I'd like to report on a result of Vopěnka and Balcar, which I learned from Bukovský.

Theorem 1 (Vopěnka–Balcar) Let W be an inner model of V. Let T_P be a set in W, and let $g \in T_P$. The following are equivalent.

(1) There is $R \subseteq T_P \times T_P$, $R \in W$ such that
 (a) for each $p \in g$, $\{ q : pRq \} \subset T_P \setminus g$, and
 (b) for each $A \in W$, $A \subseteq T_P \setminus g$, there is some $p \in g$ with $\{ q : pRq \} \supset A$.

 (in other words, $\{ \{ q : pRq \} : p \in g \}$ is a C-closed subset of $\mathcal{P}(T_P \setminus g) \cap W$.)

(2) There is some $\leq \subset T_P \times T_P$ such that (T_P, \leq) is a partial order and g is (T_P, \leq)-generic over W.

Proof: (2) \implies (1). Let $R = \bot$, where $p \bot g$ if p and g are incompatible w.r.t. \leq.
(a) is trivial.

(b) Let $A \subseteq W$, $A \subseteq \mathcal{P} \setminus \emptyset$. Let $A' = \{ p : \exists q \in A \ p \leq q \}$. Then $A' \cap \emptyset = \emptyset$.

Let $p \in \emptyset$, $p \perp \emptyset = \emptyset$. Then $p \perp q$ for all $q \in A'$ (hence for all $q \in A$).

Otherwise, if $r \leq p, q$, let g' be TP-joined on W with $r \in g'$; then $A' \cap g' = \emptyset$, but $r \in A' \cap g'$.

Contradiction.

Hence $A \subseteq \{ q : q \perp p \}$.

Let us now prove $(1) \Rightarrow (2)$. We may as well assume that R as in (1) is symmetric and non-reflexive, as we may replace R by

$$(R \cup R^{-1}) \setminus \text{id} \setminus \mathcal{P}.$$

Let us then define $p \leq q$ by $\{ r : rRp \} \supset \{ r : rRq \}$.

Claim 1. $p R q \Rightarrow p \perp q$ in the sense of \leq.

Proof of Claim 1: Suppose that $p R q$ and
Claim 1. \(\mathfrak{g} \) is \(\leq \)-generic on \(\langle \mathbb{P}; \leq \rangle \). Let \(r \leq p, q \).

Then \(p \mathrel{R} q, \) so \(\mathrel{R} R p \Rightarrow \mathrel{R} R r \quad \text{(Claim 1)} \)

Claim 2. \(\mathfrak{g} \subset \mathbb{P} \) is a filter.

Proof of Claim 2: First let \(\{p, q\} \leq \mathfrak{g} \). Then

\[\{r : p \mathrel{R} r \lor q \mathrel{R} r\} \in \mathbb{P} (\mathbb{P} \setminus \mathfrak{g}) \cap W, \text{ so there is } \] by (b) some \(s \leq \mathfrak{g} \) with \(\{r : s \mathrel{R} r\} \supset \{r : p \mathrel{R} r\} \cup \{r : q \mathrel{R} r\} \), i.e., \(s \leq p, q \).

Now let \(p \leq \mathfrak{g} \), \(p \leq q \). If \(q \notin \mathfrak{g} \), then by (a) there is some \(r \leq \mathfrak{g} \) with \(r \mathrel{I} q \), hence \(r \perp \mathfrak{g} \) by Claim 1. But then \(r \perp p \) by \(p \leq q \). However, \(\{r, p\} \leq \mathfrak{g} \), so this contradicts the previous paragraph.

\[\] (Claim 2)

Claim 3. \(\mathfrak{g} \) is \(\langle \mathbb{P}; \leq \rangle \)-generic on \(W \).

Proof of Claim 3: If \(A \subset \mathbb{P} \setminus \mathfrak{g} \) were a maximal antichain, then every \(A \in W \), then by (b) there could be some \(p \leq \mathfrak{g} \) with \(\{q : q \mathrel{R} p\} \supset A \). By Claim 1, \(q \perp p \) for all \(q \in A \).

\[\] (Claim 3)
We have shown Theorem 1.

Theorem 2 (Vopěnka) Let *W* be an inner model of *V*. Suppose that for each *A* ∈ *V*, *A* ⊆ *W*, there are *X*, *Y* such that *A* = *UX*, *X* ⊆ *Y*, *Y* ∈ *W*,

\[\overline{Y} \leq \kappa, \text{ where } \kappa \text{ is an uncountable cardinal.} \]

then there is some poset *P* ∈ *W* of size ≤ \(\kappa \) and some *g* which is *P*-generic over *W* s.t. *V* = *W*[\(g \)].

Proof: Let *f* : \(\theta \to \mathcal{O}(\kappa) \), \(f \in V \). Let *f* = *UX*, \(X \subseteq Y \in W \), \(Y \leq \kappa \). Let \(g : \theta \to V \) be defined by

\[g(\bar{s}) = \{ \gamma : \exists a \in Y (\gamma \text{ is least st. } (\bar{s}, \gamma) \in a) \} \, . \]

Then \(f(\bar{s}) \in g(\bar{s}) \), \(g(\bar{s}) \leq \kappa \), for all \(\bar{s} \).

Hence by Bukovsky's theorem there is some *Q* ∈ *W* and some \(h \) Q-generic over *W* s.t. *V* = *W*[\(h \)] ad *Q* has the \(\kappa^+ \)-c.c. Fix such *Q*, \(h \).

By our hypothesis, we may write
\[h = \bigcup X, \ x \leq y \in W, \ y \leq x. \]

Let \(t \in W^2 \), \(\tau^h = \mathcal{P}(Y \setminus X) \cap W \).

Let us define \(R \subseteq Y \times Y \) as follows. For \(a, b \in Y \) let \(a \sim b \) if

\[\exists p \in a \cap b \exists x \in \mathcal{P}(Y) \cap W \left((p, x) \in \tau \land b \in x \right) \]

It is easy to see that (a) + (b) of (1) in the statement of Theorem 1 are satisfied (with \(\mathcal{P} = Y, \ g = X \)).

But then there is by Theorem 1 some \(X \in \mathcal{W} \) s.t. \(X \) is \((Y; \leq) \)-generic over \(W \) of

course, \(h = \bigcup X \in W[X] \), so that \(W[X] \supseteq W[h] = V \). As \(X \in V, \ W[X] = V. \)

\[\square \]