Burstin bases and well-ordering the reals

Ralf Schindler
Joint work with Mariam Beriashvili, Jörg Brendle, Fabiana Castiblanco, Vladimir Kanovei, Liuzhen Wu, and Liang Yu

Institut für Mathematische Logik und Grundlagenforschung

Reflections on Set Theoretic Reflection
Sant Bernat, Montseny, Nov 19, 2018
“Paradoxical” sets of reals

Definition
Let $A \subseteq \mathbb{R}$ uncountable. We say that A is

- a Vitali set if A is the range of a selector for the equivalence relation \sim_V defined over $\mathbb{R} \times \mathbb{R}$ by $x \sim_V y \iff x - y \in \mathbb{Q}$;
“Paradoxical” sets of reals

Definition
Let \(A \subseteq \mathbb{R} \) uncountable. We say that \(A \) is

- a Vitali set if \(A \) is the range of a selector for the equivalence relation \(\sim_V \) defined over \(\mathbb{R} \times \mathbb{R} \) by \(x \sim_V y \iff x - y \in \mathbb{Q} \);

- a Sierpiński set if for every \(N \in \mathcal{N} \) -the ideal of all null sets with respect to Lebesgue measure on \(\mathbb{R} \)- we have \(|A \cap N| \leq \aleph_0 \);
Definition
Let $A \subseteq \mathbb{R}$ uncountable. We say that A is

- a **Vitali set** if A is the range of a selector for the equivalence relation \sim_V defined over $\mathbb{R} \times \mathbb{R}$ by $x \sim_V y \iff x - y \in \mathbb{Q}$;

- a **Sierpiński set** if for every $N \in \mathcal{N}$ -the ideal of all null sets with respect to Lebesgue measure on \mathbb{R}- we have $|A \cap N| \leq \aleph_0$;

- a **Luzin set** if for every $M \in \mathcal{M}$ -the ideal of all meager sets- we have $|A \cap M| \leq \aleph_0$;
“Paradoxical” sets of reals

Definition

Let $A \subseteq \mathbb{R}$ uncountable. We say that A is

- a Vitali set if A is the range of a selector for the equivalence relation \sim_V defined over $\mathbb{R} \times \mathbb{R}$ by $x \sim_V y \iff x - y \in \mathbb{Q}$;
- a Sierpiński set if for every $N \in \mathcal{N}$ -the ideal of all null sets with respect to Lebesgue measure on \mathbb{R}- we have $|A \cap N| \leq \aleph_0$;
- a Luzin set if for every $M \in \mathcal{M}$ -the ideal of all meager sets- we have $|A \cap M| \leq \aleph_0$;
- a Bernstein set if for every perfect set $P \subseteq \mathbb{R}$ we have $A \cap P \neq \emptyset$ and $(\mathbb{R} \setminus A) \cap P \neq \emptyset$;
“Paradoxical” sets of reals

Definition
Let $A \subseteq \mathbb{R}$ uncountable. We say that A is

- a **Vitali set** if A is the range of a selector for the equivalence relation \sim_V defined over $\mathbb{R} \times \mathbb{R}$ by $x \sim_V y \iff x - y \in \mathbb{Q}$;
- a **Sierpiński set** if for every $N \in \mathcal{N}$ -the ideal of all null sets with respect to Lebesgue measure on \mathbb{R}- we have $|A \cap N| \leq \aleph_0$;
- a **Luzin set** if for every $M \in \mathcal{M}$ -the ideal of all meager sets- we have $|A \cap M| \leq \aleph_0$;
- a **Bernstein set** if for every perfect set $P \subseteq \mathbb{R}$ we have $A \cap P \neq \emptyset$ and $(\mathbb{R} \setminus A) \cap P \neq \emptyset$;
- a **Hamel basis** if A is a basis of \mathbb{R} when construed as a vector space over \mathbb{Q};
“Paradoxical” sets of reals

Definition
Let $A \subseteq \mathbb{R}$ uncountable. We say that A is

- a **Vitali set** if A is the range of a selector for the equivalence relation \sim_V defined over $\mathbb{R} \times \mathbb{R}$ by $x \sim_V y \iff x - y \in \mathbb{Q}$;
- a **Sierpiński set** if for every $N \in \mathcal{N}$ -the ideal of all null sets with respect to Lebesgue measure on \mathbb{R}- we have $|A \cap N| \leq \aleph_0$;
- a **Luzin set** if for every $M \in \mathcal{M}$ -the ideal of all meager sets- we have $|A \cap M| \leq \aleph_0$;
- a **Bernstein set** if for every perfect set $P \subseteq \mathbb{R}$ we have $A \cap P \neq \emptyset$ and $(\mathbb{R} \setminus A) \cap P \neq \emptyset$;
- a **Hamel basis** if A is a basis of \mathbb{R} when construed as a vector space over \mathbb{Q};
- a **Burstin basis** if A is a Hamel basis which intersects every perfect set.
“Paradoxical” sets of reals

Definition

Let $A \subseteq \mathbb{R}$ uncountable. We say that A is

- a **Vitali set** if A is the range of a selector for the equivalence relation \sim_V defined over $\mathbb{R} \times \mathbb{R}$ by $x \sim_V y \iff x - y \in \mathbb{Q}$;
- a **Sierpiński set** if for every $N \in \mathcal{N}$ -the ideal of all null sets with respect to Lebesgue measure on \mathbb{R}- we have $|A \cap N| \leq \aleph_0$;
- a **Luzin set** if for every $M \in \mathcal{M}$ -the ideal of all meager sets- we have $|A \cap M| \leq \aleph_0$;
- a **Bernstein set** if for every perfect set $P \subseteq \mathbb{R}$ we have $A \cap P \neq \emptyset$ and $(\mathbb{R} \setminus A) \cap P \neq \emptyset$;
- a **Hamel basis** if A is a basis of \mathbb{R} when construed as a vector space over \mathbb{Q};
- a **Burstin basis** if A is a Hamel basis which intersects every perfect set.

Let $A \subseteq \mathbb{R} \times \mathbb{R}$. We say that A is

- a **Mazurkiewicz set** iff $|A \cap \ell| = 2$ for every straight line $\ell \subseteq \mathbb{R} \times \mathbb{R}$.

Suppose $V \models \text{ZF}$ and suppose that a Hamel basis H exists. Then there is a Vitali set.
Basic definitions and results

Folklore and classical results

- Suppose $V \models ZF$ and suppose that a Hamel basis H exists. Then there is a Vitali set.

- Luzin (1914) and Sierpiński (1924): Assume V is a model of $\text{ZFC} + \text{CH}$. Then there are Λ and S in V such that Λ is a Luzin set and S is a Sierpiński set.
Folklore and classical results

- Suppose $V \models ZF$ and suppose that a Hamel basis H exists. Then there is a Vitali set.
- Luzin (1914) and Sierpiński (1924): Assume V is a model of $ZFC + CH$. Then there are Λ and S in V such that Λ is a Luzin set and S is a Sierpiński set.
- Suppose $V \models ZF$. Every Burstin basis is a Bernstein set.
Suppose $V \models ZF$ and suppose that a Hamel basis H exists. Then there is a Vitali set.

Luzin (1914) and Sierpiński (1924): Assume V is a model of $ZFC + CH$. Then there are Λ and S in V such that Λ is a Luzin set and S is a Sierpiński set.

Suppose $V \models ZF$. Every Burstin basis is a Bernstein set.

Suppose $V \models ZF$. There is then a perfect set of reals which is linearly independent. Hence if $V \models ZFC$, there is then a Hamel basis which contains a perfect set (and is thus no Burstin basis).
Folklore and classical results

- Suppose $V \models ZF$ and suppose that a Hamel basis H exists. Then there is a Vitali set.

- Luzin (1914) and Sierpiński (1924): Assume V is a model of $ZFC + CH$. Then there are Λ and S in V such that Λ is a Luzin set and S is a Sierpiński set.

- Suppose $V \models ZF$. Every Burstin basis is a Bernstein set.

- Suppose $V \models ZF$. There is then a perfect set of reals which is linearly independent. Hence if $V \models ZFC$, there is then a Hamel basis which contains a perfect set (and is thus no Burstin basis).

- Burstin (1916): Assume $V \models ZFC$. Then there is a Burstin basis B.
Folklore and classical results

- Suppose $V \models ZF$ and suppose that a Hamel basis H exists. Then there is a Vitali set.
- Luzin (1914) and Sierpiński (1924): Assume V is a model of $ZFC + CH$. Then there are Λ and S in V such that Λ is a Luzin set and S is a Sierpiński set.
- Suppose $V \models ZF$. Every Burstin basis is a Bernstein set.
- Suppose $V \models ZF$. There is then a perfect set of reals which is linearly independent. Hence if $V \models ZFC$, there is then a Hamel basis which contains a perfect set (and is thus no Burstin basis).
- Burstin (1916): Assume $V \models ZFC$. Then there is a Burstin basis B.
- Mazurkiewicz (1914): Assume $V \models ZFC$. Then there is a Mazurkiewicz set M.
“Paradoxical” sets and well-ordering the reals

All these classical constructions may be obtained by assuming ZF plus the existence of a well-ordering of \mathbb{R} (or, ZF plus there is a well-ordering of \mathbb{R} of order type ω_1 in the case of Luzin and Sierpiński sets).
“Paradoxical” sets and well-ordering the reals

All these classical constructions may be obtained by assuming ZF plus the existence of a well-ordering of \(\mathbb{R} \) (or, ZF plus there is a well-ordering of \(\mathbb{R} \) of order type \(\omega_1 \) in the case of Luzin and Sierpiński sets).

Question

*Can we have those “paradoxical” sets of reals in the absence of a well-ordering of \(\mathbb{R} \)?
“Paradoxical” sets and well-ordering the reals

All these classical constructions may be obtained by assuming ZF plus the existence of a well-ordering of \mathbb{R} (or, ZF plus there is a well-ordering of \mathbb{R} of order type ω_1 in the case of Luzin and Sierpiński sets).

Question

Can we have those “paradoxical” sets of reals in the absence of a well-ordering of \mathbb{R}?

Recall the Cohen-Halpern-Lévy model: Let g be $\mathcal{C}(\omega)$-generic over L ($\mathcal{C}(\omega)$ being the finite support product of ω Cohen forcings), and let $A = \{c_n : n < \omega\}$ be the set of Cohen reals added by g.

$$H = \text{HOD}_{A \cup \{A\}}^L[g].$$
“Paradoxical” sets and well-ordering the reals

All these classical constructions may be obtained by assuming ZF plus the existence of a well-ordering of \(\mathbb{R} \) (or, ZF plus there is a well-ordering of \(\mathbb{R} \) of order type \(\omega_1 \) in the case of Luzin and Sierpiński sets).

Question

Can we have those “paradoxical” sets of reals in the absence of a well-ordering of \(\mathbb{R} \)?

Recall the Cohen-Halpern-Lévy model: Let \(g \) be \(\mathbb{C}(\omega) \)-generic over \(L \) (\(\mathbb{C}(\omega) \) being the finite support product of \(\omega \) Cohen forcings), and let \(A = \{c_n : n < \omega\} \) be the set of Cohen reals added by \(g \).

\[
H = \text{HOD}^L_{A \cup \{A\}}.
\]

Theorem (D. Pinkus and K. Prikry, S. Feferman, 1975)

In the Cohen-Halpern-Lévy model \(H \), in which \(A \) is an infinite set of reals with no (infinite) countable subset (i.e., \(AC_\omega(\mathbb{R}) \) fails), there is a Luzin set as well as a Vitali set.
"Paradoxical" sets and well-ordering the reals

Question (D. Pincus and K. Prikry, 1975)

"We would be interested in knowing whether a Hamel basis for \(\mathbb{R} \) over \(\mathbb{Q} \) (the rationals) exists in \(H \) or in any other model in which \(\mathbb{R} \) cannot be well ordered."
"Paradoxical" sets and well-ordering the reals

Question (D. Pincus and K. Prikry, 1975)

"We would be interested in knowing whether a Hamel basis for \(\mathbb{R} \) over \(\mathbb{Q} \) (the rationals) exists in \(H \) or in any other model in which \(\mathbb{R} \) cannot be well ordered."

Question (variant 1 of Pinkus-Prikry)

Is the existence of a Hamel basis (or, the simultaneous existence of all of those "paradoxical" sets of reals) compatible with ZF plus the negation of AC\(_\omega(\mathbb{R}) \)?
“Paradoxical” sets and well-ordering the reals

Question (D. Pincus and K. Prikry, 1975)
“We would be interested in knowing whether a Hamel basis for \mathbb{R} over \mathbb{Q} (the rationals) exists in H or in any other model in which \mathbb{R} cannot be well ordered.”

Question (variant 1 of Pinkus-Prikry)
Is the existence of a Hamel basis (or, the simultaneous existence of all of those “paradoxical” sets of reals) compatible with ZF plus the negation of $AC_\omega(\mathbb{R})$?

Question (variant 2 of Pinkus-Prikry)
Is the existence of a Hamel basis (or, the simultaneous existence of all of those “paradoxical” sets of reals) compatible with ZF plus DC plus the non-existence of a well-order of \mathbb{R}?
“Paradoxical” sets and well-ordering the reals

Question (D. Pincus and K. Prikry, 1975)

“We would be interested in knowing whether a Hamel basis for \(\mathbb{R} \) over \(\mathbb{Q} \) (the rationals) exists in \(H \) or in any other model in which \(\mathbb{R} \) cannot be well ordered.”

Question (variant 1 of Pinkus-Prikry)

Is the existence of a Hamel basis (or, the simultaneous existence of all of those “paradoxical” sets of reals) compatible with ZF plus the negation of AC\(_\omega(\mathbb{R})\)?

Question (variant 2 of Pinkus-Prikry)

Is the existence of a Hamel basis (or, the simultaneous existence of all of those “paradoxical” sets of reals) compatible with ZF plus DC plus the non-existence of a well-order of \(\mathbb{R} \)?

Theorem (A. Blass, 1984)

In ZF, if every vector space has a basis, then the Axiom of Choice holds true.
Theorem (Beriashvili, Sch., Wu and Yu, 2018)

In the Cohen-Halpern-Lévy model H there is a Hamel basis and a Bernstein set (but there are no Sierpiński sets).
Burstin bases and non-$\operatorname{AC}_\omega(\mathbb{R})$

Theorem (Beriashvili, Sch., Wu and Yu, 2018)

In the Cohen-Halpern-Lévy model H there is a Hamel basis and a Bernstein set (but there are no Sierpiński sets).

In H, there is also a Hamel basis which contains a perfect set.
Theorem (Beriashvili, Sch., Wu and Yu, 2018)

In the Cohen-Halpern-Lévy model H there is a Hamel basis and a Bernstein set (but there are no Sierpiński sets).

In H, there is also a Hamel basis which contains a perfect set.

A result of Groszek-Slaman (1998), see below, may be used to show that in H, there is also a Burstin basis.
Theorem (Beriashvili, Sch., Wu and Yu, 2018)

In the Cohen-Halpern-Lévy model H there is a Hamel basis and a Bernstein set (but there are no Sierpiński sets).

In H, there is also a Hamel basis which contains a perfect set.

A result of Groszek-Slaman (1998), see below, may be used to show that in H, there is also a Burstin basis.

I don’t know if there is a Mazurkiewicz set in H.
Burstin bases and non-$\text{AC}_{\omega}(\mathbb{R})$

Let H^* be the following variant of the Cohen-Halpern-Lévy model: Let h be $\mathbb{S}(\omega)$-generic over L ($\mathbb{S}(\omega)$ being the finite support product of ω Sacks forcings). Let $B = \{d_n : n < \omega\}$ be the set of Sacks reals added by h.

$$H^* = \text{HOD}_{L[h]}^{L[h]}_{B \cup \{B\}}.$$
Burstin bases and non-$\text{AC}_\omega (\mathbb{R})$

Let H^* be the following variant of the Cohen-Halpern-Lévy model: Let h be $S(\omega)$-generic over L ($S(\omega)$ being the finite support product of ω Sacks forcings). Let $B = \{d_n : n < \omega\}$ be the set of Sacks reals added by h.

$$H^* = \text{HOD}_{L[h]}^{L[h]}(B \cup \{B\}).$$

Theorem

In H^* there is Sierpiński set, a Luzin set, a Hamel basis which contains a perfect set, as well as a Burstin basis.
Let H^* be the following variant of the Cohen-Halpern-Lévy model: Let h be $\mathcal{S}(\omega)$-generic over L ($\mathcal{S}(\omega)$ being the finite support product of ω Sacks forcings). Let $B = \{d_n : n < \omega\}$ be the set of Sacks reals added by h.

$$H^* = \text{HOD}^{L[h]}_{B \cup \{B\}}.$$

Theorem

In H^ there is Sierpiński set, a Luzin set, a Hamel basis which contains a perfect set, as well as a Burstin basis.*

Again, I don’t know if there is a Mazurkiewicz set in H^*.

Let H^* be the following variant of the Cohen-Halpern-Lévy model: Let h be $\mathbb{S}(\omega)$-generic over L ($\mathbb{S}(\omega)$ being the finite support product of ω Sacks forcings). Let $B = \{d_n : n < \omega\}$ be the set of Sacks reals added by h.

$$H^* = \text{HOD}^{L[h]}_{B \cup \{B\}}.$$

Theorem

In H^ there is Sierpiński set, a Luzin set, a Hamel basis which contains a perfect set, as well as a Burstin basis.*

Again, I don’t know if there is a Mazurkiewicz set in H^*.

By replacing Sacks forcing \mathbb{S} above by a refinement of Sacks forcing which is due to Jensen, one obtains a model H^{**} of ZF plus non-AC$_\omega$(\mathbb{R}) plus there is Δ^1_3 Sierpiński set, a Δ^1_3 Luzin set, a Δ^1_3 Hamel basis which contains a perfect set, as well as a Δ^1_3 Burstin basis.
Theorem (Brendle, Castiblanco, Sch., Wu, Yu)

There is a model W of ZF + DC such that in W the reals cannot be well-ordered and W contains Luzin as well as Sierpiński sets and also a Burstin basis.
Basic definitions and results

Luzin and Sierpiński sets in the Sacks model

Lemma (Folklore)

Let \(P \) be a forcing notion satisfying the Sacks property and let \(G \) be a \(P \)-generic filter over \(V \). Then:

1. For every null set \(N \subseteq \omega^\omega \) in \(V \) there is a \(G \)-null set \(\bar{N} \subseteq \omega^\omega \) coded in \(V \) such that \(N \subseteq \bar{N} \).
2. Similarly, for every meager set \(M \subseteq \omega^\omega \) in \(V \), there is a meager set \(\bar{M} \subseteq \omega^\omega \) coded in \(V \) such that \(M \subseteq \bar{M} \).

Corollary

If \(P \) has the Sacks property, then \(P \) preserves Luzin and Sierpiński sets.
Lemma (Folklore)

Let \mathbb{P} be a forcing notion satisfying the Sacks property and let G be a \mathbb{P}-generic filter over V. Then:

1. For every null set $N \subseteq \omega \omega$ in $V[G]$ there is a G_δ-null set $\tilde{N} \subseteq \omega \omega$ coded in V such that $N \subseteq \tilde{N}$.
Luzin and Sierpiński sets in the Sacks model

Lemma (Folklore)

Let \mathbb{P} be a forcing notion satisfying the Sacks property and let G be a \mathbb{P}-generic filter over V. Then:

(1) For every null set $N \subseteq \omega^\omega$ in $V[G]$ there is a G_δ-null set $\bar{N} \subseteq \omega^\omega$ coded in V such that $N \subseteq \bar{N}$.

(2) Similarly, for every meager set $M \subseteq \omega^\omega$ in $V[G]$, there is a meager set $\bar{M} \subseteq \omega^\omega$ coded in V such that $M \subseteq \bar{M}$.
Luzin and Sierpiński sets in the Sacks model

Lemma (Folklore)
Let \mathbb{P} be a forcing notion satisfying the Sacks property and let G be a \mathbb{P}-generic filter over V. Then:

1. For every null set $N \subseteq \omega^n$ in $V[G]$ there is a G_δ-null set $\bar{N} \subseteq \omega^n$ coded in V such that $N \subseteq \bar{N}$.

2. Similarly, for every meager set $M \subseteq \omega^n$ in $V[G]$, there is a meager set $\bar{M} \subseteq \omega^n$ coded in V such that $M \subseteq \bar{M}$.

Corollary
If \mathbb{P} has the Sacks property, then \mathbb{P} preserves Luzin and Sierpiński sets.
Let $\mathcal{S}(\omega_1)$ denote the countable support product of ω_1 Sacks forcings. $\mathcal{S}(\omega_1)$ has the Sacks property and is hence proper.
Let $S(\omega_1)$ denote the countable support product of ω_1 Sacks forcings. $S(\omega_1)$ has the Sacks property and is hence proper.

Let s be $S(\omega_1)$-generic over L, and let $R^* = R \cap L[s]$. Then

(a) $L(R^*) \models$ ZF plus DC plus “there is no w.o. of the reals,”
The Sacks model

Let $S(\omega_1)$ denote the countable support product of ω_1 Sacks forcings. $S(\omega_1)$ has the Sacks property and is hence proper.

Let s be $S(\omega_1)$-generic over L, and let $R^* = R \cap L[s]$. Then

(a) $L(R^*) \models ZF$ plus DC plus “there is no w.o. of the reals,”

(b) there is a Luzin set as well as a Sierpiński set in $L(R^*)$, but
Let $S(\omega_1)$ denote the countable support product of ω_1 Sacks forcings. $S(\omega_1)$ has the Sacks property and is hence proper.

Let s be $S(\omega_1)$-generic over L, and let $\mathbb{R}^* = \mathbb{R} \cap L[s]$. Then

(a) $L(\mathbb{R}^*) \models \text{ZF plus DC plus "there is no w.o. of the reals,"}$

(b) there is a Luzin set as well as a Sierpiński set in $L(\mathbb{R}^*)$, but

(c) there is no Vitali set (and hence no Hamel basis) in $L(\mathbb{R}^*)$.
Adding generically a Burstin set

First try. We define a partial order \(P^0_B \) adding a generic Burstin basis.
Adding generically a Burstin set

First try. We define a partial order \mathbb{P}_B^0 adding a generic Burstin basis.

Definition
We say $p \in \mathbb{P}_B^0$ if and only if p is a countable linearly independent set of reals.
Adding generically a Burstin set

First try. We define a partial order \mathbb{P}^0_B adding a generic Burstin basis.

Definition

We say $p \in \mathbb{P}^0_B$ if and only if p is a countable linearly independent set of reals.

We say $p \leq_{\mathbb{P}^0_B} q$ iff $p \supseteq q$
Adding generically a Burstin set

First try. We define a partial order \mathbb{P}^0_B adding a generic Burstin basis.

Definition

We say $p \in \mathbb{P}^0_B$ if and only if p is a countable linearly independent set of reals.

We say $p \leq_{\mathbb{P}^0_B} q$ iff $p \supseteq q$

Let b be \mathbb{P}^0_B-generic over $L(\mathbb{R}^*)$. Then $B = \bigcup b$ is a Hamel basis in $L(\mathbb{R}^*)[b]$.
Adding generically a Burstin set

First try. We define a partial order \mathbb{P}_B^0 adding a generic Burstin basis.

Definition

We say $p \in \mathbb{P}_B^0$ if and only if p is a countable linearly independent set of reals.

We say $p \leq_{\mathbb{P}_B^0} q$ iff $p \supseteq q$

Let b be \mathbb{P}_B^0-generic over $L(\mathbb{R}^*)$. Then $B = \bigcup b$ is a Hamel basis in $L(\mathbb{R}^*)[b]$.

Problem: $L(\mathbb{R}^*)[b] \models \text{ZFC plus CH.}$
Adding generically a Burstin set

Second try. We define a partial order \mathcal{P}_B adding a generic Burstin basis.
Second try. We define a partial order \mathcal{P}_B adding a generic Burstin basis.

Definition

We say $p \in \mathcal{P}_B$ if and only if there exists $x \in \mathbb{R}$ such that
Adding generically a Burstin set

Second try. We define a partial order \mathbb{P}_B adding a generic Burstin basis.

Definition
We say $p \in \mathbb{P}_B$ if and only if there exists $x \in \mathbb{R}$ such that

1. $p \in L[x]$ and
Adding generically a Burstin set

Second try. We define a partial order \mathbb{P}_B adding a generic Burstin basis.

Definition

We say $p \in \mathbb{P}_B$ if and only if there exists $x \in \mathbb{R}$ such that

1. $p \in L[x]$ and
2. $L[x] \models "p \text{ is a Burstin set}"$
Second try. We define a partial order \mathbb{P}_B adding a generic Burstin basis.

Definition

We say $p \in \mathbb{P}_B$ if and only if there exists $x \in \mathbb{R}$ such that

1. $p \in L[x]$ and
2. $L[x] \models "p \text{ is a Burstin set}"$

We say $p \leq_{\mathbb{P}_B} q$ iff $p \supseteq q$.
Adding generically a Burstin set

Second try. We define a partial order \mathbb{P}_B adding a generic Burstin basis.

Definition
We say $p \in \mathbb{P}_B$ if and only if there exists $x \in \mathbb{R}$ such that

(1) $p \in L[x]$ and

(2) $L[x] \models "p \text{ is a Burstin set.}"

We say $p \leq \mathbb{P}_B q$ iff $p \supseteq q$

Notice that $\mathbb{P}_B \neq \emptyset$.
Adding generically a Burstin set

Second try. We define a partial order \mathbb{P}_B adding a generic Burstin basis.

Definition
We say $p \in \mathbb{P}_B$ if and only if there exists $x \in \mathbb{R}$ such that

1. $p \in L[x]$ and
2. $L[x] \models "p \text{ is a Burstin set.}"$

We say $p \leq_{\mathbb{P}_B} q$ iff $p \supseteq q$

Notice that $\mathbb{P}_B \neq \emptyset$. However the *extendability* of \mathbb{P}_B is not obvious.
Second try. We define a partial order \mathbb{P}_B adding a generic Burstin basis.

Definition

We say $p \in \mathbb{P}_B$ if and only if there exists $x \in \mathbb{R}$ such that

1. $p \in L[x]$ and
2. $L[x] \models \text{"}p \text{ is a Burstin set.\"}$

We say $p \leq_{\mathbb{P}_B} q$ iff $p \supseteq q$

Notice that $\mathbb{P}_B \neq \emptyset$. However the **extendability** of \mathbb{P}_B is not obvious.

Extendability: If $p \in \mathbb{P}_B$ is such that $L[x] \models \text{"}p \text{ is a Burstin basis\"}$ and if $y \in \mathbb{R}^{L[x,y]} \setminus L[x]$, then there is some $q \leq_{\mathbb{P}_B} p$ such that q is a Burstin basis in $\mathbb{R}^{L[x,y]}$.

Adding generically a Burstin set
The Marczewski ideal and new generic reals

Definition (Marczewski)

A set \(X \subseteq \mathbb{R} \) is in \(s^0 \) if and only if for every perfect set \(P \) there is a perfect subset \(Q \subseteq P \) with \(Q \cap X = \emptyset \).
The Marczewski ideal and new generic reals

Definition (Marczewski)
A set $X \subseteq \mathbb{R}$ is in s^0 if and only if for every perfect set P there is a perfect subset $Q \subseteq P$ with $Q \cap X = \emptyset$.

s_0 is an σ-ideal which does not contain any perfect set.
The Marczewski ideal and new generic reals

Definition (Marczewski)
A set $X \subseteq \mathbb{R}$ is in s^0 if and only if for every perfect set P there is a perfect subset $Q \subseteq P$ with $Q \cap X = \emptyset$.

s_0 is an σ-ideal which does not contain any perfect set.

Theorem (M. Groszek, T. Slaman, 1998)

Let $W \subseteq V$ be an inner model such that $W \models \text{CH}$. If $\mathbb{R} \cap V \setminus W \neq \emptyset$, then

$$V \models \mathbb{R} \cap W \in s^0$$
The Marczewski ideal and new generic reals

Definition (Marczewski)
A set \(X \subseteq \mathbb{R} \) is in \(s^0 \) if and only if for every perfect set \(P \) there is a perfect subset \(Q \subseteq P \) with \(Q \cap X = \emptyset \).

\(s_0 \) is an \(\sigma \)-ideal which does not contain any perfect set.

Theorem (M. Groszek, T. Slaman, 1998)
Let \(W \subseteq V \) be an inner model such that \(W \models \text{CH} \). If \(\mathbb{R} \cap V \setminus W \neq \emptyset \), then
\[
V \models \mathbb{R} \cap W \in s^0
\]

Corollary
Let \(x, y \) be reals such that \(y \notin L[x] \), and let \(\{z_0, z_1, \ldots\} \in L[x, y] \cap [\mathbb{R}]^\omega \). Then
\[
\text{span}(\mathbb{R} \cap L[x] \cup \{z_0, z_1, \ldots\}) \in s_0^{L[x, y]}
\]
Corollary

Let $b \in L[x]$ be linearly independent, $x \in \mathbb{R}$. Let $y \in \mathbb{R} \setminus L[x]$. There is then some $p \supset b, p \in L[x, y]$ such that

$L[x, y] \models \text{"}p \text{ is a Burstin basis."} $
Extendability of \mathbb{P}_B

Corollary

Let $b \in L[x]$ be linearly independent, $x \in \mathbb{R}$. Let $y \in \mathbb{R} \setminus L[x]$. There is then some $p \supset b, p \in L[x, y]$ such that

$L[x, y] \models "p \text{ is a Burstin basis}".$

Lemma

$L(\mathbb{R}^*)$ thinks that:

(a) *(Extendability)* If $p \in \mathbb{P}_B$ is such that $L[x] \models "p \text{ is a Burstin basis}"$ and if $y \in \mathbb{R}^{L[x, y]} \setminus L[x]$, then there is some $q \leq_{\mathbb{P}_B} p$ such that q is a Burstin basis in $\mathbb{R}^{L[x, y]}$.

But there is a variant of \mathbb{P}_B which does add a Hamel basis over $L(\mathbb{R}^*)$ which is not a Burstin basis.
Extendability of \mathbb{P}_B

Corollary

Let $b \in L[x]$ be linearly independent, $x \in \mathbb{R}$. Let $y \in \mathbb{R} \setminus L[x]$. There is then some $p \supset b$, $p \in L[x, y]$ such that

$$L[x, y] \models " p \text{ is a Burstin basis}".$$

Lemma

$L(\mathbb{R}^*)$ thinks that:

(a) (Extendability) If $p \in \mathbb{P}_B$ is such that $L[x] \models " p \text{ is a Burstin basis}"$ and if $y \in \mathbb{R}^{L[x, y]} \setminus L[x]$, then there is some $q \leq_{\mathbb{P}_B} p$ such that q is a Burstin basis in $\mathbb{R}^{L[x, y]}$.

(b) \mathbb{P}_B is ω-closed.
Extendability of \mathbb{P}_B

Corollary

Let $b \in L[x]$ be linearly independent, $x \in \mathbb{R}$. Let $y \in \mathbb{R} \setminus L[x]$. There is then some $p \supset b, p \in L[x, y]$ such that

\[L[x, y] \models "p\ is\ a\ Burstin\ basis." \]

Lemma

$L(\mathbb{R}^*)$ thinks that:

(a) (Extendability) If $p \in \mathbb{P}_B$ is such that $L[x] \models "p\ is\ a\ Burstin\ basis"$ and if $y \in \mathbb{R}^L[x, y] \setminus L[x]$, then there is some $q \leq_{\mathbb{P}_B} p$ such that q is a Burstin basis in $\mathbb{R}^L[x, y]$.

(b) \mathbb{P}_B is ω-closed.

By these arguments, if in the definition of \mathbb{P}_B be replace “Burstin” by “Hamel,” then the generic added over $L(\mathbb{R}^*)$ will still automatically be a Burstin basis.
Extendability of \mathbb{P}_B

Corollary

Let $b \in L[x]$ be linearly independent, $x \in \mathbb{R}$. Let $y \in \mathbb{R} \setminus L[x]$. There is then some $p \supset b, p \in L[x, y]$ such that

$$L[x, y] \models "p \text{ is a Burstin basis}."

Lemma

$L(\mathbb{R}^*)$ thinks that:

(a) *(Extendability)* If $p \in \mathbb{P}_B$ is such that $L[x] \models "p \text{ is a Burstin basis}"$ and if $y \in \mathbb{R}^{L[x, y]} \setminus L[x]$, then there is some $q \leq_{\mathbb{P}_B} p$ such that q is a Burstin basis in $\mathbb{R}^{L[x, y]}$.

(b) \mathbb{P}_B is ω-closed.

By these arguments, if in the definition of \mathbb{P}_B be replace “Burstin” by “Hamel,” then the generic added over $L(\mathbb{R}^*)$ will still automatically be a Burstin basis. But there is a variant of \mathbb{P}_B which does add a Hamel basis over $L(\mathbb{R}^*)$ which is not a Burstin basis.
The following is the key thing.
The following is the key thing.

Lemma

Let \(b \) be \(P_B \)-generic over \(L(R^*) \). Then

\[
L(R^*)[b] \models \text{"There is no well-ordering of } \mathbb{R}\text{."}
\]
Finally, let’s get a Mazurkiewicz set.
Finally, let’s get a Mazurkiewicz set.

Definition

We say $p \in \mathbb{P}_M$ if and only if there exists $x \in \mathbb{R}$ such that
Finally, let’s get a Mazurkiewicz set.

Definition
We say \(p \in \mathbb{P}_M \) if and only if there exists \(x \in \mathbb{R} \) such that

1. \(p \in L[x] \) and
Finally, let’s get a Mazurkiewicz set.

Definition
We say $p \in \mathbb{P}_M$ if and only if there exists $x \in \mathbb{R}$ such that

1. $p \in L[x]$ and
2. $L[x] \models “p$ is a Mazurkiewicz set.”
Finally, let’s get a Mazurkiewicz set.

Definition
We say $p \in \mathbb{P}_M$ if and only if there exists $x \in \mathbb{R}$ such that

(1) $p \in L[x]$ and

(2) $L[x] \models “p$ is a Mazurkiewicz set.”

We say $p \leq_{\mathbb{P}_M} q$ iff $p \supseteq q$
Finally, let’s get a Mazurkiewicz set.

Definition
We say \(p \in \mathbb{P}_M \) if and only if there exists \(x \in \mathbb{R} \) such that

1. \(p \in L[x] \) and
2. \(L[x] \models "p \text{ is a Mazurkiewicz set."} \)

We say \(p \leq_{\mathbb{P}_M} q \) iff \(p \supseteq q \)
Summary:
Summary:

Theorem (Beriashvili, Brendle, Castiblanco, Sch., Wu, Yu)

Let s be $S(\omega_1)$-generic over L, and let $R^* = R \cap L[s]$. Let (b, m) be $P_B \times P_M$ generic over $L(R^*)$. Then $R^* = R \cap L(R)$ and

(a) $L(R)[b, m] \models ZF$ plus DC,
Summary:

Theorem (Beriashvili, Brendle, Castiblanco, Sch., Wu, Yu)

Let s be $S(\omega_1)$-generic over L, and let $R^* = R \cap L[s]$. Let (b, m) be $P_B \times P_M$ generic over $L(R^*)$. Then $R^* = R \cap L(R)$ and

(a) $L(R)[b, m] \models \text{ZF plus DC},$

(b) there is no well-ordering of the reals in $L(R)[b, m]$,

Summary:

Theorem (Beriashvili, Brendle, Castiblanco, Sch., Wu, Yu)

Let s be $S(\omega_1)$-generic over L, and let $R^* = R \cap L[s]$. Let (b, m) be $P_B \times PM$ generic over $L(R^*)$. Then $R^* = R \cap L(R)$ and

(a) $L(R)[b, m] \models ZF \text{ plus } DC$,

(b) there is no well-ordering of the reals in $L(R)[b, m]$,

(c) $L(R)[b, m] \models \text{"there is a Luzin set as well as a Sierpiński set,"}$.
Summary:

Theorem (Beriashvili, Brendle, Castiblanco, Sch., Wu, Yu)

Let s be $S(\omega_1)$-generic over L, and let $R^* = R \cap L[s]$. Let (b, m) be $P_B \times P_M$ generic over $L(R^*)$. Then $R^* = R \cap L(R)$ and

(a) $L(R)[b, m] \models ZF$ plus DC,
(b) there is no well-ordering of the reals in $L(R)[b, m]$,
(c) $L(R)[b, m] \models “there is a Luzin set as well as a Sierpiński set,”$
(d) $L(R)[b, m] \models \bigcup b$ is a Burstin basis, and
Summary:

Theorem (Beriashvili, Brendle, Castiblanco, Sch., Wu, Yu)

Let \(s \) be \(S(\omega_1) \)-generic over \(L \), and let \(R^* = R \cap L[s] \). Let \((b, m) \) be \(P_B \times P_M \) generic over \(L(R^*) \). Then \(R^* = R \cap L(R) \) and

(a) \(L(R)[b, m] \models \text{ZF plus DC} \),
(b) there is no well-ordering of the reals in \(L(R)[b, m] \),
(c) \(L(R)[b, m] \models \text{“there is a Luzin set as well as a Sierpiński set,”} \)
(d) \(L(R)[b, m] \models \bigcup b \text{ is a } \text{Burstin basis}, \text{ and} \)
(e) \(L(R)[b, m] \models \bigcup m \text{ is a } \text{Mazurkiewicz set}. \)
Per molts anys, Joan!