel showed in (8] that [IHy, holds true for n = 0. Later, we gave a different proof of
IHp in [5] (cf. also [6]).

Theorem 1.8 ([8]) IIHg holds true.

2 The even case

The proof of the above Conjecture will be a core model induction on the levels of the
projective hierarchy. The first two steps of this induction are provided by [1] and [2].
An appropriate generalization of (1] should give a general version of the odd steps of
this induction. We here sketch how to run the even steps, modulo our two correctness
hypotheses.

Theorem 2.1 Let n < w. Assume both &on and IHg, to hold. Suppose that all TI3,
sets are determined. Suppose further that for all A, B C “w such that A, B are both
L}, ., either A <w B or B <w “w\ A. Then all I}, ., sets are delermined.

PRrRoOOF. The hypothesis of Theorem 2.1 yields that for all z € “w, ]\/[jfl (z) exists. Let
us assume that (the conclusion of) Theorem 2.1 does not hold. There is then some zy € “w
such that ]\/[j:l +1(20) does not exist. We aim to derive a contradiction. We'll present the
argument for the case g = 0 and leave it to the reader to verify that the argument to
follow easily relativizes.

Claim 1. There is some z € “w such that Z, 49 is X3, ,5(2).

PROOF. Set Z = Zn4y. We may easily define a II}, ,-norm ¢ on Z. Let U be
a complete I3, ,-set. If U <w Z, then ¢ induces a II}, +o-norm on U. But IT§, ;-
determinacy implies that there is no such norm on U. Therefore 7 <w “w \ U, which
yields that T is £3, () for some z € “w. 0O (Claim 1)




Claim 2. For every z € “w, ]\/[gn(:c) exists.

PROOF. Suppose not, and let 1 € Yw be such that ]\/[;rn(:vl) does not exist. We aim
to derive a contradiction. We’ll present the argument for the case £; = 0 and leave it to
the reader to verify that the argument to follow easily relativizes.

We let

B= {z€“: (z)o=z,and forall k <w,
(%)g+1 codes a (z),-premouse My, which is a model of ¥y, ,
M1 E My is iterable, and
KMk € IQ,-H_Q}.

Of course, B # §. Let z € B, and let M be the premouse coded by (z);. Using oy,
M is 2n-Neeman iterable.
By Claim 1, B is 23, ,4(z). But M =S V, and hence there is some y € “w N M

such that y € B. But then N' € M by the above Subclaim, where A is the premouse
coded by (y)1. We have shown that

{M : 3z € B M is coded by z}

is non-empty and does not have an €-least element. Contradiction! O (Claim 2)
Let
B*= {z€%“w: z codes a z-premouse M which is a model of @9, and
KM e T,.,}.

We have that B* # ), and by lIHg,, if z € B*, then z codes a 2n-Neeman- 1telable
z-premouse which is a model of ®g,.

Now let 2 € B*, and let M be the premouse coded by z. By Claim 1, B* is £3,, (2).
But M =511 V, and hence there is some y € “w N M such that y € B*. In particular,

if A/ is the premouse coded by y, then N € M.
We have shown that

{M : 3z € B* M is coded by z}

is non-empty and does not have an €-least element. O (Theorem 2.1)
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