From Wadge comparability to determinacy

Ralf Schindler

Institut für Mathematische Logik und Grundlagenforschung, Universität Münster Einsteinstr. 62, 48149 Münster, Germany

Abstract

We describe a scenario for proving that if any two projective sets are Wadge comparable, then Projective Determinacy holds.

0 Introduction

For $A, B \in {}^{\omega}\omega$ we write $A \leq_{\mathsf{W}} B$ iff A is Wadge reducible to B, i.e., if there is some continuous $f:{}^{\omega}\omega \to {}^{\omega}\omega$ such that for all $x \in {}^{\omega}\omega$, $x \in A$ iff $f(x) \in B$. We say that A, $B \in {}^{\omega}\omega$ are Wadge comparable iff $A \leq_{\mathsf{W}} B$ or else $B \leq_{\mathsf{W}} {}^{\omega}\omega \setminus A$.

In this paper, we shall be interested in *projective* sets of reals. Wadge's classical theorem (cf. [9]) yields that if Projective Determinacy holds, then any two projective sets are Wadge comparable. On the other hand, Harrington (cf. [1, Theorem 4.3]) showed that if any two analytic sets are Wadge comparable, then every analytic set is determined. Later, Hjorth (cf. [2, Theorem 3.15]) proved that if any two Π_2^1 sets are Wadge comparable, then every Π_2^1 set is determined.

It is a well-known open problem to show that following.

Conjecture. (Folklore) If any two projective sets are Wadge comparable, then Projective Determinacy holds.

In what follows we shall describe a scenario for verifying this conjecture. A key building block of this scenario is a formulation of two "correctness hypotheses for the core model K" one of which generalizes Steel's Σ_3^1 correctness result for K (cf. [8]), which in turn was used by Hjorth in his proof of [2, Theorem 3.15]. We'll present a proof of Hjorth's theorem which, in our opinion and in contrast to his own proof from [2], brings in the right perspective to hopefully enable us finding a generalization of his argument.

1 Two correctness conjectures

Definition 1.1 Let $n < \omega$. We let

 $\mathcal{I}_{n+1} = \{x \in {}^\omega\omega : x \text{ codes } a \ \Pi^1_{n+1} \text{-iterable premouse } \mathcal{M} \text{ with } \mathcal{M} \models \mathsf{ZFC}\}.$

Obviously, \mathcal{I}_{n+1} is Π^1_{n+1} . (Cf. [7] on the concept of Π^1_{n+1} iterability.) We shall also be interested in the following theories in the language of premice over a real, which express "I'm $M_n^{\#}(x)$ " and "I'm $M_n^{\dagger}(x)$," respectively.

Definition 1.2 Let $n < \omega$.

 $\Psi_n \equiv I \text{ am an } \dot{x}\text{-premouse which is not } n\text{-small},$ but whose proper initial segments are all n-small.

 $\Phi_n \equiv I$ am an active \dot{x} -premouse with n Woodin cardinals and a measurable cardinal above, but there is no active proper initial segment with a Woodin cardinal and a measurable cardinal above.

The following statement, \clubsuit_n , is the first one of our correctness hypotheses.

Definition 1.3 Let $n < \omega$. By \clubsuit_n we denote the following statement.

Suppose that for every $x \in {}^{\omega}\omega$, $M_n^{\#}(x)$ exists, but also suppose that M_n^{\dagger} does not exist (or just assume that M_n^{\P} does not exist). Let $z \in {}^{\omega}\omega$, and let $(\mathcal{M}_k, x_k : k < \omega)$ be a sequence with the following properties.

- 1. $x_0 = z$, and for all $k < \omega$, x_{k+1} is a real which codes the transitive structure \mathcal{M}_k ,
- 2. \mathcal{M}_k is an x_k -premouse which is a model of Ψ_n ,
- 3. $\mathcal{M}_{k+1} \models \text{``}\mathcal{M}_k \text{ is iterable, i.e., } \mathcal{M}_k = (x_k)^{\#}, \text{''} \text{ and }$
- 4. $K^{\mathcal{M}_k} \in \mathcal{I}_{n+2}$.

Then for each $k < \omega$, \mathcal{M}_k is n-Neeman iterable.

In the situation of Definition 1.3, $K^{\mathcal{M}_k}$ is the core model of \mathcal{M}_k of height κ , where κ is the critical point of the top measure of \mathcal{M}_k , in the sense of [6]. Notice that if n > 0, then $K^{\mathcal{M}_k}$ will have Woodin cardinals. The concept of being "n-Neeman iterable" is basically due to I. Neeman, cf. [3].

Definition 1.4 Let \mathcal{M} be a premouse, and let $\delta \in \mathcal{M}$. Then \mathcal{M} is 0-Neeman iterable above δ iff there is some measure $E^{\mathcal{M}}_{\alpha}$ with critical point above δ such that \mathcal{M} is linearily iterable with respect to $E^{\mathcal{M}}_{\alpha}$ and its images. For $n < \omega$, \mathcal{M} is (n+1)-Neeman iterable above δ iff for every iteration tree \mathcal{T} on \mathcal{M} of length ω (sic!) which is above δ there is some cofinal branch δ through \mathcal{T} such that $\mathcal{M}^{\mathcal{T}}_{\delta}$ is transitive and n-Neeman iterable above $\delta(\mathcal{T})$.

The following is basically due to Neeman, cf. [3].

Theorem 1.5 Let $n < \omega$, and let \mathcal{M} be an n-Neeman iterable premouse. Suppose that \mathcal{M} is a model of Ψ_n if n is even, and suppose that \mathcal{M} is a model of Φ_n if n is odd. Then $\mathcal{M} \prec_{\Sigma_{n+2}^1} V$.

We would like to have that the iterability of $K^{\mathcal{M}_k}$ witnesses the iterability of \mathcal{M}_k , but this would probably be too much to ask for. We showed in [4] that \clubsuit_n is true for n=0.

Theorem 1.6 ([4]) \clubsuit_0 holds true.

PROOF. Let us fix $(\mathcal{M}_k, x_k : k < \omega)$, a sequence as in \clubsuit_0 . For an ordinal α , we write $(M_k^i, \pi_k^{ij} : i \leq j \leq \alpha)$ for the putative iteration of \mathcal{M}_k of length α (if it exists); and if so, then we write κ_k^i for the critical point of the top measure of M_k^i (or for $\sup\{\kappa_k^j : j < i\}$ if $i = \alpha$ is a limit ordinal and M_k^{α} is not well-founded). We say that α is a uniform indiscernible iff for every $k < \omega$, $\alpha = \kappa_k^i$ for some i (in fact $i = \alpha$). By $\binom{\alpha}{k}$, we denote the statement that M_k^{α} , the α^{th} iterate of \mathcal{M}_k (via its unique measure and its images) is well-founded.

We are now going to prove, by induction on α , simultaneously for all $k < \omega$, that $\binom{\alpha}{k}$ holds true for every $\alpha < \omega_1$.

Let us first suppose that α is not a uniform indiscernible. Let $k < \omega$. Let us write $\kappa = \kappa_{k+1}^0$ for the moment. Let $(\mathcal{T}, \mathcal{U})$ denote the coiteration of $K^{J_{\kappa}[x_k]}$ with $K^{\mathcal{M}_{k+1}}$. As $\mathcal{M}_{k+1} \models "\mathcal{M}_k = (x_k)^{\#}$," there must be some *proper* initial segment of $K^{\mathcal{M}_{k+1}}$ which iterates past $K^{J_{\kappa}[x_k]}$. (It is not hard to verify that some such \mathcal{P} must exist, as otherwise there is an inner model with a strong cardinal. One can even show that otherwise 0^{\P} would exist, cf. [4].) We may therefore construe \mathcal{U} as an iteration tree (of length κ) on \mathcal{P} .

Now let, for $\beta \leq \alpha$, $\mathcal{T}_{\beta} = \pi_{k+1}^{0\beta}(\mathcal{T})$ and $\mathcal{U}_{\beta} = \pi_{k+1}^{0\beta}(\mathcal{U})$. We then have that for each $\beta < \alpha$, $(\mathcal{T}_{\beta}, \mathcal{U}_{\beta})$ is the coiteration of $K^{\kappa_{k+1}^{\beta}}$ with \mathcal{P} . (Notice that $\alpha = \kappa_{k+1}^{\alpha}$.) Let us write $(\mathcal{T}^*, \mathcal{U}^*) = (\mathcal{T}_{\alpha}, \mathcal{U}_{\alpha})$. The key point is that, because $K^{\mathcal{M}_{k+1}}$ (and hence \mathcal{P}) is in \mathcal{I}_2 , \mathcal{P} is iterable, so that $\mathcal{M}_{\alpha}^{\mathcal{U}^*}$, the last model of \mathcal{U}^* , is well-founded.

Let us now fix $\gamma < \beta < \alpha$, and let us write $\kappa = \kappa_{k+1}^{\gamma}$ and $\lambda = \kappa_{k+1}^{\beta}$ for the moment. Let us also assume that γ and β are "typical," i.e., that $\kappa = \kappa_k^{\gamma}$ and $\lambda = \kappa_k^{\beta}$ as well.

Claim 1.
$$\pi_k^{\gamma\beta} \upharpoonright (\mathcal{P}(\kappa) \cap J_{\alpha}[x_k]) = \pi_{k+1}^{\gamma\beta} \upharpoonright (\mathcal{P}(\kappa) \cap J_{\alpha}[x_k]).$$

PROOF. Let $X \in \mathcal{P}(\kappa) \cap J_{\alpha}[x_k]$, and let $X = \pi_k^{i\gamma}(\bar{X})$, where $i < \gamma$. Then $\pi_k^{\gamma\beta}(X) = \pi_k^{i\beta}(\bar{X}) = \pi_{k+1}^{\gamma\beta}(\pi_k^{i\gamma})(\bar{X}) = \pi_{k+1}^{\gamma\beta}(\pi_k^{i\gamma}(\bar{X})) = \pi_{k+1}^{\gamma\beta}(X)$.

Claim 2.
$$\pi_{\kappa\lambda}^{\mathcal{U}^*} \upharpoonright (\mathcal{P}(\kappa) \cap \mathcal{M}_{\kappa}^{\mathcal{U}^*}) = \pi_{k+1}^{\gamma\beta} \upharpoonright (\mathcal{P}(\kappa) \cap \mathcal{M}_{\kappa}^{\mathcal{U}^*}).$$

PROOF. Let $X \in \mathcal{P}(\kappa) \cap \mathcal{M}_{\kappa}^{\mathcal{U}^*}$, and let $X = \pi_{i\kappa}^{\mathcal{U}^*}(\bar{X})$, where $i < \kappa$. Then $\pi_{\kappa\lambda}^{\mathcal{U}_{\beta}}(X) = \pi_{i\lambda}^{\gamma\beta}(\bar{X}) = \pi_{k+1}^{\gamma\beta}(\pi_{i\kappa}^{\mathcal{U}_{\gamma}})(\bar{X}) = \pi_{k+1}^{\gamma\beta}(X)$.

Now notice that

$$\kappa^{+M_k^{\kappa}} = \kappa^{+K^{J_{\alpha}[x_k]}} < \kappa^{+\mathcal{M}_{\kappa}^{T^*}} = \kappa^{+\mathcal{M}_{\kappa}^{\mathcal{U}^*}}$$

(Here, the first equality is true by covering.)

Therefore, Claims 1 and 2 imply that for "typical" $\gamma < \beta < \alpha$,

$$\pi_k^{\gamma\beta} \restriction (\kappa_{k+1}^\gamma)^{+M_k^\kappa} = \pi_{k+1}^{\gamma\beta} \restriction (\kappa_{k+1}^\gamma)^{+M_k^\kappa} = \pi_{\kappa\lambda}^{\mathcal{U}^*} \restriction (\kappa_{k+1}^\gamma)^{+M_k^\kappa}.$$

This buys us that M_k^{α} must be well-founded, i.e., $\binom{\alpha}{k}$ is true.

We now turn to our second correctness conjecture, which comes from [6].

Definition 1.7 Let $n < \omega$. By IIH_n we denote the following statement.

Suppose that for every $x \in {}^{\omega}\omega$, $M_n^{\dagger}(x)$ exists, but also suppose that $M_{n+1}^{\#}$ does not exist.

Let \mathcal{P} be a z-premouse such that $\mathcal{P} \models \Phi_n$ and such that $K^{\mathcal{P}} \in \mathcal{I}_{n+2}$. Then $\mathcal{P}|\Omega$ is n-Neeman iterable, where Ω is the critical point of the top measure of \mathcal{P} .

Here, "IIH" stands for "Iterability Inheritance Hypothesis." In the situation of Definition 1.7, by K^P we mean the core model of \mathcal{P} of height Ω in the sense of [6].

Steel showed in [8] that IIH_n holds true for n = 0. Later, we gave a different proof of IIH_0 in [5] (cf. also [6]).

Theorem 1.8 ([8]) IIH₀ holds true.

2 The even case

The proof of the above Conjecture will be a core model induction on the levels of the projective hierarchy. The first two steps of this induction are provided by [1] and [2]. An appropriate generalization of [1] should give a general version of the odd steps of this induction. We here sketch how to run the even steps, modulo our two correctness hypotheses.

Theorem 2.1 Let $n < \omega$. Assume both \clubsuit_{2n} and Π_{2n} to hold. Suppose that all Π^1_{2n+1} sets are determined. Suppose further that for all A, $B \subset {}^{\omega}\omega$ such that A, B are both Π^1_{2n+2} , either $A \leq_{\mathsf{W}} B$ or $B \leq_{\mathsf{W}} {}^{\omega}\omega \setminus A$. Then all Π^1_{2n+2} sets are determined.

PROOF. The hypothesis of Theorem 2.1 yields that for all $x \in {}^{\omega}\omega$, $M_{2n}^{\#}(x)$ exists. Let us assume that (the conclusion of) Theorem 2.1 does not hold. There is then some $x_0 \in {}^{\omega}\omega$ such that $M_{2n+1}^{\#}(x_0)$ does not exist. We aim to derive a contradiction. We'll present the argument for the case $x_0 = 0$ and leave it to the reader to verify that the argument to follow easily relativizes.

Claim 1. There is some $z \in {}^{\omega}\omega$ such that \mathcal{I}_{n+2} is $\Sigma^1_{2n+2}(z)$.

PROOF. Set $\mathcal{I} = \mathcal{I}_{n+2}$. We may easily define a Π^1_{2n+2} -norm φ on \mathcal{I} . Let U be a complete Π^1_{2n+2} -set. If $U \leq_{\mathsf{W}} \mathcal{I}$, then φ induces a Π^1_{2n+2} -norm on U. But Π^1_{2n+1} -determinacy implies that there is no such norm on U. Therefore $\mathcal{I} \leq_{\mathsf{W}} {}^{\omega} \omega \setminus U$, which yields that \mathcal{I} is $\Sigma^1_{2n+2}(z)$ for some $z \in {}^{\omega}\omega$. \square (Claim 1)

Claim 2. For every $x \in {}^{\omega}\omega$, $M_{2n}^{\dagger}(x)$ exists.

PROOF. Suppose not, and let $x_1 \in {}^{\omega}\omega$ be such that $M_{2n}^{\dagger}(x_1)$ does not exist. We aim to derive a contradiction. We'll present the argument for the case $x_1 = 0$ and leave it to the reader to verify that the argument to follow easily relativizes.

We let

 $B = \begin{cases} x \in {}^{\omega}\omega : (x)_0 = z \text{, and for all } k < \omega \text{,} \\ (x)_{k+1} \text{ codes a } (x)_k\text{-premouse } \mathcal{M}_k \text{ which is a model of } \Psi_{2n} \text{,} \\ \mathcal{M}_{k+1} \models \mathcal{M}_k \text{ is iterable, and} \\ K^{\mathcal{M}_k} \in \mathcal{I}_{2n+2} \end{cases}.$

Of course, $B \neq \emptyset$. Let $x \in B$, and let \mathcal{M} be the premouse coded by $(x)_1$. Using \clubsuit_{2n} , \mathcal{M} is 2n-Neeman iterable.

By Claim 1, B is $\Sigma_{2n+2}^1(z)$. But $\mathcal{M} \prec_{\Sigma_{2n+2}^1} V$, and hence there is some $y \in {}^{\omega}\omega \cap \mathcal{M}$ such that $y \in B$. But then $\mathcal{N} \in \mathcal{M}$ by the above Subclaim, where \mathcal{N} is the premouse coded by $(y)_1$. We have shown that

$$\{\mathcal{M}: \exists x \in B \ \mathcal{M} \text{ is coded by } x\}$$

is non-empty and does not have an \in -least element. Contradiction!

 \square (Claim 2)

Let

$$B^* = \{x \in {}^{\omega}\omega : x \text{ codes a } z\text{-premouse } \mathcal{M} \text{ which is a model of } \Phi_{2n} \text{ and } K^{\mathcal{M}} \in \mathcal{I}_{n+2}\}.$$

We have that $B^* \neq \emptyset$, and by IIH_{2n} , if $x \in B^*$, then x codes a 2n-Neeman-iterable z-premouse which is a model of Φ_{2n} .

Now let $x \in B^*$, and let \mathcal{M} be the premouse coded by x. By Claim 1, B^* is $\Sigma^1_{2n+2}(z)$. But $\mathcal{M} \prec_{\Sigma^1_{2n+2}} V$, and hence there is some $y \in {}^{\omega}\omega \cap \mathcal{M}$ such that $y \in B^*$. In particular, if \mathcal{N} is the premouse coded by y, then $\mathcal{N} \in \mathcal{M}$.

We have shown that

$$\{\mathcal{M}: \exists x \in B^* \ \mathcal{M} \text{ is coded by } x\}$$

is non-empty and does not have an \in -least element.

 \square (Theorem 2.1)

References

- [1] Harrington, Leo, Analytic determinacy and 0[#], Journal Symb. Logic 43 (1978), pp. 685–693.
- [2] Hjorth, Π_2^1 Wadge degrees, Annals of Pure and Appl. Logic 77 (1996), pp. 53–74.

- [3] Neeman, I., Optimal proofs of determinacy, Bull. of Symb. Logic 1 (1995), pp. 327-339.
- [4] Schindler, R., Sharps and the Σ_3^1 -correctness of K, unpublished.
- [5] Schindler, R., A simple proof of Σ_3^1 -correctness for K, unpublished.
- [6] Schindler, R., Core models in the presence of Woodin cardinals, Jornal Symb. Logic 71 (2006), pp. 1145–1154.
- [7] Steel, J., Projectively well-ordered inner models, Ann. Pure Appl. Logic 74 (1995), no. 1, pp. 77–104.
- [8] Steel, J., The core model iterability problem, Springer Verlag, 1996.
- [9] Wadge, W. W., Ph.D. Thesis, Univ. California at Berkeley, 1984.