Manuscript on fine structure, inner model theory, and the core model below one Woodin cardinal

Ronald B. Jensen
Preliminaries

(1) Throughout the book we assume ZFC. We use "virtual classes", writing \{x|\varphi(x)\} for the class of x such that \varphi(x). We also write:

\{t(x_1, \ldots, x_n)|\varphi(x_1, \ldots, x_n)\}, \text{ (where e.g.} \n t(x_1, \ldots, x_n) = \{y|\psi(y, x_1, \ldots, x_n)\}\)

for:

\{y|\bigvee x_1, \ldots, x_n(y = t(x_1, \ldots, x_n) \land \varphi(x_1, \ldots, x_n))\}\)

We also write

\[F(A) = \{z|z \subset A\}, A \cup B = \{z|z \in A \lor z \in B\}\]

\[A \cap B = \{z|z \in A \land z \in B\}, \neg A = \{z|\notin A\}\]

(2) Our notation for ordered \(n\)–tuples is \(\langle x_1, \ldots, x_n \rangle\). This can be defined in many ways and we don’t specify a definition.

(3) An \(n\)–ary relation is a class of \(n\)–tuples. The following operations are defined for all classes, but are mainly relevant for binary relations:

\[
\begin{align*}
\text{dom}(R) &= \{x|\bigvee y(y, x) \in R\} \\
\text{rng}(R) &= \{y|\bigvee x(y, x) \in R\} \\
R \circ P &= \{(y, z)|\bigvee z(y, z) \in R \land (z, x) \in P\} \\
R \upharpoonright A &= \{(y, x)|(y, x) \in R \land x \in A\} \\
R^{-1} &= \{(y, x)|(x, y) \in R\}
\end{align*}
\]

We write \(R(x_1, \ldots, x_n)\) for \(\langle x_1, \ldots, x_n \rangle \in R\).

(4) A function is identified with its extension or field — i.e. an \(n + 1\)–ary function is an \(n + 1\)–ary relation \(F\) such that

\[
\begin{align*}
\bigwedge x_1 \ldots x_n \bigwedge z \bigwedge w((F(z, x_1, \ldots, x_n) \land F(w, x_1, \ldots, x_n)) & \rightarrow \\
& \rightarrow z = w)
\end{align*}
\]

\(F(x_1, \ldots, x_n)\) then denotes the value of \(F\) at \(x_1, \ldots, x_n\).
(5) "Functional abstraction" \(\{t_{x_1,\ldots,x_n} | \varphi(x_1,\ldots,x_n)\}\) denotes the function which is defined and takes value \(t_{x_1,\ldots,x_n}\) whenever \(\varphi(x_1,\ldots,x_n)\) and \(t_{x_1,\ldots,x_n}\) is a set:

\[
\{t_{x_1,\ldots,x_n} | \varphi(x_1,\ldots,x_n)\} =: \{(y,x_1,\ldots,x_n) | y = t_{x_1,\ldots,x_n} \land \varphi(x_1,\ldots,x_n)\},
\]

where e.g. \(t_{x_1,\ldots,x_n} = \{z | \psi(z,x_1,\ldots,x_n)\}\).

(6) **Ordinal numbers** are defined in the usual way, each ordinal being identified with the set of its predecessors: \(\alpha = \{\nu | \nu < \alpha\}\). The **natural numbers** are then the finite ordinals: \(0 = \emptyset, 1 = \{0\},\ldots,n = \{0,\ldots,n-1\}\). On is the class of all ordinals. We shall often employ small greek letters as variables for ordinals. (Hence e.g. \(\{\alpha | \varphi(\alpha)\}\) means \(\{x | \alpha \in \text{On} \land \varphi(x)\}\)). We set:

\[
\sup A := \bigcup (A \cap \text{On}), \quad \inf A := \bigcap (A \land \text{On})
\]

\[
\text{lub } A := \sup \{\alpha + 1 | \alpha \in A\}.
\]

(7) **A note on ordered \(n\)-tuples.** A frequently used definition of ordered pairs is:

\[
\langle x, y \rangle := \{\{x\}, \{x, y\}\}.
\]

One can then define \(n\)-tuples by:

\[
\langle x \rangle := x, \quad \langle x_1, x_2, \ldots, x_n \rangle := \langle x_1, \langle x_2, \ldots, x_n \rangle \rangle.
\]

However, this has the disadvantage that every \(n + 1\)-tuple is also an \(n\)-tuple. If we want each tuple to have a fixed length, we could instead identify the \(n\)-tuples with vector of length \(n\) — i.e. functions with domain \(n\). This would be circular, of course, since we must have a notion of ordered pair in order to define the notion of "function". Thus, if we take this course, we must first make a "preliminary definition" of ordered pairs — for instance:

\[
\langle x, y \rangle := \{\{x\}, \{x, y\}\}
\]

and then define:

\[
\langle x_0, \ldots, x_{n-1} \rangle = (x_0, 0, \ldots, (x_{n-1}, n-1)).
\]

If we wanted to form \(n\)-tuples of proper classes, we could instead identify \(\langle A_0, \ldots, A_{n-1} \rangle\) with:

\[
\{(x, i) | (i = 0 \land x \in A_0) \lor \ldots \lor (i = n-1 \land x \in A_{n-1})\}.
\]
(8) Overhead arrow notation. The symbol \(x \) is often used to donate a vector \(\langle x_1, \ldots, x_n \rangle \). It is not surprising that this usage shades into what I shall call the informal mode of overhead arrow notation. In this mode \(x \) simply stands for a string of symbols \(x_1, \ldots, x_n \). Thus we write \(f(x) \) for \(f(x_1, \ldots, x_n) \), which is different from \(f(\langle x_1, \ldots, x_n \rangle) \). (In informal mode we would write the latter as \(f(\langle x \rangle) \).) Similarly, \(x \in A \) means that each of \(x_1, \ldots, x_n \) is an element of \(A \), which is different from \(\langle x \rangle \in A \). We can, of course, combine several arrows in the same expression. For instance we can write \(f(g(x)) \) for \(f(g_1(x_1, \ldots, x_n), \ldots, g_m(x_1, \ldots, x_n)) \). Similarly we can write \(f(g(\langle x \rangle)) \) or \(f(g(\langle x \rangle)) \) for
\[
 f(g_1(x_{1,1}, \ldots, x_{1,p_1}), \ldots, g_m(x_{m,1}, \ldots, x_{m,p_m})).
\]

The precise meaning must be taken from the context. We shall often have recourse to such abbreviations. To avoid confusion, therefore, we shall use overhead arrow notation only in the informal mode.

(9) A model or structure will for us normally mean an \(n+1 \)-tuple \(\langle D, A_1, \ldots, A_n \rangle \) consisting of a domain \(D \) of individuals, followed by relations on that domain. If \(\varphi \) is a first order formula, we call a sequence \(v_1, \ldots, v_n \) of distinct variables good for \(\varphi \) iff every free variable of \(\varphi \) occurs in the sequence. If \(M \) is a model, \(\varphi \) a formula, \(v_1, \ldots, v_n \) a good sequence for \(\varphi \) and \(x_1, \ldots, x_n \in M \), we write: \(M \models \varphi(v_1, \ldots, v_n)[x_1, \ldots, x_n] \) to mean that \(\varphi \) becomes true in \(M \) if \(v_i \) is interpreted by \(x_i \) for \(i = 1, \ldots, n \). This is the satisfaction relation. We assume that the reader knows how to define it. As usual, we often suppress the list of variables, writing only \(M \models \varphi[x_1, \ldots, x_n] \). We may sometimes indicate the variables being used by writing e.g. \(\varphi = \varphi(v_1, \ldots, v_n) \).

(10) \(\in \)-models. \(M = \langle D, E, A_1, \ldots, A_n \rangle \) is an \(\in \)-model iff \(E \) is the restriction of the \(\in \)-relation to \(D^2 \). Most of the models we consider will be \(\in \)-models. We then write \(\langle D, \in, A_1, \ldots, A_n \rangle \) or even \(\langle D, A_1, \ldots, A_n \rangle \) for \(\langle D, \in \cap D^2, A_1, \ldots, A_n \rangle \). \(M \) is transitive iff it is an \(\in \)-model and \(D \) is transitive.

(11) The Levy hierarchy. We often write \(\bigwedge x \in y \varphi \) for \(\bigwedge x (x \in y \rightarrow \varphi) \), and \(\bigvee x \in y \varphi \) for \(\bigvee x (x \in y \land \varphi) \). Azriel Levy defined a hierarchy of formulae as follows:

A formula is \(\Sigma_0 \) (or \(\Pi_0 \)) iff it is in the smallest class \(\Sigma \) of formulae such that every primitive formula is in \(\Sigma \) and \(\bigwedge v \in u \varphi, \bigvee v \in u \varphi \) are in \(\Sigma \) whenever \(\varphi \) is in \(\Sigma \) and \(v, u \) are distinct variables.

(Alternatively we could introduce \(\bigwedge v \in u, \bigvee v \in u \) as part of the primitive notation. We could then define a formula as being \(\Sigma_0 \) iff it contains no unbounded quantifiers.)
The Σ_{n+1} formulae are then the formulae of the form $\bigvee \varphi$, where φ is Π_n. The Π_{n+1} formulae are the formulae of the form $\bigwedge \varphi$ when φ is Σ_n.

If M is a transitive model, we let $\Sigma_n(M)$ denote the set of relations on M which are definable by a Σ_n formula. Similarly for $\Pi_n(M)$. We say that a relation R is $\Sigma_n(M)(\Pi_n(M))$ in parameters p_1, \ldots, p_m iff

$$R(x_1, \ldots, x_n) \leftrightarrow R'(x_1, \ldots, x_n, p_1, \ldots, p_m)$$

and R' is $\Sigma_n(M)(\Pi_n(M))$. $\Sigma_1(M)$ then denotes the set of relations which are $\Sigma_1(M)$ in some parameters. Similarly for $\Pi_1(M)$.

(12) Kleene’s equation sign. An equation $'L \simeq R'$ means: 'The left side is defined if and only if everything on the right side is defined, in which case the sides are equal'. This is of course not a strict definition and must be interpreted from case to case.

$F(\vec{x}) \simeq G(H_1(\vec{x}), \ldots, H_n(\vec{x}))$ obviously means that the function F is defined at $\langle x_1, \ldots, x_n \rangle$ iff each of the H_i is defined at $\langle \vec{x} \rangle$ and G is defined at $\langle H_1(\vec{x}), \ldots, H_n(\vec{x}) \rangle$, in which case equality holds.

The recursion schema of set theory says that, given a function G, there is a function F with:

$$F(y, \vec{x}) \simeq G(y, \vec{x}, \langle F(z, \vec{x}) \mid z \in y \rangle).$$

This says that F is defined at $\langle y, \vec{x} \rangle$ iff F is defined at $\langle z, \vec{x} \rangle$ for all $z \in y$ and G is defined at $\langle y, \vec{x}, \langle F(z, \vec{x}) \mid z \in y \rangle \rangle$, in which case equality holds.

(13) By the recursion theorem we can define:

$$TC(x) = x \cup \bigcup_{z \in x} TC(z)$$

(the transitive closure of x)

$$rn(x) = \text{lub}\{rn(z) \mid z \in x\}$$

(the rank of x).

(14) By a normal ultrafilter on κ we mean an ultrafilter U on $\mathcal{P}(\kappa)$ with the property that whenever $f : \kappa \to \kappa$ is regressive modulo U (i.e. $\{\nu \mid f(\nu) < \nu \} \in U$), then there is $\alpha < \kappa$ such that $\{\nu \mid f(\nu) < \nu \} \in U$.

Each normal ultrafilter determines an elementary embedding π of V into an inner model W. Letting

$$D = \text{the class of functions } f \text{ with domain } \kappa,$$

we can characterize the pair $\langle W, \pi \rangle$ uniquely by the conditions:
\[V \rightarrow W \text{ and write } (\pi) = \kappa \]

- \[W = \{ \pi(f)(\nu) | \kappa \in D \} \]
- \[\pi(f)(\nu) \in \pi(g)(\kappa) \leftrightarrow \{ \nu | f(\nu) \in g(\nu) \} \in U. \]

\(U \) can then be recovered from \(\pi \) by:

\[U = \{ x \subset \kappa | x \in \pi(x) \}. \]

We shall call \(\langle W, \pi \rangle \) the \textit{extension of } \(V \text{ by } U \). \(W \) can be defined from \(U \) by the well known \textit{ultrapower construction}: We first define a "term model" \(D = (D, \cong, \bar{\xi}) \) by:

\[f \cong g \leftrightarrow \{ \nu | f(\nu) = g(\nu) \} \in U \\
\bar{f} \cong \bar{g} \leftrightarrow \{ \nu | f(\nu) = g(\nu) \} \in U. \]

\(D \) is an \textit{equality model} in the sense that \(\cong \) is not the identity relation but rather a congruence relation for \(D \). We can then factor \(D \) by \(\cong \), getting an identity model \(D \setminus \cong \), whose are the equivalence classes:

\[[x] = \{ y | y \cong x \} \]

\(D \setminus \cong \) turns out to be isomorphic to an inner model \(W \). If \(\sigma \) is the isomorphism, we can define \(\pi \) by:

\[\pi(x) = \sigma([\text{const}_x]) \]

where \(\text{const}_x \) is the constant function \(x \) defined on \(\kappa \). \(W \) is then called the \textit{ultrapower of } \(V \text{ by } U \). \(\pi \) is called the \textit{canonical embedding}.

(15) \textbf{(Extenders)} The normal ultrafilter is one way of coding an embedding of \(V \) into an inner model by a set. However, many embeddings cannot be so coded, since \(\pi(\kappa) \leq 2^\kappa \) whenever \(\langle W, \pi \rangle \) is the extension by \(U \). If we wish to surmount this restriction, we can use \textit{extenders} in place of ultrafilters. (The extenders we shall deal with are also known as "short extenders".)

An extender \(F \) at \(\kappa \) maps \(\bigcup_{n<\omega} \mathcal{P}(u^n) \) into \(\bigcup_{n<\omega} \mathcal{P}(\lambda^n) \) for \(a \lambda > u \).

It engenders an embedding \(\pi \) of \(V \) into an inner model \(W \) characterized by:

- \(\pi : V \rightarrow W \text{ and write } (\pi) = \kappa \)
- Every element of \(W \) has the form \(\pi(f)(\bar{\alpha}) \) where \(\alpha_1, \ldots, \alpha_n < \lambda \) and \(f \) is a function with domain \(\kappa^n \)
- \(\pi(f)(\bar{\alpha}) \in \pi(g)(\bar{\alpha}) \leftrightarrow \langle \bar{\alpha} \rangle \in \pi(\{ \{ \xi | f(\xi) \in g(\xi) \} \}) \)
\[F(X) = \pi(X) \cap \lambda^n \text{ for } X \subseteq \kappa^n. \]

The concept "\(F\) is an extender" can be defined in ZFC, but we defer that to Chapter 3. If \(\langle W, \pi \rangle\) is as above, we call it the *extension of \(V\) by \(F\).* We also call \(W\) the *ultrapower of \(V\) by \(F\)* and \(\pi\) the *canonical embedding.* \(\langle W, \pi \rangle\) can be obtained from \(F\) by a "term model" construction analogous to that described above.

(16) *Large Cardinals*

Definition 0.0.1. We call a cardinal \(\kappa\) *strong* iff for all \(\beta > \kappa\) there is an extender \(F\) such that if \(\langle W, \pi \rangle\) is the extension of \(V\) by \(F\), then \(V_{\beta} \subseteq W\).

Definition 0.0.2. Let \(A\) be any class. \(\kappa\) is *\(A\)-strong* iff for all \(\beta > \kappa\) there is \(F\) such that letting \(\langle W, \pi \rangle\) be the extension of \(V\) by \(F\), we have:
\[
A \cap V_{\beta} = \pi(A) \cap V_{\beta}.
\]

These concepts can of course be relativized to \(V_{\tau}\) in place of \(V\) when \(\tau\) is strongly inaccessible. We then say that \(\kappa\) is strong (or \(A\)-strong) *up to \(\tau\).*

Definition 0.0.3. \(\tau\) is *Woodin* iff \(\tau\) is strongly inaccessible and for every \(A \subseteq V_{\tau}\) there is \(\kappa < \tau\) which is strong up to \(\tau\).

(17) *Embeddings*

Definition 0.0.4. Let \(M, M'\) be \(\in\)-structures and let \(\pi\) be a structure preserving embeddings of \(M\) into \(M'\). We say that \(\pi\) is \(\Sigma_n\)-preserving (in symbols: \(\pi : M \rightarrow_{\Sigma_n} M'\)) iff for all \(\Sigma_n\) formulae we have:
\[
M \models \varphi[a_1, \ldots, a_n] \iff M' \models \varphi[\pi(a_1), \ldots, (a_n)]
\]
for \(a_1, \ldots, a_n \in M\). It is *elementary* (in symbols: \(\pi : M \prec M'\) of \(\pi : M \rightarrow_{\Sigma_\omega} M'\)) iff the above holds for all formulae \(\varphi\) of the \(M\)-sprache. It is easily seen that \(\pi\) is elementary iff it is \(\Sigma_n\)-preserving for all \(n < \omega\).

We say that \(\pi\) is *cofinal* iff \(M' = \bigcup_{u \in M} \pi(u)\).

We note the following facts, which we shall occasionally use:

Fact 1 Let \(\pi : M \rightarrow_{\Sigma_0} M'\) cofinally. Then \(\pi\) is \(\Sigma_1\)-preserving.

Fact 2 Let \(\pi : M \rightarrow_{\Sigma_0} M'\) cofinally, where \(M\) is a \(\text{ZFC}^-\) model. Then \(M'\) is a \(\text{ZFC}^-\) model and \(\pi\) is elementary.
Fact 3 Let $\pi : M \rightarrow_{\Sigma_0} M'$ cofinally where M' is a ZFC^- model. Then M is a ZFC^- model and π is elementary.

We call an ordinal κ the *critical point* of an embedding $\pi : M \rightarrow M'$ (in symbols: $\kappa = \text{crit}(\pi)$) iff $\pi \upharpoonright \kappa = \text{id}$ and $\pi(\kappa) > \kappa$.
2.3 The J_α hierarchy .. 70
 2.3.1 The J_α^A–hierarchy 76
2.4 J–models .. 80
2.5 The Σ_1 projectum .. 89
 2.5.1 Acceptability ... 89
 2.5.2 The projectum .. 92
 2.5.3 Soundness and iterated projecta 99
2.6 Σ^*_κ–theory ... 105
2.7 Liftups .. 132
 2.7.1 The Σ_0 liftup 132
 2.7.2 The $\Sigma^{(n)}_0$ liftup 138

3 Mice .. 157
 3.1 Introduction .. 157
 3.2 Extenders ... 161
 3.2.1 Extendability ... 168
 3.2.2 Fine Structural Extensions 170
 3.2.3 n–extendibility 175
 3.2.4 κ–extendability 179
 3.3 Premice .. 182
 3.4 Iterating premice .. 201
 3.4.1 Introduction ... 201
 3.4.2 Normal iteration 204
 3.4.3 Padded iterations 211
 3.4.4 n–iteration 212
3.5 Iterability .. 220
 3.5.1 Normal iterability 220
 3.5.2 The comparison iteration 222
 3.5.3 \(n \)-normal iterability 225
 3.5.4 Iteration strategy and copying 225
 3.5.5 Full iterability 226
 3.5.6 The Dodd–Jensen Lemma 229
 3.5.7 Copying a full iteration 231
 3.5.8 The Neeman–Steel lemma 232
 3.5.9 Smooth iterability 235
 3.5.10 \(n \)-full iterability 235

3.6 Verifying full iterability 238
 3.6.1 Introduction 238
 3.6.2 Pseudo projecta 238
 3.6.3 Mirrors 258
 3.6.4 The conclusion 274

3.7 Smooth Iterability 280
 3.7.1 Insertions 280
 3.7.2 Reiterations 299
 3.7.3 A first conclusion 322
 3.7.4 Reiteration and Inflation 326
 3.7.5 Smooth Reiterability 343
<table>
<thead>
<tr>
<th>3.7.6</th>
<th>The final conclusion</th>
<th>351</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>Unique Iterability</td>
<td>357</td>
</tr>
<tr>
<td>3.8.1</td>
<td>One small mice</td>
<td>357</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Woodiness and non unique branches</td>
<td>359</td>
</tr>
<tr>
<td>3.8.3</td>
<td>One smallness and unique branches</td>
<td>373</td>
</tr>
</tbody>
</table>
Chapter 1

Transfinite Recursion Theory

1.1 Admissibility

Some fifty years ago Kripke and Platek brought out about a wide ranging generalization of recursion theory — which dealt with “effective” functions and relations on ω — to transfinite domains. This, in turn, gave the impetus for the development of fine structure theory, which became a basic tool of inner model theory. We therefore begin with a discussion of Kripke and Platek’s work, in which ω is replaced by an arbitrary “admissible” structure.

1.1.1 Introduction

Ordinary recursion theory on ω can be developed in three different ways. We can take the notion of algorithm as basic, defining a recursive function on ω to be one given by an algorithm. Since, however, we have no definition for the general notion of algorithm, this approach involves defining a special class of algorithms and then convincing ourselves that “Church’s thesis” holds — i.e. that every function generated by an algorithm is, in fact, generated by one which lies in our class. Alternatively we can take the notion of calculus as basic, defining an n-ary relation R on ω to be recursively enumerable (r.e.) if for some calculus involving statements of the form “$R(i_1, \ldots, i_n)$” ($i_1, \ldots, i_n < \omega$), R is the set of tuples $\langle i_1, \ldots, i_n \rangle$ such that “$R(i_1, \ldots, i_n)$” is provable. R is then recursive if both it and its complement are r.e. A function defined on ω is recursive if it is recursive as a relation. But again, since we have no general definition of calculus, this involves specifying a special class of calculi and appealing to the appropriate form of Church’s thesis.
A third alternative is to base the theory on *definability*, taking the r.e. relation as those which are definable in elementary number theory by one of a certain class of formulae. This approach has often been applied, but characterizing the class of defining formula tends to be a bit unnatural. The situation changes radically, however, if we replace ω by the set $H = H_\omega$ of hereditarily finite sets. We consider definability over the structure (H, \in), employing the familiar Levy hierarchy of set theoretic formulae:

$$\begin{align*}
\Pi_0 = \Sigma_0 &=: \text{formulae in which all quantifiers are bounded} \\
\Sigma_{n+1} &=: \text{formulae } \vee x \varphi \text{ where } \varphi \text{ is } \Pi_n \\
\Pi_{n+1} &=: \text{formulae } \wedge x \varphi \text{ where } \varphi \text{ is } \Sigma_n.
\end{align*}$$

We then call a relation on H r.e. (or H-r.e.) iff it is definable by a Σ_1 formula. Recalling that $\omega \subseteq H$ it then turns out that a relation on ω is H-r.e. iff it is r.e. in the classical sense. Moreover, there is an H–recursive map $\pi : H \leftrightarrow \omega$ such that $A \subseteq H$ is H–r.e. iff $\pi''A$ is r.e. in the classical sense.

This suggests a very natural way of relativizing recursion theory to transfinite domains. Let $N = \langle |N|, \in, A_1, \ldots, A_n \rangle$ be any transitive structure. We first define:

Definition 1.1.1. A relation on N is $\Sigma_n(N)$ (in the parameters $p_1, \ldots, p_n \in N$) iff it is N-definable (in \bar{p}) by a Σ_n formula. It is $\Delta_n(N)$ (in \bar{p}) if both it and its completement are $\Sigma_n(N)$ (in \bar{p}). It is $\Sigma_n(N)$ iff it is $\Sigma_n(N)$ in some parameters. Similarly for $\Pi_n(N)$.

Following our above example of $N = \langle H, \in \rangle$, it is natural to define a relation on N as being N-r.e. iff it is $\Sigma_1(N)$, and N-recursive iff it is $\Delta_1(N)$. A partial function F on N is N-r.e. iff it is N–r.e. as a relation. F is N–recursive as a function iff it is N–r.e. and $\text{dom}(F)$ is $\Delta_1(N)$.

(Note that $\Sigma_1(\langle H, \in \rangle) = \Sigma_1(\langle H, \in \rangle)$, which will not hold for arbitrary N.)

However, this will only work for an N satisfying rather strict conditions since, when we move to transfinite structures N, we must relativize not only the concepts “recursive” and “r.e.”, but also the concept “finite”. In the theory of H the finite sets were simply the elements of H.

Correspondingly we define:

u is N–finite iff $u \in N$.

But there are certain basic properties which we expect any recursion theory to have. In particular:
1.1. ADMISSIBILITY

- If A is recursive and u is finite, then $A \cap u$ is finite.
- If u is finite and $F : u \to N$ is recursive, then $F''u$ is finite.

Those transitive structures $N = \langle |N|, \in, A_1, \ldots, A_n \rangle$ which yield a satisfactory recursion theory are called *admissible*. An ordinal α is then called *admissible* iff L_α is admissible. The admissible structures were characterized by Kripke and Platek as those transfinite structures which satisfy the following axioms:

1. $\emptyset, \{x, y\}, \bigcup x$ are sets
2. The Σ_0 axiom of subsets:
 \[x \cap \{z \mid \varphi(z)\} \text{ is a set} \]
 (where φ is any Σ_0-formula)
3. The Σ_0 axiom of collection:
 \[\forall x \in u \exists y \varphi(x, y) \implies \exists v \forall x \in u \exists y \varphi(x, y), \]
 (where φ is any Σ_0-formula).

Note. Kripke–Platek set theory (KP) consists of the above axioms together with the axiom of extensionality and the full axiom of foundation (i.e. for all formulae, not just the Σ_0 ones). This axiom can be stated as:

\[\forall y(\forall x \in y \varphi(x) \implies \varphi(y)) \implies \exists y \varphi(y) \]

and is also known as the axiom of induction.

Note. Although the definability approach is the one most often employed in transfinite recursion theory, the approaches via algorithms and calculi have also been used to define the class of admissible ordinals.

1.1.2 Properties of admissible structures

We now show that admissible structures satisfy the two criteria stated above. In the following let $M = \langle |M|, \in, A_1, \ldots, A_n \rangle$ be admissible.

Lemma 1.1.1. Let $u \in M$. Let A be $\Delta_1(M)$. Then $A \cap u \in M$.

Proof: Let $A x \iff \forall y A_0yx; \neg A x \iff \forall y A_1yx$, where A_0, A_1 are $\Sigma_0(M)$. Then $\forall x \in u \exists y(A_0yx \lor A_1yx)$. Hence there is $v \in M$ such that $\forall x \in u \exists y \in v(A_0yx \lor A_1yx)$. QED

Before verifying the second criterion we prove:
Lemma 1.1.2. M satisfies:

$$\bigwedge x \in u \bigvee y_1 \ldots y_n \varphi(x, y) \rightarrow \bigvee u \bigwedge x \in u \bigvee y_1 \ldots y_n \in v \varphi(x, y)$$

for Σ_0-formulae φ.

Proof. Assume $\bigwedge x \in u \bigvee y_1 \ldots y_n \varphi(x, y)$. Then

$$\bigwedge x \in u \bigvee w \bigvee y_1 \ldots y_n \in w \varphi(x, y).$$

Hence there is $v' \in M$ such that $\bigwedge x \in u \bigvee w \in v' \bigvee y_1 \ldots y_n \in w \varphi(x, y)$. Take $v = \bigcup v'$. QED (Lemma 1.1.2)

We now verify the second criterion:

Lemma 1.1.3. Let $u \in M, u \subset \text{dom}(F)$, where F is a $\Sigma_1(M)$ function. Then $F''u \in M$.

Proof. Let $y = F(x) \leftrightarrow \bigvee z F' zyx$, where F' is a $\Sigma_0(M)$ relation. Then

$$\bigwedge x \in u \bigvee z, y F' zyx.$$ Hence there is $v \in M$ such that $\bigwedge x \in u \bigvee z, y \in v F' zyx$. Hence $F''u = v \cap \{y \mid \exists v \bigvee x \in u \bigvee z \in v F' zxy\}$. QED (Lemma 1.1.3)

Assuming the admissibility of M, we immediately get from Lemma 1.1.2:

Lemma 1.1.4. Let $\varphi(y, \bar{x})$ be a Σ_1-formula. Then $\bigvee y \varphi(y, \bar{x})$ is uniformly Σ_1 in M.

Note. “Uniformly” is a word which recursion theorists like to use. Here it means that $M \models \bigvee y \varphi(y, \bar{x}) \leftrightarrow \Psi(\bar{x})$ for a Σ_1 formula Ψ which depends only on φ and not on the choice of M.

Lemma 1.1.5. Let $\varphi(y, \bar{x})$ be Σ_1. Then $\bigwedge y \in u \varphi(y, \bar{x})$ is uniformly Σ_1 in M.

Proof. Let $\varphi(y, \bar{x}) = \bigvee z \varphi'(z, y, x)$, where φ' is Σ_0. Then

$$\bigwedge y \in u \varphi(y, \bar{x}) \leftrightarrow \bigvee v \bigwedge y \in u \bigvee z \in v \varphi'(z, y, x)$$

in M. QED (Lemma 1.1.5)

Lemma 1.1.6. Let $\varphi_0(\bar{x}), \varphi_1(\bar{x})$ be Σ_1. Then $(\varphi_0(\bar{x}) \wedge \varphi_1(\bar{x})), (\varphi_0(\bar{x}) \vee \varphi_1(\bar{x}))$ are uniformly Σ_1 in M.
1.1. ADMISSIBILITY

Proof. Let \(\varphi_i(\overline{x}) = \bigvee y_i \varphi_i'(y_i, \overline{x}) \) where without loss of generality \(y_0 \neq y_1 \).

Then

\[
(\varphi_0(\overline{x}) \land \varphi_1(\overline{x})) \leftrightarrow \bigvee y_0 \bigvee y_1 (\varphi_0'(y_0, x) \land \varphi_1'(y_1, x)).
\]

Similarly for \(\lor \).

QED (Lemma 1.1.6)

Putting this together:

Lemma 1.1.7. Let \(\varphi_1, \ldots, \varphi_n \) be \(\Sigma_1 \)–formulae. Let \(\Psi \) be formed from \(\varphi_1, \ldots, \varphi_n \) using only conjunction, disjunction, existence quantification and bounded universal quantification. Then \(\Psi(x_1, \ldots, x_m) \) is uniformly \(\Sigma_1(M) \)

An immediate consequence of Lemma 1.1.7 is:

Lemma 1.1.8. \(R \subset M^n \) is \(\Sigma_1(M) \) in the parameter \(\emptyset \) iff it is \(\Sigma_1(M) \) in no parameter.

Proof. Let \(R(\overline{x}) \leftrightarrow R'(\emptyset, \overline{x}). \) Then

\[
R(\overline{x}) \leftrightarrow \bigvee z (R'(z, \overline{x}) \land \bigwedge y \in z y \neq y).
\]

QED (Lemma 1.1.8)

Note. \(R \) is in fact uniformly \(\Sigma_1(M) \) in the sense that its \(\Sigma_1 \) definition depends only on the original \(\Sigma_1 \) definition of \(R \) from \(\emptyset \), and not on \(M \).

Lemma 1.1.9. Let \(R(y_1, \ldots, y_n) \) be a relation which is \(\Sigma_1(M) \) in the the parameter \(p \). For \(i = 1, \ldots, n \) let \(f_i(x_1, \ldots, x_m) \) be a partial function on \(M \) which (as a relation) is \(\Sigma_1(M) \) in \(p \). Then the following relation is uniformly \(\Sigma_1(M) \) in \(p \):

\[
R(f_1(\overline{x}), \ldots, f_n(\overline{x})) \leftrightarrow \bigvee y_1 \ldots y_n (\bigwedge_{i=1}^n y_i = f_i(\overline{x}) \land R(\overline{y})).
\]

This follows by Lemma 1.1.7. ("Uniformly" again means that the \(\Sigma_1 \) definition depends only on the \(\Sigma_1 \) definition of \(R, f_1, \ldots, f_n \).)

Similarly:

Lemma 1.1.10. Let \(f(y_1, \ldots, y_n), g_i(x_1, \ldots, x_m)(i = 1, \ldots, n) \) be partial functions which are \(\Sigma_1(M) \) in \(p \), then the function \(h(\overline{x}) \simeq f(g(\overline{x})) \) is uniformly \(\Sigma_1(M) \) in \(p \).

Proof.

\[
z = h(\overline{x}) \leftrightarrow \bigvee y_1 \ldots y_n (\bigwedge_{i=1}^n y_i = g_i(\overline{x}) \land z = f(\overline{y})).
\]

QED (Lemma 1.1.10)
CHAPTER 1. TRANSFINITE RECURSION THEORY

Lemma 1.1.11. Let $f_i(\bar{x})$ be a function which is $\Sigma_1(M)$ in $p(i = 1, \ldots, n)$. Let $R_i(\bar{x})(i = 1, \ldots, n)$ be mutually exclusive relations which are $\Sigma_1(M)$ in p. Then the function

$$f(\bar{x}) \simeq f_i(\bar{x}) \text{ if } R_i(\bar{x})$$

is uniformly $\Sigma_1(M)$ in p.

Proof.

$$y = f(\bar{x}) \leftrightarrow \bigvee_{i=1}^n (y = f_i(\bar{x}) \land R_i(\bar{x})).$$

QED (Lemma 1.1.11)

Using these facts, we see that the restrictions of many standard set theoretic functions to M are $\Sigma_1(M)$.

Lemma 1.1.12. The following functions are uniformly $\Sigma_1(M)$:

(a) $f(x) = x, f(x) = \cup x, f(x, y) = x \cup y, f(x, y) = x \cap y, f(x, y) = x \setminus y$

(b) $f(x) = C_n(x)$, where $C_0(x) = x, C_{n+1}(x) = C_n(x) \cup \bigcup C_n(x)$

(c) $f(x_1, \ldots, x_n) = \{x_1, \ldots, x_n\}$

(d) $f(x) = i$ (where $i < \omega$

(e) $f(x_1, \ldots, x_n) = \langle x_1, \ldots, x_n \rangle$

(f) $f(x) = \text{dom}(x), f(x) = \text{rng}(x), f(x, y) = x^\circ y, f(x, y) = x \setminus y, f(x) = x^{-1}$

(g) $f(x_1, \ldots, x_n) = x_1 \times x_2 \times \ldots \times x_n$

(h) $f(x) = (x)_i^n$ where $(\langle z_0, \ldots, z_{n-1} \rangle)_i^n = z_i$ and $(u)_i^n = \emptyset$ in all other cases

(i) $f(x, z) = x[z] = \begin{cases} x(z) \text{ if } x \text{ is a function} \\
\emptyset \text{ otherwise.}
\end{cases}$

Proof. We display sample proofs. (a) is straightforward. (b) follows by induction on n. To see (c), $y = \{x_1, \ldots, x_n\}$ can be expressed by the Σ_0-statement

$x_1, \ldots, x_n \in y \land \bigwedge z \in y (z = x_1 \lor \ldots \lor z = x_n).$
(d) follows by induction on i, since

$$0 = \emptyset, i + 1 = i \cup \{i\}. $$

The proof of (e) depends on the precise definition of $\langle x_1, \ldots, x_n \rangle$. If we want each tuple to have a unique length, then the following definition recommends itself: First define a notion of ordered pair by: $(x, y) =: \{\{x\}, \{x, y\}\}$ Then (x, y) is a Σ_1 function. Then if $\langle x_1, \ldots, x_n \rangle =: \{(x_1, 0), \ldots, (x_n, n - 1)\}$, the conclusion is immediate.

For (f) we display the proof that $\text{dom}(x)$ is a Σ_1 function. Note that $x, y \in C_n((x, y))$ for a sufficient n. But since every element of $\text{dom}(x)$ is a component of a pair lying in x, it follows that $\text{dom}(x) \subseteq C_n(x)$ for a sufficient n. Hence $y = \text{dom}(x)$ can be expressed as:

$$\bigwedge z \in y \bigvee w \langle w, z \rangle \in x \land \bigwedge z, w \in C_n(x)(\langle w, z \rangle \in x \rightarrow z \in y).$$

To see (g), note that $y = x_1 \times \ldots \times x_n$ can be expressed by:

$$\bigwedge z_1 \in x_1 \ldots \bigwedge z_n \in x_n \langle z_1, \ldots, z_n \rangle \in y$$
$$\land \bigwedge w \in y \bigvee z_1 \in x_1 \ldots \bigvee z_n \in x_n w = \langle z_1, \ldots, z_n \rangle.$$

To see (h) note that, for sufficiently large $m, y = (x)^n$ can be expressed by:

$$\bigvee z_0 \ldots z_{n-1}(x = \langle z_0, \ldots, z_{n-1} \rangle \land y = z_i)$$
$$\lor (y = \emptyset \land \bigwedge z_0 \ldots z_{n-1} \in C_n(x) x \neq \langle z_0, \ldots, z_{n-1} \rangle)$$

(i) is similarly straightforward. \hfill QED (Lemma 1.1.12)

The \textit{recursion theorem} of classical recursion theory says that if $g(n, m)$ is recursive on ω and $f : \omega \rightarrow \omega$ is defined by:

$$f(0) = k, f(n + 1) = g(n, f(n)), $$

then f is recursive. The point is that the value of f at any n is determined by its values at smaller numbers. Working with H instead of ω we can express this in the elegant form:

Let $g : \omega \times H \rightarrow \omega$ be Σ_1.

Then $f : \omega \rightarrow \omega$ is Σ_1, where $f(n) = g(n, f \upharpoonright n)$.

If we take $g : H^2 \rightarrow H$, then f will be Σ_1 where $f(x) = g(x, f \upharpoonright x)$ for $x \in H$.

We can even take g as being a partial function on H^2. Then f is Σ_1 where:

$$f(x) \simeq g(x, \langle f(z) \rangle_{z \in x}).$$
We now prove the same thing for an arbitrary admissible M. If f is a partial Σ^0_1 function and $x \subseteq \text{dom}(f)$, we know by Lemma 1.1.3 that $f^{\prime\prime}x \in M$. But then $f \upharpoonright x \in M$, since $f^*(x) \simeq \langle f(x), z \rangle$ is a Σ^0_1 function with $x \subseteq \text{dom}(f^*)$, and $f^{\prime\prime\prime}x = f \upharpoonright x$. The recursion theorem for admissibles $M = \langle [M], \in, A_1, \ldots, A_n \rangle$ then reads:

Lemma 1.1.13. Let $G(y, \vec{x}, u)$ be a $\Sigma^0_1(M)$ function in the parameter p. Then there is exactly one function $F(y, \vec{x})$ such that

$$F(y, \vec{x}) \simeq G(y, \vec{x}, \langle F(z, \vec{x}) | z \in y \rangle).$$

Moreover, F is uniformly $\Sigma^0_1(M)$ in p (i.e. the Σ^0_1 definition depends only on the Σ^0_1 definition of G.)

Proof. We first show existence. Set:

$$\Gamma_{\vec{x}} =: \{ f \in M | f \text{ is a function} \land \text{dom}(f) \text{ is transitive} \land \exists y \in \text{dom}(f) f(y) = G(y, \vec{x}, f \upharpoonright y) \}$$

Set $F_{\vec{x}} = \bigcup \Gamma_{\vec{x}}; F = \{ \langle y, \vec{x} | y \in F_{\vec{x}} \}$. Then F is $\Sigma^0_1(M)$ in p uniformly.

(1) F is a function.

Proof. Suppose not. Then for some \vec{x} there are $f, f' \in \Gamma_{\vec{x}}$, $y \in \text{dom}(f) \cap \text{dom}(f')$ such that $f(y) \neq f'(y)$. Let y be ϵ-minimal with this property. Then $f \upharpoonright y = f' \upharpoonright y$. But then $f(y) = G(y, \vec{x}, f \upharpoonright y) = G(y, \vec{x}, f' \upharpoonright y) = f'(y)$. Contradiction! QED (1)

Hence $F(y, \vec{x}) = f(y)$ if $y \in \text{dom}(f)$ and $f \in \Gamma_{\vec{x}}$.

(2) Let $\langle y, \vec{x} \rangle \in \text{dom}(F)$. Then $y \subseteq \text{dom}(F_{\vec{x}}), \langle y, \vec{x}, \langle F(z, \vec{x}) | z \in y \rangle \rangle \in \text{dom}(G)$ and

$$F(y, \vec{x}) = G(y, \vec{x}, \langle F(z, \vec{x}) | z \in y \rangle).$$

Proof. Let $y \in \text{dom}(f), f \in \Gamma_{\vec{x}}$. Then

$$F(y, \vec{x}) = f(y) = G(y, \vec{x}, f \upharpoonright x) = G(y, \vec{x}, \langle F(z, \vec{x}) | z \in y \rangle).$$

QED (2)

(3) Let $y \subseteq \text{dom}(F_{\vec{x}}), \langle y, \vec{x}, F_{\vec{x}} \upharpoonright y \rangle \in \text{dom}(G)$. Then $y \in \text{dom}(F_{\vec{x}})$.

Proof. By our assumption: $\bigwedge z \in y \bigvee f(f \in \Gamma_{\vec{x}} \land z \in \text{dom}(f))$. Hence there is $u \in M$ such that

$$\bigwedge z \in y \bigvee f \in u(f \in \Gamma_{\vec{x}} \land z \in \text{dom}(f)).$$
Set: \(f' = \bigcup(u \cap \Gamma_{\bar{x}}) \). Then \(f' \in \Gamma_{\bar{x}} \) and \(y \subset \text{dom}(f') \). Moreover \(f' \upharpoonright y = F_{\bar{x}} \upharpoonright y \). Set \(f'' = f' \cup \{ (G(y, \bar{x}, f' \upharpoonright y), y) \} \). Then \(f'' \in \Gamma_{\bar{x}} \) and \(y \in \text{dom}(f'') \), where \(f'' \subset F_{\bar{x}} \). QED (3)

This proves existence. To show uniqueness, we virtually repeat the proof of (1): Let \(F^* \) satisfy the same condition. Set \(F^*_x(y) \simeq F^*(y, \bar{x}) \). Suppose \(F^* \neq F \). Then \(F^*_x(y) \neq F_{\bar{x}}(y) \) for some \(\bar{x}, y \). Let \(y \) be \(\varepsilon \)-minimal such that \(F^*_x(y) \neq F_{\bar{x}}(y) \). Then \(F^*_x(y) = F_{\bar{x}}(y) \). Hence

\[
F^*_x(y) \simeq G(y, \bar{x}, \langle F^*_x(z) \mid z \in y \rangle)
\simeq G(y, \bar{x}, \langle F_x(z) \mid z \in y \rangle)
\simeq F_{\bar{x}}(y).
\]

Contradiction! QED (Lemma 1.1.13)

We recall that the transitive closure \(TC(x) \) of a set \(x \) is recursively definable by: \(TC(x) = x \cup \bigcup_{z \in x} TC(z) \). Similarly, the rank \(\text{rn}(x) \) of a set is definable by \(\text{rn}(x) = \text{lub}\{\text{rn}(z) \mid z \in x\} \). Hence:

Corollary 1.1.14. \(TC, \text{rn} \) are uniformly \(\Sigma_1(M) \).

The successor function \(s\alpha = \alpha + 1 \) on the ordinals is defined by:

\[
sx = \begin{cases}
 x \cup \{ x \} & \text{if } x \in \text{On} \\
 \text{undefined} & \text{if not}
\end{cases}
\]

which is \(\Sigma_1 \). The function \(\alpha + \beta \) is defined by:

\[
\begin{align*}
\alpha + 0 &= \alpha \\
\alpha + s\nu &= s(\alpha + \nu) \\
\alpha + \lambda &= \bigcup_{\nu < \lambda} \alpha + \nu \text{ for limit } \lambda.
\end{align*}
\]

This has the form:

\[
x + y \simeq G(y, x, \langle x + z \mid z \in y \rangle).
\]

Similarly for the function \(x \cdot y, x^y, \ldots \) etc. Hence:

Corollary 1.1.15. The ordinal functions \(\alpha + 1, \alpha + \beta, \alpha^\beta, \ldots \) etc. are uniformly \(\Sigma_1(M) \).

We note that there is an even more useful form of Lemma 1.1.13:

Lemma 1.1.16. Let \(G \) be as in Lemma 1.1.13. Let \(h : M \to M \) be \(\Sigma_1(M) \) in \(p \) such that \(\{ (x, y) \mid x \in h(y) \} \) is well founded. There is a unique \(F \) such that

\[
F(y, \bar{x}) \simeq G(y, \bar{x}, \langle F(z, \bar{x}) \mid x \in h(y) \rangle).
\]
Moreover, F is uniformly\footnote{"uniformly" meaning, of course, that the Σ_1 definition of F depends only on the Σ_1 definition of G, h.} $\Sigma_1(M)$ in p.

The proof is exactly like that of Lemma 1.1.13, using minimality in the relation $\{(x, y)|x \in h(y)\}$ in place of \in-minimality. We now consider the structure of “really finite” sets in an admissible M.

Lemma 1.1.17. Let $u \in H_\omega$. The class u and the constant function $f(x) = u$ are uniformly $\Sigma_1(M)$.

Proof. By \in-induction on u: Let $u = \{z_1, \ldots, z_n\}$.

\[x \in u \leftrightarrow \bigvee_{i=1}^n x = z_i \]
\[x = u \leftrightarrow \bigwedge y \in x \ y \in u \ \wedge \bigwedge_{i=1}^n z_i \in x. \]

$x \in \omega$ is clearly a Σ_0 condition. But then:

Lemma 1.1.18. Let $\omega \in M$. Then the constant function $f(x) = \omega$ is uniformly $\Sigma_1(M)$.

Proof.

\[x = \omega \leftrightarrow (\bigwedge z \in x \ z \in \omega \ \wedge \emptyset \in x \ \wedge \bigwedge z \in x \cup \{z\} \in x) \]

(\text{where } ‘z \in \omega’ \text{ is } \Sigma_0) \hspace{1cm} \text{QED}

Lemma 1.1.19. The class Fin and the function $f(x) = \mathbb{P}_\omega(x)$ are uniformly $\Sigma_1(M)$, where $\text{Fin} = \{x \in M|\overline{\mathbb{P}} < \omega\}$, $\mathbb{P}_\omega(x) = \mathbb{P}(x) \cap \text{Fin}$.

Proof.

\[x \in \text{Fin} \leftrightarrow \bigvee n \in \omega \bigvee f : n \leftrightarrow x \]
\[y = \mathbb{P}_\omega(x) \leftrightarrow \bigwedge u \in y(u \subset x \land u \in \text{Fin}) \land \emptyset \in y \land \bigwedge z \in x \{z\} \in y \land \bigwedge u, v \in yu \cup v \in y. \]

We must show that $\mathbb{P}_\omega(x) \in M$. If $\omega \notin M$, then $rn(x) < \omega$ for all $x \in M$, Hence $M = H_\omega$ is closed under \mathbb{P}_ω. If $\omega \in M$, there is $\Sigma_1(M)$ f defined by

\[f(0) = \{\{z\}|z \in x\}, f(n+1) = \{u \cup v|(u, v) \in f(n)^2\}. \]

Then $\mathbb{P}_\omega(x) = \bigcup f^n \omega \in M$. \hspace{1cm} \text{QED (Lemma 1.1.19)}

But then:
1.1. ADMISSIBILITY

Lemma 1.1.20. If $\omega \in M$, then $H_\omega \in M$ and the constant function $f(x) = H_\omega$ is uniformly $\Sigma_1(M)$.

Proof. $H_\omega \in M$, since there is a $\Sigma_1(M)$ function g defined by $g(0) = \emptyset, g(n + 1) = \mathbb{P}_\omega(g(n))$. Then $H_\omega = \bigcup g' \omega \in M$ and $f(x) = H_\omega$ is $\Sigma_1(M)$ since g and the constant function ω are $\Sigma_1(M)$. QED (Lemma 1.1.20)

1.1.3 The constructible hierarchy

We recall Gödel’s definition of the constructible hierarchy $\langle L_r | r \in \text{On} \rangle$:

$L_0 = \emptyset$
$L_{\nu + 1} = \text{Def}(L_\nu)$
$L_\lambda = \bigcup_{\nu < \lambda} L_\nu$ for limit λ,

where $\text{Def}(u)$ is the set of all $z \subset u$ which are $\langle u, \in \rangle$–definable in parameters from u (taking $\text{Def}(\emptyset) = \{\emptyset\}$). (Note that if u is transitive, then $u \subset \text{Def}(u)$ and Def(u) is transitive.) Gödel’s constructible universe is then $L =: \bigcup_{\nu \in \text{On}} L_\nu$.

By fairly standard methods one can show:

Lemma 1.1.21. Let $\omega \in M$. Then the function $f(\omega) = \text{Def}(\omega)$ is uniformly $\Sigma_1(M)$.

We omit the proof, which is quite lengthy. It involves “arithmetizing” the language of first order set theory by identifying formulae with elements of ω or H_ω, and then showing that the relevant syntactic and semantic concepts are M–recursive.

By the recursion theorem we can of course conclude:

Corollary 1.1.22. Let $\omega \in M$. The function $f(\alpha) = L_\alpha$ is uniformly $\Sigma_1(M)$.

The constructible hierarchy over a set u is defined by:

$L_0(u) = TC(\{u\})$
$L_{\nu + 1}(u) = \text{Def}(L_\nu(u))$
$L_\lambda(u) = \bigcup_{\nu < \lambda} L_\nu(u)$ for limit λ.

Obviously:
Corollary 1.1.23. Let \(\omega \in M \). The function \(f(u, \alpha) = L_\alpha(u) \) is uniformly \(\Sigma_1(M) \).

The constructible hierarchy relative to classes \(A_1, \ldots, A_n \) is defined by:

\[
\begin{align*}
L_0[\bar{A}] & = \emptyset \\
L_{\nu+1}[\bar{A}] & = \text{Def}(L_\nu[\bar{A}], \bar{A}) \\
L_\lambda[\bar{A}] & = \bigcup_{\nu < \lambda} L_\nu[\bar{A}] \text{ for limit } \lambda,
\end{align*}
\]

where \(\text{Def}(U, A_1, \ldots, A_n) \) is the set of all \(z \in u \) which are \(\langle u, \in, A_1, \ldots, A_n \rangle \)-definable in parameters from \(u \).

Much as before we have:

Lemma 1.1.24. Let \(\omega \in M \). Let \(A_1, \ldots, A_n \) be \(\Delta_1(M) \) in the parameter \(p \). Then the function \(f(u) = \text{Def}(u, A_1, \ldots, A_n) \) is uniformly \(\Sigma_1(M) \) in \(p \).

Corollary 1.1.25. Let \(\omega \in M \). Let \(A_1, \ldots, A_n \) be as above. Then the function \(f(\alpha) = L_\alpha[\bar{A}] \) is uniformly \(\Sigma_1(M) \) in \(p \).

(In particular, if \(M = \langle |M|, \in, A_1, \ldots, A_n \rangle \). Then \(f(\alpha) = L_\alpha[\bar{A}] \) is uniformly \(\Sigma_1(M) \).)

(One could, of course, also define \(L_\alpha(u)[\bar{A}] \) and prove the corresponding results.)

Any well ordering \(r \) of a set \(u \) induces a well ordering of \(\text{Def}(u) \), since each element of \(\text{Def}(u) \) is defined over \(\langle u, \in \rangle \) by a tuple \(\langle \varphi, x_1, \ldots, x_n \rangle \), where \(\varphi \) is a formula and \(x_1, \ldots, x_n \) are elements of \(u \) which interpret free variables of \(\varphi \). If \(u \) is transitive (hence \(u \subset \text{Def}(u) \)), we can also arrange that the well ordering, which we shall call \(< (u, r) \), is an end extension of \(r \). The function \(< (u, r) \) is uniformly \(\Sigma_1 \). If we then set:

\[
<_0 = \emptyset, <_{\nu+1} = < (L_\nu, <_\nu) \\
<_\lambda = \bigcup_{\nu < \lambda} <_\nu \text{ for limit } \lambda,
\]

it follows that \(<_\nu \) is a well ordering of \(L_\nu \) for all \(\nu \). Moreover \(<_\alpha \) is an end extension of \(<_\nu \) for \(\nu < \alpha \).

Similarly, if \(A \) is \(\Sigma_1(M) \) in \(p \), there is a hierarchy \(<^A_\nu (\nu \in \text{On} \cap M) \) such that \(<^A_\nu \) well orders \(L_\nu[A] \) and the function \(f(\nu) = <^A_\nu \) is \(\Sigma_1(M) \) in \(p \) (uniformly relative to the \(\Sigma_1 \) definition of \(A \)).

By Corollary 1.1.25 we easily get:
Lemma 1.1.26. Let $M = \langle |M|, \in, A_1, \ldots, A_n \rangle$ be admissible. Let $\alpha = \text{On} \cap M$. Then $\langle L_\alpha[\bar{A}], \in, \bar{A} \rangle$ is admissible.

Proof: Set: $L^\bar{A}_\nu = \langle L_\nu[\bar{A}], \in, \bar{A} \rangle$. Axiom (1) holds trivially in $L^\bar{A}_\nu$.

To verify the Σ_0-axiom of subsets, let B be $\Sigma_0(L^\bar{A}_\nu)$. Let $u \in L^\bar{A}_\alpha$.

Claim $u \cap B \in L^\bar{A}_\alpha$.

Proof: Pick $\nu < \alpha$ such that $u \in L^\bar{A}_\nu$ and B is Σ_0 in parameters from $L^\bar{A}_\nu$.

By Σ_0-absoluteness we have:

$$u \cap B \in \text{Def}(L^\bar{A}_\nu) = L^\bar{A}_{\nu+1} \subseteq L^\bar{A}_\alpha.$$

QED (Claim)

We now prove Σ_0-collection. Let Rxy be a Σ_0-relation. Let $u \in L^\bar{A}_\alpha$ such that $\bigwedge x \in u \bigvee y \in vRxy$.

Claim $\bigvee v \in L^\bar{A}_\alpha \bigwedge x \in u \bigvee y \in vRxy$.

For each $x \in u$ let $g(x)$ be the least $\nu < \alpha$ such that $x \in L^\bar{A}_\nu$. Then g is in $\Sigma_1(M)$ and $u \subseteq \text{dom}(g)$. Hence $\delta = \sup g^\nu u < \alpha$ and

$$\bigwedge x \in u \bigvee y \in L^\bar{A}_\delta Rxy.$$

QED (Lemma 1.1.26)

Definition 1.1.2. Let α be an ordinal.

- α is admissible iff L_α is admissible
- α is admissible in A_1, \ldots, A_n iff $L^\bar{A}_\alpha = \langle L_\alpha[\bar{A}], \in, \bar{A} \rangle$ is admissible
- $f : \alpha^n \rightarrow \alpha$ is α-recursive (in \bar{A}) iff f is $\Sigma_1(L_\alpha)(\Sigma_1(L^\bar{A}_\alpha))$
- $R \subseteq \alpha^n$ is r.e. (in \bar{A}) iff R is $\Sigma_1(L_\alpha)(\Sigma_1(L^\bar{A}_\alpha))$.

Note. The theory of α-recursive functions and relations on an admissible α has been built up without references to L_α, using a formalized notion of α-bounded calculus (Kripke) or α-bounded algorithm (Platke).

Similarly for α-recursiveness in A_1, \ldots, A_n, taking the A_i as "oracles".
A transitive structure $M = \langle |M|, \in, \bar{A} \rangle$ is called strongly admissible iff, in addition to the Kripke–Platek axioms, it satisfies the Σ_1 axiom of subsets:

$$x \cap \{z|\varphi(z)\}$$ is a set (for Σ_1 formulae φ).

Kripke defines the projectum δ_α of an admissible ordinal α to be the least δ such that $A \cap \delta \notin L_\alpha$ for some $\Sigma_1(L_\alpha)$ set A. He shows that $\delta_\alpha = \alpha$ iff α is strongly admissible. He calls α projectible iff $\delta_\alpha < \alpha$. There are many projectible admissibles — e.g. $\delta_\alpha = \omega$ if α is the least admissible greater than ω. He shows that for every admissible α there is a $\Sigma_1(L_\alpha)$ injection f_α of L_α into δ_α.

The definition of projectum of course makes sense for any $\alpha \geq \omega$. By refinements of Kripke’s methods it can be shown that f_α exists for every $\alpha \geq \omega$ and that $\delta_\alpha < \alpha$ whenever $\alpha \geq \omega$ is not strongly admissible. We shall — essentially — prove these facts in chapter 2 (except that, for technical reasons, we shall employ a modified version of the constructible hierarchy).

1.2 Primitive Recursive Set Functions

1.2.1 PR Functions

The primitive recursive set functions comprise a collection of functions

$$f : V^n \rightarrow V$$

which form a natural analogue of the primitive recursive number functions in ordinary recursion theory. As with admissibility theory, their discovery arose from the attempt to generalize ordinary recursion theory. These functions are ubiquitous in set theory and have very attractive absoluteness properties. In this section we give an account of these functions and their connection with admissibility theory, though — just as in §1 — we shall suppress some proofs.

Definition 1.2.1. $f : V^n \rightarrow V$ is a primitive recursive (pr) function iff it is generated by successive application of the following schemata:

1. $f(\bar{x}) = x_i$ (here \bar{x} is x_1, \ldots, x_n)
2. $f(\bar{x}) = \{x_i, x_j\}$
3. $f(\bar{x}) = x_i \setminus x_j$
4. $f(\bar{x}) = g(h_1(\bar{x}), \ldots, h_m(\bar{x}))$
1.2. PRIMITIVE RECURSIVE SET FUNCTIONS

(v) \(f(y, \bar{x}) = \bigcup_{z \in y} g(z, \bar{x}) \)

(vi) \(f(y, \bar{x}) = g(y, \bar{x}, \langle f(z, \bar{x}) | z \in y \rangle) \)

We also define:

Definition 1.2.2. \(R \subseteq V^n \) is a *primitive recursive relation* iff there is a primitive recursive function \(r \) such that \(R = \{ (\bar{x}) | r(\bar{x}) \neq \emptyset \} \).

(Note It is possible for a function on \(V \) to be primitive recursive as a relation but not as a function!)

We begin by developing some elementary consequences of these definitions:

Lemma 1.2.1. If \(f : V^n \to V \) is primitive recursive and \(k : n \to m \), then \(g \) is primitive recursive, where

\[
g(x_0, \ldots, x_{m-1}) = f(x_{k(0)}, \ldots, x_{k(n-1)}).
\]

Proof. By (i), (iv).

Lemma 1.2.2. The following functions are primitive recursive

(a) \(f(\bar{x}) = \bigcup x_j \)

(b) \(f(\bar{x}) = x_i \cup x_j \)

(c) \(f(\bar{x}) = \{ \bar{x} \} \)

(d) \(f(\bar{x}) = n \), where \(n < \omega \)

(e) \(f(\bar{x}) = \langle \bar{x} \rangle \)

Proof.

(a) By (i), (v), Lemma 1.2.1, since \(\bigcup x_j = \bigcup_{z \in x_j} z \)

(b) \(x_i \cup x_j = \bigcup \{ x_i, x_j \} \)

(c) \(\{ \bar{x} \} = \{ x_1 \} \cup \ldots \cup \{ x_m \} \)

(d) By induction on \(n \), since \(0 = x \setminus x, n + 1 = n \cup \{ n \} \)

(e) The proof depends on the precise definition of \(n \)-tuple. We could for instance define \(\langle x, y \rangle = \{ \{ x \}, \{ x, y \} \} \) and \(\langle x_1, \ldots, x_n \rangle = \langle x_1, \langle x_2, \ldots, x_n \rangle \rangle \) for \(n > 2 \).
If, on the other hand, we wanted each tuple to have a unique length, we could call the above defined ordered pair \((x, y)\) and define:

\[
\langle x_1, \ldots, x_n \rangle = \{(x_1, 0), \ldots, (x_n, n - 1)\}.
\]

QED (Lemma 1.2.2)
Lemma 1.2.3.
(a) \notin is pr
(b) If $f : V^n \rightarrow V, R \subseteq V^n$ are primitive recursive, then so is
$$g(\bar{x}) = \begin{cases} f(\bar{x}) \text{ if } R\bar{x} \\ \emptyset \text{ if not} \end{cases}$$
(c) $R \subseteq V^n$ is primitive recursive iff its characteristic functions χ_R is a primitive recursive function
(d) If $R \subseteq V^n$ is primitive recursive so is $\neg R = V^n \setminus R$
(e) Let $f_i : V^n \rightarrow V, R_i \subseteq V^n$ be pr$(i = 1, \ldots, m)$ where R_1, \ldots, R_m are mutually disjoint and $\bigcup_{i=1}^{m} R_i = V^n$. Then f is pr where:
$$f(\bar{x}) = f_i(x) \text{ when } R_i\bar{x}.$$
(f) If $Rz\bar{x}$ is primitive recursive, so is the function
$$f(y, \bar{x}) = y \cap \{ z | \neg Rz\bar{x} \}$$
(g) If $Rz\bar{x}$ is primitive recursive so is $\bigvee z \in yRz\bar{x}$
(h) If $R_i\bar{x}$ is primitive recursive $(i = 1, \ldots, m)$, then so is $\bigvee_{i=1}^{m} R_i\bar{x}$
(i) If R_1, \ldots, R_n are primitive recursive relations and φ is a Σ_0 formula, then $\{ (\bar{x}) | (V, R_1, \ldots, R_n) \models \varphi[\bar{x}] \}$ is primitive recursive.
(j) If $f(z, \bar{x})$ is primitive recursive, then so are:
$$g(y, \bar{x}) = \{ f(z, \bar{x}) : z \in y \}$$
$$g'(y, \bar{x}) = \{ f(z, \bar{x}) : z \in y \}$$
(k) If $R(z, \bar{x})$ is primitive recursive, then so is
$$f(y, \bar{x}) = \begin{cases} \text{That } z \in y \text{ such that } Rz\bar{x} \text{ if exactly one such } z \in y \text{ exists} ; \\ \emptyset \text{ if not}. \end{cases}$$

Proof.

(a) $x \notin y \Leftrightarrow \{ x \} \setminus y \neq \emptyset$
(b) Let $R\bar{x} \leftrightarrow r(\bar{x}) \neq \emptyset$. Then $g(\bar{x}) = \bigcup_{z \in r(\bar{x})} f(\bar{x})$.
(c) \(\chi_r(\vec{x}) = \begin{cases} 1 & \text{if } R\vec{x} \\ 0 & \text{if not} \end{cases} \)

(d) \(\chi_{-R}(\vec{x}) = 1 \setminus \chi_R(\vec{x}) \)

(e) Let \(f'_i(\vec{x}) = \begin{cases} f_i(\vec{x}) & \text{if } R_i\vec{x} \\ 0 & \text{if not} \end{cases} \)

Then \(f(\vec{x}) = f'_1(\vec{x}) \cup \ldots \cup f'_m(\vec{x}) \).

(f) \(f(y, \vec{x}) = \bigcup_{z \in y} h(z, \vec{x}) \), where:

\[
h(z, \vec{x}) = \begin{cases} \{z\} & \text{if } Rz\vec{x} \\ \emptyset & \text{if not} \end{cases}
\]

(g) Let \(P y\vec{x} \iff \forall z \in y Rz\vec{x} \). Then \(\chi_P(\vec{x}) = \bigcup_{z \in y} \chi_R(z, \vec{x}) \).

(h) Let \(P\vec{x} \iff \bigvee_{i=1}^m R_i\vec{x} \). Then

\[
X_P(\vec{x}) = X_{R_1} \cup \ldots \cup X_{R_m}(\vec{x}).
\]

(i) is immediate by (d), (g), (h)

(j) \(g(y, \vec{x}) = \bigcup_{z \in y} \{f(z, \vec{x})\}, g'(y, \vec{x}) = \bigcup_{z \in y} \{f(z, \vec{x}), z\} \)

(k) \(R'zu\vec{x} \iff (z \in u \land Rz\vec{x} \land \bigwedge z' \in u (z \neq z' \rightarrow \neg Rz'\vec{x})) \) is primitive recursive by (i). But then:

\[
f(y, \vec{x}) = \bigcup (y \cap \{z | R'zy\vec{x}\})
\]

QED (Lemma 1.2.3)

Lemma 1.2.4. Each of the functions listed in §1 Lemma 1.1.12 is primitive recursive.

The proof is left to the reader.

Note Up until now we have only made use of the schemata (i) – (v). This will be important later. The functions and relations obtainable from (i) – (v) alone are called *rudimentary* and will play a significant role in fine structure theory. We shall use the fact that Lemmas 1.2.1 – 1.2.3 hold with "rudimentary" in place of "primitive recursive".

Using the recursion schema (vi) we then get:

Lemma 1.2.5. The functions \(TC(x), rn(x) \) are primitive recursive.
1.2. PRIMITIVE RECURSIVE SET FUNCTIONS

The proof is the same as before (§1 Corollary 1.1.14).

Definition 1.2.3. $f : \text{On}^n \times V^m \to V$ is primitive recursive iff f' is primitive recursive, where

$$f'(\bar{y}, \bar{x}) = \begin{cases} f(\bar{y}, \bar{x}) & \text{if } y_1, \ldots, y_n \in \text{On} \\ \emptyset & \text{if not} \end{cases}$$

As before:

Lemma 1.2.6. The ordinal function $\alpha + 1, \alpha + \beta, \alpha \cdot \beta, \alpha^\beta, \ldots$ are primitive recursive.

Definition 1.2.4. Let $f : V^{n+1} \to V$.

$f^\alpha (\alpha \in \text{On})$ is defined by:

$$f^0(y, \bar{x}) = y$$
$$f^{\alpha+1}(y, \bar{x}) = f(f^\alpha(y, \bar{x}), \bar{x})$$
$$f^\lambda(y, \bar{x}) = \bigcup_{r < \lambda} f^r(y, \bar{x}) \text{ for limit } \lambda.$$

Then:

Lemma 1.2.7. If f is primitive recursive, so is $g(\alpha, y, \bar{x}) = f^\alpha(y, \bar{x})$.

There is a strengthening of the recursion schema (vi) which is analogous to §1 Lemma 1.1.16. We first define:

Definition 1.2.5. Let $h : V \to V$ be primitive recursive. h is manageable iff there is a primitive recursive $\sigma : V \to \text{On}$ such that

$$x \in h(y) \to \sigma(x) < \sigma(y).$$

(Hence the relation $x \in h(y)$ is well founded.)

Lemma 1.2.8. Let h be manageable. Let $g : V^{n+2} \to V$ be primitive recursive. Then $f : V^{n+1} \to V$ is primitive recursive, where:

$$f(y, \bar{x}) = g(y, \bar{x}, \langle f(z, \bar{x}) | z \in h(y) \rangle).$$

Proof. Let σ be as in the above definition. Let $|x| = \text{lub}\{|y| | y \in h(x)\}$ be the rank of x in the relation $y \in h(x)$. Then $|x| \leq \sigma(x)$. Set:

$$\Theta(z, \bar{x}, u) = \bigcup \{ (g(y, \bar{x}, z | h(y)), y) | y \in u \land h(y) \subset \text{dom}(z) \}.$$
By induction on α, if u is h–closed (i.e. $x \in u \implies h(x) \subset u$), then:

$$\Theta^\alpha(\emptyset, \overline{x}, u) = \{ f(y, \overline{x}) \mid y \in u \land |y| < \alpha \}$$

Set $\tilde{h}(v) = v \cup \bigcup_{z \in v} h(z)$. Then $\tilde{h}^\alpha(\{y\})$ is h–closed for $\alpha \geq |y|$. Hence:

$$f(y, \overline{x}) = \Theta^{\sigma(y)+1}(\emptyset, \overline{x}, \tilde{h}^{\sigma(y)}(\{y\}))(y).$$

QED (Lemma 1.2.8)

Corresponding to §1 Lemma 1.1.17 we have:

Lemma 1.2.9. Let $u \in H_\omega$. The constant function $f(x) = u$ is primitive recursive.

Proof: By \in–induction on u. QED

As we shall see, the constant function $f(x) = \omega$ is not primitive recursive, so the analogue of §1 Lemma 1.1.18 fails. We say that f is primitive recursive in the parameters $p_1, \ldots, p_m H$:

$$f(\overline{x}) = g(\overline{x}, \overline{p})$$

where g is primitive recursive.

In place of §1 Lemma 1.1.19 we get:

Lemma 1.2.10. The class Fin and the function $f(x) = P_\omega(x)$ are primitive recursive in the parameter ω.

Proof: Let f be primitive recursive such that $f(0, x) = \emptyset \cup \{ \{z\} \mid z \in x \}$, $f(n + 1, x) = \{ u \cup v \mid (u, v) \in f(n, x)^2 \}$. Then $P_\omega(x) = \bigcup_{n \in \omega} f(n, x)$. But then:

$$x \in \text{Fin} \iff \exists n \in \omega \exists g \in \bigcup_{n \in \omega} P^n_\omega(x \times \omega) g : n \leftrightarrow x.$$

QED

Corollary 1.2.11. The constant function $f(x) = H_\omega$ is primitive recursive in the parameter ω.

Proof: $H_\omega = \bigcup_{n < \omega} P^n_\omega(\emptyset)$. QED

Corresponding to Lemma 1.1.21 of §1 we have:

Lemma 1.2.12. The function $\text{Def}(u)$ is primitive recursive in the parameter ω.

1.2. PRIMITIVE RECURSIVE SET FUNCTIONS

The proof involves carrying out the proof of §1 Lemma 1.1.21 (which we also omitted) while ensuring that the relevant classes and functions are primitive recursive. We give not further details here (though filling in the details can be an arduous task). A fuller account can be found in [PR] or [AS].

Hence:

Corollary 1.2.13. The function \(f(\alpha) = L_\alpha \) is primitive recursive in \(\omega \).

Similarly:

Lemma 1.2.14. The function \(f(\alpha, x) = L_\alpha(x) \) is primitive recursive in \(\omega \).

Lemma 1.2.15. Let \(A \subset V \) be primitive recursive in the parameter \(p \). Then \(f(\alpha) = L_\alpha^A \) is primitive recursive in \(p \).

One can generalize the notion primitive recursive to primitive recursive in the class \(A \subset V \) (or in the classes \(A_1, \ldots, A_n \subset V \)).

We define:

Definition 1.2.6. Let \(A_1, \ldots, A_n \subset V \). The function \(f : V^n \to V \) is primitive recursive in \(A_1, \ldots, A_n \) iff it is obtained by successive applications of the schemata (i) – (vi) together with the schemata:

\[
 f(x) = \chi_{A_i}(x)(i = 1, \ldots, n).
\]

A relation \(R \) is primitive recursive in \(A_1, \ldots, A_n \) iff

\[
 R = \{(\vec{x})| f(\vec{x}) \neq 0\}
\]

for a function \(f \) which is primitive recursive in \(A_1, \ldots, A_n \).

It is obvious that all of the previous results hold with "primitive recursive in \(A_1, \ldots, A_n \)" in place of "primitive recursive".

By induction on the defining schemata of \(f \) we can show:

Lemma 1.2.16. Let \(f \) be primitive recursive in \(A_1, \ldots, A_n \), where each \(A_i \) is primitive recursive in \(B_1, \ldots, B_m \). Then \(f \) is primitive recursive in \(B_1, \ldots, B_m \).

The proof is by induction on the defining schemata leading from \(A_1, \ldots, A_n \) to \(f \). The details are left to the reader. It is clear, however, that this proof is uniform in the sense that the schemata which give in \(f \) from \(B_1, \ldots, B_m \) are not dependent on \(B_1, \ldots, B_m \) or \(A_1, \ldots, A_n \), but only on the schemata which lead from \(A_1, \ldots, A_n \) to \(f \) and the schemata which led from \(B_1, \ldots, B_m \) to \(A_i(i = 1, \ldots, n) \).

This will be made more precise in §1.2.2
1.2.2 PR Definitions

Since primitive recursive functions are proper classes, the foregoing discussion must ostensibly be carried out in second order set theory. However, we can translate it into ZF by talking about primitive recursive definitions. By a primitive recursive definition we mean a finite sequence of equations of the form (i) – (vi) such that:

- The function variable on the left side does not occur in a previous equation in the sequence
- every function variable on the right side occurs previously on the left side with the same number of argument places.

We assume that the language in which we write these equation has been arithmetized — i.e. formulae, terms, variables etc. have been identified in a natural way with elements of \(\omega \) (or at least \(H^n \)).

Every primitive recursive definition \(s \) defines a function \(F_s \). If \(s = (s_0, \ldots, s_{n-1}) \), then \(F_s = F_s^{n-1} \), where \(F_i \) interprets the leftmost function variable of \(s_i \). This is defined in a straightforward way. If e.g. \(s_i \) is "\(f(y, \bar{x}) = \bigcup_{z \in y} g(z, \bar{x}) \)" and \(g \) was leftmost in \(s_j \), then we get

\[
F_i(y, \bar{x}) = \bigcup_{z \in y} F_j(z, \bar{x}).
\]

Let PD be the class of primitive recursive definitions. In order to define \(\{ (x, s) | s \in PD \land x \in F_s \} \) in ZF we proceed as follows:

Let \(s = (s_0, \ldots, s_{n-1}) \in PD \). Let \(M \) be any admissible structure. By induction we can then define \(\langle F_{s,M}^i | i < n \rangle \) where \(F_{s,M}^i \) a function on \(M^{n_i} \) (\(n_i \) being the number of argument places). By admissibility we know that \(F_{s,M}^n \) exists and is defined on all of \(M^{n} \). We then set: \(F_{s,M}^n = F_{s,M}^{n-1,M} \). This defines the set \(\langle F_{s,M}^n | s \in PD \rangle \). If \(M \subseteq M' \) and \(M' \) is also admissible, it follows by any induction on \(i < n \) that \(F_{s,M}^i = F_{s,M'}^i \upharpoonright M \). Hence \(F_{s,M}^n \subseteq F_{s,M'}^n \). We can then set:

\[
F_s = \bigcup \{ F_{s,M}^n | M \text{ is admissible} \}.
\]

Note that by §1, each \(F_{s,M}^n \) has a uniform \(\Sigma_1 \) definition \(\varphi_s \) which defines \(F_{s,M}^n \) over every admissible \(M \). It follows that \(\varphi_s \) defines \(F_s \) in \(V \). Thus we have won an important absoluteness result: Every primitive recursive function has a \(\Sigma_1 \) definition which is absolute in all inner models, in all generic extensions of \(V \), and indeed, in all admissible structures \(M = \langle |M|, \in \rangle \). This absoluteness phenomenon is perhaps the main reason for using the...
theory of primitive recursive functions in set theory. Carol Karp was the first to notice the phenomenon — and to plumb its depths. She proved results going well beyond what I have stated here, showing for instance that the canonical Σ_1 definition can be so chosen, that $F_s \upharpoonright M$ is the function defined over M by φ_s whenever M is transitive and closed under primitive recursive function. She also improved the characterization of such M: Call an ordinal α nice if it is closed under each of the function:

$$f_0(\alpha, \beta) = \alpha + \beta; f_1(\alpha, \beta) = \alpha \cdot \beta, f_2(\alpha, \beta) = \alpha^\beta \ldots \text{ etc.}$$

(More precisely: $f_{i+1}(\alpha, \beta) = \bar{f}_i(\alpha)$ for $i \geq 1$, where $\bar{f}_i(\alpha) = f_i(\alpha, \alpha)$, $g^\beta(\alpha)$ is defined by: $g^0(\alpha) = \alpha, g^{\beta+1}(\alpha) = g(g^\beta(\alpha)), g^\lambda(\alpha) = \sup_{\nu < \lambda} g^\nu(\alpha)$ for limit λ.)

She showed that L_α is primitive recursively closed iff α is nice. Moreover, $L_\alpha[A_1, \ldots, A_n]$ is closed under functions primitive recursive in A_1, \ldots, A_n iff α is nice.

Primitive recursiveness in classes A_1, \ldots, A_n can also be discussed in terms of primitive recursive definitions. To this end we appoint new designated function variable $\hat{a}_i (i = 1, \ldots, n)$, which will be interpreted by $\chi_{A_i} (i = 1, \ldots, n)$.

By a primitive recursive definition in $\hat{a}_1, \ldots, \hat{a}_n$ we mean a sequence of equation having either the form (i) – (vi), in which $\hat{a}_1, \ldots, \hat{a}_n$ do not appear, or the form

$$(^*) \quad f(x_1, \ldots, x_p) = \hat{a}_i(x_j)(i = 1, \ldots, n, j = 1, \ldots, p)$$

We impose our previous two requirements on all equations not of the form (*)&.

If $s = \langle s_0, \ldots, s_{n-1} \rangle$ is a pr definition in $\hat{a}_1, \ldots, \hat{a}_n$, we successively define $F_s^{A_1, \ldots, A_n} (i < n)$ as before, setting $F_s^{A_1, \ldots, A_n}(x_1, \ldots, x_p) = X_{A_i}(x_j)$ if s_i has the form (*)&. We again set $F_s^{A_1, \ldots, A_n} = F_s^{n-1,A}$. The fact that $\{ (x, s) \mid x \in F_s^{A} \}$ is uniformly $(V, \in, A_1, \ldots, A_n)$ definable is shown essentially as before:

Given an admissible $M = \langle \langle M \rangle, \in, a_1, \ldots, a_n \rangle$ we define $F_s^{M, A_1, \ldots, A_n}$ as before, restricting to M. The existence of the total function $F_s^{M, A_1, \ldots, A_n}$ follows as before by admissibility. Admissibility also gives a canonical Σ_1 definition φ_s such that

$$y = F_s^{M}(\bar{x}) \leftrightarrow M \models \varphi_s[y, \bar{x}].$$

(Thus F_s^{M} is uniformly Σ_1 regardless of M.) If M, M' are admissibles of the same type and $M \subseteq M'$ (i.e. M is structurally included in M'), then $F_s^{M} = F_s^{M'} \upharpoonright M$. Thus we can let $F_s^{A_1, \ldots, A_n}$ be the union of all F_s^{M} such that $M = \langle \langle M \rangle, \in, A_1 \cap |M|, \ldots, A_n \cap |M| \rangle$ is admissible. φ_s then defines F_s^{A} over
the axiom of extensionality, and is, therefore, isomorphic to a transitive well founded core of $\langle V, A \rangle$. (Here, Karp refined the construction so as to show that $F_s^A \upharpoonright M = F_s^M$ whenever $M = \langle |M|, \in, A_1 \cap |M|, \ldots, A_n \cap |M| \rangle$ is transitive and closed under function primitive recursive in A_1, \ldots, A_n. It can also be shown that $M = \langle |M|, \in, A_1, \ldots, A_n \rangle$ is closed under functions primitive recursive in A_1, \ldots, A_n iff $|M|$ is primitive recursive closed and M is amenable, (i.e. $x \cap A_i \in M$ for all $x \in M$, $v = 1, \ldots, n$).

A full account of these results can be found in [PR] or [AS].

We can now state the uniformity involved in Lemma 2.2.19: Let $A_i \subset V$ be primitive recursive in B_1, \ldots, B_m with primitive recursive def s_i in b_1, \ldots, b_m ($i = 1, \ldots, m$). Let f be primitive recursive in A_1, \ldots, A_n with primitive recursive definition s in $\tilde{a}_1, \ldots, \tilde{a}_n$. Then f is primitive recursive in B_1, \ldots, B_n by a primitive recursive definition s' in $\tilde{b}_1, \ldots, \tilde{b}_m$. s' is uniform in the sense that it depends only on s_1, \ldots, s_n and s, not on B_1, \ldots, B_m. In fact, the induction on the schemata in s implicitly describes an algorithm for a function

$s_1, \ldots, s_n, s \mapsto s'$

with the following property: Let B_1, \ldots, B_m be any classes. Let s_i define g_i from $\vec{B}(i = 1, \ldots, n)$. Set: $A_i = \{x|g_i(x) \neq 0\}$ in $i = 1, \ldots, n$. Let f be the function defined by s from \vec{A}. Then s' defines f from \vec{B}.

Note $\langle H_\omega, \in \rangle$ is an admissible structure; hence $F_s \upharpoonright H_\omega = f_s^{H_\omega}$. This shows that the constant function ω is not primitive recursive, since $\omega \notin H_\omega$. It can be shown that $f : \omega \rightarrow \omega$ is primitive recursive in the sense of ordinary recursion theory iff

$f^*(x) = \begin{cases} f(x) & \text{if } x \in \omega \\ 0 & \text{if not} \end{cases}$

is primitive recursive over H_ω. Conversely, there is a primitive recursive map $\sigma : H_\omega \leftrightarrow \omega$ such that $f : H_\omega \rightarrow H_\omega$ is primitive recursive over H_ω iff $\sigma f \sigma^{-1}$ is primitive recursive in some sense of ordinary recursion theory.

1.3 Ill founded ZF^- models

We now prove a lemma about arbitrary (possibly ill founded) models of ZF^- (where the language of ZF^- may contain predicates other than \in). Let $\mathbb{A} = \langle A, \in_\mathbb{A}, B_1, \ldots, B_n \rangle$ be such a model. For $X \subset A$ we of course write $\mathbb{A} \upharpoonright X = \langle X, \in_\mathbb{A} \cap X^2, \ldots \rangle$. By the well founded core of \mathbb{A} we mean the set of all $v \in \mathbb{A}$ such that $\in_\mathbb{A} \cap C(x)^2$ is well founded, where $C(x)$ is the closure of $\{x\}$ under $\in_\mathbb{A}$. Let $\text{wfc}(\mathbb{A})$ be the restriction $\mathbb{A} \upharpoonright C$ of \mathbb{A} to its well founded core C. Then $\text{wfc}(\mathbb{A})$ is a well founded structure satisfying the axiom of extensionality, and is, therefore, isomorphic to a transitive
structure. Hence A is isomorphic to a structure A' such that $\text{wfc}(A')$ is transitive (i.e. $\text{wfc}(A') = \langle A', \in, m \rangle$ where A' is transitive). We call such A' grounded, defining:

Definition 1.3.1. $A = \langle A, \in, \ldots \rangle$ is grounded iff $\text{wfc}(A)$ is transitive.

Note. Elsewhere we have called these models "solid" instead of "grounded". We avoid that usage here, however, since *solidity* — in quite another sense — is an important concept in inner model theory.

By the argument just given, every consistent set of sentences in ZF^- has a grounded model. Clearly

1. $\omega \subset \text{wfc}(A)$ if A is grounded.

For any ZF^- model A we have:

2. If $x \in A$ and $\{z | z \in_A x\} \subset \text{wfc}(A)$, then $x \in \text{wfc}(A)$.

Proof: $C(x) = \{x\} \cup \{C(z) | z \in_A x\}$. QED

By Σ_0-absoluteness we have:

3. Let A be grounded. Let φ be Σ_0 and let $x_1, \ldots, x_n \in \text{wfc}(A)$. Then

$$\text{wfc}(A) \models \varphi[\bar{x}] \iff A \models \varphi[\bar{x}].$$

By \in-induction on $x \in \text{wfc}(A)$ it follows that the rank function is absolute:

4. $\text{rn}(x) = \text{rn}^A(x)$ for $x \in \text{wfc}(A)$ if A is grounded.

The converse also holds:

5. Let $\text{rn}^A(x) \in \text{wfc}(A)$. Then $x \in \text{wfc}(A)$.

Proof: Let $r = \text{rn}^A(x)$. Then r is an ordinal by (3). Assume that r is the least counterexample. Then $\text{rn}^A(z) < r$ for $z \in_A x$. Hence $\{z | z \in_A x\} \subset \text{wfc}(A)$ and $x \in \text{wfc}(A)$ by (2).

Contradiction! QED

We now prove:
CHAPTER 1. TRANSFINITE RECURSION THEORY

Lemma 1.3.1. Let A be grounded. Then $wfc(A)$ is admissible.

Proof: Axiom (1) and axiom (2) (Σ_0-subsets) follow trivially from (3). We verify the axiom of Σ_0 collection. Let $R(x,y)$ be $\Sigma_0(wfc(A))$. Let $u \in wfc(A)$ such that $\bigwedge x \in u \bigvee y R(x,y)$. It suffices to show:

Claim: $\bigvee v \bigwedge x \in u \bigvee y \in v R(x,y)$.

Let R' be $\Sigma_0(A)$ by the same definition in the same parameters as R. Then $R = R' \cap wfc(A)^2$ by (3). If $A = wfc(A)$, there is nothing to prove, so suppose not. Then there is $r \in On^A$ such that $r \notin wfc(A)$. Hence $A \models rn(y) < r$ for all $y \in wfc(A)$ by (4). Hence there is an $r \in On^A$ such that

(6) $\bigwedge x \in u \bigvee y (R'(x,y) \land A \models rn(y) < r)$

Since A models ZF^-, there must be a least such r. But then:

(7) $r \in wfc(A)$.

Since by (2) there would otherwise be an r' such that $A \models r' < r$ and $r' \notin wfc(A)$. Hence (6) holds for r', contradicting the minimality of r.

QED (7)

But there is w such that

(8) $\bigwedge x \in u \bigvee y \in w(R'(x,y) \land rn(y) < r)$.

Let $A \models v = \{ y \in w | rn(y) < r \}$. Then $rn^A(v) \leq r$. Hence $rn^A(v) \in wfc(A)$ and $v \in wfc(A)$ by (5). But:

$\bigwedge x \in u \bigvee y \in v Rxy$.

QED (Lemma 1.3.1)

As immediate corollaries we have:

Corollary 1.3.2. Let $\delta = On \cap wfc(A)$. Then $L_\delta(u)$ is admissible whenever $u \in wfc(A)$.

Corollary 1.3.3. $L^A_\delta = \langle L_\delta[A], A \cap L_\delta[A] \rangle$ is admissible whenever $A \in \Sigma_\omega(A)$ (since $\langle A, A \rangle$ is a ZF^- model).

Note. It is clear from the proof of lemma 1.3.1 that we can replace ZF^- by KP (Kripke–Platek set theory). In this form Lemma 1.3.1 is known as Ville’s Lemma.
1.4 Barwise Theory

Jon Barwise worked out the syntax and model theory of certain infinitary (but M–finite) languages in countable admissible structures M. In so doing, he created a powerful and flexible tool for set theory, which we shall utilize later in this book. In this chapter we give an introduction to Barwise’s work.

1.4.1 Syntax

Let M be admissible. Barwise developed a first order theory in which arbitrary M–finite conjunction and disjunction are allowed. The predicates, however, have only a (genuinely) finite number of argument places and there are no infinite strings of quantifiers. In order that the notion "M–finite" have a meaning for the symbols in our language, we must "arithmetize" the language — i.e. identify its symbols with objects in M. There are many ways of doing this. For the sake of definiteness we adopt a specific arithmetization of M–finitary first order logic:

Predicates: For each $x \in M$ and each n such that $1 \leq n < \omega$ we appoint an n–ary predicate $P^n_x := \langle 0, \langle n, x \rangle \rangle$.

Constants: For each $x \in M$ we appoint a constant $c_x := \langle 1, x \rangle$.

Variables: For each $x \in M$ we appoint a variable $v_x := \langle 2, x \rangle$.

Note The set of variables must be M–infinite, since otherwise a single formula might exhaust all the variables.

We let P^2_0 be the identity predicate $= \vdash$ and also reserve P^2_1 as the --predicate (\vDash).

By a **primitive formula** we mean $Pt_1 \ldots t_n := \langle 3, \langle P, t_1, \ldots, t_n \rangle \rangle$ where P is an n–ary predicate and t_1, \ldots, t_n are variables or constants.

We then define:

$$\neg \varphi := \langle 4, \varphi \rangle, (\varphi \lor \psi) := \langle 5, \langle \varphi, \psi \rangle \rangle,$$

$$(\varphi \land \psi) := \langle 6, \langle \varphi, \psi \rangle \rangle, (\varphi \rightarrow \psi) := \langle 7, \langle \varphi, \psi \rangle \rangle,$$

$$(\varphi \leftrightarrow \psi) := \langle 8, \langle \varphi, \psi \rangle \rangle, \land v \varphi = \langle 9, \langle v, \varphi \rangle \rangle,$$

$$(\lor v \varphi = \langle 10, \langle v, \varphi \rangle \rangle.$$
CHAPTER 1. TRANSFINITE RECURRENCE THEORY

The infinitary conjunctions and disjunctions are
\[\bigwedge \bigvee f =: (11, f), \bigwedge \bigvee f =: (12, f). \]

The set Fml of first order M–formulae is then the smallest set X which contains all primitive formulae, is closed under $\neg, \land, \lor, \rightarrow, \leftrightarrow$, and such that

- If v is a variable and $\varphi \in X$, then $\land v\varphi \in X$ and $\lor v\varphi \in X$.
- If $f = (\varphi_i | i \in I) \in M$ and $\varphi_i \in X$ for $i \in I$, then $\bigwedge f \in X$ and $\bigvee f \in X$.

(In this case we also write:
\[\bigwedge_{i \in I} \varphi_i =: \bigwedge f, \bigvee_{i \in I} \varphi_i =: \bigvee f. \]

If $B \in M$ is a set of formulae we may also write: $\bigwedge B$ for $\bigwedge_{\varphi \in B} \varphi$.)

It turns out that the usual syntactical notions are $\Delta_1(M)$, including: Fml, $Const$ (set of constants), Vbl (set of variables), $Sent$ (set of all sentences), as are the functions:

- $Fr(\varphi) = \text{The set of free variables in } \varphi$
- $\varphi(\gamma/t) \simeq \text{the result of replacing occurrences of the variable } v \text{ by } t \text{ (where } t \in Vbl \cup Const\text{), as long as this can be done without a new occurence of } t \text{ being bound by a quantifier in } \varphi \text{ (if } t \text{ is a variable).}$

That $Vbl, Const$ are Δ_1 (in fact Σ_0) is immediate. The characteristic function X of Fml is definable by a recursion of the form:

\[X(x) = G(x, \langle X(z) | z \in TC(x) \rangle) \]

where $G : M^2 \to M$ is Δ_1. (This is an instance of the recursion schema in §1 Lemma 1.1.16. We are of course using the fact that any proper subformula of φ lies in $TC(\varphi)$.)

Now let $h(\varphi)$ be the set of immediate subformulae of φ (e.g. $h(\neg \varphi) = \{ \varphi \}$, $h(\bigwedge \varphi) = \{ \varphi | i \in I \}$, $h(\bigvee \varphi) = \{ \varphi \}$ etc.) Then h satisfies the condition in §1 Lemma 1.1.16. It is fairly easy to see that

\[Fr(\varphi) = G(\varphi, \langle F(x) | x \in h(\varphi) \rangle) \]

where G is a Σ_1 function defined on Fml. Then $Sent = \{ \varphi | Fr(\varphi) = \emptyset \}$.

To define $\varphi(\gamma/t)$ we first define it on primitive formulae, which is straightforward. We then set:
\[(\varphi \land \psi)(v/t) \simeq (\varphi(v/t) \land \psi(v/t)) \text{ (similarly for } \land, \to, \leftrightarrow)\]
\[\neg \varphi(v/t) \simeq \neg (\varphi(v/t))\]
\[(\bigwedge_{i \in I} \varphi_i)(v/t) \simeq \bigwedge_{i \in I} (\varphi_i(v/t)) \text{ similarly for } \bigwedge.
\]
\[(\bigvee u \varphi)(v/t) \simeq \begin{cases}
\bigwedge u \varphi & \text{if } u = v \\
\bigwedge u(\varphi(v/t)) & \text{if } u \neq v, t \text{ (similarly for } \bigvee) \\
\text{otherwise undefined}
\end{cases}\]

This has the form:
\[\varphi(v/t) \simeq G(\varphi, v, t\langle \varphi(t) \mid X \in h(\varphi)\rangle),\]
where \(G\) is \(\Sigma_1(M)\). The domain of the function \(f(\varphi, v, t) = \varphi(v/t)\) is \(\Delta_1(M)\), however, so \(f\) is \(M\)-recursive.

(We can then define:
\[\varphi(v_1, \ldots, v_n, t_1, \ldots, t_n) = \varphi(v_1/w_1) \ldots (v_n/w_n)(w_1/t_1) \ldots (w_n/t_n)\]
where \(v_1, \ldots, v_n\) is a sequence of distinct variables and \(w_1, \ldots, w_n\) is any sequence of distinct variables which are different from \(v_1, \ldots, v_n, t_1, \ldots, t_n\) and do not occur bound or free in \(\varphi\). We of course follow the usual conventions, writing \(\varphi(t_1, \ldots, t_n)\) for \(\varphi(v_1, \ldots, v_n, t_1, \ldots, t_n)\), taking \(v_1, \ldots, v_n\) as known.)

\(M\)-finite predicate logic has the axioms:

- all instances of the usual propositional logic axiom schemata (enough to derive all tautologies with the help of modus ponens).
- \(\bigwedge_{i \in U} \varphi_i \rightarrow \varphi_j, \varphi_j \rightarrow \bigwedge_{i \in U} \varphi_i\ (j \in U \subseteq M)\)
- \(\bigwedge x \varphi \rightarrow \varphi(\bar{x}/t), \varphi(\bar{x}/t) \rightarrow \bigvee x \varphi\)
- \(x = y \rightarrow (\varphi(x) \leftrightarrow \varphi(y))\)

The rules of inference are:

- \(\frac{\varphi \varphi \rightarrow \psi}{\psi}\) (modus ponens)
- \(\frac{\varphi \rightarrow \bigwedge x \varphi}{\varphi} \text{ if } x \notin Fr(\varphi)\)
- \(\frac{\bigwedge x \varphi \rightarrow \varphi}{\bigvee x \varphi} \text{ if } x \notin Fr(\varphi)\)
- \(\frac{\varphi \rightarrow u \varphi(i \in U)}{\varphi \rightarrow \bigwedge_{i \in U} \psi_i} \quad (u \in M)\)
CHAPTER 1. TRANSFINITE RECURSION THEORY

We say that \(\varphi \) is provable from a set of sentences \(A \) iff \(\varphi \) is in the smallest set which contains \(A \) and the axioms and is closed under the rules of inference. We write \(A \vdash \varphi \) to mean that \(\varphi \) is provable from \(A \). \(\vdash \varphi \) means the same as \(\emptyset \vdash \varphi \).

However, this definition of provability cannot be stated in the 1st order language of \(M \) and rather misses the point which is that a provable formula should have an \(M \)-finite proof. This, as it turns out, will be the case whenever \(A \) is \(\Sigma_1(M) \). In order to state and prove this, we must first formalize the notion of proof. Because we have not assumed the axiom of choice to hold in our admissible structure \(M \), we adopt a somewhat unorthodox concept of proof:

Definition 1.4.1. By a proof from \(A \) we mean a sequence \(\langle p_i | i < \alpha \rangle \) such that \(\alpha \in \text{On} \) and for each \(i < \alpha \), \(p_i \in Fml \) and whenever \(\psi \in p_i \), then either \(\psi \in A \) or \(\psi \) is an axiom or \(\psi \) follows from \(\bigcup_{h<i} p_h \) by a single application of one of the rules.

Definition 1.4.2. \(p = \langle p_i | i < \alpha \rangle \) is a proof of \(\varphi \) from \(A \) iff \(p \) is a proof from \(A \) and \(\varphi \in \bigcup_{i<\alpha} p_i \).

(Note that this definition does not require a proof to be \(M \)-finite.)

It is straightforward to show that \(\varphi \) is provable iff it has a proof. However, we are more interested in \(M \)-finite proofs. If \(A \) is \(\Sigma_1(M) \) in a parameter \(q \), it follows easily that \(\{ p \in M | p \text{ is a proof from } A \} \) is \(\Sigma_1(M) \) in the same parameter. A more interesting conclusion is:

Lemma 1.4.1. Let \(A \) be \(\Sigma_1(M) \). Then \(A \vdash \varphi \) iff there is an \(M \)-finite proof of \(\varphi \) from \(A \).

Proof: (\(\leftarrow \)) trivial. We prove (\(\rightarrow \))

Let \(X = \) the set of \(\varphi \) such that there is \(p \in M \) which proves \(\varphi \) from \(A \).

Claim: \(\{ \varphi | A \vdash \varphi \} \subseteq X \).

Proof: We know that \(A \subseteq X \) and all axioms lie in \(X \). Hence it suffices to show that \(X \) is closed under the rules of proof. This must be demonstrated rule by rule. As an example we show:

Claim: Let \(\varphi \rightarrow \psi_i \) be in \(X \) for \(i \in u \). Then \(\varphi \rightarrow \bigwedge_{i \in u} \psi_i \in X \).
1.4. BARWISE THEORY

Proof: Let $P(p, \varphi)$ mean: p is a proof of φ from A. Then P is $\Sigma_1(M)$. We have assumed:

(1) $\forall i \in u \forall p:\ P(p, \varphi \rightarrow \psi_i)$.

Now let $P(p, x) \leftrightarrow \exists z\ P'(z, p, x)$ where P' is Σ_0. We then have:

(2) $\forall i \in u \forall p\ \exists z\ P'(z, p, \varphi \rightarrow \psi_i)$.

Hence there is $v \in M$ with:

(3) $\forall i \in u \forall p, z\ P'(z, p, \varphi \rightarrow \psi_i)$.

Set: $w = \{p \in v | \exists i \in u \exists z \in v\ P'(z, p, \varphi \rightarrow \psi_i)\}$
Set: $\alpha = \bigcup_{p \in w}\ \text{dom}(p)$. For $i < \alpha$ set:

$q_i = \bigcup\{p_i | p \in w \land i \in \text{dom}(p)\}$

Then $q = \langle q_i | i < \alpha \rangle \in M$ is a proof.

? But then $q^\uparrow\{\varphi \rightarrow \bigwedge_{i \in U}^\psi\}_i$ is a proof of $\varphi \rightarrow \bigwedge_{i \in U}^\psi \in X$. QED (Lemma 1.4.1)

From this we get the M–finiteness lemma:

Lemma 1.4.2. Let A be $\Sigma_1(M)$. Then $A \vdash \varphi$ iff there is $a \subset A$ such that $a \in M$ and $a \vdash \varphi$.

Proof: (\leftarrow) is trivial. We prove (\rightarrow). Let $p \in M$ be a proof of φ from A. Set:

$a = \text{the set of } \psi \text{ such that for some } i \in \text{dom}(p), \psi \in p_i \text{ and } \psi \text{ is neither an axiom nor follows from } \bigcup_{l < i}^p\text{ by an application of a single rule.}$

Then $a \subset A$, $a \in M$, and p is a proof of φ from a. QED (Lemma 1.4.2)

Another consequence of Lemma 1.4.1 is:

Lemma 1.4.3. Let A be $\Sigma_1(M)$ in q. Then $\{\varphi | A \vdash \varphi\}$ is $\Sigma_1(M)$ in the same parameter (uniformly in the Σ_1 definition of A).

Proof: $\{\varphi | A \vdash \varphi\} = \{\varphi | \forall p \in M \ p \text{ proves } \varphi \text{ from } A\}$.

Corollary 1.4.4. Let A be $\Sigma_1(M)$ in q. Then "A is consistent" is $\Pi_1(M)$ in the same parameter (uniformly in the Σ_1 definition of A).
"p proves \(\varphi \) from \(u \)" is uniformly \(\Sigma_1(M) \). Hence:

Lemma 1.4.5. \(\{ (u, \varphi) | u \in M \land u \vdash \varphi \} \) is uniformly \(\Sigma_1(M) \).

Corollary 1.4.6. \(\{ (u \in M | u \text{ is consistent} \} \) is uniformly \(\Pi_1(M) \).

Note. Call a proof \(p \) *strict* iff \(p_i = 1 \) for \(i \in \text{dom}(p) \). This corresponds to the more usual notion of proof. If \(M \) satisfies the axiom of choice in the form: Every set is enumerable by an ordinal, then Lemma 1.4.1 holds with "strict proof" in place of "proof". We leave this to the reader.

1.4.2 Models

We will not normally employ all of the predicates and constants in our \(M \)–finitary first order logic, but cut down to a smaller set of symbols which we intend to interpret in a model. Thus we define a *language* to be a set \(\mathbb{L} \) of predicates and constants. By a *model* of \(\mathbb{L} \) we mean a structure:

\[
\mathbb{A} = \langle |\mathbb{A}|, \langle t^\mathbb{A} | t \in \mathbb{L} \rangle \rangle
\]

such that \(|\mathbb{A}| \neq \emptyset \), \(P^\mathbb{A} \subset |\mathbb{A}|^n \) whenever \(P \) is an \(n \)-ary predicate, and \(c^\mathbb{A} \in |\mathbb{A}| \) whenever \(c \) is a constant. By a *variable assignment* we mean a partial map of \(f \) of the variables into \(\mathbb{A} \). The *satisfaction relation* \(\mathbb{A} \models \varphi[f] \) is defined in the usual way, where \(\mathbb{A} \models [f] \) means that the formula \(\varphi \) becomes true in \(\mathbb{A} \) if the free variables of \(\varphi \) are interpreted by the assignment \(f \). We leave the definition to the reader, remarking only that:

\[
\mathbb{A} \models \bigwedge_{i \in u} \varphi_i[f] \iff \bigwedge_{i \in u} \mathbb{A} \models \varphi_i[f]
\]

\[
\mathbb{A} \models \bigvee_{i \in u} \varphi_i[f] \iff \bigvee_{i \in u} \mathbb{A} \models \varphi_i[f]
\]

We adopt the usual conventions of model theory, writing \(\mathbb{A} = \langle |\mathbb{A}|, t_1^\mathbb{A}, \ldots \rangle \) if we think of the predicates and constants of \(\mathbb{L} \) as being arranged in a fixed sequence \(t_1, t_2, \ldots \). Similarly, if \(\varphi = \varphi(v_1, \ldots, v_n) \) is a formula in which at most the variables \(v_1, \ldots, v_n \) occur free, we write \(\mathbb{A} \models \varphi[a_1, \ldots, a_n] \) for:

\[
\mathbb{A} \models \varphi[f] \text{ where } f(v_i) = a_i \text{ for } i = 1, \ldots, n.
\]

If \(\varphi \) is a sentence we write: \(\mathbb{A} \models \varphi \). If \(A \) is a set of sentences, we write \(\mathbb{A} \models A \) to mean: \(\mathbb{A} \models \varphi \) for all \(\varphi \in A \).

Proof: The *correctness theorem* says that if \(A \) is a set of \(\mathbb{L} \) sentences and \(\mathbb{A} \models A \), then \(A \) is consistent. (We leave this to the reader.)

Barwise’s Completeness Theorem says that the converse holds whenever our admissible structure is countable:
Theorem 1.4.7. Let M be a countable admissible structure. Let \mathbb{L} be an M–language and let A be a set of statements in \mathbb{L}. If A is consistent in M–finite predicate logic, then \mathbb{L} has a model \mathbb{A} such that $\mathbb{A} \models A$.

Proof: (Sketch)
We make use of the following theorem of Rasiowa and Sikorski: Let B be a Boolean algebra. Let $X_i \in B (i < \omega)$ be such that the Boolean union $\bigcup X_i = b_i$ exists in the sense of B. Then B has an ultrafilter U such that $b_i \in U \iff X_i \cap U \neq \emptyset$ for $i < \omega$.

(Proof. Successively choose $c_i (i < \omega)$ by: $c_0 = 1, c_{i+1} = c_i \cup b \neq 0$, where $b \in X_i \cup \{\neg b_i\}$. Let $\overline{U} = \{a \in B | \exists i (c_i \subseteq a)\}$. Then \overline{U} is a filter and extends to an ultrafilter on B.)

Extend the language \mathbb{L} by adding an M–infinite set C of new constants. Call the extended language \mathbb{L}'. Set:

$$[\varphi] =: \{ \psi | A \vdash (\psi \leftrightarrow \varphi) \}$$

for \mathbb{L}'–sentences φ. Then

$$\mathbb{B} =: \{ [\varphi] | \varphi \in \text{Sent}_{\mathbb{L}'} \}$$

is the Lindenbaum algebra of \mathbb{L}' with the defining equations:

$$[\varphi] \cup [\psi] = [\varphi \lor \psi], [\varphi] \cap [\psi] = [\varphi \land \psi], \neg [\varphi] = [\neg \varphi]$$

$$\bigcup_{i \in U} [\varphi_i] = [\bigwedge_{i \in U} \varphi_i] (i \in u), \bigcap_{i \in U} [\varphi_i] = [\bigvee_{i \in U} \varphi_i] (i \in u)$$

$$\bigcup_{c \in C} [\varphi(c)] = [\bigvee_{v} \varphi(v)], \bigcap_{c \in C} [\varphi(c)] = [\bigwedge_{v} \varphi(v)].$$

The last two equations hold because the constants in C, which do not occur in the axiom A, behave like free variables. By Rasiowa and Sikorski there is then an ultrafilter U on \mathbb{B} which respects the above operations. We define a model $\mathbb{A} = \langle |\mathbb{A}|, \langle t^A | t \in \mathbb{L} \rangle \rangle$ as follows: For $c \in C$ set $[c] =: \{ c' \in C | [c = c'] \in U \}$. If $P \in \mathbb{L}$ is an n–place predicate, set:

$$P^A ([c_1], \ldots, [c_n]) \leftrightarrow: [Pc_1, \ldots, c_n] \in U.$$

If $t \in \mathbb{L}$ is a constant, set:

$$t^A = [c] \text{ where } c \in C, [t = c] \in U.$$

A straightforward induction then shows:

$$\mathbb{A} \models \varphi ([c_1], \ldots, [c_n]) \leftrightarrow [\varphi(c_1, \ldots, c_n)] \in U$$
for formulae \(\varphi = \varphi(v_1, \ldots, v_n) \) with at most the free variables \(v_1, \ldots, v_n \). In particular, \(A \models \varphi \iff \varphi \in U \) for \(L^* \)-statements \(\varphi \). Hence \(A \models A' \).

QED (Theorem 1.4.7)

Combining the completeness theorem with the \(M \)-finiteness lemma, we get the well known Barwise compactness theorem:

Corollary 1.4.8. Let \(M \) be countable. Let \(L \) be a language. Let \(A \) be a \(\sum_1(M) \) set of sentences in \(L \). If every \(M \)-finite subset of \(A \) has a model, then so does \(A \).

1.4.3 Applications

Definition 1.4.3. By a theory or axiomatized language we mean a pair \(L = (L_0, A) \) such that \(L_0 \) is a language and \(A \) is a set of \(L_0 \)-sentences. We say that \(\mathcal{A} \) models \(L \) iff \(\mathcal{A} \) is a model of \(L_0 \) and \(\mathcal{A} \models A \). We also write \(L \models \varphi \) for: \((\varphi \in \text{Fml}_{L_0} \text{ and } A \models \varphi) \). We say that \(L = (L_0, A) \) is \(\Sigma_1(M) \) (in \(p \)) iff \(L_0 \) is \(\Delta_1(M) \) (in \(p \)) and \(A \) is \(\Sigma_1(M) \) (in \(p \)). Similarly for: \(L \) is \(\Delta(M) \) (in \(p \)).

We now consider the class of axiomatized languages containing a fixed predicate \(\in \), the special constants \(x(x \in M) \) (we can set e.g. \(x = (1, \langle 0, x \rangle) \)), and the basic axioms:

- Extensionality
- \(\bigwedge v(v \in x \leftrightarrow \bigwedge_{z \in x} v = z) \) for \(x \in M \).

(Further predicates, constants, and axioms are allowed of course.) We call any such theory an \(\in \)-theory. Then:

Lemma 1.4.9. Let \(\mathcal{A} \) be a grounded model of an \(\in \)-theory \(L \). Then \(x^\mathcal{A} = x \in \text{wfc}(\mathcal{A}) \) for \(x \in M \).

In an \(\in \)-theory \(L \) we often adopt the set of axioms \(ZFC^- \) (or more precisely \(\text{ZFC}^-_\in \)). This is the collection of all \(L \)-sentences \(\varphi \) such that \(\varphi \) is the universal quantifier closure of an instance of the \(\text{ZFC}^- \) axiom schemata — but does not contain infinite conjunctions or disjunctions. (Hence the collection of all subformulae is finite.) (Similarly for \(\text{ZF}^-, \text{ZFC}, \text{ZF} \).)

(Note) If we omit the sentences containing constants, we get a subset \(B \subset \text{ZFC}^- \) which is equivalent to \(\text{ZFC}^- \) in \(L \). Since each element of \(B \) contain at most finitely many variables, we can restrict further to the subset \(B' \) of
sentences containing only the variables \(v_i(i < \omega)\). If \(\omega \in M\) and the set of predicates in \(L\) is \(M\)–finite, then \(B'\) will be \(M\)–finite. Hence \(\text{ZFC}^-\) is equivalent in \(L\) to the statement \(\bigwedge B'\).

We now bring some typical applications of \(\epsilon\)–theories. We say that an ordinal \(\alpha\) is admissible in \(a \subset \alpha\) iff \(\langle L_\alpha[a], \in, a\rangle\) is admissible.

Lemma 1.4.10. Let \(\alpha > \omega\) be a countable admissible ordinal. Then there is \(a \subset \omega\) such that \(\alpha\) is the least ordinal admissible in \(a\).

This follows straightforwardly from:

Lemma 1.4.11. Let \(M\) be a countable admissible structure. Let \(L\) be a consistent \(\Sigma_1(M)\) \(\epsilon\)–theory such that \(L \vdash \text{ZF}^-\). Then \(L\) has a grounded model \(\mathcal{A}\) such that \(\mathcal{A} \neq \text{wfc}(\mathcal{A})\) and \(\text{On} \cap \text{wfc}(\mathcal{A}) = \text{On} \cap M\).

We first show that lemma 1.4.11 implies lemma 1.4.10. Take \(M = L_\alpha\). Let \(L\) be the \(M\)–theory with:

Predicate: \(\in\)

Constants: \(\in(x \in M), \dot{\alpha}\)

Axioms: Basic axioms \(+\text{ZFC}^- + \beta\) is not admissible in \(\dot{\alpha}(\beta \in M)\)

Then \(L\) is consistent, since \(\langle H_{\omega_1}, \in, a\rangle\) is a model, where \(a\) is any \(a \subset \omega\) which codes a well ordering of type \(\geq \alpha\). Let \(\mathbb{L}\) be a grounded model of \(L\) such that \(\text{wfc}(\mathcal{A}) \neq \mathcal{A}\) and \(\text{On} \cap \text{wfc}(\mathcal{A}) = \text{On} \cap M\). Then \(\text{wfc}(\mathcal{A})\) is admissible by §3. Hence so is \(L_\alpha[a]\) where \(a = \dot{\alpha}\).

Note This is a very typical application in that Barwise theory hands us an ill founded model, but our interest is entirely concentrated on its well founded part.

Note Pursuing this method a bit further we can use lemma 1.4.11 to prove:
Let \(\omega < \alpha_0 < \ldots < \alpha_{n-1}\) be a sequence of countable admissible ordinals. There is \(a \subset \omega\) such that \(\alpha_i = \text{the } i\text{–th } \alpha < \omega\) which is admissible in \(a(1 = 0, \ldots, n-1)\).

We now prove lemma 1.4.11 by modifying the proof of the completeness theorem. Let \(\Gamma(v)\) be the set of formulae: \(v \in \text{On}, v > \beta(\beta \in \text{On} \land M)\). Add an \(M\)–infinite (but \(\Delta_1(M)\)) set \(E\) of new constants to \(\mathbb{L}\). Let \(L'\) be \(\mathbb{L}\) with the new constants and new axioms: \(\Gamma(e) (e \in E)\). Then \(L'\) is consistent, since any \(M\)–finite subset of the axioms can be modeled in an arbitrary
grounded model A of L by interpreting the new constants as sufficiently
large elements of α. As in the proof of completeness we then add a new
class C of constants which is not M–finite. We assume, however, that C
$\Delta_1(M)$. We add no further axioms, so the elements of C behave like free
variables. The so–extended language L'' is clearly $\Sigma_1(M)$.

Now set:

$$\Delta(v) =: \{ v \notin \text{On} \} \cup \bigcup_{\beta \in M} \{ v \leq \beta \} \cup \bigcup_{e \in E} \{ e < v \}. $$

Claim Let $c \in C$. Then $\bigcup \{ \varphi \mid \varphi \in \Delta(c) \} = 1$ in the Lindenbaum algebra of L''.

Proof: Suppose not. Then there is ψ such that $A \vdash \varphi \rightarrow \psi$ for all $\varphi \in \Delta(c)$
and $A \cup \{ \neg \psi \}$ is consistent, where $L'' = \langle L''_0, A \rangle$. Pick an $e \in E$ which does not
occur in ψ. Let $A^* = A \cup \{ \neg \psi \} \cup \Gamma(e)$ from A. Then $A^* \cup \{ \neg \psi \} \cup \Gamma(e) \vdash c \leq e$. By the finiteness lemma there is $\beta \in M$
such that $A^* \cup \{ \neg \psi \} \cup \{ \beta \leq e \} \vdash c \leq e$. But e behaves here like a free
variable, so $A^* \cup \{ \neg \psi \} \vdash c \leq \beta$. But $A \supset A^*$ and $A \cup \{ \neg \psi \} \vdash \beta < c$. Hence
$A \cup \{ \neg \psi \} \vdash \beta < \beta$ and $A \cup \{ \neg \psi \}$ is inconsistent.

Contradiction! −

QED (Claim)

Now let U be an ultrafilter on the Lindenbaum algebra of L'' which respects
both two operations listed in the proof of the completeness theorem and the
unions $\bigcup \{ [\varphi] \mid [\varphi] \in \Delta(c) \}$ for $c \in C$. Let $X = \{ [\varphi] \mid [\varphi] \in U \}$. Then as before,
L'' has a grounded model A, all of whose elementes have the form e^A for $c \in C$ and such that:

$$A \models \varphi \iff \varphi \in X$$

for L''–statements φ. But then for each $x \in A$ we have either $x \notin \text{On}_A$ or
$x < \beta$ for a $\beta \in \text{On}_M$ or $e^A < v$ for all $e \in E$. In particular, if $x \in \text{On}_A$
and $x > \beta$ for all $\beta \in \text{On}_M$, then there is $e^A < x$ in A. But $\beta < e^A$ for all $\beta \in \text{On}_M$. Hence $\text{On}_A \setminus \text{On}_M$ has no minimal element in A.

QED (Lemma 1.4.11)

Another typical application is:

Lemma 1.4.12. Let W be an inner model of ZFC. Suppose that, in W, U
is a normal measure on κ. Let $\tau > \kappa$ be regular in W. Set: $M = \langle H^W_\tau, U \rangle$.
Assume that M is countable in V. Then for any $\alpha \leq \kappa$ there is $\overline{M} = \langle \overline{H}, \overline{U} \rangle$
such that

- $\overline{M} \models \overline{U}$ is a normal measure on $\overline{\kappa}$ for a $\overline{\kappa} \in \overline{M}$
- \overline{M} iterates to M in α many steps.
1.4. BARWISE THEORY

(Hence \bar{M} is iterable, since M is.)

Proof: The case $\alpha = 0$ is trivial, so assume $\alpha > 0$. Let δ be least such that $L_\delta(M)$ is admissible. Let \mathbb{L} be the ε-theory on $L_\delta(M)$ with:

Predicate: \in

Constants: $\varphi(x \in L_\delta(M)), \bar{M}$

Axiom:
- Basic axioms $+\text{ZFC}^-$
- $\bar{M} = \langle H, \bar{U} \rangle \models (\text{ZFC}^- + \bar{U}$ is a normal measure on a $\kappa < \bar{H})$
- \bar{M} iterates to \bar{M} in α many steps.

It will suffice to show:

Claim \mathbb{L} is consistent.

We first show that the claim implies the theorem. Let A be a grounded model of \mathbb{L}. Then $L_\delta(M) \subset \text{wfc}(A)$. Hence $M, \bar{M} \in \text{wfc}(A)$, where $\bar{M} = \bar{M}^A$. But then in A there is an iteration $\langle \bar{M}_i | i \leq \alpha \rangle$ of \bar{M} to M. By absoluteness $\langle \bar{M}_i | i \leq \alpha \rangle$ really is such an iteration. QED

We now prove the claim.

Case 1 $\alpha < \kappa$

Iterate $\langle W, U \rangle$ α many times, getting $\langle W_i, U_i \rangle (i \leq \alpha)$ with iteration maps $\pi_{i,j}$. Then $\pi_{0,\alpha}(\alpha) = \alpha$. Let $M_i = \pi_{0,i}(M)$. Then $\langle M_i | i \leq \alpha \rangle$ is an iteration of M with iteration maps $\pi_{i,j} | M_i$. But $M_\alpha = \pi_{0,\alpha}(M)$. Hence $\langle H_{\kappa^+}, M \rangle$ models $\pi_{0,\alpha}(\mathbb{L})$. But then $\pi_{0,\alpha}(\mathbb{L})$ is consistent. Hence so is \mathbb{L}. QED

Case 2 $\alpha = \kappa$

Iterate $\langle W, U \rangle$ β many times, where $\pi_{0,\beta}(\kappa) = \beta$. Then $\langle M_i | i \leq \beta \rangle$ iterates M to M_β in β many steps. Hence $\langle H_{\kappa^+}, M \rangle$ models $\pi_{0,\beta}(\mathbb{L})$. Hence $\pi_{0,\beta}(\mathbb{L})$ is consistent and so is \mathbb{L}. QED (Lemma 1.4.12)

Barwise theory is useful in situations where one is given a transitive structure Q and wishes to find a transitive structure \bar{Q} with similar properties inside an inner model. Another tool, which is often used in such situations, is Schoenfield’s lemma, which, however, requires coding Q by a real. Unsurprisingly, Schoenfield’s lemma can itself be derived from Barwise theory. We first note the well known fact that every Σ^1_1 condition on a real is equivalent to a $\Sigma^1_1(H_{\omega_1})$ condition, and conversely. Thus it suffices to show:

Lemma 1.4.13. Let $H_{\omega_1} \models \varphi[a], a \subseteq \omega$, where φ is Σ_1. Then:

$H_{\omega_1} \models \varphi[a]$ in $L(a)$.

Proof: Let $\varphi = \sqrt{z \psi}$, where ψ is Σ_0. Let $H_{\omega_1} \models \psi[z, a]$ where $\text{rn}(z) = \delta < \alpha < \omega_1$ and α is admissible in a. Let L be the language on $L_\alpha(a)$ with:

Predicate: $\hat{\epsilon}$

Constants: $\exists (x \in L_\alpha(a))$

Axioms: Basic axioms $+\text{ZFC}^- + \exists z(\psi(z, a) \land \text{rn}(z) = \delta)$.

Then L is consistent, since (H_{ω_1}, a) is a model. We cannot necessarily chose α such that it is countable in $L(a)$, however. Hence, working in $L(a)$, we apply a Skolem–Löwenheim argument to $L_\alpha(a)$, getting countable $\bar{\alpha}, \bar{\delta}, \pi$ such that $\pi : L_{\bar{\pi}}(a) \prec L_\alpha(a)$ and $\pi(\bar{\delta}) = \delta$. Let L be defined from $\bar{\delta}$ over $L_{\bar{\pi}}(a)$ as L was defined from δ over $L_\alpha(a)$. Then L is consistent by corollary 1.4.4. Since $L_{\bar{\pi}}(a)$ is countable in $L(a)$, L has a grounded model $A \in L(a)$. But then there is $z \in A$ such that $A \models \psi[z, a]$ and $\text{rn}^A(z) = \bar{\delta}$. Thus $\text{rn}(z) = \bar{\delta} \in \text{wfc}(A)$ and $z \in \text{wfc}(A)$. Thus $\text{wfc}(A) \models \psi[z, a]$, where $\text{wfc}(A) \subset H_{\omega_1}$ in $L(a)$. Hence $H_{\omega_1} \models \varphi[a]$ in $L(a)$. QED
Chapter 2

Basic Fine Structure Theory

2.1 Introduction

Fine structure theory arose from the attempt to describe more precisely the way the constructable hierarchy grows. There are many natural questions. We know for instance by Gödel’s condensation lemma that there are countable γ such that L_γ models ZFC$^- + \omega_1$ exists. This means that some $\beta < \gamma$ is a cardinal in L_γ but not in L. Hence there is a subset $b \subseteq \beta$ lying in L but not in L_γ. Hence there must be a least $\alpha > \gamma$ such that such a subset lies in $L_{\alpha+1} = \text{Def}(L_\alpha)$. What happens there, and what do such α look like? It turns out that there is then a $\Sigma_\omega(L_\alpha)$ injection of L_α into β, and that α can be anything — even a successor ordinal. The body of methods used to solve such questions is called fine structure theory.

In chapter 1 we developed an elaborate body of methods for dealing with admissible structures. In order to deal with questions like the above ones, we must try to adapt these methods to an arbitrary L_α. A key concept in this endeavor is that of amenability:

Definition 2.1.1. A transitive structure $M = \langle |M|, \in, A_1, \ldots, A_n \rangle$ is *amenable* iff $A_i \cap x \in M$ for all $x \in M$, $i = 1, \ldots, n$.

Omitting almost all proofs, we now sketch the fine structural demonstration that if $\beta < \alpha$ and $b \subseteq \beta$ is a $\Sigma_\omega(L_\alpha)$ set with $b \notin L_\alpha$, then there is a $\Sigma_\omega(L_\alpha)$ injection of L_α into β. Given any structure of the form $M = \langle L_\alpha, B_1, \ldots, B_n \rangle$ we define its *projectum* to be the least ρ such that there is an $A \subseteq L_\rho$ such that A is $\Sigma_1(M)$ and $A \notin M$. (Thus $\langle L_\rho, A \rangle$ is amenable whenever $A \subseteq L_\rho$ is $\Sigma_1(M)$.) It turns out that, whenever ρ is the projectum of L_α, then there is a $\Sigma_1(L_\alpha)$ injection of L_α into ρ. Now suppose that b is $\Sigma_1(L_\alpha)$, where α, β, b
are as above. Let ρ^0 be the projectum of L_α and let f^0 be a $\Sigma_1(L_\alpha)$ injection of L_α into ρ^0. Clearly $\rho^0 \leq \beta$, so f^0 injects L_α into β. Now suppose that b is $\Sigma_2(L_\alpha)$ but not $\Sigma_1(L_\alpha)$.

If $\rho^0 \leq \beta$ the result follows as before, so suppose $\beta < \rho^0$. By the existence of f^0 there is an $A^0 \subset \rho^0$ which completely codes L_α. (For instance we could take:

$$A^0 = \{(f^0(x), f^0(y)) | x \in y \in L_\alpha\}.$$

The structure $N^0 = \langle L_\rho^0, A^0 \rangle$ is then called a reduct of L_α. It then follows that any set $a \subset L_\rho^0$ is $\Sigma_n(N^0)$ if and only if it is $\Sigma_{n+1}(L_\alpha)$. In particular b is $\Sigma_1(N^0)$ and $b \notin N^0$. Hence $\rho^1 \leq \beta$, where ρ^1 is the projectum of N^0. It turns out, however, that in very many respects N^0 behave exactly like an L_α. In particular there is a $\Sigma_1(N^0)$ injection f^1 of N^0 into ρ^1. Thus $f^1 \circ f^0$ is a $\Sigma_2(L_\alpha)$ injection of L_α into β.

Now suppose that b is $\Sigma_3(L_\alpha)$ but not $\Sigma_2(L_\alpha)$ and that $\beta < \rho^1$. Then b is $\Sigma_2(N^0)$ and we can repeat the above proof, using N^0 in place of L_α. This gives us a reduct N^1 of N^0 and a $\Sigma_1(N^1)$ injection f^2 of N^1 into the projectum ρ^2 of N^1. But b is $\Sigma_1(N^1)$ and $b \notin N^1$. Hence $\rho^2 \leq \beta$. $f^2 \circ f^1 \circ f^0$ is then a $\Sigma_2(L_\alpha)$ injection of L_α into β. Proceeding in this way, we see that if b is $\Sigma_{n+1}(L_\alpha)$, then there is a $\Sigma_2(L_\alpha)$ map $f = f^n \circ \ldots \circ f^0$ injecting L_α into β. But b is Σ_{n+1} for some n.

The first proof of the above result was due to Hilary Putnam and did not use the full fine structure analysis we have just outlined. However, our analysis yielded many new insights; giving for instance the first proof that L_α is Σ_n uniformizable for all $n \geq 1$. (i.e. every Σ_n relation is uniformizable by a Σ_n function.)

Not long afterwards fine structure theory was used to prove some deep global properties of L, such as:

$$L \models \square_\beta \text{ for all infinite cardinals } \beta.$$

It was also used to prove the covering lemma for L. That, in turn, led to extended versions of fine structure theory which could be used to analyze larger inner models, in which some large cardinals could be realized. (Here, however, the fine structure theory was needed not only to analyze the inner model, but even to define it in the first place.)

Carrying out the above analysis of L requires a very fine study of definability over an arbitrary L_α. In order to achieve this, however, one must overcome some formidable technical obstacles which arise from Gödel’s definition of the constructible hierarchy: At successors α, L_α is not even closed under ordered pairs, let alone other basic set functions like unit set, crossproduct
etc. One solution is to employ the theory of rudimentary functions in an auxiliary role. These functions, which were discovered by Gandy and Jensen, are exactly the functions which are generated by the schemata for primitive recursive functions when the recursion schema is omitted. (Cf. the remark following chapter 1, §2, Lemma 1.1.4). If $\text{rn}(x_i) < \gamma$ for $i = 1, \ldots, n$ and f is rudimentary, then $\text{rn}(f(x_1, \ldots, x_n)) < \gamma + \omega$. All reasonable "elementary" set theoretic functions are rudimentary. If α is a limit ordinal, then L_α is closed under rudimentary functions. If α is a successor, then closing L_α under rudimentary functions yields a transitive structure L^*_α of rank $\alpha + \omega$. It then turns out that every $\Sigma_\omega(L^*_\alpha)$ definable subset of L_α is already $\Sigma_\omega(L_\alpha)$, and conversely. Hence we can, in effect, replace the rather weak definability theory of L_α by the rather nice definability theory of L^*_α. (This method was used in [JH], except that L^*_α was given a different but equivalent definition, since the rudimentary functions were not yet known.) It turns out that if N is transitive and rudimentarily closed, and $\text{Rud}(N)$ is defined to be the closure of $N \cup \{N\}$ under rudimentary functions, then $\mathcal{P}(N) \cap \text{Rud}(N) = \text{Def}(N)$. This suggests an alternative version of the constructible hierarchy in which every level is rudimentarily closed. We shall index this hierarchy by the class Lm of limit ordinals, setting:

\[
J_\omega = H_\omega = \text{Rud}(\emptyset)
\]

\[
J_{\alpha + \omega} = \text{Rud}(J_\alpha) \text{ for } \alpha \in \text{Lm}
\]

\[
J_\lambda = \bigcup_{\nu < \lambda} J_\nu \text{ for } \lambda \text{ a limit p.t. of } \text{Lm}.
\]

Note. Setting $J = \bigcup_{\alpha} J_\alpha$, we have: $J = L$ in fact $J_\alpha = L_\alpha$ whenever α is pr closed.

Note. This indexing was introduced by Sy Friedman. In [FSC] we indexed by all ordinals, so that our J_ω corresponds to the J_α of [FSC]. The usage in [FSC] has been followed by most authors. Nonetheless we here adopt Friedman’s usage, which seems to us more natural, since we then have: $\alpha = \text{rn}(J_\alpha) = \text{On} \cap J_\alpha$.

In the following section we develop the theory of rudimentary functions.

2.2 Rudimentary Functions

Definition 2.2.1. $f : V^n \rightarrow V$ is a rudimentary (rud) function iff it is generated by successive applications of schemata (i) – (v) in the definition of primitive recursive in chapter 1, §2.
A relation $R \subseteq V^n$ is rud iff there is a rud function f such that: $R\vec{v} \iff f(\vec{x}) = 1$. In chapter 1, §1.2 we established that:

Lemma 2.2.1. Lemmas 1.2.1 – 1.2.4 of chapter 1, §1.2 hold with ‘rud’ in place of ‘pr’.

Note. Our definition of ‘rud function’, like the definition of ‘pr function’ is ostensibly in second order set theory, but just as in chapter 1, §1.2 we can work in ZFC by talking about rud definitions. The notion of rud definition is defined like that of pr definition, except that instances of schema (vi) are not allowed. As before, we can assign to each rud definition s a rud function $F_s: V^n \to V$ with the property that $F^M_s = F_s|M$ whenever M is admissible and $F^M_s: M^n \to M$ is the function on M defined by s. But then if M is transitive and closed under rud functions, it follows by induction on the length of s that there is a unique $F^M_s = F_s|M$.

A rudimentary function can raise the rank of its arguments by at most a finite amount:

Lemma 2.2.2. Let $f: V^n \to V$ be rud. Then there is $p < \omega$ such that $f(\vec{x}) \subseteq \mathbb{P}(\text{TC}(x_1 \cup \ldots \cup x_n))$ for all x_1, \ldots, x_n.

(Hence $\text{rn}(f\vec{x}) \leq \max\{\text{rn}(x_1), \ldots, \text{rn}(x_n)\} + p$ and $\bigcup_p f(\vec{x}) \subseteq \text{TC}(x_1 \cup \ldots \cup x_n)$.)

Proof: Call any such p sufficient for f. Then if p is sufficient, so is every $q \geq p$. By induction on the defining schemata for f, we prove that f has a sufficient p. If f is given by an initial schema, this is trivial. Now let $f(\vec{x}) = h(g_1(\vec{x}), \ldots, g_m(\vec{x}))$. Let p be sufficient for h and q be sufficient for $g_i(i = 1, \ldots, m)$. It follows easily that $p + q$ is sufficient for f. Now let $f(y, \vec{x}) = \bigcup_{z \leq y} g(z, \vec{x})$, where p is sufficient for g. It follows easily that p is sufficient for f. QED

By lemma 2.2.1 and chapter 1 lemma 1.2.3 (i) we know that every Σ_0 relation is rud. We now prove the converse. In fact we shall prove a stronger result. We first define:

Definition 2.2.2. $f: V^n \to V$ is simple iff whenever $R(z, \vec{y})$ is a Σ_0 relation, then so is $R(f(\vec{x}), \vec{y})$.

The simple functions are obviously closed under composition. The simplicity of a function f is equivalent to the conjunction of the two conditions:

(i) $x \in f(\vec{y})$ is Σ_0
(ii) If \(A(z, \bar{u}) \) is \(\Sigma_0 \), then \(\bigwedge z \in f(\bar{x})A(z, \bar{u}) \) is \(\Sigma_0 \),

for given these we can verify by induction on the \(\Sigma_0 \) definition of \(R \) that
\(R(f(\bar{x}), \bar{y}) \) is \(\Sigma_0 \).
But then:

Lemma 2.2.3. All rud functions are simple.

Proof: Using the above facts we verify by induction on the defining schemata
of \(f \) that \(f \) is simple. The proof is left to the reader. QED

In particular:

Corollary 2.2.4. Every rud function \(f \) is \(\Sigma_0 \) as a relation. Moreover \(f \upharpoonright U \)
is uniformly \(\Sigma_0(U) \) whenever \(U \) is transitive and rud closed.

Corollary 2.2.5. Every rud relation is \(\Sigma_0 \).

In chapter 1, §2 we relativized the concept ‘pr’ to ‘pr in \(A_1, \ldots, A_n \)’. We can
do the same thing with ‘rud’.

Definition 2.2.3. Let \(A_i \subset V(i = 1, \ldots, m) \). \(f : V^n \to V \) is rudimentary in
\(A_1, \ldots, A_n \) (rud in \(A_1, \ldots, A_n \)) iff it is obtained by successive applications
of the schemata (i) – (v) and:
\[
f(x) = \chi_A(x) \ (i = 1, \ldots, n)
\]
where \(\chi_A \) is the characteristic function of \(A \).

Lemma 1.1.1 and 1.1.2 obviously hold with ‘rud in \(A_1, \ldots, A_n \)’ in place of
‘rud’. Lemma 2.2.3 and its corollaries do not hold, however, since e.g. the relation \(\{x\} \in A \) is not \(\Sigma_0 \) in \(A \).

However, we do get:

Lemma 2.2.6. If \(f \) is rud in \(A_1, \ldots, A_n \), then
\[
f(\bar{x}) = f_0(\bar{x}, A_1 \cap f_1(\bar{x}), \ldots, A_n \cap f_n(\bar{x}))
\]
where \(f_0, f_1, \ldots, f_n \) are rud functions.

Proof: We display the proof for the case \(n = 1 \). Let \(f \) be rud in \(A \). By
induction on the defining schemata for \(f \) we show:
\[
f(\bar{x}) = f_0(\bar{x}, A \cap f_1(\bar{x})) \text{ where } f_0, f_1 \text{ are rud}.
\]
Case 1 f is given by schemata (i) – (iii). This is trivial.

Case 2 $f(x) = \chi_A(x)$. Then
\[
f(x) = \begin{cases}
1 & \text{if } A \cap \{x\} \neq \emptyset \\
0 & \text{if not}
\end{cases} = f'(x, A \cap \{x\})
\]
where f' is rud.
QED (Case 2)

Case 3 $f(x) = g(h^1(x), \ldots, h^m(x))$. Let
\[
g(z) = g_0(z, A \cap g_1(z)) \\
h^i(x) = h^i_0(x, A \cap h^i_1(x))(i = 1, \ldots, m)
\]
where g_0, g_1, h^i_0, h^i_1 are rud. Set:
\[
\begin{align*}
\tilde{g}(z, u) &= g_0(z, u \cap g_1(z)) \\
\tilde{h}^i(x, u) &= h^i_0(x, u \cap h^i_1(x)) \\
\tilde{f}(x, u) &= \tilde{g}(h^1(x, u), \ldots, h^m(x, u), u) \\
k(x) &= g_1(h^1_1(\bar{x})) \cup \bigcup_{i=1}^m h^i_1(\bar{x}).
\end{align*}
\]
Then $f(x) = \tilde{f}(x, A \cap k(x))$, where \tilde{f}, k are rud. This follows from the facts:
\[
\begin{align*}
\tilde{h}^i(x, A \cap v) &= h^i_0(x, A \cap h^i_1(x)) = h^i(x) \text{ if } h^i_1(x) \subset v \\
\tilde{g}^i(z, A \cap v) &= g_0(z, A \cap z) \text{ if } g_1(z) \subset v.
\end{align*}
\]
QED (Case 3)

Case 4 $f(y, \bar{x}) = \bigcup_{z \in y} g(z, \bar{x})$. Let $g(z, \bar{x}) = g_0(z, \bar{x}, A \cap g_1(z, \bar{x}))$. Set
\[
\begin{align*}
\tilde{g}(z, \bar{x}, u) &= g_0(z, \bar{x}, u \cap g_1(z, \bar{x})) \\
\tilde{f}(y, \bar{x}, u) &= \bigcup_{z \in y} \tilde{g}(z, \bar{x}, u) \\
k(y, \bar{x}) &= \bigcup_{z \in y} g_1(z, \bar{x})
\end{align*}
\]
Then $f(y, \bar{x}) = \tilde{f}(y, \bar{x}, A \cap k(y, \bar{z}))$ where \tilde{f}, k are rud.
QED (Lemma 2.2.6)

Definition 2.2.4. X is *rudimentarily closed* (rud closed) iff it is closed under rudimentary functions. $\langle M, A_1, \ldots, A_n \rangle$ is rud closed iff M is closed under functions rudimentary in A_1, \ldots, A_n.

If $M = \langle |M|, A_1, \ldots, A_n \rangle$ is transitive and rud closed, then it is amenable, since it is closed under $f(x) = x \cap A$. By lemma 2.2.6 we then have:
Corollary 2.2.7. Let \(M = (|M| A_1, \ldots, A_n) \) be transitive. \(M \) is rud closed iff it is amenable and \(|M| \) is rud closed.

Corresponding to corollary 2.2.4 we have:

Corollary 2.2.8. Every function \(f \) which is rud in \(A \) is \(\Sigma_1 \) in \(A \) as a relation. Moreover \(f \mid U \) is \(\Sigma_1(\langle U, A \cap U \rangle) \) by the same \(\Sigma_1 \) definition whenever \(\langle U, A \cap U \rangle \) is transitive and rud closed. (Similarly for "rud in \(A_1, \ldots, A_n \"."

Proof: Let \(f(\bar{x}) = f_0(\bar{x}, A \cap f_1(\bar{x})) \) where \(f_0, f_1 \) are rud. Then:

\[
y = f(\bar{x}) \leftrightarrow \bigvee u \bigvee z (y = f_0(\bar{x}, z) \land u = f_1(\bar{x}) \land z = A \cap u).
\]

QED (Corollary 2.2.8)

In chapter 1 §2.2 we extended the notion of "pr definition" so as to deal with functions pr in classes \(A_1, \ldots, A_n \). We can do the same for rudimentary functions:

We appoint new designated function variables \(\bar{a}_1, \ldots, \bar{a}_n \) and define the set of rud definition in \(\bar{a}_1, \ldots, a_n \) exactly as before, except that we omit the schema (vi). Given \(A_1, \ldots, A_n \) we can, exactly as before, assign to each rud definition \(s \) in \(\bar{a}_1, \ldots, \bar{a}_n \) a function \(F_s^{\bar{A}_1, \ldots, \bar{A}_n} \) are then exactly the functions rud in \(A_1, \ldots, A_n \). Since lemma 2.2.6 (and with it corollary 2.2.8) is proven by induction on the defining schemata, its proof implicitly defines an algorithm which assigns to each \(s \) as \(\Sigma_1 \) formula \(\varphi_s \) which defines \(F_s^\bar{A} \).

Corresponding to chapter 1 §1 Lemma 1.1.13 we have:

Lemma 2.2.9. Let \(f \) be rud in \(A_1, \ldots, A_n \), where each \(A_i \) is rud in \(B_1, \ldots, B_m \). Then \(f \) is rud in \(B_1, \ldots, B_m \).

The proof is again by induction on the defining schemata. It shows, in fact that \(f \) is uniformly rud in \(\bar{B} \) in the sense that its rud definition from \(\bar{B} \) depends only on its rud definition from \(\bar{A} \) and the rud definition of \(A_i \) from \(\bar{B} \) (\(i = 1, \ldots, n \)).

We also note:

Lemma 2.2.10. Let \(\pi : \bar{M} \rightarrow_{\Sigma_0} M \), where \(\bar{M}, M \) are rud closed. Then \(\pi \) preserves rudimentarily in the following sense: Let \(\bar{f} \) be defined from the predicates of \(\bar{M} \) by the rud definition \(s \). Let \(f \) be defined from the predicates of \(M \) by \(s \). Then \(\pi(\bar{f}(\bar{x})) = f(\pi(\bar{x})) \) for \(x_1, \ldots, x_n \in \bar{M} \).
Proof: Let φ_2 be the canonical Σ_1 definition. Then $M \models \varphi_2[y, \vec{x}] \rightarrow M \models \varphi_2[\pi(y), \pi(\vec{x})]$ by Σ_0-preservation. QED (Lemma 2.2.10)

We now define:

Definition 2.2.5.
\[
\text{rud}(U) =: \text{The closure of } U \text{ under } \text{rud} \text{ functions }
\]
\[
\text{rud}_{A_1, \ldots, A_n}(U) =: \text{The closure of } U \text{ under functions } \text{rud} \text{ in } A_1, \ldots, A_n
\]

(Hence $\text{rud}(U) = \text{rud}_0(U)$.)

Lemma 2.2.11. If U is transitive, then so is $\text{rud}(U)$.

Proof: Let $W = \text{rud}(U)$. Let $Q(x)$ mean: $TC(\{x\}) \subset W$. By induction on the defining schemata of f we show:
\[
(Q(x_1) \land \ldots \land Q(x_n)) \rightarrow Q(f(x_1, \ldots, x_n))
\]
for $x_1, \ldots, x_n \in W$. The details are left to the reader. But $x \in U \rightarrow Q(x)$ and each $z \in W$ has the form $f(\vec{x})$ where f is rud and $x_1, \ldots, x_n \in U$. Hence $TC(\{z\}) \subset W$ for $z \in W$. QED

The same proof shows:

Corollary 2.2.12. If U is transitive, then so is $\text{rud}_{A}(U)$.

Using Corollary 2.2.12 and Lemma 2.2.3 we get:

Lemma 2.2.13. Let U be transitive and $W = \text{rud}(U)$. Then the restriction of any $\Sigma_0(W)$ relation to U is $\Sigma_0(U)$.

Proof: Let R be $\Sigma_0(W)$. Let $R(\vec{x}) \leftrightarrow R'(\vec{x}, \vec{p})$ where R' is $\Sigma_0(W)$ and $p_1, \ldots, p_n \in W$. Let $p_i = f_i(\vec{z})$, where f_i is rud and $z_1, \ldots, z_n \in U$. Then for $x_1, \ldots, x_m \in U$:
\[
R(\vec{x}) \leftrightarrow R'(\vec{x}, \vec{f}(\vec{z})) \leftrightarrow R''(\vec{x}, \vec{z})
\]
where R'' is $\Sigma_0(U)$, by lemma 2.2.3. QED (Lemma 2.2.13)

We now define:

Definition 2.2.6. Let U be transitive.
\[
\text{Rud}(U) =: \text{rud}(U \cup \{U\})
\]
\[
\text{Rud}_{A}(U) =: \text{rud}_{A}(U \cup \{U\})
\]

Then Rud(U) is a proper transitive extension of U. By Lemma 2.2.13:
Corollary 2.2.14. \(\text{Def}(U) = \mathbb{P}(U) \cap \text{Rud}(U) \) if \(U \neq \emptyset \) is transitive.

Proof: If \(A \in \text{Def}(U) \), then \(A \) is \(\Sigma_0(U \cup \{U\}) \). Hence \(A \in \text{Rud}(U) \). Conversely, if \(A \in \text{Rud}(U) \), then \(A \) is \(\Sigma_0(U \cup \{U\}) \) by lemma 1.1.7. It follows easily that \(A \in \text{Def}(U) \). QED (Corollary 2.2.14)

Note. To see that \(A \in \text{Def}(U) \), consider the \(\in \)-language augmented by a new constant \(_U \) which is interpreted by \(U \). We assign to every \(0 \)-formula \(' \) in this language a first order formula \('0 \) not containing \(_U \) such that for all \(x_1, \ldots, x_n \in U \):

\[
U \cup \{U\} \models \varphi[x] \leftrightarrow U \models \varphi'[x].
\]

(Here \(x_i \) is taken to interpret \(v_i \) where \(v_1, \ldots, v_n \) is an arbitrarily chosen sequence of distinct variables, including all variables which occur free in \(\varphi \).)

We define \(\varphi' \) by induction on \(\varphi \). For primitive formulae we set first:

\[
(v \in w)' = v \in w, (v \in U)' = v = v,
(\hat{U} \in v)' = v \neq v, (\hat{U} \in \hat{U}) = \forall v \; v \neq v.
\]

For sentential combinations we do the obvious thing:

\[
(\varphi \land \psi)' = (\varphi' \land \psi'), (\neg \varphi)' = \neg \varphi',
\]

etc. Quantifiers are treated as follows:

\[
(\forall v \in w \varphi)' = \forall v \in w \varphi',
(\forall v \in \hat{U} \varphi)' = \forall \hat{w} \varphi'
\]

Given finitely many rud functions \(s_1, \ldots, s_p \) we say that they constitute a basis for the rud function iff every rud function is obtainable by successive application of the schemata:

- \(f(x_1, \ldots, x_n) = x_j \) (\(j = 1, \ldots, n \))
- \(f(\vec{x}) = s_i(g_1(\vec{x}), \ldots, g_m(\vec{x})) \) (\(i = 1, \ldots, p \))

Note that if \(s_1, \ldots, s_p \) is a basis, then \(\text{rud}(U) \) is simply the closure of \(U \) under the finitely many functions \(s_1, \ldots, s_p \). We shall now prove the Basis Theorem, which says that the rud functions possess a finite basis. We first define:

Definition 2.2.7. \((x, y) =: \{\{x\}, \{x, y\}\}; (x) = x, (x_1, \ldots, x_n) = (x_1, (x_2, \ldots, x_n)) \) for \(n \geq 2 \).
(Note: Our "official" notation for n-tuples is $\langle x_1, \ldots, x_n \rangle$. However, we have refrained from specifying its definition. Thus we do not know whether $(\bar{x}) = \langle \bar{x} \rangle$.)

We also set:

Definition 2.2.8.

$$x \otimes y = \{(z, w) | z \in x \land w \in y\}$$

$$\text{dom}^*(x) = \{z | \forall y(z, y) \in x\}$$

$$x^*z = \{y | (y, z) \in x\}$$

Theorem 2.2.15. The following functions form a basis for the rud function:

- $F_0(x, y) = \{x, y\}$
- $F_1(x, y) = x \setminus y$
- $F_2(x, y) = x \otimes y$
- $F_3(x, y) = \{(u, z, v) | z \in x \land (u, v) \in y\}$
- $F_4(x, y) = \{(u, v, z) | z \in x \land (u, v) \in y\}$
- $F_5(x, y) = \bigcup x$
- $F_6(x, y) = \text{dom}^*(x)$
- $F_7(x, y) = \{(z, w) | z, w \in x \land z \in w\}$
- $F_8(x, y) = \{x^*z | z \in y\}$

Proof: The proof stretches over several subclaims. Call a function f *good* iff it is obtainable from F_0, \ldots, F_8 by successive applications of the above schemata. Then every good function is rud. We must prove the converse.

We first note:

Claim 1 The good functions are closed under composition — i.e. if g, h_1, \ldots, h_n are good, then so is $f(\bar{x}) = g(h(\bar{x}))$.

Proof: Set G = the set of good function $g(y_1, \ldots, y_n)$ such that whenever $h_i(\bar{x})$ is good for $i = 1, \ldots, r$, then so is $f(\bar{x}) = g(h(\bar{x}))$. By a straightforward induction on the defining schemata it is easily shown that all good functions are in G. QED (Claim 1)

Claim 2 The following functions are good:

- $\{x, y\}, x \setminus y, x \otimes y, x \cup y = \bigcup\{x, y\}$
- $x \land y = x \setminus (x \setminus y), \{x_1, \ldots, x_n\} = \{x_1\} \cup \ldots \cup \{x_n\}$
- $C_n(u) = u \cup \bigcup u \cup \ldots \bigcup u, (x_1, \ldots, x_n)$

(since (x_1, \ldots, x_n) is obtained by iteration of F_0.) By an \in-formula we mean a first order formula containing only \in as a non logical predicate. If
2.2. RUDIMENTARY FUNCTIONS

$\varphi = \varphi(v_1, \ldots, v_n)$ is any \in–formula in which at most the distinct variables (v_1, \ldots, v_n) occur free, set:

$$t_\varphi(u) = \{ (x_1, \ldots, x_n) | \vec{x} \in u \land \in \models \varphi[\vec{x}] \}.$$

Note. We follow the usual convention of suppressing the list of variables. We should, of course, write: $t_{\varphi, v_1, \ldots, v_n}(u)$.

Note. Recall our convention that $\vec{x} \in u$ means that $x_i \in u$ for $i = 1, \ldots, n$.

Then t_φ is *rud*. We claim:

Claim 3 t_φ is good for every \in–formula φ.

Proof:

(1) It holds for $\varphi = v_i \in v_j$ ($1 \leq i < j \leq n$)

Proof: For $i = 2, 3$ set:

$$F^0_i(u, w) = w, \quad F^{m+1}_i(u, w) = F_i(u, F^m_i(u, w))$$

then F^m_i is good for all m. For $m \geq 1$ we have:

$$F^m_2(u, w) = \{ (x_1, \ldots, x_m, z) | \vec{x} \in u \land z \in w \}$$

$$F^m_3(u, w) = \{ (y, x_1, \ldots, x_m, z) | \vec{x} \in u \land (y, z) \in w \}$$

We also set

$$u^{(m)} = \{ (x_1, \ldots, x_m) | \vec{x} \in u \}$$

$$= F_{m-1}^2(u, u)$$

If $j = n$, then

$$t_\varphi(u) = \{ (x_1, \ldots, x_n) | \vec{x} \in u \land x_i \in x_j \}$$

$$= F_{i-1}^n(u, F_{m-1}^n(u, F_1^n(u, u))).$$

Now let $n > j$. Noting that:

$$F^m_4(u, w) = \{ (y, z, x_1, \ldots, x_m) | \vec{x} \in u \land (y, z) \in w \},$$

we have:

$$t_\varphi(u) = F_{i-1}^n(u, F_{m-1}^{n-1}(u, F_4^n(u^{(n-j)}, F_7^n(u, u)))).$$

QED (1)

(2) It holds for $\varphi = v_i \in v_i$

Proof: $t_\varphi(w) = \emptyset = w \setminus w.$
(3) If it holds for $\varphi = \varphi(v_1, \ldots, v_n)$, then for $\neg \varphi$.

Proof:

$$t_{\neg \varphi}(w) = (w^{(n)} \setminus t_\varphi(w)).$$

QED (3)

(4) If it holds for φ, ψ, then for $\varphi \wedge \psi, \varphi \vee \psi$. (Hence for $\varphi \rightarrow \psi, \varphi \leftrightarrow \psi$ by (3).)

Proof:

$$t_{\varphi \wedge \psi}(w) = t_\varphi(w) \cap t_\psi(w) = \bigcup \{t_\varphi(w), t_\psi(w)\}$$

$$t_{\varphi \vee \psi}(w) = t_\varphi(w) \cup t_\psi(w), \text{ where } x \cap y = (x \setminus (x \setminus y)).$$

QED (4)

(5) If it holds for $\varphi = \varphi(u, v_1, \ldots, v_n)$, then for $\bigwedge u \varphi, \bigvee u \varphi$.

Proof:

$$t_{\bigvee u \varphi}(w) = F_6(t_\varphi(\omega), t_\varphi(\omega)) \text{ hence }$$

$$t_{\bigwedge u \varphi}(w) = t_{\neg \bigvee \neg \varphi}(w) \text{ by (3)}$$

QED (5)

(6) It holds for $\varphi = v_i = v_j \ (i, j \leq n)$.

Proof: Let $\psi(v_1, \ldots, v_n) = \bigwedge z (z \in v_i \leftrightarrow z \in v_j)$. Then for $(\vec{x}) \in U^{(n)}$ we have:

$$(\vec{x}) \in t_\psi(u \cup \bigcup u) \leftrightarrow x_i = x_j,$$

since $x_i, x_j \subset (u \cup \bigcup u)$. Hence

$$t_\varphi(u) = u^{(n)} \cap t_\psi(u \cup \bigcup u).$$

QED (6)

(7) It holds for $\varphi = v_j \in v_i \ (i < j)$

Proof:

$$v_j \in v_i \leftrightarrow \bigvee u(u = v_j \wedge u \in v_i).$$

We apply (6), (5) and (4). QED (7).

But then if $\varphi(v_1, \ldots, v_n) = Qu_1 \ldots Qu_n \psi(\vec{u}, \vec{v})$ is any formula in prenex normal form, we apply (1), (2), (6), (7) and (3), (4) to see that t_ψ is good. But then t_φ is good by iterated applications of (5). QED (Claim 3)

In our application we shall use the function t_φ only for Σ_0 formulae φ. We shall make strong use of the following well known fact, which can be proven by induction on n.

2.2. RUDIMENTARY FUNCTIONS

Fact Let \(\varphi = \varphi(v_1, \ldots, v_m) \) be a \(\Sigma_0 \) formula in which at most \(n \) quantifiers occur. Let \(u \) be any set and let \(x_1, \ldots, x_m \in u \). Then \(V \models \varphi[x] \leftrightarrow C_n(u) \models \varphi[x] \).

Definition 2.2.9. Let \(f : V^n \to V \) be rud. \(f \) is verified iff there is a good \(f^* : V \to V \) such that \(f'' U^n \subset f^*(U) \) for all sets \(U \). We then say that \(f^* \) verifies \(f \).

Claim 4 Every verified function is good.

Proof: Let \(f \) be verified by \(f^* \). Let \(\varphi \) be the \(\Sigma_0 \) formula: \(y = f(x_1, \ldots, x_n) \). For sufficient \(m \) we know that for any set \(u \) we have:

\[
y = f(\bar{x}) \leftrightarrow (y, \bar{x}) \in t_\varphi(C_m(u \cup f^*(u)))
\]

for \(y, \bar{x} \in u \cup f^*(u) \).

Define a good function \(F \) by:

\[
F(u) =: (f^*(u) \otimes u^{(n)}) \cap t_\varphi(C_m(u \cup f^*(u))).
\]

Then \(F(u) \) is the set of \((f(\bar{x}), \bar{x}) \) such that \(\bar{x} \in u \). In particular, if \(u = \{x_1, \ldots, x_n\} \), then:

\[
F_8(F(\{\bar{x}\}), \{(\bar{x})\}) = \{f(\bar{x})\}
\]

and \(f(\bar{x}) = \bigcup F_8(F(\{\bar{x}\}), \{(\bar{x})\}) \). QED (Claim 4)

Thus it remains only to prove:

Claim 5 Every rud function is verified.

Proof: We proceed by induction on the defining schemata of \(f \).

Case 1 \(f(\bar{x}) = x_i \)
Take \(f^*(u) = u = u \setminus (u \setminus u) \).

Case 2 \(f(\bar{x}) = x_i \setminus x_j \)
Let \(\varphi \) be the formula \(z \in x \setminus y \). Then for \(z, x, y \in v \) we have

\[
z \in x \setminus y \leftrightarrow v \models \varphi[z, x, y]
\]

\[
\leftrightarrow (z, x, y) \in t_\varphi(v).
\]

But \(x, y \in u \to x \setminus y \subset \bigcup u \). Hence for all \(x, y, u \) and all \(z \) we have:

\[
z \in x \setminus y \leftrightarrow (z, x, y) \in t_\varphi(u \cup \bigcup u).
\]

Hence:

\[
f''u^n \subset \{x \setminus y|x, y \in u \} = F_8(t_\varphi(u \cup \bigcup u), u^{(2)}).
\]

QED (Case 2)
CHAPTER 2. BASIC FINE STRUCTURE THEORY

Case 3 \(f(\vec{x}) = \{x_1, x_2\} \)
Then \(f''u^n = \{\{x, y\}|x, y \in u\} = \bigcup u^{(2)} \).
QED (Case 3)

Case 4 \(f(\vec{x}) = g(\vec{h}(\vec{x})) \)
Let \(h_i^* \) verify \(h_i \) and \(g^* \) verify \(g \). Then \(f^*(u) = g^*(\bigcup_i h_i(u)) \) verifies \(f \).
QED (Case 4)

Case 5 \(f(y, \vec{x}) = \bigcup z \in y g(z, \vec{x}) \).
Let \(g \) verify \(g \).
Let \(\vec{y} = \{y; \vec{x}\} \) be the null formula: \(\forall z \in y \ w \in g(z, \vec{x}) \iff (w, y, \vec{x}) \in t_\varphi(C_m(u \cup g^*(u))) \)
for all \(w, y, \vec{x} \in u \cup g^*(u) \).
Set \(F(u) = t_\varphi(C_m(u \cup g^*(u))) \). Then \(g(z, \vec{x}) \subset \bigcup g^*(u) \) whenever \(y, \vec{x} \in u \) and \(z \in y \). Hence
\[
F(u)^*(y, \vec{x}) = \bigcup z \in y g(z, \vec{x})
\]
f for \(y, \vec{x} \in U \). Hence
\[
f^n u^{n+1} \subset F_8(F(u), u^{(n+1)}) .
\]
QED (Theorem 2.2.15)

Combining Theorem 2.2.15 with Lemma 2.2.6 we get:

Corollary 2.2.16. Let \(A_1, \ldots, A_n \subset V \). Then \(F_0, \ldots, F_8 \) together with the functions \(a_i(x) = x \cap A_i (i = 1, \ldots, n) \) form a basis for the functions which are rudimentary in \(A_1, \ldots, A_n \).

Let \(M = \langle |M|, \in, A_1, \ldots, A_n \rangle \). ‘\(\models_M \)’ denotes the satisfaction relation for \(M \)
and ‘\(\models_{\Sigma_0} M \)’ denotes its restriction to \(\Sigma_0 \) formulae. We can make good use of
the basis theorem in proving:

Lemma 2.2.17. \(\models_{\Sigma_0} M \) is uniformly \(\Sigma_1(M) \) over transitive rud closed \(M = \langle |M|, \in, A_1, \ldots, A_n \rangle \).

Proof: We shall prove it for the case \(n = 1 \), since the extension of our proof to the general case is then obvious. We are then given: \(M = \langle |M|, \in, A \rangle \).
By a variable evaluation we mean a function \(e \) which maps a finite set of variables of the \(M \)–language into \(|M| \). Let \(E \) be the set of such evaluations.
If \(e \in E \), we can extend it to an evaluation \(e^* \) of all variables by setting:
\[
e^*(v) = \begin{cases} e(v) & \text{if } v \in \text{dom}(e) \\ \emptyset & \text{if not} \end{cases}
\]
2.2. RUDIMENTARY FUNCTIONS

$\models_M \varphi[e]$ then means that φ becomes true in M if each free variable v in φ is interpreted by $e^*(v)$.

We assume, of course, that the first order language of M has been "arithmetized" in a reasonable way — i.e. the syntactic objects such as formulae and variables have been identified with elements of H_ω in such a way that the basic syntactic relations and operations become recursive. (Without this the assertion we are proving would not make sense.) In particular the set Vbl of variables, the set Fml of formulae, and the set Fml_0 of Σ_0–formulae are all recursive (i.e. $\Delta_1(H_\omega)$). We first note that every $\Sigma_0(M)$ relation is rud, or equivalently:

(1) Let φ be Σ_0. Let v_1, \ldots, v_n be a sequence of distinct variables containing all variables occuring free in φ. There is a function f uniformly rud in A such that

$$\models_M \varphi[e] \iff f(e^*(v_1), \ldots e^*(v_n)) = 1$$

for all $e \in E$.

Proof: By induction on φ. We leave the details to the reader.

QED (1)

The notion A–good is defined like "good" except that we now add the function $F_0(x, y) = x \cap A$ to our basis. By Corollary 2.2.16 we know that every function rud in A is A–good. We now define in H_ω an auxiliary term language whose terms represent the A–good function. We first set: $\hat{F}_i(x, y) = : (i, \langle x, y \rangle)$ for $i = 0, \ldots, 9$: $\hat{x} = \langle 10, x \rangle$. The set Tm of Terms is then the smallest set such that

- \hat{v} is a term whenever $v \in Vbl$
- If t, t' are terms, then so is $\hat{F}_i(t, t')$ for $i = 0, \ldots, 9$.

Applying the methods of Chapter 1 to the admissible set H_ω it follows easily that the set Tm is recursive (i.e. $\Delta_1(H_\omega)$). Set $C(t) \doteq$: The smallest set C such that the term $t \in C$ and C is closed under subterms (i.e. $\hat{F}_i(s, s') \in C \Rightarrow s, s' \in C$).

Then $C(t) \in H_\omega$ for $t \in Tm$, and the function $C(t)$ is recursive (hence $\Delta_1(H_\omega)$). Since Vbl is recursive, the function $Vbl(t) \doteq \{ v \in Vbl| \hat{v} \in C(t) \}$ is recursive.

We note that:

(2) Every recursive relation on H_ω is uniformly $\Sigma_1(M)$.
CHAPTER 2. BASIC FINE STRUCTURE THEORY

Proof: It suffices to note that: H_ω is uniformly $\Sigma_1(M)$, since

$$x \in H_\omega \iff \exists f \exists u \exists n \varphi(f, u, n, x)$$

where φ is the Σ_0 formula: f is a function $\land u$ is transitive

$\forall n \in \omega \land f : n \leftrightarrow u \land x \in u$. QED (2)

Given $e \in E$ we recursively define an evaluation $(\overline{e}(t)|t \in Tm)$ by:

$$\overline{e}(v) = e^*(v) \text{ for } v \in Vbl$$

$$\overline{e}(F_i(t, s)) = F_i(\overline{e}(t), \overline{e}(s)).$$

Then:

(3) $\{(y, e, t)|e \in E \land t \in Tm \land y = \overline{e}(t)\}$ is uniformly $\Sigma_1(M)$.

Proof: Let $e \in E$, $t \in Tm$. Then $y = \overline{e}(t)$ can be expressed in M by:

$$\exists g \exists u \exists v (u = C(t) \land v = Vbl(t) \land \varphi(y, e, u, v, y, t))$$

where φ is the Σ_0 formula:

$(g$ is a function $\land \text{dom}(g) = u \land \land x \in v \land x \in u$)

$$\land \land x \in v((x \in \text{dom}(e) \land g(\dot{x}) = e(x)) \lor$$

$$\lor (x \notin \text{dom}(e) \land g(\dot{x}) = \emptyset))$$

$$\land \land_{i=0}^9 t, s, i \in u(t = F_i(s, s') \rightarrow$$

$$\rightarrow g(t) = F_i(g(s), y(s''))$$

$$\land y = g(t))$$

QED (3)

(4) Let $f(x_1, \ldots, x_n)$ be A-good. Let v_1, \ldots, v'_n be any sequence of distinct variables. There is $t \in Tm$ such that

$$f(e^*(v_1), \ldots, e^*(v_n)) = \overline{e}(t)$$

for all $e \in E$.

Proof: By induction on the defining schemata of f. If $f(\bar{x}) = x_i$, we take $t = \dot{i}_i$. If $e^*(\bar{v}) = \overline{e}(s_i)$ for $e \in E(i = 0, 1)$, and $f(\bar{x}) = F_i(g_0(\bar{x}), g_1(\bar{x}))$, we set $t = F_i(s_0, s_1)$. Then

$$\overline{e}(t) = F_i(\overline{e}(s_0), \overline{e}(s_1)) = F_i(g_0(\bar{x}), g_1(\bar{x})) = f(\bar{x}).$$

QED (4)

But then:
(5) Let φ be a Σ_0 formula. There is $t \in Tm$ such that $M \models \varphi[e] \leftrightarrow \overline{\tau}(t) = 1$ for all $e \in E$.

Proof: Let v_1, \ldots, v_n be a sequence of distinct variables containing all variables which occur free in φ. Then

$$M \models \varphi[e] \leftrightarrow M \models \varphi[e^*(v_1), \ldots, e^*(v_n)]$$

for all $e \in E$. Set

$$f(\overline{x}) = \begin{cases} 1 & \text{if } M \models \varphi[\overline{x}] \\ 0 & \text{if not.} \end{cases}$$

Then f is rudimentary, hence A–good. Let $t \in Tm$ such that

$$(**) f(e^*(v_1), \ldots, e^*(v_n)) = \overline{\tau}(t).$$

Then: $M \models \varphi[e] \leftrightarrow \overline{\tau}(t) = 1$. QED (6)

(5) is, however, much more than an existence statement, since our proofs are effective: Clearly we can effectively assign to each Σ_0 formula φ a sequence $v(\varphi) = (v_1, \ldots, v_n)$ of distinct variables containing all variables which occur free in φ. But the proof that the f defined by $(*)$ is rud in fact implicitly defines a rud definition D_φ such that D_φ defines such an $f = f_{D_\varphi}$ over any rud closed $M = (M, \varepsilon, A)$. The proof that f is A–good is by induction on the defining schemata and implicitly defines a term $t = T_\varphi$ which satisfies $(**)$ over any rud closed M. Thus our proofs implicitly describe an algorithm for the function $\varphi \mapsto T_\varphi$. Hence this function is recursive, hence uniformly $\Sigma_1(M)$.

But then Σ_0 satisfaction can be defined over M by:

$$M \models \varphi[e] \leftrightarrow \overline{\tau}(T_\varphi) = 1.$$

QED (Lemma 2.2.17)

Corollary 2.2.18. Let $n \geq 1$. $\models_{M}^{\Sigma_n}$ is uniformly $\Sigma_n(M)$ for transitive rud closed structures $M = (|M|, \varepsilon, A_1, \ldots, A_n)$.

(We leave this to the reader.)

2.2.1 Condensation

The **condensation lemma** for rud closed sets $U = (U, \varepsilon)$ reads:

Lemma 2.2.19. Let $U = (U, \varepsilon)$ be transitive and rud closed. Let $X \leq_{\Sigma_1} U$. Then there is an isomorphism $\pi : \overline{U} \leftrightarrow X$, where \overline{U} is transitive and rud closed. Moreover, $\pi(f(\overline{x})) = f(\pi(\overline{x}))$ for all rud functions f.

Proof: X satisfies the extensionality axiom. Hence by Mostowski’s isomorphism theorem there is $\pi : \overline{U} \sim X$, where \overline{U} is transitive. Now let f be rud and $x_1, \ldots, x_n \in \overline{U}$. Then there is $y' \in X$ such that $y' = f(\pi(\overline{x}))$, since $X \prec_{\Sigma_1} U$. Let $\pi(y) = y'$. Then $y = f(\overline{x})$, since the condition $\pi(y) = y'$ is Σ_0 and π is Σ_1-preserving. QED (Lemma 2.2.19)

The condensation lemma for rud closed $M = \langle |M|, \in, A_1, \ldots, A_n \rangle$ is much weaker, however. We state it for the case $n = 1$.

Lemma 2.2.20. Let $M = \langle |M|, \in, A \rangle$ be transitive and rud closed. Let $X \prec_{\Sigma_1} M$. There is an isomorphism $\pi : \overline{M} \sim X$, where $\overline{M} = \langle |\overline{M}|, \in, \overline{A} \rangle$ is transitive and rud closed. Moreover:

(a) $\pi(\overline{A} \cap x) = A \cap \pi(x)$

(b) Let f be rud in A. Let f be characterized by: $f(\overline{x}) = f_0(\overline{x}, A \cap f_1(\overline{x}))$, where f_0, f_1 are rud. Set: $\overline{f}(\overline{x}) = f_0(\overline{x}, \overline{A} \cap f_1(\overline{x}))$. Then:

\[\pi(\overline{f}(\overline{x})) = f(\pi(\overline{x})). \]

The proof is left to the reader.

2.3 The J_α hierarchy

We are now ready to introduce the alternative to Gödel’s constructible hierarchy which we had promised in §1. We index it by ordinals from the class Lm of limit ordinals.

Definition 2.3.1.

\[
J_\omega = \text{Rud}(\emptyset) \\
J_{\beta+\omega} = \text{Rud}(J_{\beta}) \text{ for } \beta \in \text{Lm} \\
J_\lambda = \bigcup_{\gamma < \lambda} J_{\gamma} \text{ for } \lambda \text{ a limit point of } \text{Lm}
\]

It can be shown that $L = \bigcup \alpha J_\alpha$ and, indeed, that $L_\alpha = J_\alpha$ for a great many α (for instance closed α). Note that $J_\omega = L_\omega = H_\omega$.

By §2 Corollary 2.2.14 we have:

\[\mathbb{P}(J_\alpha) \cap J_{\alpha+\omega} = \text{Def}(J_\alpha), \]

which pinpoints the resemblance of the two hierarchies. However, we shall not dwell further on the relationship of the two hierarchies, since we intend to consequently employ the J–hierarchy in the rest of this book. As usual, we shall often abuse notation by not distinguishing between J_α and (J_α, \in).

Lemma 2.3.1. \(\text{rn}(J_\alpha) = \text{On} \cap J_\alpha = \alpha. \)

Proof: By induction on \(\alpha \in \text{Lm}. \) For \(\alpha = \omega \) it is trivial. Now let \(\alpha = \beta + \omega, \) where \(\beta \in \text{Lm}. \) Then \(\beta = \text{On} \cap J_\beta \in \text{Def}(J_\beta) \subset J_\alpha. \) Hence \(\beta + n \in J_\alpha \) for \(n < \omega \) by rud closure. But \(\text{rn}(J_\alpha) \leq \beta + \omega = \alpha \) since \(J_\alpha \) is the rud closure of \(J_\alpha \cup \{J_\alpha\}. \) Hence \(\text{On} \cap J_\alpha = \alpha = \text{rn}(J_\alpha). \)

If \(\alpha \) is a limit point of \(\text{Lm} \) the conclusion is trivial. QED (Lemma 2.3.1)

To make our notation simpler, define

Definition 2.3.2. \(\text{Lm}^* \) = the limit points of \(\text{Lm}. \)

It is sometimes useful to break the passage from \(J_\alpha \) to \(J_{\alpha+\omega} \) into \(\omega \) many steps. Any way of doing this will be rather arbitrary, but we can at least do it in a uniform way. As a preliminary, we use the basis theorem (§2 Theorem 2.2.15) to prove:

Lemma 2.3.2. There is a rud function \(s : V \to V \) such that for all \(U: \)

(a) \(U \subset s(U) \)

(b) \(\text{rud}(U) = \bigcup_{n<\omega} s^n(U) \)

(c) If \(U \) is transitive, so is \(s(U). \)

Proof: Define rud functions \(G_i(i = 0, 1, 2, 3) \) by:

\[
\begin{align*}
G_0(x, y, z) &= (x, y) \\
G_1(x, y, z) &= (x, y, z) \\
G_2(x, y, z) &= \{x, (y, z)\} \\
G_3(x, y, z) &= x^y
\end{align*}
\]

Set:

\[
s(U) := U \cup \bigcup_{i=0}^{9} F_i^U \cup 3 \bigcup_{i=0}^{3} G_i^U.
\]

(a) is then immediate, (b) is immediate by the basis theorem. We prove (c).

Let \(a \in s(U). \) We claim: \(a \subset s(U). \) There are 14 cases: \(a \in U, \ a = F_i(x, y) \) for an \(i = 0, \ldots, 8, \) where \(x, y \in U, \) and \(a = G_i(x, y, z) \) where \(x, y, z \in U \) and \(i = 0, \ldots, 3. \) Each of the cases is quite straightforward. We give some example cases:
CHAPTER 2. BASIC FINE STRUCTURE THEORY

- \(a = F(x, y) = x \otimes y \). If \(z \in a \), then \(z = (x', y') \) where \(x' \in x \), \(y' \in y \). But then \(x', y' \in U \) by transitivity and \(z = G_0(x', y', x') \in s(U) \).

- \(a = F_3(x, y) = \{(w, z, v) | z \in x \land (u, v) \in y \} \). If \(a' = (w, z, v) \in a \), then \(w, z, v \in U \) by transitivity and \(a' = G_1(w, z, v) \in s(U) \).

- \(a = F_8(x, y) \). If \(a' \in a \), then \(a' = x^s z \) where \(z \in y \). Hence \(z \in U \) by transitivity and \(a' = G_3(x, z, z) \in s(U) \).

- \(a = G_0(x, y, z) = \{\{x\}, \{x, y\}\} \). Then \(a \subset F_0 U^2 \subset s(U) \).

If we then set:

Definition 2.3.3. \(S(U) = s(U \cup \{U\}) \) we get:

Corollary 2.3.3. \(S \) is a rud function such that

(a) \(U \cup \{U\} \subset S(U) \)

(b) \(\bigcup_{\alpha<\omega} S^\alpha(U) = \text{Rud}(U) \)

(c) If \(U \) is transitive, so is \(S(U) \).

We can then define:

Definition 2.3.4.

\[
\begin{align*}
S_0 &= \emptyset \\
S_{\nu+1} &= S(S_\nu) \\
S_\lambda &= \bigcup_{\nu<\lambda} S_\nu \text{ for limit } \lambda.
\end{align*}
\]

Obviously then: \(J_\gamma = S_\gamma \) for \(\gamma \in \text{Lm} \). (It would be tempting to simply define \(J_\nu = S_\nu \) for all \(\nu \in \text{On} \). We avoid this, however, since it could lead to confusion: At successors \(\nu \) the models \(S_\nu \) do not have very nice properties. Hence we retain the convention that whenever we write \(J_\alpha \) we mean \(\alpha \) to be a limit ordinal.)

Each \(J_\alpha \) has \(\Sigma_1 \) knowledge of its own genesis:

Lemma 2.3.4. \(\langle S_\nu | \nu < \alpha \rangle \) is uniformly \(\Sigma_1(J_\alpha) \).

Proof: \(y = S_\nu \Leftrightarrow \forall f(f(\varphi(f)) \land y = f(\nu)) \), where \(\varphi(f) \) is the \(\Sigma_0 \) formula:
2.3. THE J_α HIERARCHY

f is a function $\land \dom(f) \in \text{On} \land f(0) = \emptyset$
$\land \bigwedge \xi \in \dom(f)(\xi + 1 \in \dom(f) \rightarrow f(\xi + 1) = S(f(\xi)))$
$\land \bigwedge \lambda \in \dom(f)(\lambda \text{ is a limit } \rightarrow f(\lambda) = \bigcup f'' \lambda)$.

Thus it suffices to show that the existence quantifier can be restricted to J_α — i.e.

Claim $\langle S_\nu | \nu < \tau \rangle \in J_\alpha$ for $\tau < \alpha$.

Case 1 $\alpha = \omega$ is trivial.

Case 2 $\alpha = \beta + \omega$, $\beta \in \text{Lm}$.

Then $\langle S_\nu | \nu < \beta \rangle \in \text{Def}(J_\beta) \subset J_\alpha$. Hence $S_\beta = \bigcup_{\nu < \beta} S_\nu \in J_\alpha$. By rud closure it follows that $S_{\beta+n} \in J_\alpha$ for $n \in \omega$. Hence $S | \nu \in J_\alpha$ for $\nu < \alpha$.

Case 3 $\alpha \in \text{Lm}^*$.

This case is trivial since if $\nu < \beta \in \alpha \cap \text{Lm}$ Then $S | \nu \in J_\beta \subset J_\alpha$.

QED (Lemma 2.3.4)

We now use our methods to show that each J_α has a uniformly $\Sigma_1(J_\alpha)$ well ordering. We first prove:

Lemma 2.3.5. There is a rud function $w : V \rightarrow V$ such that whenever r is a well ordering of u, then $w(u, r)$ is a well ordering of $s(u)$ which end extends r.

Proof: Let r_2 be the r–lexicographic ordering of u^2:

$\langle x, y \rangle r_2 \langle z, w \rangle \leftrightarrow (x r z \lor (x = z \land y r w)).$

Let r_3 be the r–lexicographic ordering of u^3. Set:

$u_0 = u, u_{1+i} = F_i'' u^2$ for $i = 0, \ldots, 8, u_{10+i} = G_i'' u^3$ for $i = 0, \ldots, 3$.

Define a well ordering w_i of u_i as follows: $w_0 = r$, For $i = 0, \ldots, 9$ set

$\langle x w_{1+i} y \rangle \leftrightarrow \bigvee a, b \in u^2(x = F_i(a) \land y = F_i(b) \land$
$\land a r_2 b \land \bigwedge a' \in u^2(a' r_2 a \rightarrow x \neq F_i(a')) \land$
$\land \bigwedge b' \in u^2(b' r_2 b \rightarrow y \neq F_i(b'))$.

For $i = 0, \ldots, 3$ let w_{10+i} have the same definitions with G_i in place of F_i and u^3, r_3 in place of u^2, r_2.
We then set:
\[w = w(u) = \{ (x, y) \in s(u)^2 \mid \bigvee_{i=0}^{13} ((xw_iy \land x, y \notin \bigcup_{h<i} u_n) \lor (x \in \bigcup_{h<i} u_n \land y \notin \bigcup_{n<i} u_n)) \} \]
(where \(\bigcup_{h<0} u_n = \emptyset \)). QED (Lemma 2.3.5)

If \(r \) is a well ordering of \(u \), then
\[r_u = \{ (x, y) \mid (x, y) \in r \lor (x \in u \land y = u) \} \]
is a well ordering of \(u \cup \{ u \} \) which end extends \(r \). Hence if we set:

Definition 2.3.5. \(W(u, r) =: w(u \cup \{ u \}, r_u) \).

We have:

Corollary 2.3.6. \(W \) is a rud function such that whenever \(r \) is a well ordering of \(u \), then \(W(u, r) \) is a well ordering of \(S(u) \) which end extends \(r \).

If we then set:

Definition 2.3.6.
\[
\begin{align*}
\langle S_0 &= \emptyset \\
\langle S_{\nu+1} &= W(S_\nu, \langle S_\nu) \\
\langle S_\lambda &= \bigcup_{\nu<\lambda} \langle S_\nu \text{ for limit } \lambda,
\end{align*}
\]
it follows that \(\langle S_\alpha \) is a well ordering of \(S_\alpha \) which end extends \(\langle S_\nu \) for all \(\nu < \alpha \).

Definition 2.3.7. \(\langle \alpha = \langle J_\alpha =: \langle S_\alpha \) for \(\alpha \in \text{Lm} \).

Then \(\langle \alpha \) is a well ordering of \(J_\alpha \) for \(\alpha \in \text{Lm} \).

By a close imitation of the proof of Lemma 2.3.4 we get:

Lemma 2.3.7. \(\langle S_\nu \mid \nu < \alpha \) is uniformly \(\Sigma_1(J_\alpha) \).

Proof:
\[y = \langle S_\nu \leftrightarrow \bigvee f \bigvee g(\varphi(f) \land \psi(f, g) \land y = g(\nu)) \]
where \(\varphi \) is as in the proof of Lemma 2.3.4 and \(\psi \) is the \(\Sigma_0 \) formula:
2.3. THE J_α HIERARCHY

g is a function $\wedge \text{dom}(g) = \text{dom}(f) \wedge g(0) = \emptyset \wedge \bigwedge \xi \in \text{dom}(g)[\xi + 1 \in \text{dom}(g) \rightarrow g(\xi + 1) = W(f(\xi), g(\xi)))] \wedge \bigwedge \lambda \in \text{dom}(g) (\lambda \text{ is a limit} \rightarrow g(\lambda) = \bigcup g''\lambda)$.

Just as before, we show that the existence quantifiers can be restricted to J_α. QED (Lemma 2.3.7)

But then:

Corollary 2.3.8. $<_\alpha = \bigcup \nu <_{\mathcal{S}_\nu}$ is a well ordering of J_α which is uniformly $\Sigma_1(J_\alpha)$. Moreover $<_\alpha$ end extends $<_\nu$ for $\nu \in \text{Lm, } \nu < \alpha$.

Corollary 2.3.9. u_α is uniformly $\Sigma_1(J_\alpha)$, where $u_\alpha(x) \simeq \{z | z <_\alpha x\}$.

Proof:

$y = u_\alpha(x) \leftrightarrow \bigvee \nu(x \in \mathcal{S}_\nu \wedge y = \{z \in \mathcal{S}_\nu | z <_{\mathcal{S}_\nu} x\})$

QED (Corollary 2.3.9)

Note. We shall often write $<_J\alpha$ for $<_\alpha$. We also write $<_{1\infty}$ or $<_J$ or $<_L$ for $\bigcup_{\alpha \in \text{On}} <_\alpha$. Then $<_L$ well orders L and is an end extension of $<_\alpha$.

We obtain a particularly strong form of Gödel’s condensation lemma:

Lemma 2.3.10. Let $X <_{\Sigma_1} J_\alpha$. Then there are $\bar{\pi}, \pi$ such that $\pi : J_{\bar{\pi}} \xrightarrow{\sim} X$.

Proof: By §2 Lemma 2.2.19 there is rud closed U such that U is transitive and $\pi : \xrightarrow{\sim} X$. Note that the condition

$S(f, \nu) \leftrightarrow f = (S_\xi | \nu < \xi)$

is Σ_0, since:

$S(f, \nu) \leftrightarrow (f$ is a function $\wedge \wedge \text{dom}(f) = \nu \wedge f(0) = \emptyset$ if $0 < \nu \wedge \bigwedge \xi \in \text{dom}(f)[\xi + 1 \in \text{dom}(f) \rightarrow f(\xi + 1) = S(f(\xi))]).$

Let $\pi = \text{On} \cap U$ and let $\bar{\pi} < \pi$. Let $\pi(\bar{\pi}) = \nu$. Then $f = (S_\xi | \xi < \nu) \in X$ since $X <_{\Sigma_1} J_\alpha$. Let $\pi(\bar{f}) = f$. Then $\bar{f} = (S_\xi | \xi < \bar{\nu})$, since $S(\bar{f}, \bar{\nu})$. But then $J_{\bar{\pi}} = \bigcup_{\xi < \bar{\pi}} S_\xi \subset U$. But since π is Σ_1 preserving we know that

$x \in U \rightarrow \bigvee f, \nu \in U (S(f, \nu) \wedge x \in U f''\nu) \rightarrow x \in J_{\bar{\pi}}$.

QED (Lemma 2.3.10)
Corollary 2.3.11. Let \(\pi : J_\alpha : J_\alpha \to \Sigma_1 J_\alpha \). Then:

(a) \(\nu < \tau \iff \pi(\nu) < \pi(\tau) \) for \(\nu, \tau < \overline{\alpha} \).

(b) \(x <_L y \iff \pi(x) <_L \pi(y) \) for \(x, y \in J_\alpha \).

Hence:

(c) \(\nu \leq \pi(\nu) \) for \(\nu < \overline{\alpha} \).

(d) \(x \leq_L \pi(x) \) for \(x \in J_\alpha \).

Proof: (a), (b) follow by the fact that \(< \cap J_\alpha^2 \) and \(<_L \cap J_\alpha^2 = <_\alpha \) are uniformly \(\Sigma_1(J_\alpha) \). But if \(\pi(\nu) < \nu \), then \(\nu, \pi(\nu), \pi^2(\nu), \ldots \) would form an infinite decreasing sequence by (a). Hence (c) holds. Similarly for (d). QED (Corollary 2.3.11)

2.3.1 The \(J^A_\alpha \)-hierarchy

Given classes \(A_1, \ldots, A_n \) one can generalize the previous construction by forming the constructible hierarchy \(\langle J^A_\alpha \mid \alpha \in Lm \rangle \) relativized to \(A_1, \ldots, A_n \).

We have this far dealt only with the case \(n = 0 \). We now develop the case \(n = 1 \), since the generalization to \(n > 1 \) is then entirely straightforward. (Moreover the case \(n = 1 \) is sufficient for most applications.)

Definition 2.3.8. Let \(A \subset V \). \(\langle J^A_\alpha \mid \alpha \in Lm \rangle \) is defined by:

\[
\begin{align*}
J^A_\alpha &= \langle J_\alpha[A], \in, A \cap J_\alpha[A] \rangle \\
J_\omega[A] &= Rud_A(\emptyset) = H_\omega \\
J_{\beta+\omega}[A] &= Rud_A(J_\beta) \text{ for } \beta \in Lm \\
J_\lambda[A] &= \bigcup_{\nu < \lambda} J_\nu[A] \text{ for } \lambda \in Lm^*
\end{align*}
\]

Note. \(A \cap J_\alpha[A] \) is treated as an unary predicate.

Thus every \(J^A_\alpha \) is rud closed. We set

Definition 2.3.9.

\[
\begin{align*}
L[A] &= J[A] = \bigcup_{\alpha \in On} J_\alpha[A]; \\
L^A &= J^A = \langle L[A], \in, A \cap L[A] \rangle.
\end{align*}
\]

Note. that \(J_\alpha[\emptyset] = J_\alpha \) for all \(\alpha \in Lm \).

Repeating the proof of Lemma 1.1.1 we get:
Lemma 2.3.12. \(\text{rn}(J^A_\alpha) = \text{On} \cap J^A_\alpha = \alpha \).

We wish to break \(J^A_{\alpha+\omega} \) into \(\omega \) smaller steps, as we did with \(J_{\alpha+\omega} \). To this end we define:

Definition 2.3.10. \(S^A(u) = S(u) \cup \{ A \cap u \} \).

Corresponding to Corollary 2.3.3 we get:

Lemma 2.3.13. \(S^A \) is a function rud in \(A \) such that whenever \(u \) is transitive, then:

(a) \(u \cup \{ u \} \cup \{ A \cap u \} \subset S(u) \)

(b) \(\bigcup_{n<\omega} (S^A)^n(u) = \text{Rud}_A(u) \)

(c) \(S(u) \) is transitive.

Proof: (a) is immediate. (c) holds, since \(S(u) \) is transitive, \(A \subset S(u) \) and \(A \cap u \subset u \). (b) holds since \(S(u) \supset u \) is transitive and \(A \cap u \subset u \). But if we set: \(U = \bigcup_{n<\omega} (S^A)^n(u) \), then \(U \) is rud closed and \(\langle U, A \cap U \rangle \) is amenable. QED (Lemma 2.3.13)

We then set:

Definition 2.3.11.

\[
S^A_0 = \emptyset \\
S^A_{\alpha+1} = S^A(S^A_\alpha) \\
S^A_\lambda = \bigcup_{\nu<\lambda} S^A_\nu \text{ for limit } \lambda.
\]

We again have: \(J_{\alpha}[A] = S^A_\alpha \) for \(\alpha \in \text{Lm} \). A close imitation of the proof of Lemma 2.3.4 gives:

Lemma 2.3.14. \(\langle S^A_\nu | \nu < \alpha \rangle \) is uniformly \(\Sigma_1(J^A_\alpha) \).

Proof: This is exactly as before except that in the formula \(\varphi(f) \) we replace \(S(f(\nu)) \) by \(S^A(f(\nu)) \). But this is \(\Sigma_0(J^A_\alpha) \), since:

\[
x \in S^A(u) \leftrightarrow (x \in S(u) \vee x = A \cap u),
\]

hence:

\[
y = S^A(u) \leftrightarrow \bigwedge z \in y z \in S^A(u) \\
A \bigwedge z \in S(u) z \in y \bigvee z \in y z = A \cap u.
\]
We now show that J^A has a uniformly $\Sigma_1(J^A)$ well ordering, which we call $<_A^\alpha$ or $<_J^A$.

Set:

Definition 2.3.12.

$$W^A(u, r) = \{ (x, y) | (x, y) \in W(u, r) \land (x \in S(u) \land y = A \cap u \notin S(u)) \}$$

If u is transitive and r well orders u, then $W^A(u, r)$ is a well ordering of $S^A(u)$ which end extends r.

We set:

Definition 2.3.13.

$$<_A^0 = \emptyset$$

$$<_A^\nu + 1 = W^A(S^A_\nu, <^A_\nu)$$

$$<_A^\lambda = \bigcup_{\nu < \lambda}<_A^\nu$$ for limit $<_\lambda$.

Then $<_A^\nu$ is a well ordering of S^A_ν which end extends $<_A^\xi$ for $\xi < \nu$. In particular $<_A^\alpha$ well orders J^A_α for $\alpha \in \Gamma$. We also write: $<_J^A = :<_A^\alpha$. We set:

$$<_L^A = <J^A = :<_A^\infty = \bigcup_{\nu < \infty}<_A^\nu.$$

Just as before we get:

Lemma 2.3.15. $\langle <_A^\nu | \nu < \alpha \rangle$ is uniformly $\Sigma_1(J^A_\alpha)$.

The proof is left to the reader. Just as before we get:

Lemma 2.3.16. $<_A^\alpha$ and $f(u) = \{ z | z <^A_{\alpha} u \}$ are uniformly $\Sigma_1(J^A_\alpha)$.

Up until now almost everything we proved for the J_α hierarchy could be shown to hold for the J^A_α hierarchy. The condensation lemma, however, is available only in a much weaker form:

Lemma 2.3.17. Let $X <_\Sigma_1 J^A_\alpha$. Then there are $\overline{\pi}, \pi, \overline{A}$ such that $\pi : J^A_\overline{\pi} \rightarrow X$.

QED (Lemma 2.3.14)
2.3. THE J_α HIERARCHY

Proof: By Lemma 2.2.19 there is $\langle U, A \rangle$ such that $\pi : \langle U, A \rangle \leftrightarrow X$ and $\langle U, A \rangle$ is rud closed. As before, the condition

$$S^A(f, \nu) \leftrightarrow f = \langle S^A_\xi | \xi < \nu \rangle$$

si Σ_0 in A. Now let $\nu = \pi(\nu)$ in X. Let $\pi(f) = f$. Then $f = \langle S^A_\xi | \xi < \nu \rangle$, since $S^A(f, \nu)$. Then $J^A_\mu \subseteq \bigcup \{ S^A_\xi \subseteq U \}$. $U \subseteq J^A_\alpha$ then follows as before. QED (Lemma 2.3.17)

A sometimes useful feature of the J^A_α hierarchy is:

Lemma 2.3.18. $x \in J^A_\alpha \rightarrow \text{TC}(x) \in J^A_\alpha$.

(Hence $\langle \text{TC}(x) | x \in J^A_\alpha \rangle$ is $\Pi_1(J^A_\alpha)$ since $u = \text{TC}(x)$ is defined by:

$$u \text{ is transitive } \land \exists x \subseteq u \land \bigwedge v ((v \text{ is transitive } \land x \subseteq v) \rightarrow u \subseteq v)$$

Proof: By induction on α.

Case 1 $\alpha = \omega$ (trivial)

Case 2 $\alpha = \beta + \omega$, $\beta \in \text{Lim}$.

Then every $x \in J^A_\alpha$ has the form $f(\bar{z})$ where $z_1, \ldots, z_n \in J^A_\beta[A] \cup \{ J^A_\beta[A] \}$ and f is rud in A. By Lemma 2.2.2 we have

$$\bigcup_{x=1}^{p} \{ x \subseteq \bigcup_{1}^{n} \text{TC}(z_i) \subseteq J^A_\beta[A] \} \text{ for some } p < \omega$$

Hence $\text{TC}(x) = C^p(x) \cup \text{TC}(\bigcup_{i=1}^{n} \text{TC}(z_i))$, where $\langle \text{TC}(z) | z \in J^A_\beta[A] \rangle$ is J^A_β-definable, hence an element of J^A_α.

Case 3 $\alpha \in \text{Lm}^*$ (trivial). QED (Lemma 2.3.18)

Corollary 2.3.19. If $\alpha \in \text{Lm}^*$, then $\langle \text{TC}(x) | x \in J^A_\alpha \rangle$ is uniformly $\Delta_1(J^A_\alpha)$.

Proof: We have seen that it is $\Pi_1(J^A_\alpha)$. But $\text{TC} \upharpoonright J^A_\alpha \in J^A_\alpha$ for all $\beta \in \text{Lm} \cap \alpha$. Hence $u = \text{TC}(x)$ is definable in J^A_α by:

$$\forall f(f \text{ is a function } \land \text{dom}(f) \text{ is transitive } \land u = f(x) \land \bigwedge x \in \text{dom}(f) f(x) = x \cup f''x)$$

QED (Corollary 2.3.19)
2.4 \textit{J–models}

We can add further unary predicates to the structure \(J^\alpha\). We call the structure:

\[M = \langle J^\alpha_1, \ldots, J^\alpha_n, B_1, \ldots, B_m \rangle \]

a \textit{J–model} if it is amenable in the sense that \(x \cap B_i \in J^\alpha_i\) whenever \(x \in J^\alpha_i\) and \(i = 1, \ldots, m\). The \(B_i\) are again taken as unary predicates. The \textit{type} of \(M\) is \((n, m)\). (Thus e.g. \(J^\alpha\) has type \((0, 0)\), \(J^\alpha_1\) has type \((1, 0)\), and \(J^\alpha_n, B\) has type \((0, 1)\).) By an abuse of notation we shall often fail to distinguish between \(M\) and the associated structure:

\[\tilde{M} = \langle J, [\sim A], A', \ldots, A'_n, B_1, \ldots, B_m \rangle \]

where \(A'_i = A_i \cap J^\alpha[i] (i = 1, \ldots, n)\).

We may for instance write \(\Sigma_1(M)\) for \(\Sigma_1(\tilde{M})\) or \(\pi : N \rightarrow \Sigma_m, M \rightarrow \hat{N} \rightarrow \Sigma_n, M\). (However, we cannot unambiguously identify \(M\) with \(\tilde{M}\), since e.g. for \(M = \langle J^\alpha, B \rangle\) we might have: \(\tilde{M} = J^\alpha, B\).)

In practice we shall usually deal with \(J\) models of type \((1, 1), (1, 0), \) or \((0, 0)\). In any case, following the precedent in earlier section, when we prove general theorems about \(J\)–models, we shall often display only the proof for type \((1, 1)\) or \((1, 0)\), since the general cases are then straightforward.

\begin{definition}
If \(M = \langle J^\alpha, B \rangle\) is a \(J\)–model and \(\beta \leq \alpha\) in \(Lm\), we set:

\[M|\beta = \langle J^\alpha_\beta, B_1 \cap J^\beta_1, \ldots, B_n \cap J^\beta_n \rangle. \]

In this section we consider \(\Sigma_1(M)\) definability over an arbitrary \(M = \langle J^\alpha, B \rangle\). If the context permits, we write simply \(\Sigma_1\) instead of \(\Sigma_1(M)\). We first list some properties which follow by rud closure alone:

\begin{itemize}
 \item \(\models_{\tilde{M}}\) is uniformly \(\Sigma_1\), by corollary 2.2.18 (Note 'Uniformly' here means that the \(\Sigma_1\) definition is the same for any two \(M\) having the same type.)
 \item If \(R(y, x_1, \ldots, x_n)\) is a \(\Sigma_1\) relation, then so is \(\bigvee y R(y, x_1, \ldots, x_n)\) (since \(\bigvee y \bigvee z P(yz, \bar{x}) \iff \bigvee u \bigvee y, z \in u P(y, z, \bar{x})\) where \(R(y, \bar{x}) \iff \bigvee z P(y, z, \bar{x})\) and \(P\) is \(\Sigma_0\)).

 By an \(n\)–ary \(\Sigma_1(M)\) \textit{function} we mean a partial function on \(M^n\) which is \(\Sigma_1(M)\) as an \(n + 1\)–ary relation.
 \item If \(R, R'\) are \(n\)–ary \(\Sigma_1\) relations, then so are \(R \cap R', R \cup R'\). (Since e.g.

 \[(\bigvee y P(y, \bar{x}) \land \bigvee P'(y, \bar{x})) \iff \bigvee y P(y, \bar{x}) \land P'(y, \bar{x}). \]
\end{itemize}
If \(R(y_1, \ldots, y_m) \) is an \(n \)-ary \(\Sigma_1 \) relation and \(f_i(\bar{x}) \) is an \(n \)-ary \(\Sigma_1 \) function for \(i = 1, \ldots, m \), then so is the \(n \)-ary relation
\[
\overline{R}(ar{f}(\bar{x})) \leftrightarrow \bigvee y_1, \ldots, y_m (\bigwedge_{i=1}^m y_i = f_i(\bar{x}) \land R(\bar{y})).
\]

If \(g(y_1, \ldots, y_m) \) is an \(m \)-ary \(\Sigma_1 \) function and \(f_i(\bar{x}) \) is an \(n \)-ary \(\Sigma_1 \) function for \(i = 1, \ldots, m \) then \(h(\bar{x}) \simeq g(\bar{f}(\bar{x})) \) is an \(n \)-ary \(\Sigma_1 \) function.
(Since \(z = h(\bar{x}) \leftrightarrow \bigvee y_1, \ldots, y_m (\bigwedge_{i=1}^m y_i = f_i(\bar{x}) \land z = g(\bar{y})) \).)

Since \(f(x_1, \ldots, x_n) = x_i \) is a \(\Sigma_1 \) function, we have:

If \(R(x_1, \ldots, x_n) \) is \(\Sigma_1 \) and \(\sigma : n \to m \), then
\[
P(z_1, \ldots, z_m) \leftrightarrow R(z_{\sigma(1)}, \ldots, z_{\sigma(n)})
\]
is \(\Sigma_1 \).

If \(f(x_1, \ldots, x_n) \) is a \(\Sigma_1 \) function and \(\sigma : n \to m \), then the function:
\[
g(z_1, \ldots, z_m) \simeq f(z_{\sigma(1)}, \ldots, z_{\sigma(n)})
\]
is \(\Sigma_1 \).

\(\neg \)–models have the further property that every binary \(\Sigma_1 \) relation is uniformizable by a \(\Sigma_1 \) function. We define

Definition 2.4.2. A relation \(R(y, \bar{x}) \) is uniformized by the function \(F(\bar{x}) \) iff the following hold:

- \(\bigvee y R(y, \bar{x}) \to F(\bar{x}) \) is defined
- If \(F(\bar{x}) \) is defined, then \(R(F(\bar{x}), \bar{x}) \)

We shall, in fact, prove that \(M \) has a uniformly \(\Sigma_1 \) definable Skolem function. We define:

Definition 2.4.3. \(h(i, x) \) is a \(\Sigma_1 \)–Solem function for \(M \) iff \(h \) is a \(\Sigma_1(M) \) partial map from \(\omega \times M \) to \(M \) and, whenever \(R(y, x) \) is a \(\Sigma_1(M) \) relation, there is \(i < \omega \) such that \(h_i \) uniformizes \(R \), where \(h_i(x) \simeq h(i, x) \).

Lemma 2.4.1. \(M \) has a \(\Sigma_1 \)–Skolem function which is uniformly \(\Sigma_1(M) \).
Proof: \[\models_{\Sigma_1} \] is uniformly \(\Sigma_1 \). Let \(\langle \varphi_i | i < \omega \rangle \) be a recursive enumeration of the \(\Sigma_1 \) formulae in which at most the two variables \(v_0, v_1 \) occur free. Then the relation:
\[
T(i, y, x) \iff \models_{\Sigma_1} \varphi_i[y, x]
\]
is uniformly \(\Sigma_1 \). But then for any \(\Sigma_1 \) relation \(R \) there is \(i < \omega \) such that
\[
R(y, x) \iff T(i, y, x).
\]
Since \(T \) is \(\Sigma_1 \), it has the form:
\[
\bigvee z T'(z, i, y, x)
\]
where \(T' \) is \(\Sigma_0 \). Writing \(<_M \) for \(<_{\alpha}^\lambda \), we define:
\[
y = h(i, x) \iff \bigvee z (\langle z, y \rangle \text{ is the } <_M \text{–least pair } \langle z', y' \rangle \text{ such that } T'(z', i, y', x) \}).
\]
Recalling that the function \(f(x) = \{ z | z <_M x \} \) is \(\Sigma_1 \), we have:
\[
y = h(i, x) \iff \bigvee z \left(\bigvee u (T'(z, i, y, x) \wedge \langle w | w <_M \{ z, y \} \wedge \langle z', y' \rangle \in u \neg T'(z, i, y, x) \}) \right)
\]
QED 2.4.1

We call the function \(h \) defined above the canonical \(\Sigma_1 \) Skolem function for \(M \) and denote it by \(h_M \). The existence of \(h \) implies that every \(\Sigma_1(M) \) relation is uniformizable by a \(\Sigma_1(M) \) function:

Corollary 2.4.2. Let \(R(y, x_1, \ldots, x_n) \) be \(\Sigma_1 \). \(R \) is uniformizable by a \(\Sigma_1 \) function.

Proof: Let \(h_1 \) uniformize the binary relation
\[
\{ \langle y, z \rangle | \bigvee x_1 \ldots x_n (R(y, \vec{x}) \wedge z = (x_1, \ldots, x_n)) \}
\]
Then \(f(\bar{x}) \equiv h_1(\bar{x}) \) uniformizes \(R \).

QED

We say that a \(\Sigma_1(M) \) function has a functionally absolute definition if it has a \(\Sigma_1 \) definition which defines a function over every \(J \)–model of the same type.

Corollary 2.4.3. Every \(\Sigma_1(M) \) function \(g \) has functionally absolute definition.
2.4. J–MODELS

Proof: Apply the construction in Corollary 2.4.2 to $R(y, \bar{x}) \leftrightarrow y = g(\bar{x})$. Then $f(x) \simeq h_i((\bar{x}))$ is functionally absolute since h_i is.

QED (Corollary 2.4.2)

Lemma 2.4.4. Every $x \in M$ is $\Sigma_1(M)$ in parameters from $\text{On} \cap M$.

Proof: We must show: $x = f(\xi_1, \ldots, \xi_n)$ where f is $\Sigma_1(M)$. If $M = \langle J^{\tilde{A}}_\alpha, \tilde{B} \rangle$, it obviously suffices to show it for the model $M' = J^{\tilde{A}}_\alpha$. For the sake of simplicity we display the proof for $J^{\tilde{A}}_\alpha$. (i.e. M has type $\langle 1, 0 \rangle$). We proceed by induction on $\alpha \in \text{Lm}^\ast$.

Case 1 $\alpha = \omega$.
Then $J^{\tilde{A}}_\alpha = \text{Rud}(\emptyset)$ and $x = f(\{0\})$ where f is rudimentary.

Case 2 $\alpha = \beta + \omega$, $\beta \in \text{Lm}$.
Then $x = f(z_1, \ldots, z_n, J^{\tilde{A}}_\beta)$ where $z_1, \ldots, z_n \in J^{\tilde{A}}_\beta$ and f is rud in A.
(This is meant to include the case: $n = 0$ and $x = f(J^{\tilde{A}}_\beta)$.) By the induction hypothesis there are $\tilde{\xi} \in \beta$ such that $z_i = g_i(\tilde{\xi})$ (i = 1, \ldots, n) and g_i is $\Sigma_1(J^{\tilde{A}}_\beta)$. For each i pick a functionally absolute Σ_1 definition for g_i and let g'_i be $\Sigma_1(J^{\tilde{A}}_\alpha)$ by the same definition. Then $z_i = g'_i(\tilde{\xi})$ since the condition is Σ_1. Hence $x = f'(\tilde{\xi}, \beta) = f(g'_i(\xi), J^{\tilde{A}}_\beta)$ where f' is Σ_1.

QED (Case 2)

Case 3 $\alpha \in \text{Lm}^\ast$.
Then $x \in J^{\tilde{A}}_\beta$ for a $\beta < \alpha$. Hence $x = f(\tilde{\xi})$ where f is $\Sigma_1(J^{\tilde{A}}_\beta)$. Pick a functionally absolute Σ_1 definition of f and let f' be $\Sigma_1(J^{\tilde{A}}_\alpha)$ by the same definition. Then $x = f'(\tilde{\xi})$.

QED (Lemma 2.4.4)

But being Σ_1 in parameters from $\text{On} \cap M$ is the same as being Σ_1 in a finite subset of $\text{On} \cap M$:

Lemma 2.4.5. Let $x = f(\xi)$ where f is $\Sigma_1(M)$. Let $a \subset \text{On} \cap M$ be finite such that $\xi_1, \ldots, \xi_n \in a$. Then $x = g(a)$ for a $\Sigma_1(M)$ function g.

Proof: Set:

$$k_i(a) = \begin{cases} \text{the } i\text{-th element of } a \text{ in order} \\ \text{of size if } a \subset \text{On is finite} \\ \text{and } \text{card}(a) > i, \\ \text{undefined if not.} \end{cases}$$

Then k_i is $\Sigma_1(M)$ since:

$$y = k_i(a) \leftrightarrow \forall f \forall n < \omega(f : n \leftrightarrow a \land i, j < n(f(i) < f(j) \leftrightarrow i < j) \\ \land a \subset \text{On} \land y = f(i))$$
Thus $x = f(k_{i_1}(a), \ldots, k_{i_n}(a))$ where $\xi_l = k_{i_l}(a)$ for $l = 1, \ldots, n$.

QED (Lemma 2.4.5)

We now show that for every J–model M there is a $\Sigma_1(M)$ partial map of $\text{On} \cap M$ onto M. As a preliminary we prove:

Lemma 2.4.6. There is a partial $\Sigma_1(M)$ map of $\text{On} \cap M$ onto $(\text{On} \cap M)^2$.

Proof: Order the class of pairs On^2 by setting: $(\alpha, \beta) <^* (\gamma, \delta)$ iff $(\max(\alpha, \beta), \alpha, \beta)$ is lexicographically less than $(\max(\gamma, \delta), \gamma, \delta)$. This ordering has the property that the collection of predecessors of any pair form a set. Hence there is a function $p : \text{On} \to \text{On}^2$ which enumerates the pairs in order $<^*$.

Claim 1 $p \upharpoonright \text{On}_M$ is $\Sigma_1(M)$.

Proof: If $M = \langle J^A, B \rangle$, it suffices to prove it for J^A. To simplify notation, we assume: $M = J^A$ for an $A \subset M$ (i.e. M is of type $\langle 1, 0 \rangle$.)

We know:

$$y = p(\nu) \leftrightarrow \bigvee f(\varphi(f) \wedge y = f(\nu))$$

where φ is the Σ_0 formula:

$$f \text{ is a function } \wedge \text{dom}(f) \in \text{On} \wedge$$

$$\wedge \bigvee \beta, \gamma \in C_n(u)u = \langle \beta, \gamma \rangle \wedge$$

$$\wedge \bigvee \nu, \tau \in \text{dom}(f)(\nu < \tau \iff f(\nu) < f(\tau))$$

$$\wedge \bigvee \mu, \xi \leq \max(u)(\langle \mu, \xi \rangle <^* u \to (\mu, \xi) \in \text{rng}(f)).$$

Thus it suffices to show that the existence quantifier can be restricted to J^A — i.e. that $p \upharpoonright \xi \in J^A$ for $\xi < \alpha$. This follows by induction on α in the usual way (cf. the proof of Lemma 2.3.14). QED (Claim 1)

We now proceed by induction on $\alpha = \text{On}_M$, considering three cases:

Case 1 $p(\alpha) = \langle 0, \alpha \rangle$.

Then $p \upharpoonright \alpha$ maps α onto

$$\{u | u <^* \langle 0, \alpha \rangle \} = \alpha^2$$

and we are done, since $p \upharpoonright \alpha$ is $\Sigma_1(J^A)$. (Note that ω satisfies Case 1.)

Case 2 $\alpha = \beta + \omega$, $\beta \in \text{Lm}$ and Case 1 fails.

There is a $\Sigma_1(J^A)$ bijection of β onto α defined by:

$$f(2n) = \beta + n \text{ for } n < \omega$$

$$f(2n + 1) = n \text{ for } n < \omega$$

$$f(\nu) = \nu \text{ for } \omega \leq \nu < \beta$$
Let g be a $\Sigma_1(J_A^\beta)$ partial map of β onto β^2. Set $((\gamma_0, \gamma_1))_i = \gamma_i$ for $i = 0, 1$.

$$g_i(\nu) \simeq (g(\nu))_i(i = 0, 1).$$

Then $\tilde{f}(\nu) \simeq \langle fg_0(\nu), fg_1(\nu) \rangle$ maps β onto α^2. QED (Case 2)

Case 3 The above cases fail.

Then $p(\alpha) = (\nu, \tau)$, where $\nu, \tau < \alpha$. Let $\gamma \in L\mu$ such that $\max(\nu, \tau) < \gamma < \alpha$. Let g be a partial $\Sigma_1(J_A^\alpha)$ map of γ onto γ^2. Then $g \in M, p^{-1}$ is a partial map of γ^2 onto α; hence $f = p^{-1} \circ g$ is a partial map of γ onto α. Set: $f(\langle \xi, \delta \rangle) \simeq \langle f(\xi), f(\delta) \rangle$ for ξ, δ, γ. Then $\tilde{f}g$ is a partial map of γ onto α^2. QED (Lemma 2.4.6)

We can now prove:

Lemma 2.4.7. There is a partial $\Sigma_1(M)$ map of On_M onto M.

Proof: We again simplify things by taking $M = J_A^\alpha$. Let g be a partial map of α onto α^2 which is $\Sigma_1(J_A^\alpha)$ in the parameters $p \in J_A^\alpha$. Define "ordered pairs" of ordinals $< \alpha$ by:

$$(\nu, \tau) =: g^{-1}(\nu, \tau).$$

We can then, for each $n \geq 1$, define "ordered n–tuples" by:

$$(\nu) =: \nu, (\nu_1, \ldots, \nu_n) = (\nu_1, (\nu_2, \ldots, \nu_n))(n \geq 2).$$

We know by Lemma 2.4.4 that every $y \in J_A^\alpha$ has the form: $y = f(\nu_1, \ldots, \nu_n)$ where $\nu_1, \ldots, \nu_n < \alpha$ and f is $\Sigma_1(J_A^\alpha)$. Define a function f^* by:

$$y = f^*(\tau) \leftrightarrow \bigvee \nu_1, \ldots, \nu_n(\tau = (\nu_1, \ldots, \nu_n) \land y = f(\nu_1, \ldots, \nu_n)).$$

Then f^* is $\Sigma_1(J_A^\alpha)$ in p and $y \in f^{**}\alpha$. If we set: $h^*(i, x) \simeq h(i, \langle x, p \rangle)$, then each binary relation which is $\Sigma_1(J_A^\alpha)$ in p is uniformized by one of the functions $h_i^*(x) \simeq h^*(i, x)$. Hence $y = h^*(i, \gamma)$ for some $\gamma < \alpha$. Hence $J_A^\alpha = h^{**}(\omega \times \alpha)$. But, setting:

$$y = \hat{h}(\mu) \leftrightarrow \bigvee i, \nu(\mu = (i, \nu) \land y = h^*(i, \nu))$$

we see that \hat{h} is $\Sigma_1(J_A^\alpha)$ in p and $y \in \hat{h}^{\prime}\alpha$. Hence $J_A^\alpha = \hat{h}^{\prime}\alpha$, where \hat{h} is $\Sigma_1(J_A^\alpha)$ in p. QED (Lemma 2.4.7)

Corollary 2.4.8. Let $x \in M$. There are $f, \gamma \in J_A^\alpha$ such that f maps γ onto x.

CHAPTER 2. BASIC FINE STRUCTURE THEORY

Proof: We again prove it for $M = J^A_\alpha$. If $\alpha = \omega$ it is trivial since $J^A_\alpha = H_\omega$. If $\alpha \in \text{Lm}^*$ then $x \in J^A_\beta$ for a $\beta < \alpha$ and there is $f \in J^A_\alpha$ mapping β onto J^A_β by Lemma 2.4.7. There remains only the case $\alpha = \beta + \omega$ where β is a limit ordinal. By induction on $n < \omega$ we prove:

Claim There is $f \in J^A_\alpha$ mapping β onto $S^A_{\beta+n}$. If $n = 0$ this follows by Lemma 2.4.7.

Now let $n = m + 1$.

Let $f : \beta \rightarrow S^A_{\beta+m}$ and define f' by $f'(0) = S^A_{\beta+m}, f'(n+1) = f(n)$ for $n < \omega, f'(\xi) = f(\xi)$ for $\xi \geq \omega$. Then f' maps β onto $U = S^A_{\beta+m} \cup \{S^A_{\beta+1}\}$

and $S^A_{\beta+m} = \bigcup_{\delta = \beta}^\infty F^\delta U^2 \cup \bigcup_{i = 0}^3 G^\delta U^3 \cup \{A \cap S^A_{\beta+m}\}$.

Set:

$$g_i = \{(F_i(f'(\xi), f'(\zeta), \langle i, (\xi, \zeta) \rangle) | \xi, \zeta < \beta \}$$

for $i = 0, \ldots, 8$

$$g_{8+i+1} = \{(G_i f'(\xi), f'(\zeta), f'(\mu), \langle 8 + i + 1, (\xi, \zeta, \mu) \rangle | \xi, \zeta, \mu < \beta \}$$

for $i = 0, \ldots, 3$

$$g_{13} = \{(A \cap S^A_{\beta+m}(13, 0)) \}$$

Then $g = \bigcup_{i = 0}^{13} g_i \in J^A_\alpha$ is a partial map of J^A_β onto $S^A_{\beta+n}$ and $gh \in J^A_\alpha$ is a partial map of β onto S^A_β.

QED (Corollary 2.4.8)

Define the cardinal of x in M by:

Definition 2.4.4. $\bar{\mathfrak{c}} = \mathfrak{c}^M =$: the least γ such that some $f \in M$ maps γ onto x.

Note. This is a non standard definition of cardinal numbers. If M is e.g. pr closed, we get that there is $f \in M$ bijecting \mathfrak{c} onto x.

Definition 2.4.5. Let $X \subset M$. $h(X) = h_M(X) =$: The set of all $y \in M$ such that $y = f(x_1, \ldots, x_n)$, where $x_1, \ldots, x_n \in X$ and f is a $\Sigma_1(M)$ function.

Since $\Sigma_1(M)$ functions are closed under composition, it follows easily that $Y = h(X)$ is closed under $\Sigma_1(M)$ functions.

By Corollary 2.4.2 we then have:

Lemma 2.4.9. Let $Y = h(X)$. Then $M[Y] \prec_{\Sigma_1} M$ where

$$M[Y] = (Y, A_1 \cap Y, \ldots, A_n \cap Y, B_1 \cap Y, \ldots, B_m \cap Y).$$

Note. We shall often ignore the distinction between Y and $M[Y]$, writing simply: $Y \prec_{\Sigma_1} M$.

2.4. J–MODELS

If \(f \) is a \(\Sigma_1(M) \) function, there is \(i < \omega \) such that \(h(i, \langle \vec{x} \rangle) \approx f(\vec{x}) \). Hence:

Corollary 2.4.10. \(h(X) = \bigcup_{n<\omega} h''(\omega \times X^n) \).

There are many cases in which \(h(X) = h''(\omega \times X) \), for instance:

Corollary 2.4.11. \(h(\{x\}) = h''(\omega \times \{x\}) \).

Gödels pair function on ordinals is defined by:

Definition 2.4.6. \(\langle \gamma, \delta \rangle := p^{-1}(\langle \gamma, \delta \rangle) \), where \(p \) is the function defined in the proof of Lemma 2.4.6.

We can then define *Gödel n–tuples* by iterating the pair function:

Definition 2.4.7. \(\langle \gamma \rangle := \langle \gamma_1, \ldots, \gamma_n \rangle := \langle \langle \gamma_1, \langle \gamma_2, \ldots, \gamma_n \rangle \rangle \rangle (n \geq 2) \).

Hence any \(X \) which is closed under Gödel pairs is closed under the tuple–function. Imitating the proof of Lemma 2.4.7 we get:

Corollary 2.4.12. If \(Y \subseteq \text{On}_M \) is closed under Gödel pairs, then:

\begin{enumerate}
 \item \(h(Y) = h''(\omega \times Y) \)
 \item \(h(Y \cup \{p\}) = h''(\omega \times (Y \times \{p\})) \) for \(p \in M \).
\end{enumerate}

Proof: We display the proof of (b). Let \(y \in h(Y \cup \{p\}) \). Then \(y = f(\gamma_1, \ldots, \gamma_n, p) \), where \(\gamma_1, \ldots, \gamma_n \in Y \) and \(f \) is \(\Sigma_1(M) \).

Hence \(y = f^*(\langle \delta, p \rangle) \) where \(\delta = \langle \gamma_1, \ldots, \gamma_n \rangle \) and

\[
y = f^*(z) \leftrightarrow \bigvee \gamma_1, \ldots, \gamma_n \vee p(z = \langle \langle \gamma_1, \ldots, \gamma_n \rangle, p \rangle \wedge y = f(\langle \gamma, p \rangle)) \wedge y = f(\langle \gamma, p \rangle).
\]

Hence \(y = h(i, \langle \delta, p \rangle) \) for some \(i \). QED (Corollary 2.4.12)

Similarly we of course get:

Corollary 2.4.13. If \(Y \subseteq M \) is closed under ordered pairs, then:

\begin{enumerate}
 \item \(h(Y) = h''(\omega \times Y) \)
 \item \(h(Y \cup \{p\}) = h''(\omega \times (Y \times \{p\})) \) for \(p \in M \).
\end{enumerate}
By Lemma 2.4.5 we easily get:

Corollary 2.4.14. Let $Y \subset \text{On}_M$. Then $h(Y) = h''(\omega \times \mathbb{P}_\omega(Y))$.

In fact:

Corollary 2.4.15. Let $A \subset \mathbb{P}_\omega(\text{On}_M)$ be directed (i.e. $a, b \in A \rightarrow \bigvee c \in A a, b \subset c$). Let $Y = \bigcup A$. Then $h(Y) = h''(\omega \times A)$.

By the condensation lemma we get:

Lemma 2.4.16. Let $\pi : \bar{M} \rightarrow \Sigma_1 M$ where M is a J–model and \bar{M} is transitive. Then \bar{M} is a J–model.

Proof: \bar{M} is amenable by Σ_1 preservation. But then it is a J–model by the condensation lemma. QED (Lemma 2.4.16)

We can get a theorem in the other direction as well. We first define:

Definition 2.4.8. Let \bar{M}, M be transitive structures. $\sigma : \bar{M} \rightarrow M$ cofinally iff σ is a structural embedding of \bar{M} into M and $M = \bigcup \sigma'' \bar{M}$.

Then:

Lemma 2.4.17. If $\sigma : \bar{M} \rightarrow \Sigma_0 M$ cofinally. Then σ is Σ_1 preserving.

Proof: Let $R(y, \bar{x})$ be $\Sigma_0(M)$ and let $\bar{R}(y, \bar{x})$ be $\Sigma_0(\bar{M})$ by the same definition. We claim:

$$\bigvee y R(y, \sigma(\bar{x})) \rightarrow \bigvee y \bar{R}(y, \bar{x})$$

for $x_1, \ldots, x_n \in \bar{M}$. To see this, let $R(y, \sigma(\bar{x}))$. Then $y \in \sigma(u)$ for a $u \in \bar{M}$. Hence $\bigvee y \in \sigma(u) R(y, \sigma(\bar{x}))$, which is a Σ_0 statement about $\sigma(u), \sigma(\bar{x})$.

Hence $\bigvee y \in u \bar{R}(y, \bar{x})$. QED (Lemma 2.4.17)

Lemma 2.4.18. Let $\sigma : \bar{M} \rightarrow \Sigma_0 M$ cofinally, where \bar{M} is a J–model. Then M is a J–model.

Proof: Let e.g. $\bar{M} = \langle J^\alpha_0 \rangle, M = \langle U, A, B \rangle$.

Claim 1 $U = J^A_\alpha$ where $\alpha = \text{On}_M$.

Proof: $y = S^\alpha_\nu$ is a Σ_0 condition, so $\sigma(S^\alpha_\nu) = S^A_\sigma(\nu)$. But σ takes π cofinally to α, so if $\xi < \alpha, \xi < \sigma(\nu)$, then $S^\alpha_\xi = S^A_\sigma(\nu)(\xi) \in U$.

Hence $J^A_\alpha \subset U$. To see $U \subset J^A_\alpha$, let $x \in U$. Then $x \in \sigma(u)$ where $u \in J^\alpha_\nu$. Hence $u \subset S^\alpha_\nu$ and $x \in \sigma(S^\alpha_\nu) = S^A_\sigma(\nu) \subset J^A_\alpha$. QED (Claim 1)
Claim 2. M is amenable.

Let $x \in S^A_{\sigma(\nu)}$. Then $\sigma(B \cap S^A_{\nu}) = B \cap S^A_{\sigma(\nu)}$ and $x \cap B = (B \cap S^A_{\nu}) \cap x \in U$, since S^A_{ν} is transitive. QED (Lemma 2.4.18)

Lemma 2.4.19. Let \overline{M}, M be J–models. Then $\sigma : \overline{M} \rightarrow \Sigma_\alpha M$ cofinally iff $\sigma : \overline{M} \rightarrow \Sigma_\alpha M$ and σ takes $\text{On}_{\overline{M}}$ to On_M cofinally.

Proof: (\Rightarrow) is obvious. We prove (\Leftarrow). The proof of $\sigma(S^A_{\nu}) = S^A_{\sigma(\nu)}$ goes through as before. Thus if $x \in M$, we have $x \in S^A_{\xi}$ for some ξ. Let $\xi \leq \sigma(\nu)$. Then $x \in S^A_{\sigma(\nu)} = \sigma(S^A_{\nu})$. QED (Lemma 2.4.19)

2.5 The Σ_1 Projectum

2.5.1 Acceptability

We begin by defining a class of J–models which we call acceptable. Every J_α is acceptable, and we shall see later that there are many other naturally occurring acceptable structures. Acceptability says essentially that if something dramatic happens to β at some later stage ν of the construction, then ν is, in fact, collapsed to β at that stage:

Definition 2.5.1. J^A_α is acceptable iff for all $\beta \leq \nu < \alpha$ in L_m we have:

(a) If $a \subset \beta$ and $a \in J^A_{\nu+\omega} \setminus J^A_\nu$, then $\overline{a} \leq \beta$ in $J^A_{\nu+\omega}$.

(b) If $x \in J^A_\beta$ and ψ is a Σ_1 condition such that $J^A_{\nu+\omega} \models \psi[\beta, x]$ but $J^A_{\nu} \not\models \psi[\beta, x]$, then $\overline{a} \leq \beta$ in $J^A_{\nu+\omega}$.

A J–model $\langle J^A_\alpha, B \rangle$ is acceptable iff J^A_α is acceptable.

Note. 'Acceptability' referred originally only to property (a). Property (b) was discovered later and was called 'Σ_1 acceptability'.

In the following we shall always suppose M to be acceptable unless otherwise stated. We recall that by Corollary 2.4.8 every $x \in M$ has a cardinal $\overline{\alpha} = \overline{\alpha}_M$. We call γ a cardinal in M iff $\gamma = \overline{\gamma}$ (i.e. no smaller ordinal is mappable onto γ in M).

Lemma 2.5.1. Let $M = \langle J^A_\alpha, B \rangle$ be acceptable. Let $\gamma > \omega$ be a cardinal in M. Then:
(a) $\gamma \in \text{Lm}^\beta$

(b) $J^A_\gamma \prec \text{S}_1 J^A_\alpha$

(c) $x \in J^A_\gamma \rightarrow M \cap \mathbb{P}(x) \subset J^A_\gamma$.

Proof: We first prove (a). Suppose not. Then $\gamma = \beta + \omega$, where $\beta \in \text{Lm}$, $\beta \geq \omega$. Then $f \in M$ maps β onto γ where: $f(2i) = i, f(2i + 1) = \beta + i, f(\xi) = \xi$ for $\xi \geq \omega$.

Contradiction! QED (a)

If (b) were false, there would be ν such that $\gamma \leq \nu < \alpha$, and for some $x \in J^A_\gamma$ and some Σ_1 formula ψ we have:

$$J^A_{\nu+\omega} \models \psi[x], J^A_{\nu} \models \neg \psi[x].$$

But then $x \in J^A_\beta$ for some $\beta < \gamma$ in Lm. Hence $\overline{\gamma} \leq \overline{\beta} \leq \beta$.

Contradiction! QED (b)

To prove (c) suppose not. Then x is not finite. Let $\beta = \overline{\nu}$ in J^A_γ. Then $\beta \geq \omega, \beta \in \text{Lm}$ by (a). Let $f \in J^A_\gamma$ map β onto x. Let $u \subset x$ such that $u \notin J^A_\gamma$. Then $v = f^{-1}u \notin J^A_\gamma$. Let $\nu \geq \gamma$ such that $v \in J^A_{\nu+\omega} \setminus J^A_\nu$. Then $\gamma \leq \overline{\nu} \leq \beta$.

Contradiction! QED (Lemma 2.5.1)

Remark We have stated and proven this lemma for M of type $(1,1)$, since the extension to M of arbitrary type is self evident.

The most general form of GCH says that if $\mathbb{P}(x)$ exists and $\overline{\nu} \geq \omega$, then $\overline{\mathbb{P}(x)} = \overline{\mathbb{P}}^+$ (where α^+ is the least cardinal $> \alpha$).

As a corollary of Lemma 2.5.1 we have:

Corollary 2.5.2. Let M, γ be as above. Let $a \in M, a \subset J^A_\gamma$. Then:

(a) (J^A_γ, a) models the axiom of subsets and GCH.

(b) If γ is a successor cardinal in M, then (J^A_γ, a) models ZFC^-.

(c) If γ is a limit cardinal in M, then (J^A_γ, a) models Zermelo set theory.

Proof: (a) follows easily from Lemma 2.5.1 (c). (c) follows from (a) and rud closure of J^A_γ. We prove (b). We know that J^A_γ is rud closed and that the axiom of choice holds in the strong form: $\bigwedge x \bigvee \nu \bigvee f f$ maps ν onto x. We must prove the axiom of collection. Let $R(x, y)$ be $\Sigma_\omega(J^A_\gamma)$ and let $u \in J^A_\gamma$ such that $\bigwedge x \in u \bigvee y R(x, y)$.

Claim \(\forall \nu < \gamma \wedge x \in u \forall y \in J^A_\nu R(x, y) \). Suppose not.

Let \(\gamma = \beta^+ \) in \(M \). For each \(\nu < \gamma \) there is a partial map \(f \in M \) of \(\beta \) onto \(\nu \). But then \(f \in J^A_\gamma \) since \(f \subseteq \nu \times \beta \in J^A_\gamma \). Set \(f_\nu \) — the least such \(f \).

For \(x \in u \) set:

\[
h(x) = \text{the least } \mu \text{ such that } \forall y \in J^A_\mu R(y, x).
\]

Then \(\text{sup } h''u = \gamma \) by our assumption. Define a partial map \(k \) on \(u \) by:

\[
k(x) = \text{the least } \nu \text{ such that } \forall y \in J^A_\nu R(y, x).
\]

Then \(k \) is onto \(\gamma \). But then \(k \) is defined by recursion on \(r \): \(f(x) = f''r'' \{x\} \) for \(x \in \nu \). Hence \(u = \text{rng}(f) \in J^A_\gamma \).

Contradiction! QED (Corollary 2.5.2)

Corollary 2.5.3. Let \(M, \gamma \) be as above. Then

\[
J^A_\gamma = H^M_\gamma =: \bigcup \{u \in M | u \text{ is transitive } \wedge \overline{\nu} < \gamma \text{ in } M\}.
\]

Proof: Let \(u \in M \) be transitive and \(\overline{\nu} < \gamma \) in \(M \). It suffices to show that \(u \in J^A_\gamma \). Let \(\nu = \overline{\nu} < \gamma \) in \(M \). Let \(f \in M \) map \(\nu \) onto \(u \). Set:

\[
r = \{ \langle \xi, \delta \rangle \in \nu^2 | f(\xi) = f(\delta) \}.
\]

Then \(r \in J^A_\gamma \) by Lemma 2.5.1 (c), since \(\nu^2 \in J^A_\gamma \). Let \(\beta = \overline{\nu}^+ = \text{the least cardinal } > \nu \text{ in } M \). Then \(J^A_\beta \) models \(\text{ZFC}^- \) and \(r, \nu \in J^A_\beta \). But then \(f \in J^A_{\beta} \subseteq J^A_\gamma \), since \(f \) is defined by recursion on \(r \): \(f(x) = f''r'' \{x\} \) for \(x \in \nu \). Hence \(u = \text{rng}(f) \in J^A_\gamma \).

Contradiction! QED (Corollary 2.5.3)

Lemma 2.5.4. If \(\pi : \overline{M} \to \Sigma_1 \) \(M \text{ and } M \text{ is acceptable, then so is } \overline{M} \).

Proof: \(\overline{M} \) is a \(J \)-model by §4. Let e.g. \(M = J^A_\alpha \), \(\overline{M} = J^A_{\overline{\alpha}} \). Then \(\overline{M} \) has a counterexample — i.e. there are \(\overline{\nu} < \overline{\pi}, \overline{\beta} < \overline{\pi}, \overline{\pi} \) such that \(\text{card}(\overline{\nu}) > \overline{\beta} \) in \(J_{\overline{\nu}+\omega} \) and either \(\overline{\pi} \in \overline{J}_{\overline{\nu}+\omega} \setminus J^A_{\overline{\nu}} \) or else \(\overline{\pi} \in J^A_{\overline{\nu}+\omega} \models \psi[\overline{\pi}, \overline{\beta}] \) and \(J^A_{\overline{\nu}+\omega} \models \neg \psi[\overline{\pi}, \overline{\beta}] \), where \(\psi \) is \(\Sigma_1 \). But then letting \(\pi(\overline{\beta}, \overline{\nu}, \overline{\pi}) = \beta, \nu, a \) it follows easily that \(\beta, \nu, a \) is a counterexample in \(M \).

Contradiction! QED (Lemma 2.5.4)

Lemma 2.5.5. If \(\pi : \overline{M} \to \Sigma_0 \) \(M \text{ cofinally and } \overline{M} \text{ is acceptable, then so is } \overline{M} \).

Proof: \(M \) is a \(J \)-model by §4. Let \(M = J^A_\alpha \), \(\overline{M} = J^A_{\overline{\alpha}} \).

Case 1 \(\overline{\pi} = \omega \).

Then \(\overline{M} = M = J^A_\omega, \pi = \text{id} \).
CHAPTER 2. BASIC FINE STRUCTURE THEORY

Case 2 $\pi \in Lm^*$.

Then "M is acceptable" is a $\Pi_1(M)$ condition. But then $\alpha \in Lm^*$ and M must satisfy the same Π_1 condition.

Case 3 $\pi = \beta + \omega, \beta \in Lm$.

Then $\alpha = \beta + \omega, \beta \in Lm$ and $\beta = \pi(\beta)$. Then $J^A_\beta = \pi(J^A_{\beta})$ is acceptable, so there can be no counterexample $\langle \delta, \nu, a \rangle \in J^A_{\beta}$.

We show that there can be no counterexample of the form $\langle \delta, \beta, a \rangle$. Let $\overline{\gamma} = \text{card}(\beta)$ in \overline{M}. The statement $\text{card}(\beta) \leq \gamma$ is $\Sigma_1(M)$. Hence $\text{card}(\beta) \leq \gamma = \pi(\overline{\gamma})$ in M. Hence there is no counterexample $\langle \delta, \beta, a \rangle$ with $\delta \geq \gamma$. But since M is acceptable and $\overline{\gamma} \leq \beta$ is a cardinal in \overline{M}, the following Π_1 statements hold in \overline{M} by Lemma 2.5.1

$$\exists \delta < \pi \exists \mu \nu \in J^A_{\beta} \left(\mu \nu(x, \delta) \rightarrow \forall y \in J^A_{\beta} \right)$$

where R is $\Sigma_0(\overline{M})$.

But then the corresponding statements hold in M. Hence $\langle \delta, \beta, a \rangle$ cannot be a counterexample for $\delta < \gamma$. QED (Lemma 2.5.5)

2.5.2 The projectum

We now come to a central concept of fine structure theory.

Definition 2.5.2. Let M be acceptable. The Σ_1–projectum of M (in symbols ρ_M) is the least $\rho \leq \text{On}_M$, such that there is a $\Sigma_1(M)$ set $a \subset \rho$ with $a \notin M$.

Lemma 2.5.6. Let $M = \langle J^A_\alpha, B \rangle$, $\rho = \rho_M$. Then

(a) If $\rho \in M$, then ρ is cardinal in M.

(b) If D is $\Sigma_1(M)$ and $D \subset J^A_\rho$, then $\langle J^A_\rho, D \rangle$ is amenable.

(c) If $u \in J^A_\rho$, there is no $\Sigma_1(M)$ partial map of u onto J^A_ρ.

(d) $\rho \in \text{Lim}^*$

Proof:

(a) Suppose not. Then there are $f \in M$, $\gamma < \rho$ such that f maps γ onto ρ. Let $a \subset \rho$ be $\Sigma_1(M)$ such that $a \notin M$. Set $\tilde{a} = f^{-1}(a)$. Then \tilde{a} is $\Sigma_1(M)$
2.5. THE Σ_1 PROJECTUM

and $\tilde{a} \subset \gamma$. Hence $\tilde{a} \in M$. But then $a = f''\tilde{a} \in M$ by rud closure.

Contradiction! QED (a)

(b) Suppose not. Let $u \in J^A_\rho$ such that $D \cap u \notin J^A_\rho$. We first note:

Claim $D \cap u \notin M$.

If $\rho = \alpha$ this is trivial, so let $\rho < \alpha$. Then ρ is a cardinal by (a) and by Lemma 2.5.1 we know that $\mathbb{P}(u) \cap M \subset J^A_\rho$. QED (Claim)

By Corollary 2.5.2 there is $f \in J^A_\rho$ mapping a $\nu < \rho$ onto u. Then $d = f^{\nu}(D \cap u)$ is $\Sigma_1(M)$ and $d \subset \nu < \rho$. Hence $d \in M$. Hence $D \cap u = f''d \in M$ by rud closure. QED (b)

(c) Suppose not. Let f be a counterexample. Set $a = \{x \in u | x \in \text{dom}(f) \land x \notin f(x)\}$. Then a is $\Sigma_1(M)$, $a \subset u \in M$. Hence $a \in J^A_\rho$ by (b). Let $a = f(x)$. Then $x \in f(x) \iff x \notin f(x)$.

Contradiction! QED (c)

(d) If not, then $\rho = \beta + \omega$ where $\beta \in \text{Lim}$. But then there is a $\Sigma_1(M)$ partial map of β onto ρ, violating (c). QED (Lemma 2.5.6)

Remark We have again stated and proven the theorem for the special case $M = \langle J^A_\alpha, B \rangle$, since the general case is then obvious. We shall continue this practice for the rest of the book. A good parameter is a $p \in M$ which witnesses that $\rho = \rho_M$ is the projectum — i.e. there is $B \subset M$ which is $\Sigma_1(M)$ in p with $B \cap H^M_\rho \notin M$. But by §3 any $p \in M$ has the form $p = f(a)$ where f is a $\Sigma_1(M)$ function and a is a finite set of ordinals. Hence a is good if p is. For technical reasons we shall restrict ourselves to good parameters which are finite sets of ordinals:

Definition 2.5.3. $P = P_M =$: The set of $p \in [\text{On}_M]^{\omega}$ which are good parameters.

Lemma 2.5.7. If $p \in P$, then $p \setminus \rho_M \in P$.

Proof: It suffices to show that if $\nu = \min(p)$ and $\nu < \rho$, then $p' = p \setminus (\nu + 1) \in P$. Let B be $\Sigma_1(M)$ in p such that $B \cap H^M_\rho \notin M$. Let $B(x) \leftrightarrow B'(x, p)$ where B' is $\Sigma_1(M)$.

Set:

$$B^*(x) \leftrightarrow \bigvee z \bigvee \nu(x = \langle z, \nu \rangle \land B'(z, p' \cup \{\nu\})).$$

Then $B^* \cap H^M_\rho \notin M$, since otherwise

$$B \cap H^M_\rho = \{x | (x, \nu) \in B^* \cap H^M_\rho \} \in M.$$
Contradiction! \[\] QED (Lemma 2.5.7)

For any \(p \in [\operatorname{On}_M]<\omega \) we define the standard code \(T^p \) determined by \(p \) as:

Definition 2.5.4.

\[
T^p = T^p_M =: \{ \langle i, x \rangle \mid \models_{M} \varphi_i[x, p] \} \cap H^M_{p_M}
\]

where \(\langle \varphi_i \mid i < \omega \rangle \) is a fixed recursive enumeration of the \(\Sigma_1 \)-formulae.

Lemma 2.5.8. \(p \in P \iff T^p \notin M. \)

Proof:

\((\implies) \) \(T^p = T \cap H^M_p \) for a \(T \) which is \(\Sigma_1(M) \) in \(p. \)

\((\impliedby) \) Let \(B \) be \(\Sigma_1(M) \) in \(p \) such that \(B \cap H^M_p \notin M. \) Then for some \(i: \)

\[
B(x) \iff \langle i, x \rangle \in T^p
\]

for \(x \in H^M_p. \) Hence \(T^p \notin M. \) QED (Lemma 2.5.8)

A parameter \(p \) is very good if every element of \(M \) is \(\Sigma_1 \) definable from parameters in \(\rho_M \cup \{ p \}. \) \(R \) is the set of very good parameters lying in \([\operatorname{On}_M]<\omega. \)

Definition 2.5.5. \(R = R_M =: \) the set of \(r \in [\operatorname{On}_M]<\omega \) such that \(M = h_M(\rho_M \cup \{ r \}). \)

Note. This is the same as saying \(M = h_M(\rho_M \cup r), \) since

\[
h(\rho \cup r) = h''(\omega \times [\rho \cup r]<\omega).
\]

But \(\rho \cup r = \rho \cup (r \setminus \rho). \) Hence:

Lemma 2.5.9. If \(r \in R, \) then \(r \setminus \rho \in R. \) We also note:

Lemma 2.5.10. \(R \subseteq P. \)

Proof: Let \(r \in R. \) We must find \(B \subseteq M \) such that \(B \) is \(\Sigma_1(M) \) in \(r \) and \(B \cap H^M_p \notin M. \) Set:

\[
B = \{ \langle i, x \rangle \mid \exists y \text{ such that } y(i, \langle x, r \rangle) \land \langle i, x \rangle \notin y \}.
\]

If \(b = B \cap H^M_p \in M, \) then \(b = h(i, \langle x, r \rangle) \) for some \(i. \) Then \(\langle i, x \rangle \in b \iff \langle i, x \rangle \notin b. \)

Contradiction! QED (Lemma 2.5.10)

However, \(R \) can be empty.
Lemma 2.5.11. There is a function h^r uniformly $\Sigma_1(M)$ in r such that whenever $r \in R_M$, then $M = h^r \rho_M$.

Proof: Let $x \in M$. Since $x \in h(\rho \cup \{r\})$ there is an f which is $\Sigma_1(M)$ in r such that $x = f(\xi_1, \ldots, \xi_n)$. But ρ is closed under Gödel pairs, so $x = f'(<\xi_1, \ldots, \xi_n>)$, where

$$x = f'(\xi) \leftrightarrow \bigvee \xi_1, \ldots, \xi_n(\xi = <\bar{\xi}> \land x = f(\bar{\xi})).$$

f' is $\Sigma_1(M)$ in r. Hence $x = h(i, \langle \bar{\xi}, r \rangle)$ for some $i < \omega$. Set

$$x = h^r(\delta) \leftrightarrow \bigvee \xi \bigvee i < \omega(\delta = \langle i, \xi \rangle \land x = h(i, \langle \xi, r \rangle)).$$

Then $x = h^r(i, \bar{\xi}))$. QED (Lemma 2.5.11)

Lemma 2.5.11 explains why we called T^p a code: If $r \in R$, then T^r gives complete information about M. Thus the relation $\epsilon' = \{\langle x, \tau \rangle | h^r(\nu) \in h^r(\tau)\}$ is rud in T^r, since $\nu \in' \tau \leftrightarrow \langle i, \nu, \tau \rangle \in T^r$ for some $i < \omega$. Similarly, if $M = \langle J^A_\alpha, \bar{B} \rangle$, then $A_i' = \{\nu|h^r(\nu) \in A_i\}$ and $B_j' = \{\nu|h^r(\nu) \in B_i\}$ are rud in T^r (as is, indeed, R' whenever R is a relation which is $\Sigma_1(M)$ in p). Note, too, that if $B \subset H^M_\rho$ is $\Sigma_1(M)$, then B is rud in T^r. However, if $p \in P^1 \setminus R^1$, then T^p does not completely code M.

Definition 2.5.6. Let $p \in [\text{On}_M]^{<\omega}$. Let $M = \langle J^A_\alpha, \bar{B} \rangle$.

The reduct of M by p is defined to be

$$M^p =: \langle J^A_{\rho_M}, T^p_M \rangle.$$

Thus M^p is an acceptable model which — if $p \in R_M$ — incorporates complete information about M.

The downward extension of embeddings lemma says:

Lemma 2.5.12. Let $\pi : N \rightarrow_{\Sigma_0} M^p$ where N is a J–model and $p \in [\text{On}_M]^{<\omega}$.

(a) There are unique \bar{M}, \bar{p} such that \bar{M} is acceptable, $\bar{p} \in R_{\bar{N}}, N = \bar{M}^\bar{p}$.

(b) There is a unique $\bar{\pi} \supset \pi$ such that $\bar{\pi} : \bar{M} \rightarrow_{\Sigma_0} M$ and $\pi(\bar{p}) = p$.

(c) $\bar{\pi} : \bar{M} \rightarrow_{\Sigma_1} M$.

CHAPTER 2. BASIC FINE STRUCTURE THEORY

Proof: We first prove the existence claim. We then prove the uniqueness claimed in (a) and (b).

Let e.g. $M = \langle J^{A}, B \rangle$, $M^p = \langle J^{A}, T \rangle$, $N = \langle J^{A}, \bar{T} \rangle$. Set: $\bar{\rho} = \sup \pi'' \bar{\rho}$, $\bar{M} = M^p[\bar{\rho}] = \langle J^{A}, \bar{T} \rangle$ where $\bar{T} = T \cap J^{A}$. Set $X = \text{rng}(\pi)$, $Y = h_M(X \cup \{p\})$.

Then $\bar{\pi} : N \rightarrow \Sigma_0 \bar{M}$ cofinally by §4.

(1) $Y \cap \bar{M} = X$

Proof: Let $y \in Y \cap \bar{M}$. Since X is closed under ordered pairs, we have $y = f(x, p)$ where $x \in X$ and f is $\Sigma_1(M)$. Then

$$y = f(x, p) \leftrightarrow \models_M \varphi_i([y, x], p)$$

$$\leftrightarrow \langle i, \langle y, x \rangle \rangle \in \bar{T}.$$

Since $X \prec \Sigma_1 \bar{M}$, there is $y \in X$ such that $\langle i, \langle y, x \rangle \rangle \in \bar{T}$. Hence

$y = f(x, \rho) \in X$. QED (1)

Now let $\bar{\pi} : \bar{M} \rightarrow Y$, where \bar{M} is transitive. Clearly $p \in Y$, so let $\bar{\pi}(\bar{p}) = p$. Then:

(2) $\bar{\pi} : \bar{M} \rightarrow \Sigma_1 M$, $\bar{\pi} \setminus N = \pi$, $\bar{\pi}(\bar{p}) = p$.

But then:

(3) $\bar{M} = h_{\bar{M}}(N \cup \{p\})$.

Proof: Let $y \in \bar{M}$. Then $\bar{\pi}(y) \in Y = h_M''(\omega x(Xx\{p\}))$, since X is closed under ordered pairs. Hence $\bar{\pi}(y) = h_M(i, \langle \pi(x), p \rangle)$ for an $x \in X$. Hence $y = h_{\bar{M}}(i, \langle x, \bar{p} \rangle)$. QED (3)

(4) $\bar{\rho} = \rho_{\bar{M}}$

Proof: It suffices to find a $\Sigma_1(\bar{M})$ set b such that $b \subset N$ and $b \notin \bar{M}$. Set

$$b = \{ \langle i, x \rangle \in \omega \times N \mid \exists y \ (y = h_{\bar{M}}(i, \langle x, \bar{p} \rangle))$$

$$\wedge \langle i, x \rangle \notin y \}$$

If $b \in \bar{M}$, then $b = h_{\bar{M}}(i, \langle x, \bar{p} \rangle)$ for some $x \in N$. Hence

$$\langle i, x \rangle \in b \leftrightarrow \langle i, x \rangle \notin b.$$

Contradiction! QED (4)

(5) $\bar{T} = \{ \langle i, x \rangle \in \omega \times N \mid \models_{\bar{M}} \varphi_i[\langle i, \langle x, p \rangle \rangle] \}$

Proof: $\bar{T} \subset \omega \times N$, since $\bar{T} \subset \omega \times \bar{M}$. But for $\langle i, x \rangle \in \omega \times N$ we have:

$$\langle i, x \rangle \in \bar{T} \leftrightarrow \langle i, \pi(x) \rangle \in \bar{T}$$

$$\leftrightarrow \bar{M} \models \varphi_i[[x], p]]$$

$$\leftrightarrow \bar{M} \models \varphi_i[[x, p]] \text{ by (2)}$$

QED (5)
2.5. THE Σ_1 PROJECTUM

(6) $\overline{p} = \rho_{\overline{M}}$.

Proof: By (4) we need only prove $p \leq \rho_{\overline{M}}$. It suffices to show that if $b \subset N$ is $\Sigma_1(M)$, then $\langle J_{\overline{p}}^M, b \rangle$ is amenable. By (3) b is $\Sigma_1(M)$ in x, \overline{p} where $x \in N$.

Hence

$$b = \{z | \overline{M} \models \varphi([z, x], p)\} =$$

$$= \{z | \langle \langle i, z, x \rangle \rangle \in \overline{T} \}$$

Hence b is rud in \overline{T} where $N = \langle J_{\overline{p}}^M, \overline{T} \rangle$ is amenable. QED (6)

But then $\overline{M} = h_{\overline{M}}(\overline{p} \cup \{\overline{p}\})$ by (3) and the fact that $h_{\overline{p}}(\overline{p}) = J_{\overline{p}}$.

Hence

(7) $\overline{p} \in R_{\overline{M}}$.

By (6) we then conclude:

(8) $N = \overline{M}^p$.

This proves the existence assertions. We now prove the uniqueness assertion of (a). Let $\widetilde{M}^p = N$ where $\tilde{p} \in R_M$.

We claim: $\overline{M} = \overline{M}$, $\tilde{p} = p$.

Since the Skolem function is uniformly Σ_1 there is a $j < \omega$ such that

$$h_{\widetilde{M}}(i, \langle x, \tilde{p} \rangle) \in h_{\widetilde{M}}(i, \langle y, \tilde{p} \rangle) \leftrightarrow$$

$$\leftrightarrow \overline{M} \models \varphi_j([x, y], p) \leftrightarrow \langle j, \langle x, y \rangle \rangle \in \overline{T}$$

$$\leftrightarrow h_{\overline{M}}(i, \langle x, \overline{p} \rangle) \in h_{\overline{M}}(i, \langle y, \overline{p} \rangle)$$

Similarly:

$$h_{\widetilde{M}}(i, \langle x, \tilde{p} \rangle) \in \tilde{A} \leftrightarrow h_{\overline{M}}(i, \langle x, \overline{p} \rangle) \in \overline{A}$$

$$h_{\widetilde{M}}(i, \langle x, \tilde{p} \rangle) \in \tilde{B} \leftrightarrow h_{\overline{M}}(i, \langle x, \overline{p} \rangle) \in \overline{B}$$

where $\tilde{M} = \langle J_{\tilde{A}}^\tilde{M}, \tilde{B} \rangle$, $\overline{M} = \langle J_{\overline{A}}^{\overline{M}}, \overline{B} \rangle$. Then there is an isomorphism $\sigma : \tilde{M} \cong \overline{M}$ defined by $\sigma(h_{\widetilde{M}}(i, \langle x, \tilde{p} \rangle)) \simeq h_{\overline{M}}(i, \langle x, \overline{p} \rangle)$ for $x \in N$. Clearly $\sigma(\tilde{p}) = \overline{p}$. Hence $\sigma = \text{id}, M, \overline{M}, \tilde{p} = \overline{p}$, since \overline{M}, M are transitive.

We now prove (b). Let $\tilde{\pi} \supset \pi$ such that $\tilde{\pi} : \overline{M} \to \Sigma_0$ and $\tilde{\pi}(\overline{p}) = p$.

If $x \in N$ and $h_{\overline{M}}(i, \langle x, \overline{p} \rangle)$ is defined, it follows that:

$$\tilde{\pi}(h_{\overline{M}}(i, \langle x, \overline{p} \rangle)) = h_M(i, \langle \pi(x), p \rangle) = \tilde{\pi}(h_M(i, \langle x, \overline{p} \rangle)).$$

Hence $\tilde{\pi} = \pi$. QED (Lemma 2.5.12)

If we make the further assumption that $p \in R_M$ we get a stronger result:

Lemma 2.5.13. Let $M, N, \overline{M}, \pi, p, \overline{p}$ be as above where $p \in R_M$ and $\pi : N \to \Sigma_1 M^p$ for an $l < \omega$. Then $\tilde{\pi} : \overline{M} \to \Sigma_{l+1} M$.

CHAPTER 2. BASIC FINE STRUCTURE THEORY

Proof: For \(l = 0 \) it is proven, so let \(l \geq 1 \) and let it hold at \(l \). Let \(R \) be \(\Sigma_{l+1}(M) \) if \(l \) is even and \(\Pi_{l+1}(M) \) if \(l \) is odd. Let \(\overline{R} \) have the same definition over \(\overline{M} \). It suffices to show:

\[
\overline{R}(\overline{x}) \leftrightarrow R(\overline{\pi}(\overline{x})) \text{ for } x_1, \ldots, x_n \in \overline{M}.
\]

But:

\[
R(\overline{x}) \leftrightarrow Q_1 y_1 \in M \ldots Q_l y_l \in MR'(\overline{y}, \overline{x})
\]

and

\[
\overline{R}(\overline{x}) \leftrightarrow Q_1 y_1 \in \overline{M} \ldots Q_l y_l \in \overline{MR}'(\overline{y}, \overline{x})
\]

where \(Q_1 \ldots Q_l \) is a string of alternating quantifiers, \(R' \) is \(\Sigma_1(M) \), and \(\overline{R} \) is \(\Sigma_1(\overline{M}) \) by the same definition. Set

\[
D =: \{ \langle i, x \rangle \in \omega \times J_{p}\overline{M}h_M(i, \langle x, p \rangle) \text{ is defined} \}
\]

\[
\overline{D} =: \{ \langle i, x \rangle \in \omega \times J_{p}\overline{M}h_M(i, \langle x, p \rangle) \text{ is defined} \}.
\]

Then \(D \) is \(\Sigma_1(M) \) in \(p \) and \(\overline{D} \) is \(\Sigma_1(\overline{M}) \) in \(\overline{p} \) by the same definition. Then \(D \) is rud in \(T^p_M \) and \(\overline{D} \) is rud in \(T^\overline{p}_\overline{M} \) by the same definition, since for some \(j < \omega \) we have:

\[
\langle i, x \rangle \in D \leftrightarrow \langle j, x \rangle \in T^p_M, \ x \in \overline{D} \leftrightarrow \langle j, x \rangle \in T^\overline{p}_\overline{M}.
\]

Define \(k \) on \(D \)

\[
k(\langle i, x \rangle) = h_M(i, \langle x, p \rangle); \overline{k}(\langle i, x \rangle) = h_M(i, \langle x, \overline{p} \rangle).
\]

Set:

\[
P(\overline{w}, \overline{z}) \leftrightarrow (\overline{w}, \overline{z}) \in D \land R'(k(\overline{w}), k(\overline{z}))
\]

\[
\overline{P}(\overline{w}, \overline{z}) \leftrightarrow (\overline{w}, \overline{z}) \in \overline{D} \land \overline{R}(\overline{k}(\overline{w}), \overline{k}(\overline{z}))
\]

Then: as before, \(P \) is rud in \(T^p_M \) and \(\overline{P} \) is rud in \(T^\overline{p}_\overline{M} \) by the same definition. Now let \(x_i = k(z_i) \) for \(i = 1, \ldots, n \). Then \(\overline{\pi}(x_i) = k(\pi(z_i)) \). But since \(\pi \) is \(\Sigma_1 \)-preserving, we have:

\[
\overline{R}(\overline{x}) \leftrightarrow Q_1 w_1 \in \overline{D} \ldots Q_l w_l \in \overline{D} \overline{P}(\overline{w}, \overline{z})
\]

\[
\leftrightarrow Q_1 w_1 \in D \ldots Q_l w_l \in DP(\overline{w}, \pi(\overline{z}))
\]

\[
\leftrightarrow R(\overline{\pi}(\overline{x}))
\]

QED (Lemma 2.5.13)
2.5.3 Soundness and iterated projecta

The reduct of an acceptable structure is itself acceptable, so we can take its reduct etc., yielding a sequence of reducts and nonincreasing projecta $(\rho^n_M | n < \omega)$. This is the classical method of doing fine structure theory, which was used to analyse the constructible hierarchy, yielding such results as the □ principles and the covering lemma. In this section we expound the basic elements of this classical theory. As we shall see, however, it only works well when our acceptable structures have a property called soundness. In this book we shall often have to deal with unsound structures, and will, therefore, take recourse to a further elaboration of fine structure theory, which is developed in §2.6.

It is easily seen that:

Lemma 2.5.14. Let $p \in R_M$. Let B be $\Sigma_1(M)$. Then $B \cap J^A_p$ is rud in parameters over M^p.

Proof: Let B be Σ_1 in r, where $r = h_M(i,(v,p))$ and $\nu < p$. Then B is Σ_1 in ν,p. Let:

$$B(x) \leftrightarrow M \models \varphi_i[(x,\nu),p]$$

where $(\varphi_i)i < \omega$ is our canonical enumeration of Σ_1 formulae. Then:

$$x \in B \leftrightarrow (i,(x,\nu)) \in T^p$$

QED(Lemma 2.5.14)

It follows easily that:

Corollary 2.5.15. Let $p,q \in R_M$. Let $D \subset J^A_p$. Then D is $\Sigma_1(M^p)$ iff it is $\Sigma_1(M^q)$.

Assuming that $R_M \neq \emptyset$, there is then a uniquely defined *second projectum* defined by:

Definition 2.5.7. $\rho_M^2 \simeq \rho_{M^p}$ for $p \in R_M$.

We can then define:

$$R^2_M =: \{a \in [\text{On}_M]^{<\omega} \text{ such that } a \in R_M \text{ and } a \cap \rho \in R_{M^p(a,\rho)}\}.$$

If $R^2_M \neq \emptyset$ we can define the *second reduct*:

$$M^{2,a} =: (M^a)^{a \cap \rho} \text{ for } a \in R^2_M.$$
CHAPTER 2. BASIC FINE STRUCTURE THEORY

But then we can define the third projectum:

\[\rho^3 = \rho_{M^2,a} \text{ for } a \in R^2_M. \]

Carrying this on, we get \(R^n_M \), \(M^{n,a} \) for \(a \in R^n_M \) and \(\rho^{n+1}_M \), as long as \(R^n_M \neq \emptyset \).

We shall call \(M \) weakly \(n \)-sound if \(R^n_M \neq \emptyset \).

The formal definitions are as follows:

Definition 2.5.8. Let \(M = \langle J^A, B \rangle \) be acceptable.

By induction on \(n \) we define:

- The set \(R^n_M \) of very good \(n \)-parameters.
- If \(R^n_M \neq \emptyset \), we define the \(n+1 \)st projectum \(\rho^{n+1}_M \).
- For all \(a \in R^n_M \) the \(n \)-th reduct \(M^{n,a} \).

We inductively verify:

* If \(D \subseteq J^A_{\rho^n} \text{ and } a, b \in R^n \), then \(D \) is \(\Sigma_1(M^{n,a}) \) iff it is \(\Sigma_1(M^{n,b}) \).

Case 1 \(n = 0 \). Then \(R^0 =: [\text{On}_M]^{<\omega}, \rho^0 = \text{On}_M, M^{0,a} = M \).

Case 2 \(n = m + 1 \). If \(R^m = \emptyset \), then \(R^n = \emptyset \) and \(\rho^n \) is undefined. Now let \(R^m \neq \emptyset \). Since (*) holds at \(m \), we can define

- \(\rho^n =: \rho_{M^m,a} \) whenever \(a \in R^m \).
- \(R^n =: \text{the set of } a \in [\alpha]^{<\omega} \text{ such that } a \in R^m \text{ and } a \cap \rho^m \in R_{M^m,a} \).
- \(M^{n,a} =: (M^{m,a})^{a \cap \rho^m} \text{ for } a \in R^n \).

Note. It follows inductively that \(a \setminus \rho^n \in R^n \text{ whenever } a \in R^n \).

We now verify (*). It suffices to prove the direction \((\rightarrow)\). We first note that \(M^{n,a} \) has the form \(\langle J^A_{\rho^m}, T \rangle \), where \(T \) is the restriction of a \(\Sigma_1(M^{m,a}) \) set \(T' \) to \(J^A_{\rho^m} \). But then \(T' \) is \(\Sigma_1(M^{m,b}) \) by the induction hypothesis. Hence \(T \) is rudimentary in parameters over \(M^{n,b} = (M^{m,b})^{\rho^m} \) by Lemma 2.5.14.

Hence, if \(D \subseteq J^A_{\rho^m} \) is \(\Sigma_1(M^{n,a}) \), it is also \(\Sigma_1(M^{n,b}) \).

QED

This concludes the definition and the verification of (*). Note that \(R^1_M = R_M, \rho^1 = \rho^1_M, \) and \(M^{1,a} = M^a \text{ for } a \in R_M \).
We say that M is weakly n–sound iff $R^n_M \neq \emptyset$. It is weakly sound iff it is weakly n–sound for $n < \omega$. A stronger notion is that of full soundness:

Definition 2.5.9. M is n–sound (or fully n–sound) iff it is weakly n–sound and for all $i < n$ we have: If $a \in R^i$, then $P^i_M = R^i_M$.

Thus $R_M = P_M$, $R^1_M = P^1_M$ for $a \in P_M$ etc. If M is n–sound we write $P^i_M = R^i_M$ for $i < n$.

There is an alternative, but equivalent, definition of soundness in terms of standard parameters. In order to formulate this we first define:

Definition 2.5.10. Let $a, b \in [\text{On}]^{<\omega}$.

$$a <_* b \iff \forall \mu (a \setminus \mu = b \setminus \mu \land \mu \in b \setminus a).$$

Lemma 2.5.16. $<_*$ is a well ordering of $[\text{On}]^{<\omega}$.

Proof: It suffices to show that every non-empty $A \subset [\text{On}]^{<\omega}$ has a unique $<_*$–minimal element. Suppose not. We derive a contradiction by defining an infinite descending chain of ordinals $\langle \mu_i | i < \omega \rangle$ with the properties:

- $\{\mu_0, \ldots, \mu_n\} \leq_* b$ for all $b \in A$.
- There is $b \in A$ such that $b \setminus \mu_n = \{\mu_0, \ldots, \mu_n\}$.

$\emptyset \notin A$, since otherwise \emptyset would be the unique minimal element, so set: $\mu_0 = \min\{\max(b) | b \in A\}$. Given μ_n we know that $\{\mu_0, \ldots, \mu_n\} \notin A$, since it would otherwise be the $<_*$–minimal element. Set:

$$\mu_{n+1} = \min\{\max(b \cap \mu_n) | b \in A \cap b \setminus \mu_n = \{\mu_0, \ldots, \mu_n\}\}.$$

QED (Lemma 2.5.16)

Definition 2.5.11. The first standard parameter p_M is defined by:

$$p_M =: \text{The }<_*-\text{least element of } P_M.$$

Lemma 2.5.17. $P_M = R_M$ iff $p_M \in R_M$.

Proof: \rightarrow is trivial. We prove \leftarrow. Suppose not. Then there is $r \in P \setminus R$. Hence $p <_* r$, where $p = p_M$. Hence in M the statement:
(1) $\forall q <_s r \ r = h(i, \langle \nu, q \rangle)$
holds for some $i < \omega, \nu < p_M$. Form M^r and let \overline{M}, π, r be such that
$\overline{M}^r = M^r, \pi \in R^n_{\overline{M}}, \pi : \overline{M} \to \Sigma_1 M$, and $\pi(\pi) = r$. The statement (1)
then holds of r in \overline{M}.

Let $\eta \in \overline{M}, \pi = h_{\overline{M}}(i, \eta)$ where $\eta <_s \pi$. Set $q = \pi(\eta)$. Then $r = h(i, q)$ in M, where $q <_s r$. Hence $q \in P_M$. But then $q \in R_M$ by the minimality of r. This impossible however, since

$q \in \pi^n \overline{M} = h_M(\rho_M \cup r) \neq M$.

Contradiction! QED (Lemma 2.5.17)

Definition 2.5.12. The n–th standard parameter p^n_M is defined by induction on n as follows:

Case 1 $n = 0$. $p^0 = \emptyset$.

Case 2 $n = m + 1$. If $p^m \in R^n$

$p^n = p^m \cup p_{M^m\cdot p^m}$

Note. that we always have: $p^n \cap p^{n+1} = \emptyset$ by $<_s$–minimality.

If $p^m \notin R^n$, then p^n is undefined. By Lemma 2.5.17 it follows easily that:

Corollary 2.5.18. M is n–sound iff p^n_M is defined and $p^n_M \in R^n_M$.

This is the definition of soundness usually found in the literature.

Note. That the sequences of projecta ρ^n will stabilize at some n, since it is monotony non increasing. If it stabilizes at n, we have $R^{n+h} = R^n$ and $P^{n+h} = P^n$ for $h < \omega$.

By iterated application of Lemma 2.5.13 we get:

Lemma 2.5.19. Let $a \in R^n_M$ and let $\pi : N \to \Sigma_1 M^{na}$. Then there are \overline{M}, π
and $\pi \supset \pi$ such that $\overline{M}^{\overline{\pi}} = M^{na}, \overline{a} \in R^n_{\overline{M}}, \pi : \overline{M} \to \Sigma_{n+1} M$ and $\pi(\overline{a}) = a$.

We also have:

Lemma 2.5.20. Let $a \in R^n_M$. There is an M–definable partial map of ρ^n
onto M which is M–definable in the parameter a.
Proof: By induction on \(n \). The case \(n = 0 \) is trivial. Now let \(n = m + 1 \). Let \(f \) be a partial map of \(\rho^m \) onto \(M \) which is definable in \(a \setminus \rho^m \). Let \(N = M^{\rho.n}, b = a \cap \rho^m \). Then \(N = h_N(\rho^n \cup \{ b \}) = h_N''(w \times (\rho^n \times \{ b \})) \).

Set:
\[
g(\langle i, \nu \rangle) \models h_N(i, (\nu, b)) \text{ for } \nu < \rho^n.
\]

Then \(N = g'' \rho^n \). Hence \(M = fg'' \rho^n \), where \(fg \) is \(M \)-definable in \(a \). QED

We have now developed the "classical" fine structure theory which was used to analyze \(L \). Its applicability to \(L \) is given by:

Lemma 2.5.21. Every \(J_\alpha \) is acceptable and sound.

Unfortunately, in this book we shall sometimes have to deal with acceptable structures which are not sound and can even fail to be weakly 1–sound. This means that the structure is not coded by any of its reducts. How can we deal with it? It can be claimed that the totality of reducts contains full information about the structure, but this totality is a very unwieldy object. In §2.6 we shall develop methods to "tame the wilderness".

We now turn to the proof of Lemma 2.5.21:

We first show:

(A) If \(J_\alpha \) is acceptable, then it is sound.

Proof: By induction on \(n \) we show that \(J_\alpha \) is \(n \)-sound. The case \(n = 0 \) is trivial. Now let \(n = m + 1 \). Let \(p = p_M^n \). Let \(q = p_{M.m,p} = \text{The } \leq_n \text{–least } q \in P_{M.m,p} \).

Claim \(q \in R_{M.m,p} \).

Suppose not. Let \(X = h_{M.m.p}(\rho^n \cup q) \). Let \(\pi : N \leftrightarrow X \), where \(N \) is transitive. Then \(\pi : N \rightarrow \Sigma_1 M^{mp} \) and there are \(M, \bar{p}, \pi \supset \pi \) such that \(M^{mp} = M^{mp}, \bar{p} \in R_m^m, \pi : \bar{M} \rightarrow \Sigma_1 M, \) and \(\pi(\bar{p}) = p \). Then \(\bar{M} = J_\pi \) for some \(\bar{\alpha} \leq \alpha \) by the condensation lemma for \(L \).

Let \(A \) be \(\Sigma_1(M^{mp}) \) in \(q \) such that \(A \cap \rho^M_M \notin M^{mp} \) Then \(A \cap \rho^M_M \notin M \).

Let \(\bar{A} \) be \(\Sigma_1(N) \) in \(\bar{q} = \pi^{-1}(q) \) by the same definition. Then \(A \cap \rho^n = \bar{A} \cap \rho^n \) is \(J_\pi \) definable in \(\bar{q} \). Hence \(\bar{\alpha} = \alpha, \bar{M} = M, \) since otherwise \(A \cap \rho^n \notin M \). But then \(\pi = id \) and \(N = \bar{M}^{mp} = M^n \). But by definition: \(N = h_{M.m.p}(\rho^n \cup q) \). Hence \(q \in R_{M.m,p} \).

QED

By induction on \(\alpha \) we then prove:

(B) \(J_\alpha \) is acceptable.
Proof: The case $\alpha = \omega$ is trivial. The case $\alpha \in \text{Lim}^*$ is also trivial. There remains the case $\alpha = \beta + \omega$, where β is a limit ordinal. By the induction hypothesis J_β is acceptable, hence sound.

We first verify (a) in the definition of acceptability. Since J_β is acceptable, it suffices to show that if $\gamma \leq \beta$ and $a \in J_\alpha \setminus J_\beta$ with $a \subset \gamma$, then:

Claim $\bar{\beta} \leq \gamma$ in J_α.

Suppose not. Since $P(J_\beta) \cap J_\alpha = \text{Def}(J_\beta)$, we show that a is J_β-definable in a parameter r. We may assume w.l.o.g. that $r \in [\beta]^{<\omega}$. We may also assume that a is $\Sigma_n(J_\beta)$ in r for sufficiently large n. There is then, no partial map $f \in \text{Def}(J_\beta)$ mapping γ onto β. Hence, by Lemma 2.5.20 we have $\gamma < \rho^n = \rho^n_M$ for all $n < \omega$.

Pick n big enough that a is $\Sigma_n(J_\beta)$ in r. Set: $p = p^n \cup r$ (where $p^n = p^n_M$). Then $p \in R^n$. Let $M = J_\beta$, $N = M^{np}$. Let $X = h_N(\gamma \cup q)$ where $q = p \cap \rho^n$. Let $\pi : N \rightarrow X$, where N is transitive. Then $\pi : N \rightarrow \Sigma_1 N$ and hence there are \bar{M}, \bar{p}, $\pi \supset \pi$ such that $\bar{M}^{np} = \bar{N}$, $\bar{p} \in R^n_{\pi^*}$, $\pi : \bar{M} \rightarrow \Sigma_{n+1} M$, $\pi(\bar{p}) = p^n$. Hence $\bar{M} = J_{\bar{\beta}}$ for $\bar{\beta} \leq \beta$. Moreover, a is $\Sigma_n(\bar{M})$ in \bar{p}. Hence $\bar{\beta} = \beta$, since otherwise $a \in \text{Def}(J_{\bar{\beta}}) \subset J_\beta$. But then $\pi = \text{id}$, $N = h_N(\gamma \cup q)$. Hence $\gamma \geq \rho_N = \rho^n_{M+1}$.

Contradiction! QED (Claim)

This proves (a). We now prove (b) in the definition of "acceptable". Most of the proof will be a straightforward imitation of the proof of (a). Assume $J_\alpha \models \psi[x, \gamma]$, but $J_\beta \not\models \psi[x, \gamma]$, where $x \in J_\gamma$, $\gamma \leq \beta$ and ψ is Σ_1. As before we claim:

Claim $\bar{\beta} \leq \gamma$ in J_α.

Suppose not. Then $\gamma < \beta$. Let $\psi = \bigvee y \varphi$ where φ is Σ_0. Let $J_\alpha \models \varphi(y, x, \gamma)$. Then $y = f(z, x, \gamma, J_\beta)$ where f is rud and $z \in J_\beta$. But

$J_\alpha \models \varphi[f(z, x, \gamma, J_\beta), x, \beta]$ reduces to:

$J_\alpha \models \varphi'[z, x, \gamma, J_\beta]$ where φ' is Σ_0. But then

$J_\beta \cup \{J_\beta\} \models \varphi'[z, x, \gamma, J_\beta]$.

As we have seen in §2.3, this reduces to:

$J_\beta \models \chi[z, x, \gamma]$
where \(\chi \) is a first order formula. Note that this reduction is uniform. Hence if \(\gamma < \nu \leq \beta, z \in J_\nu \) and \(J_\nu \models \chi[z, x, \gamma] \), it follows that \(J_{\nu + \omega} \models \psi[x, \gamma] \). This means that \(J_\nu \models \lnot \chi'[x, \gamma] \) for \(\gamma < \nu \leq \beta \), where \(\chi = \chi(v_0, v_1, v_n) \) and \(\chi' = \bigvee v_0 \chi \). We know that \(\gamma < \rho^*_{\beta + \omega} \) for all \(n \).

Choose \(n \) such that \(\rho^*_{\beta} = \rho^*_{\beta + \omega} \). Let \(M = J_\beta, N : M^{n,p} \) when \(p = p_N \).

Let \(X = h_N(\gamma + 1 \cup \{x\}) \) and let \(\pi : N \xrightarrow{\sim} X \), where \(N \) is transitive.

As before, there are \(M, p, \pi \supset \pi \) such that \(M^\pi p = N, \pi : M \to \Sigma_1 M \), and \(\pi(p) = p \). Let \(\bar{M} = J_\beta \). Then \(J_\beta \models \chi'(x, \gamma) \). Hence \(\beta = \beta \) and \(\pi = \text{id} \). Hence \(N = h_N(\gamma + 1 \cup \{x\}) \). Hence \(\gamma \geq \rho^{n+1} = \rho_N \).

Contradiction! QED (Lemma 2.5.21)

\(M = J_\alpha^A \) is a constructible extension of \(N = J_\beta^A \) iff \(\beta \leq \alpha \) and \(A \subset N \).

Our methods have some application to constructible extensions. By a slight modification of the proof of (A) we get:

Lemma 2.5.22. If \(M = J_\alpha^A \) is an acceptable constructible extension of \(N = J_\beta^A \), then:

(a) If \(\rho^n_M \geq \beta \), then \(M \) is \(n \)-sound.

(b) If \(\rho^{n+1}_M < \beta \leq \rho^n_M \), and \(\bar{M} =: M^{n,p_M} \), then \(\bar{M} = h_M(\beta \cup q) \) whenever \(q \in F_{\bar{M}} \).

The proof of (B) then gives us:

Lemma 2.5.23. If \(N = J_\beta^A \) is sound and acceptable, and \(A \subset N \), then \(M = J_\beta^A + \omega \) is acceptable.

The verifications are left to the reader.

2.6 \(\Sigma^* \)-theory

There is an alternative to the Levy hierarchy of relations on an acceptable structure \(M = \langle J_\alpha^A, B \rangle \) which — at first sight — seems more natural. \(\Sigma_0 \), we recall, consists of the relation on \(M \) which are \(\Sigma_0 \) definable in the predicates of \(M \). \(\Sigma_1 \) then consists of relations of the form \(\bigvee yR(y, \bar{x}) \) where \(R \) is \(\Sigma_0 \). Call these levels \(\Sigma_0^{(0)} \) and \(\Sigma_1^{(0)} \). Our next level in the new hierarchy, call it \(\Sigma_0^{(1)} \), consists of relations which are \(\Sigma_0 \) in \(\Sigma_1^{(0)} \) — i.e. \(\Sigma_0(\langle M, \bar{A} \rangle) \) where \(A_1, \ldots, A_n \) are \(\Sigma_1^{(0)} \). \(\Sigma_1^{(1)} \) then consists of relations of the form \(\bigvee yR(y, \bar{x}) \).
where R is $\Sigma_0^{(1)}$. $\Sigma_0^{(2)}$ then consists of relations which are Σ_0 in $\Sigma_1^{(1)}$ etc. By a $\Sigma_i^{(n)}$ relation we of course mean a relation of the form

$$R(\bar{x}) \iff R'(\bar{x}, \bar{p}),$$

where $p_1, \ldots, p_m \in M$ and R' is $\Sigma_i^{(n)}(m)$. It is clear that there is natural class of $\Sigma_i^{(n)}$-formulae such that R is a $\Sigma_i^{(n)}$-relation iff it is defined by a $\Sigma_i^{(n)}$-formula. Thus e.g. we can define the $\Sigma_0^{(1)}$ formula to be the smallest set Σ of formulae such that

- All primitive formulae are in Σ.
- All $\Sigma_1^{(0)}$ formulae are in Σ.
- Σ is closed under the sentential operations $\lor, \rightarrow, \leftrightarrow, \neg$.
- If φ is in Σ, then so are $\land v \in u \varphi$, $\lor v \in u \varphi$ (where $v \neq u$).

By a $\Sigma_1^{(1)}$ formula we then mean a formula of the form $\lor v \varphi$, where φ is $\Sigma_0^{(1)}$.

How does this hierarchy compare with the Levy hierarchy? If no projectum drops, it turns out to be a useful refinement of the Levy hierarchy: If $\rho_\alpha^M = \alpha$, then $\Sigma_0^{(n)} \subset \Delta_{n+1}^{(n)}$ and $\Sigma_1^{(n)} = \Sigma_{n+1}$. If, however, a projectum drops, it trivializes and becomes useless. Suppose e.g. that $M = J_\alpha$ and $\rho = \rho_\alpha^M < \alpha$. Then every M-definable relation becomes $\Sigma_0^{(1)}(M)$. To see this let $R(\bar{x})$ be defined by the formula $\varphi(\bar{v})$, which we may suppose to be in prenex normal form:

$$\varphi(\bar{v}) = Q_1 u_1 \ldots Q_m u_m \varphi'(\bar{v}, \bar{u}),$$

where φ' is quantifier free (hence Σ_0). Then:

$$R(\bar{x}) \iff Q_1 y_1 \in M \ldots Q_m y_m \in MR'(\bar{x}, \bar{y})$$

where R' is Σ_0. By soundness we know that there is a $\Sigma_1(M)$ partial map f of ρ onto M. But then:

$$R(\bar{x}) \iff Q_1 \xi_1 \in \text{dom}(f) \ldots Q_m \xi_m \in \text{dom}(f) R'(\bar{x}, f(\bar{\xi})).$$

Since f is Σ_1, the relation $R'(\bar{x}, f(\bar{\xi}))$ is Σ_1. But $\text{dom}(f)$ is Σ_1 and $\text{dom}(f) \subset \rho$, hence by induction on m:

$$R(\bar{x}) \iff Q_1 \xi_1 \in \rho \ldots Q_m \xi_m \in \rho R''(\bar{x}, \bar{\xi}),$$

where R'' is a sentential combination of Σ_1 relations. Hence R'' is $\Sigma_0^{(1)}(M)$ and so is R.

2.6. Σ*-THEORY

The problem is that, in passing from $\Sigma_1^{(0)}$ to $\Sigma_0^{(1)}$ our variables continued to range over the whole of M, despite the fact that M had grown "soft" with respect to Σ_1 sets. Thus we were able to reduce unbounded quantification over M to quantification bounded by ρ, which lies in the "soft" part of M. In section 2.5 we acknowledged softness by reducing to the part $H = H^M_{\rho}$ which remained "hard" wrt Σ_1 sets. We then formed a reduct M^p containing just the sets in H. If M is sound, we can choose p such that M^p contains complete information about M. In the general case, however, this may not be possible. It can happen that every reduct entails a loss of information. Thus we want to hold on to the original structure M. In passing to $\Sigma_0^{(1)}$, however, we want to restrict our variables to H. We resolve this conundrum by introducing new variables which range only over H. We call these variables of Type 1, the old ones being of Type 0. Using $u^h, v^h (h = 0, 1)$ as metavariables for variables of Type h, we can then reformulate the definition of $\Sigma_0^{(1)}$ formula, replacing the last clause by:

- If φ is in Σ, then so are $\bigwedge v^i \in u^1 \varphi$, $\bigvee v^i \in u^1 \varphi$ where $i = 0, 1$ and $v^i \neq u^1$.

A $\Sigma_1^{(1)}$ formula is then a formula of the form $\bigvee v^1 \varphi$, where φ is $\Sigma_0^{(1)}$. We call $A \subseteq M$ a $\Sigma_1^{(1)}$ set if it is definable in parameters by a $\Sigma_1^{(1)}$ formula. The second projectum ρ^2 is then the least ρ such that $\rho \cap B \notin M$ for some $\Sigma_0^{(1)}$ set B. We then introduce type 2 variables v^2, u^2, \ldots ranging over $|J^A_{\rho^2}|$ ($|J^A_{\gamma}|$ being the set of elements of the structure J^A_{γ}, where $e.g.$ $M = \langle J^A_{\alpha}, B \rangle$). Proceeding in this way, we arrive at a many sorted language with variables of type n for each $n < \omega$. The resulting hierarchy of $\Sigma_0^{(n)}$ formulae ($h = 0, 1$) offers a much finer analysis of M-definability than was possible with the Levy hierarchy alone. This analysis is known as Σ^* theory. In this section we shall develop Σ^* theory systematically and ab ovo.

Before beginning, however, we address a remark to the reader: Most people react negatively on their first encounter with Σ^* theory. The introduction of a many sorted language seems awkward and cumbersome. It is especially annoying that the variable domains diminish as the types increase. The author confesses to having felt these doubts himself. After developing Σ^* theory and making its first applications, we spent a couple of months trying vainly to redo the proofs without it. The result was messier proofs and a pronounced loss of perspicuity. It has, in fact, been our consistent experience that Σ^* theory facilitates the fine structural analysis which lies at the heart of inner model theory. We therefore urge the reader to bear with us.

Definition 2.6.1. Let $M = \langle J^A_{\alpha}, B \rangle$ be acceptable.
The $\Sigma^* M$–language $\mathbb{L}^* = L^*_M$ has

- a binary predicate $\hat{\epsilon}$
- unary predicates $\hat{A}_1, \ldots, \hat{A}_n, \hat{B}_1, \ldots, \hat{B}_m$
- variables $v^n_j (i, j < \omega)$

Definition 2.6.2. By induction on $n < \omega$ we define sets $\Sigma_h^{(n)} (h = 0, 1)$ of formulae

$\Sigma_0^{(n)} = \text{the smallest set of formulae such that}$

- all primitive formulae are in Σ.
- $\Sigma_0^{(m)} \cup \Sigma_1^{(m)} \subseteq \Sigma$ for $m < n$.
- Σ is closed under sentential operations $\land, \lor, \rightarrow, \leftrightarrow, \neg$.
- If φ is in Σ, $j \leq n$, and $v^j \neq u^n$, then $\land v^j \in u^n \varphi$, $\lor v^j \in u^n \varphi$ are in Σ.

We then set:

$\Sigma_1^{(n)} = \text{The set of formulae } \lor v^n \varphi, \text{ where } \varphi \in \Sigma_0^{(n)}.$

We also generalize the last part of this definition by setting:

Definition 2.6.3. Let $n < \omega$, $1 \leq h < \omega$. $\Sigma_h^{(n)}$ is the set of formulae

$$\lor v_1^n \land v_2^n \ldots Q v_h^n \varphi,$$

where φ is $\Sigma_0^{(n)}$ (and Q is \lor if h is odd and \land if h is even).

We now turn to the interpretation of the formulae in M.

Definition 2.6.4. Let Fml^n be the set of formulae in which only variables of type $\leq n$ occur.

By recursion on n we define:

- The n–th projectum $\rho^n = \rho^n_M$.
- The n–th variable domain $H^n = H^n_M$.
2.6. Σ^*–THEORY

- The satisfaction relation \models^n for formulae in Fml^n.

\models^n is defined by interpreting variables of type i as ranging over H^i for $i \leq n$. We set: $\rho^0 = \alpha$, $H^0 = |M| = |J^A_\alpha|$, when $M = \langle J^A_\alpha, B \rangle$.

Now let ρ^n, H^n be given (hence \models^n is given). Call a set $D \subseteq H^n$ a $\Sigma_1^{(n)}$ set. if it is definable from parameters by a $\Sigma_1^{(n)}$ formula φ:

$$Dx \leftrightarrow M \models^n \varphi[x, a_1, \ldots, a_p]$$

where $\varphi = \varphi(v^n, u^{i_1}, \ldots, u^{i_m})$ is $\Sigma_1^{(n)}$. ρ^{n+1} is then the least ρ such that there is a $\Sigma_1^{(n)}$ set $D \subset \rho$ with $D \notin M$. We then set:

$$H^{n+1} = |J^A_\rho|.$$

This then defines \models^{n+1}.

It is obvious that \models^i is contained in \models^j for $i \leq j$, so we can define the full Σ^* satisfaction relation for M by:

$$\models = \bigcup_{n<\omega} \models^n.$$

Satisfaction is defined in the usual way. We employ v^i, u^i, ω^i etc. as metavariables for variables of type i. We also employ x^i, y^i, z^i etc. as metavariables for elements of H^i. We call $v_1^{i_1}, \ldots, v_n^{i_n}$ a good sequence for the formula φ if it is a sequence of distinct variables containing all the variables which occur free in φ. If $v_1^{i_1}, \ldots, v_n^{i_n}$ is good we write:

$$\models_M \varphi[v_1^{i_1}, \ldots, v_n^{i_n} / x_1^{i_1}, \ldots, x_n^{i_n}]$$

to mean that φ becomes true if $v_k^{i_n}$ is interpreted by $x_k^{i_n} (h = 1, \ldots, n)$. We shall follow normal usage in suppressing the sequence $v_1^{i_1}, \ldots, v_n^{i_n}$ writing only:

$$\models_M \varphi[x_1^{i_1}, \ldots, x_n^{i_n}].$$

(However, it is often important for our understanding to retain the upper indices i_1, \ldots, i_n) We often write $\varphi = \varphi(v_1^{i_1}, \ldots, v_n^{i_n})$ to indicate that these are the suppressed variables. φ (together with $v_1^{i_1}, \ldots, v_n^{i_n}$) defines a relation:

$$R(x_1^{i_1}, \ldots, x_n^{i_n}) \leftrightarrow \models_M \varphi[x_1^{i_1}, \ldots, x_n^{i_n}].$$

Since we are using a many sorted language, however, we must also employ many sorted relations.

The number of argument places of an ordinary one sorted relation is often called its "arity". In the case of a many sorted relation, however, we must
know not only the number of argument places, but also the type of each argument place. We refer to this information as its "arity". Thus the arity of the above relation is not n but $\langle i_1, \ldots, i_n \rangle$. An ordinary 1–sorted relation is usually identified with its field. We shall identify a many sorted relation with the pair consisting of its field and its arity:

Definition 2.6.5. A many sorted relation R on M is a pair $\langle |R|, r \rangle$ such that for some n:

(a) $|R| \subseteq M^n$

(b) $r = \langle r_1, \ldots, r_n \rangle$ where $r_i < \omega$

(c) $R(x_1, \ldots, x_n) \to x_i \subseteq H^{r_i}$ for $i = 1, \ldots, n$.

$|R|$ is called the field of R and r is called the arity of R.

In practice we adopt a rough and ready notation, writing $R(x_{i_1}^{i_1}, \ldots, x_{i_n}^{i_n})$ to indicate that R is a many sorted relation of arity $\langle i_1, \ldots, i_n \rangle$.

Note. Let $L = L_M$ be the ordinary first order language of M (i.e. it has only variables of type 0.

Since $H^n \subseteq M$ or $H^n = M$ for all $n < \omega$, it follows that every L^\ast–definable many sorted relation has a field which is L–definable in parameters from M.)

Note. If R is a relation of arity $\langle i_1, \ldots, i_n \rangle$, then its complement is $\Gamma \setminus R$, where:

$$\Gamma = \{ \langle x_1, \ldots, x_n \rangle | x_h \in H^{r_h} \text{ for } h = 1, \ldots, n \},$$

the arity remaining unchanged.

Definition 2.6.6. $R(x_{i_1}^{i_1}, \ldots, x_{i_m}^{i_m})$ is a $\Sigma_h^{(n)}(M)$ relation iff it is defined by a $\Sigma_h^{(n)}$ formula. R is $\Sigma_h^{(n)}(M)$ in the parameters p_1, \ldots, p_r if $R(\bar{x}) \leftrightarrow R'(\bar{x}, \bar{p})$, where R' is $\Sigma_h^{(n)}(M)$. R is a $\Sigma_h^{(n)}(M)$ relation iff it is $\Sigma_h^{(n)}(M)$ in some parameters.

It is easily checked that:

Lemma 2.6.1. \begin{itemize}
 \item If $R(y^n, \bar{x})$ is $\Sigma_1^{(n)}$, so is $\bigwedge y^n R(y^n, \bar{x})$
 \item If $R(\bar{x}), P(\bar{x})$ are $\Sigma_1^{(n)}$, then so are $R(\bar{x}) \lor P(\bar{x}), R(\bar{x}) \land P(\bar{x})$.
\end{itemize}

Moreover, if $R(x_{i_0}^{i_0}, \ldots, x_{i_{m-1}}^{i_{m-1}})$ is $\Sigma_1^{(n)}$, so is any relation $R'(y_{i_0}^{i_0}, \ldots, y_{i_r}^{i_r})$ obtained from R by permutation of arguments, insertion of dummy arguments and fusion of arguments having the same type — i.e.

$$R'(y_{i_0}^{j_0}, \ldots, y_{i_r}^{j_r}) \leftrightarrow R(y_{\sigma(0)}^{j_{\sigma(0)}}, \ldots, y_{\sigma(m-1)}^{j_{\sigma(m-1)}})$$
2.6. $\Sigma^*-THEORY$

where $\sigma : m \to r$ such that $j_{\sigma(l)} = i_l$ for $l < m$.

Using this we get the analogue of Lemma 2.5.6

Lemma 2.6.2. Let $M = \langle J^A, B \rangle$ be acceptable. Let $\rho = \rho^n, H = H^n$. Then

(a) If $\rho \in M$, then ρ is a cardinal in M. (Hence $H = H^M_\rho$)

(b) If D is $\Sigma_1^{(n)}(M)$ and $D \subset H$, then $\langle H, D \rangle$ is amenable.

(c) If $u \in H$, there is no $\Sigma_1^{(n)}(M)$ partial map of u onto H.

(d) $\rho \in \text{Lm}^n$ if $n > 0$.

Proof: By induction on n. The induction step is a virtual repetition of the proof of Lemma 2.5.6. QED (Lemma 2.6.2)

Definition 2.6.7. Let $R(x_1^1, \ldots, x_m^m)$ be a many sorted relation. By an n–specialization of R we mean a relation $R'(x_1^1, \ldots, x_m^m)$ such that

- $j_l \geq i_l$ for $l = 1, \ldots, m$
- $j_l = i_l$ if $l < n$
- If z_1, \ldots, z_m are such that $z_l \in H^{j_l}$ for $l = 1, \ldots, m$, then:
 $R(z) \iff R'(z)$.

Given a formula φ in which all bound quantifiers are of type $\leq n$, we can easily devise a formula φ' which defines a specialization of the relation defined by φ:

Fact Let $\varphi = \varphi(v_1^{i_1}, \ldots, v_m^{i_m})$ be a formula in which all bound variables are of type $\leq n$. Let $u_1^{j_1}, \ldots, u_m^{j_m}$ be a sequence of distinct variables such that $j_l \geq i_l$ and $j_l = i_l$ if $i_l < n(l = 1, \ldots, m)$. Suppose that $\varphi' = \varphi'(\vec{u})$ is obtained by replacing each free occurrence of $v_l^{j_l}$ by a free occurrence of $u_l^{j_l}$ for $l = 1, \ldots, m$. Then for all x_1, \ldots, x_m such that $x_l \in H^{j_l}$ for $l = 1, \ldots, m$ we have:

$\models M \varphi(\vec{v})[\vec{x}] \iff \models M \varphi'(\vec{u})[\vec{x}]$.

The proof is by induction on φ. We leave it to the reader. Using this, we get:

Lemma 2.6.3. Let $R(x_1^{i_1}, \ldots, x_m^{i_m})$ be $\Sigma_l^{(n)}$. Then every n–specialization of R is $\Sigma_l^{(n)}$.

Proof: $R'(x_1^i, \ldots, x_m^i)$ be an n–specialization. Let R be defined by $\varphi(v_1^i, \ldots, v_m^i)$.

Suppose (u_1^i, \ldots, v_m^i) is a sequence of distinct variables which are new — i.e. none of them occur free or bound in φ. Let φ' be obtained by replacing every free occurrence of u_l^i by u_l^i ($l = 1, \ldots, m$). Then $\varphi'(u_1^i, \ldots, v_m^i)$ defines R' by the above fact.

QED (Lemma 2.6.3)

Corollary 2.6.4. Let R be $\Sigma_1^{(n)}$ in the parameter p. Then every n–specialization of R is $\Sigma_1^{(n)}$ in p.

Lemma 2.6.5. Let $R'(x_1^i, \ldots, x_m^i)$ be $\Sigma_1^{(n)}$. Then R' is an n–specialization of a $\Sigma_1^{(n)}$ relation $R(x_1^i, \ldots, x_m^i)$ such that $i_1 \leq n$ for $l = 1, \ldots, m$.

Proof: Let R' be defined by $\varphi'(u_1^i, \ldots, v_m^i)$, when φ' is $\Sigma_1^{(n)}$. Let v_1^i, \ldots, v_m^i be a sequence of distinct new variables, where $i_l = \min(n, j_l)$ for $l = 1, \ldots, m$. Replace each free occurrence of u_l^i by v_l^i for $l = 1, \ldots, n$ to get $\varphi(u_1^i, \ldots, v_m^i)$. Let R be defined by φ. Then R' is a specialization of R by the above fact.

QED (Lemma 2.6.5)

Corollary 2.6.6. Let $R'(x_1^i, \ldots, x_m^i)$ be $\Sigma_1^{(n)}$ in p. Then R' is a specialization of a relation $R(x_1^i, \ldots, x_m^i)$ which is $\Sigma_1^{(n)}$ in p with $i_l \leq n$ for $l = 1, \ldots, m$.

Every $\Sigma_1^{(n)}$ formula can appear as a "primitive" component of a $\Sigma_0^{(m+1)}$ formula. We utilize this fact in proving:

Lemma 2.6.7. Let $n = m+1$. Let $Q_j(x_1^i, \ldots, x_m^i, x_1, \ldots, x_n)$ be $\Sigma_1^{(m)} (j = 1, \ldots, r)$.

Set: $Q_{j, x} = \{ \langle x^n \rangle | Q_j(x^n, x) \}$.

Set: $H_x = \{ H^n, Q_{1, x}, \ldots, Q_{r, x} \}$.

Let $\varphi = \varphi(v_1, \ldots, v_q)$ be Σ_l in the language of H_x. Then

$\{ \langle x^n, x \rangle | H_x \models \varphi(x^n) \}$ is $\Sigma_1^{(n)}$.

Proof: We first prove it for $l = 0$, showing by induction on φ that the conclusion holds for any sequence v_1, \ldots, v_l of variables which is good for φ.

We describe some typical cases of the induction.

Case 1 φ is primitive.

Let e.g. $\varphi = \hat{Q}_j(v_{h_1}, \ldots, v_{h_{p_j}})$, where \hat{Q}_j is the predicate for $Q_{j, x}$. Then $H_x \models \varphi(x^n)$ is equivalent to: $Q_j(x_{h_1}, \ldots, x_{h_{p_j}}, x)$, which is $\Sigma_1^{(m)}$ (hence $\Sigma_0^{(l)}$).

QED (Case 1)
2.6. $\Sigma^*-\text{THEORY}$

Case 2 φ arises from a sentential operation.
Let e.g. $\varphi = (\varphi_0 \land \varphi_1)$. Then $H_{\vec{x}} \models \varphi[\vec{x}^n]$ is equivalent to:

$$H_{\vec{x}} \models \varphi_0[\vec{x}^n] \land H_{\vec{x}} \models \varphi_1[\vec{x}^n]$$

which, by the induction hypothesis is $\Sigma_0^{(n)}$. QED (Case 2)

Case 3 φ arises from a quantification.
Let e.g. $\varphi = \bigwedge w \in v_1 \Psi$. By bound relettering we can assume w.l.o.g. that w is not among v_1, \ldots, v_p. We apply the induction hypothesis to $\Psi(w, v_1, \ldots, v_p)$. Then $H_{\vec{x}} \models \varphi[\vec{x}^n]$ is equivalent to:

$$\bigwedge z \in x^n \ H_{\vec{x}} \models \Psi[w, \vec{x}^n]$$

which is $\Sigma_0^{(n)}$ by the induction hypothesis. QED (Case 3)

This proves the case $l = 0$. We then prove it for $l > 0$ by induction on l, essentially repeating the proof in case 3. QED (Lemma 2.6.7)

Note. It is clear from the proof that the set $\{ \langle \vec{x}^n, \vec{x} \rangle | H_{\vec{x}} \models \varphi[\vec{x}^n] \}$ is uniformly $\Sigma_i^{(n)}$ — i.e. its defining formula χ depends only on φ and the defining formula Ψ_i for $Q_i(i = 1, \ldots, p)$. In fact, the proof implicitly describes an algorithm for the function $\varphi, \Psi_1, \ldots, \Psi_p \mapsto \chi$.

We can invert the argument of Lemma 2.6.7 to get a weak converse:

Lemma 2.6.8. Let $n = m + 1$. Let $R(\vec{x}^n, \vec{x}^{i_1}, \ldots, \vec{x}^{i_q})$ be $\Sigma_i^{(n)}$ where $i_t \leq m$ for $t = 1, \ldots, g$. Then there are $\Sigma_1^{(n)}$ relations $Q_i(\vec{z}^n, \vec{x})(i = 1, \ldots, p)$ and a Σ_0 formula φ such that

$$R(\vec{x}^n, \vec{x}) \leftrightarrow H_{\vec{x}} \models \varphi[\vec{x}^n],$$

where $H_{\vec{x}}$ is defined as above.

Note. This is weaker, since we now require $i_t \leq m$.

Proof: We first prove it for $l = 0$. By induction on χ we prove:

Claim Let χ be $\Sigma_0^{(n)}$. Let $\vec{v}^n, v_1^{i_1}, \ldots, v_q^{i_q}$ be good for χ, where $i_1, \ldots, i_q \leq m$. Let $\chi(\vec{v}^n, \vec{v})$ define the relation $R(\vec{x}^n, \vec{x})$. Then the conclusion of Lemma 2.6.8 holds for this R (with $l = 0$).

Case 1 χ is $\Sigma_1^{(m)}$.
Let $\chi(\vec{x}^n, \vec{x})$ define $Q(\vec{x}^n, \vec{x})$. Then $R(\vec{x}^n, \vec{x}) \leftrightarrow H_{\vec{x}} \models \hat{Q}[\vec{v}^n]$, QED (Case 1)
CHAPTER 2. BASIC FINE STRUCTURE THEORY

Case 2 \(\chi \) arises from a sentential operation. Let e.g. \(\chi = (\Psi \land \Psi') \). Applying the induction hypothesis we get
\[Q_i(z^n, x) (i = 1, \ldots, p) \]
and \(\varphi \) such that
\[M \models \Psi[z^n, x] \leftrightarrow H_x \models \varphi[z^n] \]
where \(H_x = \langle H^n, Q_1 x, \ldots, Q_px \rangle \). Similarly we get
\[Q_i'(y^n, x) (i = 1, \ldots, q') \]
and \(\varphi' \)
\[M \models \Psi'[z^n, x] \leftrightarrow H'_x \models \varphi'[z^n]. \]
Let \(Q_i \) be the predicate for \(Q_i x \) in the language of \(H_x \). Let \(Q'_i \) be the predicate for \(Q'_i x \) in the language of \(H'_x \). Assume \(w.l.o.g. \) that \(Q_i \neq Q'_j \) for all \(i, j \). Putting the two languages together we get a language for
\[H_x = \langle H^n, Q_i z, Q'_j z \rangle. \]
Clearly:
\[M \models (\chi \land \chi')[x^n, x] \leftrightarrow H_x \models (\varphi \land \varphi')[x^n]. \]
QED (Case 2)

Case 3 \(\chi \) arises from the application of a bounded quantifier. Let e.g. \(\chi = \bigwedge w^n \in \nu^n \chi' \). By bound relettering we can assume \(w.l.o.g. \) that \(w^n \) is not among \(\tau^n \). Then \(w^n \tau^n, \nu \) is a good sequence for \(\chi' \) and by the induction hypothesis we have for \(\chi' = \chi'(w^n, \tau^n, \nu) \):
\[M \models \chi'[z^n, x^n, x] \leftrightarrow H_x \models \varphi[z^n, x^n, x], \]
But then:
\[M \models \chi[z^n, x] \leftrightarrow \bigwedge z^n \in x^n M \models \chi'[z^n, x^n, x] \]
\[\leftrightarrow \bigwedge z^n \in x^n H_x \models \varphi[z^n, x^n] \]
\[\leftrightarrow H_x \models \bigwedge w \in \nu \varphi[z^n]. \]
QED (Lemma 2.6.8)

Note. Our proof again establishes uniformity. In fact, if \(\chi \) is the \(\Sigma^m_l \) definition of \(R \), the proof implicitly describes an algorithm for the function
\[\chi \mapsto \varphi, \Psi_1, \ldots, \Psi_p \]
where \(\Psi_i \) is a \(\Sigma^m_l \) definition of \(Q_i \).

Remark. Lemma 2.6.7 and 2.6.8 taken together give an inductive definition of "\(\Sigma^m_l \) relation" which avoids the many sorted language. It would, however, be difficult to work directly from this definition.
By a function of arity \(\langle i_1, \ldots, i_n \rangle \) to \(H^j \) we mean a relation \(F(y^j, x^{i_1}, \ldots, x^{i_n}) \) such that for all \(x^{i_1}, \ldots, x^{i_n} \) there is at most one such \(y^j \). If this \(y \) exists, we denote it by \(F(x^{i_1}, \ldots, x^{i_n}) \). Of particular interest are the \(\Sigma^{(i)} \) functions to \(H^i \).

Lemma 2.6.9. \(R(y^n, \vec{x}) \) be a \(\Sigma^{(n)}_1 \) relation. Then \(R \) has a \(\Sigma^{(n)}_1 \) uniformizing function \(F(\vec{x}) \).

Proof: We can assume w.l.o.g that the arguments of \(R \) are all of type \(\leq n \). (Otherwise let \(R \) be a specialization of \(R' \), where the arguments of \(R' \) are of type \(\leq n \). Let \(F' \) uniformize \(R' \). Then the appropriate specialization \(F \) of \(F' \) uniformizes \(R \).)

Case 1 \(n = 0 \).

Set:

\[F(\vec{x}) \simeq y \text{ where } \langle z, y \rangle \text{ is } <_M -\text{least such that } R'(z, y, \vec{x}). \]

By section 2.3 we know that \(u_M(x) \) is \(\Sigma_1 \), where \(u_M(x) = \{ y | y <_M x \} \). Thus for sufficient \(r \) we have:

\[
y = F(\vec{x}) \iff \bigvee z (R'(z, y, \vec{x}) \land \land w \in u_M(\langle z, y \rangle) \land z', y' \in C_r(w) (w = \langle z', y' \rangle \rightarrow \neg R(z', y', \vec{x}))
\]

which is uniformly \(\Sigma_1(M) \).

Case 2 \(n > 0 \). Let \(n = m + 1 \).

Rearranging the arguments of \(R \) if necessary, we can assume that \(R \) has the form \(R(y^n, \vec{x}^m, \vec{x}) \), where \(\vec{x} \) are of type \(\leq m \). Then there are \(Q_i(\vec{x}^m, \vec{x}^n, \vec{x}) (i = 1, \ldots, p) \) such that \(Q_i \) is \(\Sigma^{(m)}_1 \) and

\[R(y^n, \vec{x}^n, \vec{x}) \iff H_{\vec{x}} = \varphi[y^n, \vec{x}^n], \]

where \(\varphi \) is \(\Sigma_1 \) and

\[H_{\vec{x}} = \langle H^n, Q_{1\vec{x}}, \ldots, Q_{n\vec{x}} \rangle. \]

If e.g. \(M = \langle J^A, B \rangle \), we can assume w.l.o.g. that \(Q_1(\vec{z}^n, \vec{x}) \iff A(\vec{z}^n). \)

Then \(<_{H_{\vec{x}}, u_{H_{\vec{x}}}} \) are uniformly \(\Sigma_1(H_{\vec{x}}) \) and by the argument of Case 1 there is a \(\Sigma_1 \) formula \(\varphi' \) such that \(F \) uniformizes \(R \) where

\[y = F(\vec{x}^n, \vec{x}) \iff H_{\vec{x}} = \varphi'[\vec{x}^n, \vec{x}], \]

QED (2.6.9)
Note. The proof shows that $F(\bar{x})$ is uniformly $\Sigma_1^{(n)}$ — i.e. its $\Sigma_1^{(n)}$ definition depends only on the $\Sigma_1^{(n)}$ definition of $R(y^n, x)$, regardless of M.

Note. It is clear from the proof that the $\Sigma_1^{(n)}$ definition of F is functionally absolute — i.e. it defines a function over every acceptable M of the same type. Thus:

Corollary 2.6.10. Every $\Sigma_1^{(n)}$ function $F(\bar{x})$ to H^n has a functionally absolute $\Sigma_1^{(n)}$ definition.

Note. The $\Sigma_1^{(n)}$ functions are closed under permutation of arguments, insertion of dummy arguments, and fusion of arguments of same type. Thus if $F(x_1^n, \ldots x_m^n)$ is $\Sigma_1^{(n)}$, so is $F'(y_1^{j_1}, \ldots y_m^{j_m})$ where

$$F'(y_1^{j_1}, \ldots y_m^{j_m}) \simeq F(y_{\sigma(1)}^{j_{\sigma(1)}}, \ldots y_{\sigma(n)}^{j_{\sigma(n)}})$$

and $\sigma : n \to m$ such that $j_{\sigma(l)} = i_l$ for $l < n$.

If $R(x_1^{i_1}, \ldots x_p^{j_p})$ is a relation and $F_i(\bar{z})$ is a function to H^j for $i = 1, \ldots, n$, we sometimes use the abbreviation:

$$R(\bar{F}(\bar{z})) \leftrightarrow \bigvee x_1^{i_1} \ldots x_p^{j_p} \bigwedge_{i=1}^p x_i^{j_i} = F_i(\bar{z}) \land R(\bar{x}).$$

Note that $R(\bar{F}(\bar{z}))$ is then false if some $F_i(\bar{z})$ does not exist. $\Sigma_1^{(n)}$ relations are not, in general, closed under substitution of $\Sigma_1^{(n)}$ functions, but we do get:

Lemma 2.6.11. Let $R(x_1^{i_1}, \ldots x_p^{j_p})$ be $\Sigma_1^{(n)}$ such that $j_i \leq n$ for $i = 1, \ldots, p$. Let $F_i(\bar{z})$ be a $\Sigma_1^{(j_i)}$ map to H^j for $i = 1, \ldots, p$. Then $R(\bar{F}(\bar{z}))$ is $\Sigma_1^{(n)}$ (uniformly in the $\Sigma_1^{(n)}$ definitions of R, F_1, \ldots, F_p)

Before proving Lemma 2.6.11 we show that it has the following corollary:

Corollary 2.6.12. Let $R(\bar{x}, y_1^{j_1}, \ldots, y_p^{j_p})$ be $\Sigma_1^{(n)}$ where $j_i \leq n$ for $i = 1, \ldots, p$. Let $F_i(\bar{z})$ be a $\Sigma_1^{(j_i)}$ map to H^j for $i = 1, \ldots, p$. Then $R(\bar{x}, \bar{F}(\bar{z}))$ is (uniformly) $\Sigma_1^{(n)}$.

Proof: We can assume w.l.o.g. that each of \bar{x} has type $\leq n$, since otherwise R is a specialization of an R' with this property. But then $R(\bar{x}, \bar{F}(\bar{z}))$ is a specialization of $R'(\bar{x}, \bar{F}(\bar{z}))$. Let $\bar{x} = x_1^{h_1}, \ldots, x_q^{h_q}$ with $h_i \leq n$ for $i = 1, \ldots, q$. For $i = 1, \ldots, p$ set:

$$F'(\bar{x}, \bar{z}) \simeq F(\bar{z}).$$
For $i = 1, \ldots, q$ set:

$$G_h(\overline{x}, \overline{z}) \simeq x_i^h.$$

By Lemma 2.6.11, $R(\overline{G}(\overline{x}, \overline{z}), F'(\overline{x}, \overline{z}))$ is $\Sigma_1^{(n)}$. But

$$R(\overline{G}(\overline{x}, \overline{z}), F'(\overline{x}, \overline{z})) \leftrightarrow R(\overline{x}, \overline{F}(\overline{z})).$$

QED (Corollary 2.6.12)

We now prove Lemma 2.6.11 by induction on n.

Case 1 $n = 0$.

The conclusion is immediate by the definition of $R(\overline{F}(\overline{z}))$:

$$R(\overline{F}(\overline{z})) \leftrightarrow \bigvee x_1^0 \ldots x_p^0 \bigwedge_{i=1}^p x_1^0 = F_i(\overline{z}) \land R(\overline{x}).$$

Case 2 $n = m + 1$.

Then Lemma 2.6.11 holds at m and it is clear from the above proof that Corollary 2.6.12 does, too.

Rearranging the arguments of R if necessary, we can bring R into the form:

$$R(\overline{x}^n, x_1^{l_1}, \ldots, x_q^{l_q})$$

where $l_i \leq m$ for $i = 1, \ldots, q$.

We first show:

Claim $R(\overline{x}^n, \overline{F}(\overline{z}))$ is $\Sigma_1^{(n)}$.

Proof: Let $Q_i(\overline{z}_i^n, \overline{x})$ be $\Sigma_1^{(m)} (i = 1, \ldots, r)$ such that

$$R(x^n, \overline{x}) \leftrightarrow H_\overline{x} \models \varphi[\overline{x}^n]$$

where φ is Σ_1 and:

$$H_\overline{x} = \langle H^n, Q_1, \ldots, Q_r, x \rangle.$$

Set:

$$\overline{Q}_i(\overline{z}_i^n, \overline{z}) \leftrightarrow Q_i(\overline{z}_i^n, F(\overline{z}))$$

$$\leftrightarrow \bigvee \overline{x} (\bigwedge_{i=1}^q x_i^{l_i} = F_i(\overline{z}) \land R(\overline{x}))$$

$$\overline{H}_\overline{x} = \langle H^n, \overline{Q}_1, \ldots, \overline{Q}_r, \overline{z} \rangle.$$

If $x_i^{l_i} = F_i(\overline{z})$ for $i = 1, \ldots, q$, then $\overline{Q}_i(\overline{z}_i^n, \overline{z}) \leftrightarrow Q_i(\overline{z}_i^n, \overline{x})$ and $\overline{H}_\overline{x} = H_\overline{x}$. Hence:

$$\overline{H}_\overline{x} \models \varphi[\overline{x}^n] \leftrightarrow H_\overline{x} \models \varphi[\overline{x}^n]$$

$$\leftrightarrow R(\overline{x}^n, \overline{x})$$

$$\leftrightarrow R(\overline{x}^n, \overline{F}(\overline{z})).$$
If, on the other hand, $F_i(\bar{z})$ does not exist for some i, then $R(\bar{x}^n, \vec{F}(\bar{z}))$ is false. Hence:

$$R(\bar{x}^n, \vec{F}(\bar{z})) \iff (\bigwedge_{i=1}^q x_i^{l_i}(x_i^{l_i} = F_i(\bar{z})) \wedge H_{\bar{x}} \models \varphi(\bar{x}^n)).$$

But $\bigvee_{i=1}^q x_i^{l_i}(x_i^{l_i} = F_i(\bar{z}))$ is $\Sigma_0^{(n)}$, so the result follows by applying Lemma 2.6.7 to φ. QED (Claim)

But then, setting: $R_0(\bar{x}^n, \bar{z}) \iff R(\bar{x}^n, F(\bar{z}))$, we have:

$$R(\vec{F}(\bar{x})) \iff \bigvee_{i=1}^q x_i^{l_i}(x_i^{l_i} = F_i(\bar{z}) \wedge R_0(\bar{x}^n, \bar{z})).$$

QED (Lemma 2.6.11)

Note that if, in the last claim, we took $R(x^n, x_1^{l_1}, \ldots, x_q^{l_q})$ as being $\Sigma_0^{(n)}$ instead of $\Sigma_1^{(n)}$, then in the proof of the claim we could take φ as being Σ_0 instead of Σ_1. But then the application of Lemma 2.6.7 to $H_{\bar{x}} \models \varphi(\bar{x}^n)$ yields a $\Sigma_0^{(n)}$ formula. Then we have, in effect, also proven:

Corollary 2.6.13. Let $R(x^n, y_1^{l_1}, \ldots, y_p^{l_p})$ be a $\Sigma_0^{(n)}$ map to H^n for $i = 1, \ldots, r$. Then $R(x^n, \vec{F}(\bar{z}))$ is (uniformly) $\Sigma_0^{(n)}$.

As corollaries of Lemmas 2.6.11 we then get:

Corollary 2.6.14. Let $G(x_1^{j_1}, \ldots, x_p^{j_p})$ be a $\Sigma_1^{(n)}$ map to H^n, where $j_1, \ldots, j_p \leq n$. Let $F_i(\bar{z})$ be a $\Sigma_1^{(n)}$ map to H^{j_i} for $i = 1, \ldots, p$. Then $H(\bar{z}) \simeq G(\vec{F}(\bar{z}))$ is uniformly $\Sigma_1^{(n)}$.

Proof:

$$y = H(\bar{z}) \iff \bigvee_{i=1}^p x_i^{j_i}(x_i^{j_i} = F_i(\bar{z}) \wedge y = G(\bar{x})).$$

QED (Corollary 2.6.14)

Corollary 2.6.15. Let $R(x_1^{i_1}, \ldots, x_p^{i_p})$ be $\Sigma_1^{(n)}$ where $i_j \leq n$ for $i = 1, \ldots, p$. There is a $\Sigma_0^{(n)}$ relation $R(\bar{z}_1, \ldots, \bar{z}_0)$ with the same field.

Proof: Set:

$$R'(\bar{z}) \iff \bigvee_{i=1}^p x_i^{i_j}(x_i^{i_j} = z_0^{i_j} \wedge R(\bar{x})).$$
Thus in theory we can always get by with relations that have only arguments of type 0. (Let one make too much of this, however, we remark that the defining formula of R' will still have bounded many sorted variables.)

Generalizing this, we see that if R is a relation with arguments of type $\leq n$, then the property of being $\Sigma_1^{(n)}$ depends only on the field of R. Let us define:

Definition 2.6.8. $R_0^j(z_1^{j_1}, \ldots, z_r^{j_r})$ is a reindexing of the relation $R(x_1^{i_1}, \ldots, x_r^{i_r})$ iff both relations have the same field i.e.

$$R'(y) \leftrightarrow R(y)$$

for $y_1, \ldots, y_r \in M$.

Then:

Corollary 2.6.16. Let $R(x_1^{i_1}, \ldots, x_r^{i_r})$ be $\Sigma_1^{(n)}$ where $i_1, \ldots, i_r \leq n$. Let $R'(z_1^{j_1}, \ldots, z_r^{j_r})$ be a reindexing of R, where $j_1, \ldots, j_r \leq n$. Then R' is $\Sigma_1^{(n)}$.

Proof:

$$R'(\vec{x}) \leftrightarrow R(F_1(z_1), \ldots, F_r(z_r))$$

$$\leftrightarrow \forall \vec{x}(\bigvee_{i=1}^r x_i^{i_1} = z_i^{j_1} \land R(\vec{x}))$$

where

$$x_i^{i_1} = F_i(z_i^{j_1}) \leftrightarrow x_i^{j_i} = z_i^{j_i}.$$

QED (Corollary 2.6.16)

We now consider the relationship between Σ^* theory and the theory developed in §2.5. $\Sigma_1^{(0)}$ is of course the same as Σ_1 and ρ_1 is the same as the Σ_1 projectum ρ which we defined in §2.5.2. In §2.5.2 we also defined the set P of good parameters and the set R of very good parameters. We then defined the reduct M of M_P for any $p \in [\text{On}_M]^{<\omega}$. We now generalize these notions to $\Sigma_1^{(n)}$. We have already defined the $\Sigma_1^{(n)}$ projectum ρ^n. In analogy with the above we now define the sets P^n, R^n of $\Sigma_1^{(n)}$-good parameters. We also define the $\Sigma_1^{(n)}$ reduct M^{np} of M by $p \in [\text{On}_M]^{<\omega}$.

Under the special assumption of soundness, these will turn out to be the same as the concepts defined in §2.5.3.

Definition 2.6.9. Let $M = \langle J^A, B \rangle$ be acceptable. We define sets $M^n_{x_1^{i_1}, \ldots, x_0}$ and predicates $T^n(x_1, \ldots, x_0)$ as follows:

$$M^0 =: M, T^0 =: B$$

(i.e. $M^n_\emptyset = M$ for $n = 0$)

$$M_{x_1^{i_1}, \ldots, x_0}^{n+1} =: (J^n_{\rho^{n+1}}, T^{n+1}_x)$$

for $x = x_1, \ldots, x_0$

$$T^{n+1}(x^{n+1}, \vec{x}) \leftrightarrow \forall i < \omega (x^{n+1} = (i, z^{n+1}) \land M^{n}_{x_1^{i_1}, \ldots, x_0} \models \varphi_i[z^{n+1}, x^n])$$

QED (Corollary 2.6.15)
(where $\langle \varphi_i | i < \omega \rangle$ is our fixed canonical enumeration of Σ_1 formulae.)

(Then $T^{n+1}(\langle i, x^{n+1}, x^n, \ldots, x^0 \rangle) \iff M^{n+1}_{x^{n-1}, \ldots, x^0} \models \varphi_i[x^{n+1}, x^n]$).

Clearly T^{n+1} is uniformly $\Sigma_1^{(n)}(M)$.

Lemma 2.6.17.

(a) T^{n+1} is $\Sigma_1^{(n)}$

(b) Let φ be Σ_j. Then $\langle \langle \bar{x}^{n+1}, \bar{x} \rangle | M^{n+1}_{\bar{x}} \models \varphi[\bar{x}^{n+1}] \rangle$ is $\Sigma_j^{(n+1)}$.

Proof: We first note that $M^{n+1}_{\bar{x}}$ can be written as $H_{\bar{x}} = \langle H^{n+1}_{\bar{x}}, A^{n+1}_{\bar{x}}, T^{n+1}_{\bar{x}} \rangle$, where $A^{n+1}(x^{n+1}, \bar{x}) \iff A(x^{n+1})$. Hence by Lemma 2.6.7:

(1) If (a) holds at n, so does (b). But (a) then follows by induction on n:

Case 1 $n = 0$ is trivial since $\models_1 \Sigma_1$ is $\Sigma_1(N)$ for all rud closed N.

Case 2 $n = m + 1$. Then $T^{(n+1)}$ is $\Sigma_1^{(n)}$ by (1) applied to m.

QED (Lemma 2.6.17)

We now prove a converse to Lemma 2.6.17.

Lemma 2.6.18. (a) Let $R(x^{n+1}, \ldots, x^0)$ be $\Sigma_1^{(n)}$. Then there is $i < \omega$ such that

$R(x^{n+1}, \bar{x}) \iff T^{n+1}(\langle i, x^{n+1}, \bar{x} \rangle)$.

(b) Let $R(\bar{x}^{n+1}, \ldots, x^0)$ be $\Sigma_1^{(n+1)}$. Then there is a Σ_1 formula φ such that

$R(\bar{x}^{n+1}, \bar{x}) \iff M^{n+1}_{\bar{x}} \models \varphi[\bar{x}^{n+1}]$.

Proof:

(1) Let (a) hold at n. Then so does (b).

Proof: We know that $R(\bar{x}^{n+1}, \bar{x}) \iff \bigvee z^{n+1} P(z^{n+1}, x^{n+1}, \bar{x})$ for a $\Sigma_0^{(n+1)}$ formula P. Hence it suffices to show:
Claim Let \(P(\vec{x}^{n+1}, \vec{x}) \) be \(\Sigma_0^{(n+1)} \). Then there is a \(\Sigma_1 \) formula \(\varphi \) such that
\[
P(\vec{x}^{n+1}, \vec{x}) \iff M^{n+1}_x \models \varphi[\vec{x}^{n+1}].
\]

Proof: We know that there are \(Q_i(\vec{z}^{n+1}_i, \vec{x})(i = 1, \ldots, p) \) such that \(Q_i \) is \(\Sigma_1^{(n)} \) and
\[
(2) \quad P(\vec{x}^{n+1}, \vec{x}) \iff H^{n+1}_x \models \varphi[\vec{x}^{n+1}]
\]
where \(\varphi \) is \(\Sigma_0 \) and
\[
H^{n+1}_x = \langle H^{n+1}, \vec{Q}_x \rangle.
\]
Applying (a) to the relation:
\[
\bigvee u^{n+1}(u^{n+1} = (\vec{z}^{n+1}_i) \land Q_i(\vec{z}^{n+1}_i, \vec{x}))
\]
we see that for each \(i \) there is \(j_i < \omega \) such that
\[
Q_i(\vec{z}^{n+1}_i, \vec{x}) \iff (j_i, (\vec{z}^{n+1})) \in T^{n+1}_{vec}\new.
\]
Thus \(Q_i, \vec{x} \) is uniformly \(\text{rud} \) in \(T^{n+1}_x \) for \(i = 1, \ldots, p \). \(P_x \) is the restriction of a relation \(\text{rud} \) in \(Q_{i,x}(i = 1, \ldots, p) \) to \(H^{n+1} \), by (2). By §2 Corollary 2.2.8 it follows that \(P_x \) is the restriction of a relation \(\text{rud} \) in \(T^{n+1}_x \) to \(H^{n+1} \) uniformly. Since \(M^{n+1}_x = \langle J^{A}_{en+1}, T^{n+1}_x \rangle \) is \(\text{rud closed} \), it follows by §2 Corollary 2.2.8 that:
\[
P(\vec{x}^{n+1}, \vec{x}) \iff M^{n+1}_x \models \varphi[\vec{x}^{n+1}]
\]
for a \(\Sigma_1 \) formula \(\varphi \). QED (1)

Given (1) we can now prove (a) by induction on \(n \).

Case 1 \(n = 0 \).
Since \(\Sigma_1 = \Sigma_1^{(0)} \), there is \(\varphi_i \) such that
\[
R(x^1, x^0) \iff M \models \varphi_i[x^1, x^0]
\]
\[
\iff T^1((i, x^1), x^0).
\]

Case 2 \(n = m + 1 \).
Let \(R(x^{n+1}, \ldots, x^0) \) be \(\Sigma_1^{(n)} \). By the induction hypothesis and (1) we know that (b) holds at \(n \). Hence:
\[
R(x^{n+1}, x^{m+1}, x^m, \ldots, x^0) \iff
\]
\[
\iff M^n_{x^m, \ldots, x^0} \models \varphi_i[x^{n+1}, x^{m+1}]
\]
for some \(i \). But then
\[
R(x^{n+1}, \ldots, x^0) \iff T^{n+1}((i, x^{n+1}), x^{m+1}, \ldots, x^0).
\]
QED (Lemma 2.6.18)
Note. The reductions in (a) and (b) are both uniform. We have in fact implicitly defined algorithms which in case (a) takes us from the $\Sigma_1^{(n)}$ definition of R to the integer i, and in case (b) takes us from the $\Sigma_1^{(n+1)}$ definition of R to the Σ_1 formula φ.

We now generalize the definition of *reduct* given in §2.5.2 as follows:

Definition 2.6.10. Let $a \in [\text{On}_M]<\omega$. Let $M^{0,a} := M$; $M^{n+1,a} := M^{n+1}_{a_0,\ldots,a_n}$ where $a^{(i)} = a \cap \rho^i_M$.

Thus $M^{n+1,a} = (J^A_{\rho^{n+1}}, T^{n+1,a})$ where $T^{n+1,a} := T^{n+1}_{a_0,\ldots,a_n}$.

Thus by Lemma 2.6.18

Corollary 2.6.19. Set $a^{(i)} = a \cap \rho^i$ for $a \in [\text{On}_M]<\omega$.

(a) If $D \subseteq H^{n+1}$ is $\Sigma_1^{(n)}$ in $a^{(0)},\ldots,a^{(n)}$, there is (uniformly) an $i < \omega$ such that

$$D(x^{n+1}) \leftrightarrow (i, x^{n+1}) \in T^{n+1,a}$$

(b) If $D(x^{n+1})$ is $\Sigma_1^{(n+1)}$ in $a^{(0)},\ldots,a^{(n)}$ there is (uniformly) a Σ_1 formula φ such that $D(x^{n+1}) \leftrightarrow M^{n+1,a} \models [x^{n+1}]$.

Note. Being $\Sigma_1^{(n)}$ in a is the same as being $\Sigma_1^{(n)}$ in $a^{(0)},\ldots,a^{(n)}$, but I do not see how this is uniformly so. To see that a $\Sigma_1^{(n)}$ relation R in $a^{(0)},\ldots,a^{(n)}$ is $\Sigma_1^{(n)}$ in a we note that for each n there is k such that $y = a \cap \rho^n \leftrightarrow \bigvee f$ (f is the monotone enumeration of a and $y = f''k$), which is Σ_1 in a. However, k cannot be inferred from the $\Sigma_1^{(n)}$ definition of R, so the reduction is not uniform.

We can generalize the good parameter sets P, R of §2.5.2 as follows:

Definition 2.6.11. $P^n_M := [\text{On}]^{<n}$.

P^{n+1}_M := the set of $a \in P^n_M$ such that there is D which is $\Sigma_1^{(n)}(M)$ in a with $D \cap H^n_M \notin M$.

(Thus we obviously have $P^1 = P$.)

Similarly:

Definition 2.6.12. $R^n_M := P^n_M$.

2.6. $\Sigma^*-\text{THEORY}$

$R_{M}^{n+1} =$: The set of $a \in R_{M}^{n}$ such that

\[M^{n,a} = h_{M^{n,a}}(\rho^{n+1} \cup (a \cap \rho^n)). \]

Comparing these definitions with those in §2.5.6 it is apparent that R_{M}^{n} has the same meaning and that, whenever $a \in R_{M}^{n}$, then $M^{n,a}$ is the same structure.

By a virtual repetition of the proof of Lemma 2.5.8 we get:

Lemma 2.6.20. $a \in P^{n} \leftrightarrow T^{na} \notin M$.

We also note the following fact:

Lemma 2.6.21. Let $a \in R^{n}$. Let D be $\Sigma_{1}^{(n)}$. Then D is $\Sigma_{1}^{(n)}$ in parameters from $\rho^{n+1} \cup \{a^{(0)}, \ldots, a^{(n)}\}$, where $a^{(i)} =: a \cap \rho^i$. (Hence $D \in \Sigma_{1}^{(n)}(M)$ in parameters from $\rho^{n+1} \cup \{a\}$.)

Proof: We use induction on n. Let it hold below n. Then:

\[D(\bar{x}) \leftrightarrow D'(\bar{x}; a^{(0)}, \ldots, a^{(n-1)}, \xi), \]

where $\xi_1, \ldots, \xi_r < \rho^n$. (If $n = 0$ the sequence $a^{(0)}, \ldots, a^{(n-1)}$ is vacuous and $\rho^n = On_{M}$.)

Let $\xi_i = h_{M^{n+1}}(j_i, \langle \mu_i, a^{(n)} \rangle)$, where $\mu_1, \ldots, \mu_r < \rho^{n+1}$. The functions:

\[F_i(\bar{x}) \simeq h_{M^{n+1}}(j_i, \langle \bar{x}, a^{(n)} \rangle) \]

are $\Sigma_{1}^{(n)}$ to H^n in the parameters $a^{(0)}, \ldots, a^{(n)}$. But $D(\bar{x})$ then has the form:

\[D'(\bar{x}, a^{(0)}, \ldots, a^{(n-1)}, F_1(\mu_1), \ldots, F_r(\mu_r)), \]

which is $\Sigma_{1}^{(n)}$ in $a^{(0)}, \ldots, a^{(n)}, \mu_1, \ldots, \mu_r$ by Corollary 2.6.12.

QED (Lemma 2.6.21)

Definition 2.6.13. π is a $\Sigma_{h}^{(n)}$ preserving map of \overline{M} to M (in symbols $\pi : \overline{M} \rightarrow \Sigma_{h}^{(n)} M$) iff the following hold:

- \overline{M}, M are acceptable structures of the same type.
- $\pi''H_{M}^{i} \subseteq H_{M}^{i}$ for $i \leq n$.
- Let $\varphi = \varphi(v_{1}^{j_1}, \ldots, v_{m}^{j_{m}})$ be a $\Sigma_{h}^{(n)}$ formula with a good sequence \vec{v} of variables such that $j_1, \ldots, j_m \leq n$. Let $x_i \in H_{\overline{M}}^{j_i}$ for $i = 1, \ldots, m$. Then:

\[\overline{M} \models \varphi[\vec{x}] \leftrightarrow M \models \varphi[\pi(\vec{x})]. \]
π is then a structure preserving injection. If it is \(\Sigma^{(n)}_h \)-preserving, it is \(\Sigma^{(m)}_1 \)-preserving for \(m < n \) and \(\Sigma^{(n)}_i \)-preserving for \(i < h \). If \(h \geq 1 \) then \(\pi^{-1}H^M_{M} \subset H^M_{h} \), as can be seen using:

\[
x \in H^M_{h} \leftrightarrow M \models \bigvee u^n u^n = v^0 [x].
\]

We say that \(\pi \) is strictly \(\Sigma^{(n)}_h \) preserving (in symbols \(\overline{M} \rightarrow \Sigma^{(n)}_h \) \(M \) strictly) iff it is \(\Sigma^{(n)}_h \) preserving and \(\pi^{-1}H^M_{h} \subset H^M_{h} \). (Only if \(h = 0 \) can the embedding fail to be strict.)

We say that \(\pi \) is \(\Sigma^*_n \) preserving (\(\pi : \overline{M} \rightarrow \Sigma^*_n \) \(M \)) iff it is \(\Sigma^{(n)}_1 \) preserving for all \(n < \omega \). We call \(\pi \) \(\Sigma^{(n)}_{\omega} \) preserving iff it is \(\Sigma^{(n)}_h \) preserving for all \(h < \omega \).

Good functions

Let \(n < \omega \). Consider the class \(\mathcal{F} \) of all \(\Sigma^{(n)}_1 \) functions \(F(x^{i_1}, \ldots, x^{i_m}) \) to \(H^j \), where \(j, i_1, \ldots, i_m \leq n \). This class is not necessarily closed under composition. If, however, \(\mathcal{G}^0 \) is the class of \(\Sigma^{(j)}_1 \) functions \(G(z^{i_1}, \ldots, z^{i_m}) \) to \(H^j \) where \(j, i_1, \ldots, i_m \leq n \), then \(\mathcal{G}^0 \subset \mathcal{F} \) and, as we have seen, elements of \(\mathcal{G}^0 \) can be composed into elements of \(\mathcal{F} \) — i.e. if \(F(z^{i_1}, \ldots, z^{i_m}) \) is in \(\mathcal{F} \) and \(G_i(\bar{x}) \) is in \(\mathcal{G}^0 \) for \(i = 1, \ldots, m \), then \(F(G(\bar{x})) \) lies in \(\mathcal{F} \). The class \(\mathcal{G} \) of good \(\Sigma^{(n)}_1 \) functions is the result of closing \(\mathcal{G}^0 \) under composition. The elements of \(\mathcal{G} \) are all \(\Sigma^{(n)}_1 \) functions and \(\mathcal{G} \) is closed under composition. The precise definition is:

Definition 2.6.14. Fix acceptable \(M \). We define sets \(\mathcal{G}^k = \mathcal{G}^k_n \) of \(\Sigma^{(n)}_1 \) functions by:

\[
\mathcal{G}^0 = \text{The set of partial } \Sigma^{(i)}_1 \text{ maps } F(x_1^{j_1}, \ldots, x_m^{j_m}) \text{ to } H^j, \text{ where } i \leq n \text{ and } j_1, \ldots, j_m \leq n.
\]

\[
\mathcal{G}^{k+1} = \text{The set of } H(\bar{x}) \simeq G(\bar{F}(\bar{x})), \text{ such that } G(y_1^{j_1}, \ldots, y_m^{j_m}) \text{ is in } G^k \text{ and } F_l \in \mathcal{G}^0 \text{ is a map to } j_l \text{ for } l = 1, \ldots, m.
\]

It follows easily that \(\mathcal{G}^k \subset \mathcal{G}^{k+1} \) (since \(G(\bar{y}) \simeq G(\bar{h}(\bar{y})) \) where \(h(y_1^{j_1}, \ldots, y_m^{j_m}) = y_i^{j_i} \) for \(i = 1, \ldots, m \). \(\mathcal{G} = \mathcal{G}_n =: \bigcup_k \mathcal{G}^k \) is then the set of all good \(\Sigma^{(n)}_1 \) functions \(\mathcal{G}^* = \bigcup_n \mathcal{G}_n \) is the set of all good \(\Sigma^*_n \) functions. All good \(\Sigma^{(n)}_1 \) functions have a functionally absolute \(\Sigma^{(n)}_1 \) definition. Moreover, the good \(\Sigma^{(n)}_1 \) functions are closed under permutation of arguments, insertion of dummy
arguments, and fusion of arguments of same type (i.e. if $F(x_0^{i_0}, \ldots, x_{m-1}^{j_{m-1}})$
is good, then so is $F'(y) \simeq F(y_{\sigma(1)}, \ldots, y_{\sigma(m)})$ where $\sigma : m \to p$ such that
$j_{\sigma(l)} = i_l$ for $l < m$.

To see this, one proves by a simple induction on k that:

Lemma 2.6.22. Each G^k_n has the above properties.

The proof is quite straightforward. We then get:

Lemma 2.6.23. The good $\Sigma_1^{(n)}$ functions are closed under composition:
Let $G(y_1^{j_1}, \ldots, y_m^{j_m})$ be good and let $F_i(x)$ be a good function to H^{j_i} for
$l = 1, \ldots, m$. Then the function $G(F(x))$ is good.

Proof: By induction in $k < \omega$ we prove:

Claim The above holds for $F_i \in G^k(l = 1, \ldots, m)$.

Case 1 $k = 0$.
This is trivial by the definition of "good function".

Case 2 $k = h + 1$.
Let:

$$F_i(x) \simeq H_i(F_{i,1}(x), \ldots, F_{i,p_i}(x))$$

for $l = 1, \ldots, m$, where $H_i(z_{l,1}, \ldots, z_{l,p_i})$ is in G^h and $F_{i,l} \in G^0$ is a
map to H^{j_i} for $l = 1, \ldots, m, i = 1, \ldots, p_i$.
Let $\langle \langle l, i \rangle, \xi \rangle | \xi = 1, \ldots, p \rangle$ enumerate

$$\{ \langle l, i \rangle | l = 1, \ldots, m; i = 1, \ldots, p_i \}.$$

Define $\sigma_i : \{1, \ldots, p_i\} \to \{1, \ldots, p\}$ by:

$$\sigma_i(i) = \text{that } \xi \text{ such that } \langle l, i \rangle = \langle l, \xi \rangle.$$

Set:

$$H_i'(z_1, \ldots, z_{p_i}) \simeq H_i(z_{\sigma_i(1)}, \ldots, z_{\sigma_i(p_i)})$$

for $l = 1, \ldots, m$. $F_{\xi}' = F_{l,\xi i,\xi}$ for $\xi = 1, \ldots, p$.
Clearly we have:

$$F_i(x) = H_i'(F_{i,1}'(x), \ldots, F_{p_i}'(x))$$

where $H_i' \in G^h$ for $l = 1, \ldots, m$. Set:

$$G'(z_1, \ldots, z_p) \simeq G(H_1(x), \ldots, H_m(x)).$$
CHAPTER 2. BASIC FINE STRUCTURE THEORY

Then G' is a good $\Sigma_1^{(n)}$ function by the induction hypothesis. But:

$$G(\bar{x}) \simeq G'(F_1(\bar{x}), \ldots, F_p(\bar{x})).$$

The conclusion then follows by Case 1, since $F_i' \in \mathcal{G}^0$ for $i = 1, \ldots, p$.

QED (Lemma 2.6.23)

An entirely similar proof yields:

Lemma 2.6.24. Let $R(x_1, \ldots, x_r)$ be a good $\Sigma_1^{(n)}$ map to $H^i(L = 1, \ldots, m)$. Then $R(\bar{x})$ is $\Sigma_1^{(n)}$.

Recall that $R(\bar{x})$ means:

$$\bigwedge_{i=1}^r y_i \land R(y_1, \ldots, y_r).$$

Applying Corollary 2.6.13 we also get:

Lemma 2.6.25. Let $n = m + 1$. Let $R(x_1, \ldots, x_r)$ be a good $\Sigma_1^{(n)}$ map to $H^i(L = 1, \ldots, m)$. Then $R(\bar{x})$ is $\Sigma_1^{(n)}$.

By a reindexing of a function $G(x_1, \ldots, x_r)$ we mean any function G' which is a reindexing of G as a relation. (In other words G, G' have the same field, i.e.

$$G(\bar{x}) \simeq G'(\bar{x}) \text{ for all } x_1, \ldots, x_r \in M.)$$

Then:

Corollary 2.6.26. Let $G(x_1, \ldots, x_r)$ be a good $\Sigma_1^{(m)}$ map to H^i. Let $G'(y_1, \ldots, y_r)$ be a map to H^j, where $j, j_1, \ldots, j_r \leq n$. If G' is a reindexing of G, then G' is a good $\Sigma_1^{(m)}$ function.

Proof: $G'(y) \simeq F(G(F_1(y_1), \ldots, F(y_r)))$ where F is defined by $x^i = y^i$ and F_1 is defined by $x_1^i = y_1^i$. (Then e.g.

$$F(y) = \begin{cases} y & \text{if } y \in H^m_{M}^{\min\{i,j\}}, \\
\text{undefined if not.} & \end{cases}$$

where F is a map to i with arity j.)

But F_1, \ldots, F_r are $\Sigma_1^{(n)}$ good.

QED (Corollary 2.6.26)

The statement made earlier that every good $\Sigma_1^{(n)}$ function has a functionally absolute $\Sigma_1^{(n)}$ definition can be improved. We define:
Definition 2.6.15. φ is a good $\Sigma_1^{(n)}$ definition iff φ is a $\Sigma_1^{(n)}$ formula which defines a good $\Sigma_1^{(n)}$ function over any acceptable M of the given type.

Lemma 2.6.27. Every good $\Sigma_1^{(n)}$ function has a good $\Sigma_1^{(n)}$ definition.

Proof: By induction on k we show that it is true for all elements of G^k. If $F \in G^0$, then F is a $\Sigma_1^{(i)}$ map to H^i for an $i \leq n$. Hence any functionally absolute $\Sigma_1^{(i)}$ definition will do. Now let $F \in G^{k+1}$. Then $F(\vec{x}) \simeq G(H_1(\vec{x}), \ldots, H_p(\vec{x}))$ where $G \in G^k$ and $H_i \in G^0$ for $i = 1, \ldots, p$. Then G has a good definition φ and every H_i has a good definition Ψ_i. By the uniformity expressed in Corollary 2.6.14 there is a $\Sigma_1^{(n)}$ formula χ such that, given any acceptable M of the given type, if φ defines G' and Ψ_i defines $H'_i(i = 1, \ldots, p)$, then χ defines $F'(\vec{x}) \simeq G'(\vec{H}(\vec{x}))$. Thus χ is a good $\Sigma_1^{(n)}$ definition of F.

QED (Lemma 2.6.27)

Definition 2.6.16. Let $a \in [\text{On}_M]^{<\omega}$. We define partial maps h_a from $\omega \times H^n$ to H^n by:

$$h^n_a(i, x) \simeq: h_{M^n.a}(i, \langle x, a^{(n)} \rangle).$$

Then h^n_a is uniformly $\Sigma_1^{(n)}$ in $a^{(n)}, \ldots, a^{(0)}$. We then define maps \tilde{h}^n_a from $\omega \times H^n$ to H^0 by:

$$\tilde{h}^0_a(i, x) \simeq h^n_a(i, x)$$

$$\tilde{h}^{n+1}_a(i, x) \simeq \tilde{h}^n_a(i)_0, h^{n+1}_a((i)_1, x)).$$

Then \tilde{h}^n_a is a good $\Sigma_1^{(n)}$ function uniformly in $a^{(n)}, \ldots, a^{(0)}$.

Clearly, if $a \in R^{n+1}$, then

$$h^{n+1}_a(\omega \times \rho^{n+1}) = H^n.$$

Hence:

Lemma 2.6.28. If $a \in R^{n+1}$, then $\tilde{h}^{n+1}_a(\omega \times \rho^{n+1}) = M$.

Corollary 2.6.29. If $R^n \neq \emptyset$, then $\Sigma_1 \subset \Sigma_l^{(n)}$ for $l \geq 1$.

Proof: Trivial for $n = 0$, since $\Sigma_0 = \Sigma_0$. Now let $n = m + 1$. Set:

$D = H^n \cap \text{dom}(h^n_a)$, where $a \in R^n$. Then D is $\Sigma_1^{(n)}$ by Lemma 2.6.24, since:

$$x^n \in D \iff h^n_a(x^n) = h^n_a(x^n)$$

$$\iff \forall z^0 z^0 = h^n_a(x^n) \land z^0 = z^0).$$
Let $R(\vec{x})$ be $\Sigma_i(M)$. Let

$$R(\vec{x}) \leftrightarrow Q_1z_1 \ldots Q_\ell P(\vec{z}, \vec{x})$$

where P is Σ_0. Set:

$$P'(\bar{w}^\ell, \vec{x}) \leftrightarrow P(\bar{h}^\ell(\bar{w}^\ell), \vec{x}).$$

Then P' is $\Sigma_1^{(n)}$ in a. But for $u_1^0, \ldots, u_\ell^\ell \in D$, $-P'(\bar{w}^\ell, \vec{x})$ can also be written as a $\Sigma_1^{(n)}$ formula. Hence

$$R(\vec{x}) \leftrightarrow Qu_1^0 \ldots Qu_\ell^\ell \in D \ldots Qu_\ell^\ell \in DP'(\bar{w}^\ell, \vec{x})$$

is $\Sigma_1^{(n)}$ in a. QED (Corollary 2.6.29)

We have seen that every $\Sigma_\omega^{(n)}$ relation is Σ_ω. Hence:

Corollary 2.6.30. Let $R^n \neq \emptyset$. Then $\Sigma_\omega^{(n)} = \Sigma_\omega$.

An obvious corollary of Lemma 2.6.28 is:

Corollary 2.6.31. Let $a \in R^n_M$. Then every element of M has the form $F(\xi, a^{(0)}, \ldots, a^{(n)})$ where F is a good $\Sigma_1^{(n)}$ function and $\xi < \rho^{n+1}$.

Using this we now prove a downward extension of embeddings lemma which strengthens and generalizes Lemma 2.5.12

Lemma 2.6.32. Let $n = m + 1$. Let $a \in [\text{On}_M]^{<\omega}$ and let $N = M^{na}$. Let $\pi : \bar{N} \to \Sigma_j N$, where \bar{N} is a J-model. Then:

(a) There are unique \bar{M}, \bar{a} such that $\bar{a} \in R^a_M$ and $\bar{M}^{\pi\bar{a}} = \bar{N}$.

(b) There is a unique $\pi \supset \bar{\pi}$ such that $\pi : \bar{M} \to \Sigma^a_M$ M strictly and $\bar{\pi}(\bar{a}) = a$.

(c) $\pi : \bar{M} \to \Sigma_j^a M$.

Proof: We first prove existence, then uniqueness. The existence assertion in (a) follows by:

Claim 1 There are $\bar{M}, \bar{a}, \bar{\pi} \supset \bar{\pi}$ such that $\bar{M}^{\pi\bar{a}} = \bar{N}$, $a \in R^a_M$.

$\bar{\pi} : \bar{M} \to \Sigma_j M$, $\bar{\pi}(\bar{a}) = a$.

Proof: We proceed by induction on m. For $m = 0$ this immediate by Lemma 2.5.12. Now let $m = h + 1$. We first apply Lemma 2.5.12 to M^{ma}. It is clear from our definition that $\rho_{M^{ma}} \geq \rho_M^n$. Set $N' = (M^{ma})^{\rho^{n+1}_M}$, then $N' = \langle J_{\rho'}^A, T' \rangle$, where $\rho' = \rho_M^{ma}$. But it is clear from our definition that $T^{na} = T' \cap J_{\rho'_M}^A$. Hence:
2.6. Σ^*–THEORY

(1) $\pi : \overline{N} \rightarrow \Sigma_0 N'$.

By Lemma 2.5.12 there are then $\bar{M}, a, \bar{\pi} \supset \pi$ such that $\bar{M} \bar{a} = N'$, $\bar{a} \in R_{\bar{M}}, \bar{\pi} : \bar{M} \rightarrow \Sigma_1 M^{\bar{m}, a}$ and $\bar{\pi}(\bar{a}) = a \cap \rho^m_M = a^{(m)}$.

(NotE: Throughout this proof we use the notation:

$$a^{(i)} = a \cap \rho^i$$

for $i = 0, \ldots, m$.)

By the induction hypothesis there are then $\overline{M}, a, \bar{\pi} \supset \pi$ such that $\overline{M}^{\bar{m}} = M, \bar{\pi} : \overline{M} \rightarrow \Sigma_1 M$, and $\bar{\pi}(\bar{a}) = a$.

We observe that:

(2) $\bar{a} = a \cap \rho^m_M$.

Proof:

(\lor) Let $\rho =: \rho^m_M = \text{On} \cap \bar{M}$. Then $\bar{a} \subset \rho$. But $\bar{\pi}(\bar{a}) = \bar{\pi}(\bar{a}) = a \cap \rho^m_M \subset a = \bar{\pi}(\bar{a})$. Hence $\bar{a} \subset a$.

(\lor) $\bar{\pi}(\bar{a}) = \bar{\pi}(a \cap \rho) \subset (\rho \cap \bar{M}) \cap a = \bar{\pi}(\bar{a})$, since $\rho'' \rho \subset \rho^m_M$. Hence $\bar{\pi}(\bar{a}) = \bar{\pi}(\bar{a})$. QED (2)

Since $\bar{a} \in R^{\rho_m}_{\overline{M}}$ we conclude that $a \in R^m_M$ and $\overline{N} = (M^{m, a} \cap \rho) = \overline{M}^{m, \bar{a}}$. QED (Claim 1)

We now turn to the existence assertion in (b).

Claim 2 Let $\overline{M} = N$ and $\bar{a} \in R^m_M$ there is $\pi \supset \bar{\pi}$ such that $\pi : \overline{M} \rightarrow \Sigma_1^{(m)} M$ and $\pi(\bar{a}) = a$.

Proof: Let $x_1, \ldots, x_n \in \overline{M}$ with $x_i = \overline{F}_i(z_i)(i = 1, \ldots, r)$, where \overline{F}_i is a $\Sigma_1^{(m)}(\overline{M})$ good function in the parameters $\bar{\pi}^{(0)}, \ldots, \bar{\pi}^{(n)}$ and $z_i \in \overline{N}$. Let F_i have the same $\Sigma_1^{(m)}(M)$–good definition in $a^{(0)}, \ldots, a^{(m)}$. Let $R(u_1, \ldots, u_r)$ be a $\Sigma_1^{(n)}(\overline{M})$ relation and let R be $\Sigma_1^{(n)}(M)$ by the same definition.

Then $R(\overline{F}_1(z_1), \ldots, \overline{F}_r(z_r))$ is $\Sigma_1^{(m)}(\overline{M})$ in $\bar{\pi}^{(0)}, \ldots, \bar{\pi}^{(m)}$ and $R(F_1(z_1), \ldots, F_r(z_r))$ is $\Sigma_1^{(m)}(M)$ in $a^{(0)}, \ldots, a^{(m)}$ by the same definition. Hence there is $i < \omega$ such that

$$R(\overline{F}(\bar{z})) \leftrightarrow (i, < \bar{z}) \in \overline{T}$$

$$R(F(z)) \leftrightarrow (i, < z) \in T$$

where $\overline{N} = \langle \overline{F}, T, N = \langle F^A, T \rangle$. Thus $R(\overline{F}(\bar{z}))$ is rud in \overline{N} and $R(F(z))$ is rud in N by the same rud definition. But $\pi : \overline{N} \rightarrow \Sigma_0 N$.

Hence:

$$\overline{R}(\overline{F}_1(z_1), \ldots, \overline{F}_r(z_r)) \leftrightarrow R(F_1(\pi(z_1)), \ldots, F_r(\pi(z_r))).$$
Thus there is \(\pi : \mathcal{M} \rightarrow \mathcal{N} \) defined by \(\pi(F(\xi)) = F(\pi(\xi)) \) whenever \(\xi \in \text{On} \cap \mathcal{N} \), \(F \) is \(\Sigma^1_{\xi} \)(\(\mathcal{M} \))–good in \(\Sigma^0_{\theta} \), \(\pi^0_{\theta} \) and \(F \) is \(\Sigma^1_{\xi} \)(\(\mathcal{M} \))–good in \(\alpha^0_{\theta} \), \(\alpha^m \) by the same definition. But then
\[
\pi(z) = \pi(id(z)) = \pi(z) \text{ for } z \in \mathcal{N}.
\]
Hence \(\pi \supset \pi \). But clearly
\[
\pi(\alpha) = \pi(\alpha^0 \cup \cdots \cup \alpha^m) = \alpha^0 \cup \cdots \cup \alpha^m = a.
\]
QED (Claim 2)

We now verify (c):

Claim 3 Let \(\mathcal{M}, \pi, \pi \) be as in Claim 2. Then \(\pi : \mathcal{M} \rightarrow \mathcal{N} \).

Proof: We first note that \(\pi \), being \(\Sigma^1_{\xi} \)–preserving, is strictly so — i.e. \(\rho^\pi_M = \pi^{-1} \rho^\pi_M \) for \(i = 0, \ldots, m \). It follows easily that:
\[
\pi(\alpha^i) = \pi(\alpha^i) = \alpha^i \text{ for } i = 0, \ldots, m.
\]
We now proceed the cases.

Case 1 \(j = 0 \).

It suffices to show that if \(\varphi \) is \(\Sigma^1_{\xi} \) and \(x_1, \ldots, x_r \in \mathcal{N} \), then
\[
\mathcal{M} \models \varphi[x_1, \ldots, x_r] \rightarrow M \models \varphi[\pi(x_1), \ldots, \pi(x_r)].
\]
Let \(x_1, \ldots, x_r \in \mathcal{M} \). Then \(x_i = F_i(z_i)(i = 1, \ldots, r) \) where \(z_i \in \mathcal{N} \) and \(F_i \) is \(\Sigma^1_{\xi}(\mathcal{M}) \)–good in \(\alpha^0, \ldots, \alpha^m \). Let \(F_i \) be \(\Sigma^1_{\xi}(\mathcal{M}) \)–good in \(\alpha^0, \ldots, \alpha^m \) by the same good definition.

By Corollary 2.6.19, we know that \(\mathcal{M} \models \varphi[F_1(z_1), \ldots, F_r(z_r)] \) is equivalent to
\[
\mathcal{N} \models \Psi[z_1, \ldots, z_r]
\]
for a certain \(\Sigma_1 \) formula \(\Psi \). The same reduction on the \(M \) side shows that \(M \models \varphi[F_1(z_1), \ldots, F_r(z_r)] \) is equivalent to: \(N \models \Psi[z_1, \ldots, z_r] \) for \(z_1, \ldots, z_r \in \mathcal{N} \), where \(\Psi \) is the same formula.

Since \(\pi \) is \(\Sigma_0 \)–preserving we then get:
\[
\mathcal{M} \models \varphi[\pi(x)] \leftrightarrow \mathcal{N} \models \varphi[\pi(z)]
\]
\[
\leftrightarrow \mathcal{N} \models \Psi[\pi(z)]
\]
\[
\rightarrow N \models \Psi[\pi(z)]
\]
\[
\leftrightarrow M \models \varphi[F(\pi(z))]
\]
\[
\leftrightarrow M \models \varphi[\pi(\pi(z))].
\]
QED (Case 1)
2.6. $\Sigma^*-\text{THEORY}$

Case 2 $j > 0$.

This is entirely similar. Let φ be $\Sigma_j^{(n)}$. By Corollary 2.6.19 it follows easily that there is a Σ_j formula Ψ such that: $\overline{M} \models \varphi[F_1(z_1), \ldots, F_r(z_r)]$ is equivalent to:

$$\overline{N} \models \Psi[z_1, \ldots, z_r].$$

Since the corresponding reduction holds on the M–side, we get

$$\overline{M} \models \varphi[\overline{x}] \leftrightarrow M \models \varphi[\pi(\overline{x})],$$

since $\pi(x_i) = \pi(F_i(z_i)) = F_i(\pi(z_i))$. QED (Claim 3)

This proves existence. We now prove uniqueness.

Claim 4 The uniqueness assertion of (a) holds.

Proof: Let \hat{M}, \hat{a} be such that $\hat{M}^n, \hat{a} = \overline{N}$ and $\hat{a} \in R^N_M$.

Claim $\hat{M} = \overline{M}, \hat{a} = \pi$.

Proof: By a virtual repetition of the proof in Claim 2 there is a $\pi : \hat{M} \to \Sigma_1^{(m)} \overline{M}$ defined by:

1. $\pi(\hat{F}(z)) = \overline{F}(z)$ whenever $z \in \overline{N}$, \hat{F} is a good $\Sigma_1^{(m)}(\hat{M})$ function in $\hat{a}^{(0)}, \ldots, \hat{a}^{(m)}$ and \overline{F} is the $\Sigma_1^{(m)}(\overline{M})$ function in $\pi^{(0)}, \ldots, \pi^{(m)}$ with the same good definition.

But π is then onto. Hence π is an isomorphism of \hat{M} with \overline{M}. Since \hat{M}, \overline{M} are transitive, we conclude that $\overline{M} = \hat{M}, \pi = \hat{a}$. QED (Claim 4)

Finally we prove the uniqueness assertion of (b):

Claim 5 Let $\pi' : \overline{M} \to \Sigma_0^{(m)} M$ strictly, such that $\pi'(\overline{a}) = a$. Then $\pi' = \pi$.

Proof: By strictness we can again conclude that $\pi'(\overline{a}^{(i)}) = a^{(i)}$ for $i = 0, \ldots, m$. Let $x \in \overline{M}, x = \overline{F}(z)$, where $z \in \overline{N}$ and \overline{F} is a $\Sigma_1^{(m)}(\overline{M})$ good function in the parameters $\overline{a}^{(0)}, \ldots, \overline{a}^{(m)}$. Let F be $\Sigma_1^{(m)}(M)$ in $a^{(0)}, \ldots, a^{(m)}$ by the same good definition.

The statement: $x = \overline{F}(z)$ is $\Sigma_2^{(m)}(\overline{M})$ in $\pi^{(0)}, \ldots, \pi^{(m)}$. Since π' is $\Sigma_0^{(m)}$–preserving, the corresponding statement must hold in M — i.e. $\pi'(x) = F(\pi(z)) = \pi(x)$. QED (Lemma 2.6.32)
2.7 Liftups

2.7.1 The Σ_0 liftup

A concept which, under a variety of names, is frequently used in set theory is the liftup (or as we shall call it here, the Σ_0 liftup). We can define it as follows:

Definition 2.7.1. Let M be a J–model. Let $\tau > \omega$ be a cardinal in M. Let $H = H^M_\tau \in M$ and let $\pi : H \to_{\Sigma_0} H'$ cofinally. We say that $\langle M', \pi' \rangle$ is a Σ_0 liftup of $\langle M, \pi \rangle$ iff M' is transitive and:

(a) $\pi' \supset \pi$ and $\pi' : M \to_{\Sigma_0} M'$

(b) Every element of M' has the form $\pi'(f)(x)$ for an $x \in H'$ and an $f \in \Gamma^0$, where $\Gamma^0 = \Gamma^0(\tau, M)$ is the set of functions $f \in M$ such that $\text{dom}(f) \in H$.

Note. The condition of being a J–model can be relaxed considerably, but that is uninteresting for our purposes.

Until further notice we shall use the word 'liftup' to mean 'Σ_0 liftup'.

If $\langle M', \pi' \rangle$ is a liftup of $\langle M, \pi \rangle$ it follows easily that:

Lemma 2.7.1. $\pi' : M \to_{\Sigma_0} M'$ cofinally.

Proof: Let $y \in M'$, $y = \pi'(f)(x)$ where $x \in H'$ and $f \in \Gamma^0$, then $y \in \pi'(\text{rng}(f))$. QED (Lemma 2.7.1)

Lemma 2.7.2. $\langle M', \pi' \rangle$ is the only liftup of $\langle M, \pi \rangle$.

Proof: Suppose not. Let $\langle M^*, \pi^* \rangle$ be another liftup. Let $\varphi(v_1, \ldots, v_n)$ be Σ_0. Then

$M' \models \varphi[\pi'(f_1)(x_1), \ldots, \pi'(f_n)(x_n)] \leftrightarrow$

$\langle x_1, \ldots, x_n \rangle \in \pi(\{\langle \bar{z} \rangle | M \models \varphi[\bar{f}(\bar{z})]\}) \leftrightarrow$

$M^* \models \varphi[\pi^*(f_1)(x_1), \ldots, \pi^*(f_n)(x_n)]$.

Hence there is an isomorphism σ of M' onto M^* defined by:

$\sigma(\pi'(f)(x)) = \pi^*(f)(x)$

for $f \in \Gamma^0$, $x \in \pi(\text{dom}(f))$.

But M', M^* are transitive. Hence $\sigma = \text{id}$, $M' = M^*$, $\pi' = \pi^*$.

QED (Lemma 2.7.2)
2.7. LIFTUPS

Note. $M \models \varphi[\bar{f}(\bar{z})]$ means the same as

$$\forall y_1 \ldots y_n (\bigwedge_{i=1}^{n} y_i = f_i(z_i) \land M \models \varphi[\bar{y}]).$$

Hence if $e = \{(\bar{z})|M \models \varphi[\bar{f}(\bar{z})]\}$, then $e \subset \sum_{i=1}^{n} \text{dom}(f_i) \in H$. Hence $e \in M$ by rud closure, since e is $\Sigma_0(M)$. But then $e \in H$, since $\mathbb{P}(u) \cap M \subset H$ for $u \in H$.

But when does the liftup exist? In answering this question it is useful to devise a 'term model' for the putative liftup rather like the ultrapower construction:

Definition 2.7.2. Let $M, \tau, \pi : H \to \Sigma_0 H'$ be as above. The term model $D = D(M, \pi)$ is defined as follows. Let e.g. $M = \langle J_0^A, B \rangle$. $D =: \langle D, \equiv, \bar{\varepsilon}, \bar{A}, \bar{B} \rangle$ where

D is the set of pairs (f, x) such that $f \in \Gamma_0$ and $x \in H'$

$$\langle f, x \rangle \equiv \langle g, y \rangle \iff \langle x, y \rangle \in \pi(\{\langle z, w \rangle|f(z) = g(y)\})$$

$$\langle f, x \rangle \bar{\varepsilon} \langle g, y \rangle \iff \langle x, y \rangle \in \pi(\{\langle z, w \rangle|f(z) = g(y)\})$$

$$\bar{A}\langle f, x \rangle \iff x \in \pi(\{z|A f(z)\})$$

$$\bar{B}\langle f, x \rangle \iff x \in \pi(\{z|B f(z)\})$$

Note. D is an 'equality model', since the identity predicate $= \equiv$ rather than the identity.

Łos theorem for D then reads:

Lemma 2.7.3. Let $\varphi = \varphi(v_1, \ldots, v_n)$ be Σ_0. Then

$$D \models \varphi[\langle f_1, x_1 \rangle, \ldots, \langle f_n, x_n \rangle] \iff \langle x_1, \ldots, x_n \rangle \in \pi(\{\langle \bar{z} \rangle|M \models \varphi[\bar{f}(\bar{z})]\}).$$

Proof: (Sketch)

We prove this by induction on the formula φ. We display a typical case of the induction. Let $\varphi = \bigvee u \in v_1 \Psi$. By bound relettering we can assume $w.l.o.g.$ that u is not among v_1, \ldots, v_n. Hence u, v_1, \ldots, v_n is a good sequence for Ψ. We first prove (\rightarrow). Assume:

$$D \models \varphi[\langle f_1, x_1 \rangle, \ldots, \langle f_n, x_n \rangle].$$

Claim $(x_1, \ldots, x_n) \in \pi(e)$ where

$$e = \{\langle z_1, \ldots, z_n \rangle|M \models \varphi[f_1(z_1) \ldots f_n(z_n)\}.$$
CHAPTER 2. BASIC FINE STRUCTURE THEORY

Proof: By our assumption there is \(\langle g, y \rangle \in D \) such that \(\langle g, y \rangle \Vdash \langle f_1, x_1 \rangle \) and:

\[
D \models \Psi[\langle g, y \rangle, \langle f_1, x_1 \rangle, \ldots, \langle f_n, x_n \rangle].
\]

By the induction hypothesis we conclude that \(\langle y, \bar{x} \rangle \in \pi(\bar{e}) \) where:

\[
\bar{e} = \{ \langle w, \bar{z} \rangle \mid g(w) \in f_1(z_1) \land M \models \Psi[g(w), \bar{f}(\bar{z})].
\]

Clearly \(e, \bar{e} \in H \) and

\[
H \models \bigwedge w, \bar{z}(\langle w, \bar{z} \rangle \in \bar{e} \rightarrow (\bar{z} \in e).
\]

Hence

\[
H' \models \bigwedge w, \bar{z}(\langle w, \bar{z} \rangle \in \pi(e) \rightarrow (\bar{z} \in \pi(e)).
\]

Hence \(\langle \bar{x} \rangle \in \pi(e). \) QED \((\rightarrow)\)

We now prove \((\leftarrow)\)
We assume that \(\langle x_1, \ldots, x_n \rangle \in \pi(e) \) and must prove:

Claim \(D \models \varphi[\langle f_1, x_1 \rangle, \ldots, \langle f_n, x_n \rangle]. \)

Proof: Let \(r \in M \) be a well ordering of \(\text{rng}(f_1). \) For \(\langle \bar{z} \rangle \in e \) set:

\[
g(\langle \bar{z} \rangle) = \text{the } r-\text{least } w \text{ such that}
M \models \Psi[w, f_1(z_1), \ldots, f_n(z_n)].
\]

Then \(g \in M \) and \(\text{dom}(g) = e \in H. \) Now let \(\bar{e} \) be defined as above with this \(g. \) Then:

\[
H \models \bigwedge z_1, \ldots, z_n(\langle \bar{z} \rangle \in e \leftrightarrow (\langle \bar{z}, \bar{z} \rangle \in \bar{e}).
\]

But then the corresponding statement holds of \(\pi(e), \pi(\bar{e}) \) in \(H'. \) Hence

\[
\langle \langle \bar{x} \rangle, \bar{x} \rangle \in \pi(\bar{e}).
\]

By the induction hypothesis we conclude:

\[
D \models \Psi[\langle g, \langle \bar{x} \rangle \rangle, \langle f_1, x_1 \rangle, \ldots, \langle f_n, x_n \rangle].
\]

The conclusion is immediate. QED (Lemma 2.7.3)

The liftup of \(\langle M, \pi \rangle \) can only exist if the relation \(\bar{e} \) is well founded:

Lemma 2.7.4. Let \(\bar{e} \) be ill founded. Then there is no \(\langle M', \pi' \rangle \) such that \(\pi' : M \rightarrow_{\Sigma_0} M'. \) \(M' \) is transitive, and \(\pi' \supset \pi. \)
2.7. LIFTUPS

Proof: Suppose not. Let \(\langle f_{i+1}, x_{i+1} \rangle \notin \langle f_i, x_i \rangle \) for \(i < w \). Then

\[
\langle x_{i+1}, x_i \rangle \in \pi\{\langle z, w \rangle | f_{i+1}(z) \in f_i(w)\}.
\]

Hence \(\pi'(f_{i+1})(x_{i+1}) \in \pi'(f_i)(x_i)(i < w) \).

Contradiction! QED (Lemma 2.7.4)

Conversely we have:

Lemma 2.7.5. Let \(\bar{\epsilon} \) be well founded. Then the liftup of \(\langle M, \pi \rangle \) exists.

Proof: We shall explicitly construct a liftup from the term model \(\mathbb{D} \). The proof will stretch over several subclaims.

Definition 2.7.3. \(x^* = \pi^*(x) =: \langle \text{const}_x, 0 \rangle \), where \(\text{const}_x =: \{ \langle x, 0 \rangle \} \) = the constant function \(x \) defined on \(\{0\} \).

Then:

1. \(\pi^*: M \rightarrow_{\Sigma_0} \mathbb{D} \).
 Proof: Let \(\varphi(v_1, \ldots, v_n) \) be \(\Sigma_0 \). Set:

 \[
eq \{\langle z_1, \ldots, z_n \rangle | M \models \varphi[\text{const}_{x_1}(z_1), \ldots, \text{const}_{x_n}(z_n)]\}.
\]

 Obviously:

 \[
eq \begin{cases}
 \{\langle 0, \ldots, 0 \rangle \} & \text{if } M \models \varphi[x_1, \ldots, x_n] \\
 \emptyset & \text{if not.}
 \end{cases}
\]

 Hence by Łoz theorem:

 \[
 \mathbb{D} \models \varphi[x_1^*, \ldots, x_n^*] \iff \langle 0, \ldots, 0 \rangle \in \pi(e)
 \]

 \[
 \iff M \models \varphi[x_1, \ldots, x_n]
 \]

2. \(\mathbb{D} \models \) Extensionality.
 Proof: Let \(\varphi(u, v) =: \wedge w \in u \ w \in v \ \wedge \wedge w \in v \ w \in u \).

 Claim \(\mathbb{D} \models \varphi[a, b] \rightarrow a \cong b \) for \(a, b \in \mathbb{D} \). This reduces to the Claim:

 Let \(a = \langle f, x \rangle, b = \langle g, y \rangle \). Then

 \[
 \mathbb{D} \models \varphi[\langle f, x \rangle, \langle g, y \rangle] \iff \langle x, y \rangle \in \pi(e)
 \]

 \[
 \iff \langle f, x \rangle \cong \langle g, y \rangle
 \]

 where

 \[
 e = \{\langle z, w \rangle | M \models \varphi[z, w]\} = \{\langle z, w \rangle | f(z) = g(w)\}.
 \]
CHAPTER 2. BASIC FINE STRUCTURE THEORY

QED (2)

Since \(\cong \) is a congruence relation for \(D \) we can factor \(D \) by \(\cong \), getting:

\[
\hat{D} = (D \setminus \cong) = \langle \hat{D}, \hat{\circ}, \hat{A}, \hat{B} \rangle
\]

where:

\(\hat{D} = \{ \hat{s} | s \in D \} \)

\(\hat{s} =: \{ t | t \cong s \} \) for \(s \in D \)

\(\hat{s} \vdash t \iff s \in t \)

\(\hat{A}s \vdash: \hat{A}s, \hat{B}s \vdash: \hat{B}s. \)

Then \(\hat{D} \) is a well founded identity model satisfying extensionality. By Mostowski’s isomorphism theorem there is an isomorphism \(k \) of \(\hat{D} \) onto \(M' \), where \(M' = \langle |M'|, \in, A', B' \rangle \) is transitive.

Set:

\[[s] =: k(\hat{s}) \text{ for } s \in D \]

\[\pi'(x) =: [x^*] \text{ for } x \in M. \]

Then by (1):

(3) \(\pi' : M \rightarrow_{\Sigma_0} M' \).

Lemma 2.7.5 will then follow by:

Lemma 2.7.6. \(\langle M', \pi' \rangle \) is the liftup of \(\langle M, \pi \rangle \).

We shall often write \([f, x]\) for \([\langle f, x \rangle]\). Clearly every \(s \in M' \) has the form \([f, x]\) where \(f \in M; \; \text{dom}(f) \in H, \; x \in H' \).

Definition 2.7.4. \(\tilde{H} := \) the set of \([f, x]\) such that \(\langle f, x \rangle \in D \) and \(f \in H \).

We intend to show that \([f, x] = \pi(f)(x)\) for \(x \in \tilde{H} \). As a first step we show:

(4) \(\tilde{H} \) is transitive.

Proof: Let \(s \in [f, x] \) where \(f \in H \).

Claim \(s = [g, y] \) for a \(g \in H \).

Proof: Let \(s = [g', y] \). Then \(\langle y, x \rangle \in \pi(e) \) where: \(e = \{ \langle u, v \rangle | g'(u) \in f(v) \} \) set:

\[e' = \{ u | g'(u) \in \text{rng}(f) \}, \; g = g' \upharpoonright e'. \]

Then \(g \subset \text{rng}(f) \times \text{dom}(g') \subset H \). Hence \(g \in H \). Then \([g', y] = [g, y]\) since \(\pi(g')(y) = \pi(g)(y) \) and hence \(\langle y, x \rangle \in \pi(\{ \langle u, v \rangle | g'(u) = g(v) \}) \). But \(e = \{ \langle u, v \rangle | g(u) \in f(v) \} \). Hence \([g, y] \in [f, x] \). QED (4)

But then:
2.7. LIFTUPS

(5) \([f, x] = \pi(f)(x)\) for \(f \in H, \langle f, x \rangle \in D\).

Proof: Let \(f, g \in H, \langle f, x \rangle, \langle g, y \rangle \in D\). Then:

\[\begin{align*}
\langle f, x \rangle \in [g, y] &\iff \langle x, y \rangle \in \pi(e) \\
&\iff \pi(f)(x) \in \pi(g)(y)
\end{align*}\]

where \(e = \{\langle u, v \rangle | f(u) \in g(v)\}\). Hence there is an \(\varepsilon\)-isomorphism \(\sigma\) of \(H\) onto \(\tilde{H}\) defined by:

\[\sigma(\pi(f)(x)) =: [f, x].\]

But then \(\sigma = \text{id}\), since \(H, \tilde{H}\) are transitive. (5)

But then:

(6) \(\pi' \supset \pi\).

Proof: Let \(x \in H\). Then \(\pi'(x) = [\text{const}_x, 0] = \pi(\text{const}_x)(0) = \pi(x)\) by (5).

(7) \([f, x] = \pi'(f)(x)\) for \(\langle f, x \rangle \in D\).

Proof: Let \(a = \text{dom}(f)\). Then \([\text{id}_a, x] = \text{id}_{\pi(a)}(x) = x\) by (5). Hence it suffices to show:

\([f, x] = [\text{const}_f, 0]([\text{id}_a, x]).\]

But this says that \(\langle x, 0 \rangle \in \pi(e)\) where:

\[e = \{\langle z, u \rangle | f(z) = \text{const}_f(u)(\text{id}_a(z))\} = \{\langle z, 0 \rangle | f(z) = f(z)\} = a \times \{0\}.\]

QED (7)

Lemma 2.7.6 is then immediate by (3), (6) and (7). QED (Lemma 2.7.6)

Lemma 2.7.7. Let \(\pi^* \supset \pi\) such that \(\pi^* : M \to \Sigma_0 M^*\). Then the liftup \(\langle M', \pi' \rangle\) of \(\langle M, \pi \rangle\) exists. Moreover there is a \(\sigma : M' \to \Sigma_0 M^*\) uniquely defined by the condition:

\[\sigma | H' = \text{id}, \quad \sigma \pi' = \pi^*.\]

Proof: \(\langle M', \pi' \rangle\) exists, since \(\tilde{\xi}\) is well founded, since \(\langle f, x \rangle \tilde{\xi} \langle g, y \rangle \iff \pi^*(f)(x) \in \pi^*(g)(y)\). But then:

\[\begin{align*}
M' &\models \varphi[\pi'(f_1)(x_1), \ldots, \pi'(f_r)(x_r)] \iff \\
&\iff \langle x_1, \ldots, x_r \rangle \in \pi(e) \\
&\iff M^* \models \varphi[\pi^*(f_1)(x_1), \ldots, \pi^*(f_r)(x_r)]
\end{align*}\]
where \(e = \{ (z_1, \ldots, z_r) \mid M \models \varphi[\vec{f}(\vec{z})] \} \). Hence there is \(\sigma : M' \to \Sigma_0 \) defined by:

\[
\sigma(\pi'(f)(x)) = \pi^*(f)(x) \quad \text{for} \quad (f, x) \in D.
\]

Now let \(\tilde{\sigma} : M' \to \Sigma_0 \) such that \(\tilde{\sigma} \upharpoonright H' = \text{id} \) and \(\tilde{\sigma}\pi' = \pi' \).

Claim \(\tilde{\sigma} = \sigma \).

Let \(s \in M' \), \(s = \pi'(f)(x) \). Then \(\tilde{\sigma}(\pi'(f)) = \pi^*(f) \), \(\tilde{\sigma}(x) = x \). Hence \(\tilde{\sigma}(s) = \pi^*(f)(x) = \sigma(s) \).

QED (Lemma 2.7.7)

2.7.2 The \(\Sigma_0^{(n)} \) liftup

From now on suppose \(M \) to be acceptable. We now attempt to generalize the notion of \(\Sigma_0 \) liftup. We suppose as before that \(\tau > w \) is a cardinal in \(M \) and \(H = H_\tau^M \). As before we suppose that \(\pi' : H \to \Sigma_0 \) cofinally. Now let \(\rho^n \geq \tau \). The \(\Sigma_0 \)–liftup was the "minimal" \(\langle M', \pi' \rangle \) such that \(\pi' \supset \pi \) and \(\pi' : M \to \Sigma_0 \ M' \). We shall now consider pairs \(\langle M', \pi' \rangle \) such that \(\pi' \supset \pi \) and \(\pi' : M \to \Sigma_0 \ M' \). Among such pairs \(\langle M', \pi' \rangle \) we want to define a "minimal" one and show, if possible, that it exists. The minimality of the \(\Sigma_0 \) liftup was expressed by the condition that every element of \(M' \) have the form \(\pi'(f)(x) \), where \(x \in H' \) and \(f \in \Gamma^0(\tau, M) \). As a first step to generalizing this definition we replace \(\Gamma^0(\tau, M) \) by a larger class of functions \(\Gamma^n(\tau, M) \).

Definition 2.7.5. Let \(n > 0 \) such that \(\tau \leq \rho^n_M \). \(\Gamma^n = \Gamma^n(\tau, M) \) is the set of maps \(f \) such that

1. \(\text{dom}(f) \in H \)
2. For some \(i < n \) there is a good \(\Sigma_1^{(i)}(M) \) function \(G \) and a parameter \(p \in M \) such that \(f(x) = G(x, p) \) for all \(x \in \text{dom}(f) \).

Note. Good \(\Sigma_1^{(i)} \) functions are many sorted, hence any such function can be identified with a pair consisting of its field and its arity. An element of \(\Gamma^n \), on the other hand, is 1–sorted in the classical sense, and can be identified with its field.

Note. This definition makes sense for the case \(n = \omega \), and we will not exclude this case. A \(\Sigma_0^{(\omega)} \) formula (or relation) then means any formula (or relation) which is \(\Sigma_0^{(i)} \) for an \(i < \omega \) — i.e. \(\Sigma_0^{(\omega)} = \Sigma^* \).

We note:

Lemma 2.7.8. Let \(f \in \Gamma^n \) such that \(\text{rng}(f) \subseteq H^i \), where \(i < n \). Then \(f(x) = G(x, p) \) for \(x \in \text{dom}(f) \) where \(G \) is a good \(\Sigma_1^{(h)} \) function to \(H^i \) for some \(h < n \).
2.7. LIFTUPS

Proof: Let \(f(x) = G'(x, p) \) for \(x \in \text{dom}(f) \) where \(G' \) is a good \(\Sigma_1^{(h)} \) function to \(H^j \) where \(h, j < n \). Since every good \(\Sigma_1^{(h)} \) function is a good \(\Sigma_1^1 \) function for \(k \geq h \), we can assume w.l.o.g. that \(i, j \leq h \). Let \(F \) be the identity function defined by \(u^i = u^j \) (i.e. \(y^i = F(x^j) \leftrightarrow y^i = x^j \)). Set: \(G(x, y) \simeq F(G'(x, y)) \). Then \(F \) is a good \(\Sigma_1^{(h)} \) function and so is \(G \), where \(f(x) = G(x, p) \) for \(x \in \text{dom}(f) \).

QED (Lemma 2.7.8)

Lemma 2.7.9. \(\Gamma^i(\tau, M) \subset \Gamma^u(\tau, M) \) for \(i < n \).

Proof: For \(0 < i \) this is immediate by the definition. Now let \(i = 0 \). If \(f \in \Gamma^0 \), then \(f(x) = G(x, f) \) for \(x \in \text{dom}(f) \) where \(G \) is the \(\Sigma_0^{(0)} \) function defined by

\[
y = G(x, f) \iff (f \text{ is a function } \wedge \langle y, x \rangle \in f).
\]

QED (Lemma 2.7.9)

The "natural" minimality condition for the \(\Sigma_0^{(n)} \) liftup would then read: Each element of \(M \) has the form \(\pi'(f)(x) \) where \(x \in H' \) and \(f \in \Gamma^n \). But what sense can we make of the expression "\(\pi'(f)(x) \)" when \(f \) is not an element of \(M \)? The following lemma rushes to our aid:

Lemma 2.7.10. Let \(\pi' : M' \rightarrow \chi_1^{(n)} M' \) where \(n > 0 \) and \(\pi' \supset \pi \). There is a unique map \(\pi'' \) on \(\Gamma^n(\tau, M) \) with the following property:

* Let \(f \in \Gamma^n(\tau, M) \) such that \(f(x) = G(x, p) \) for \(x \in \text{dom}(f) \) where \(G \) is a good \(\Sigma_1^1 \) function for an \(i < n \) and \(\chi \) is a good \(\Sigma_1^1 \) definition of \(G \). Let \(G' \) be the function defined on \(M' \) by \(\chi \). Let \(f' = \pi''(f) \). Then \(\text{dom}(f') = \pi(\text{dom}(f)) \) and \(f'(x) = G'(x, \pi'(p)) \) for \(x \in \text{dom}(f') \).

Proof: As a first approximation, we simply pick \(G, \chi \) with the above properties. Let \(G' \) then be as above. Let \(d = \text{dom}(f) \). The statement

\[
\bigwedge x \in d \bigvee y \ y = G(x, p) \mbox{ is } \Sigma_0^{(n)} \mbox{ is } d, p, \mbox{ so we have:}
\]

\[
\bigwedge x \in \pi(d) \bigvee y \ y = G'(x, \pi(p)).
\]

Define \(f_0 \) by \(\text{dom}(f_0) = \pi(d) \) and \(f_0(x) = G'(x, \pi(p)) \) for \(x \in \pi(d) \). The problem is, of course, that \(G, \chi \) were picked arbitrarily. We might also have:

\[
f(x) = H(x, q) \mbox{ for } x \in d,
\]

where \(H \) is \(\Sigma_1^j(M) \) for a \(j < n \) and \(\Psi \) is a good \(\Sigma_1^j \) definition of \(H \). Let \(H' \) be the good function on \(M' \) defined by \(\Psi \). As before we can define \(f_1 \).
by \(\text{dom}(f_1) = \pi(d) \) and \(f_1(x) = H'(x, \pi'(q)) \) for \(x \in \pi(d) \). We must show: \(f_0 = f_1 \). We note that:

\[
\bigwedge x \in dG(x, p) = H(x, q).
\]

But this is a \(\Sigma^{(n)}_0 \) statement. Hence

\[
\bigwedge x \in \pi(d)G'(x, p) = H'(x, q).
\]

Then \(f_0 = f_1 \). QED (Lemma 2.7.10)

Moreover, we get:

Lemma 2.7.11. Let \(n, \pi, \tau, \pi', \pi'' \) be as above. Then \(\pi''(f) = \pi'(f) \) for \(f \in \Gamma^0(\tau, M) \).

Proof: We know \(f(x) = G(x, f) \) for \(x \in d = \text{dom}(f) \), where:

\[
y = G(x, f) \leftrightarrow (f \text{ is a function } \land y = f(x)).
\]

Then \(\pi''(f)(x) = G'(x, \pi'(f)) = \pi'(f)(x) \) for \(x \in \pi(d) \), where \(G' \) has the same definition over \(M' \). QED (Lemma 2.7.11)

Thus there is no ambiguity in writing \(\pi'(f) \) instead of \(\pi''(f) \) for \(f \in \Gamma^n \).

Doing so, we define:

Definition 2.7.6. Let \(\omega < \tau < \rho^\omega_M \) where \(n \leq \omega \) and \(\tau \) is a cardinal in \(M \).

Let \(H = H^M_\tau \) and let \(\pi : H \to \Sigma^0_\omega H' \) cofinally. We call \(\langle M', \pi' \rangle \) a \(\Sigma^{(n)}_0 \) liftup of \(\langle M, \pi \rangle \) iff the following hold:

(a) \(\pi' \supset \pi \) and \(\pi' : M \to \Sigma^{(n)}_0 M' \).

(b) Each element of \(M' \) has the form \(\pi'(f)(x) \), where \(f \in \Gamma^n(\tau, M) \) and \(x \in H' \).

(Thus the old \(\Sigma_0 \) liftup is simply the special case: \(n = 0 \).)

Definition 2.7.7. \(\Gamma^n_i(\tau, M) =: \) the set of \(f \in \Gamma^n(\tau, M) \) such that either \(i < n \) and \(\text{rng}(f) \subset H^M_i \) or \(i = n < \omega \) and \(f \in H^M_i \).

(Here, as usual, \(H^i = J_{\rho^i_M}[A] \) where \(M = \langle J^A_{\alpha_\omega}, B \rangle \).

Lemma 2.7.12. Let \(f \in \Gamma^n_i(\tau, M) \). Let \(\pi' : M \to \Sigma^0_\omega M' \) where \(\pi' \supset \pi \).

Then \(\pi'(f) \in \Gamma^n_i(\pi'(\tau), M') \).
2.7. LIFTUPS

Proof:

Case 1 \(i = n \). Then \(f \in H_{\rho M}^M \). Hence \(\pi'(f) \in H_{\rho M}^{M'} \).

Case 2 \(i < n \).

By Lemma 2.7.9 for some \(h < n \) there is a good \(\Sigma_1^{(n)}(M) \) function \(G(u, v) \) to \(H^i \) and a parameter \(p \) such that

\[
f(x) = G(x, p) \quad \text{for} \quad x \in \text{dom}(f).
\]

Hence:

\[
\pi'(f)(x) = G'(x, \pi'(p)) \quad \text{for} \quad x \in \text{dom}(\pi(f)),
\]

where \(G' \) is defined over \(M' \) by the same good \(\Sigma_1^{(n)} \) definition. Hence \(\text{rng}(\pi'(f)) \subset H_{\rho M}^M \). QED (Lemma 2.7.12)

The following lemma will become our main tool in understanding \(\Sigma_0^{(n)} \) liftups.

Lemma 2.7.13. Let \(R(x^{i_1}, \ldots, x^{i_r}) \) be \(\Sigma_0^{(n)} \) where \(i_1, \ldots, i_r \leq n \). Let \(f_l \in \Gamma_{\rho}^n(l = 1, \ldots, r) \). Then:

(a) The relation \(P \) is \(\Sigma_0^{(n)} \) in a parameter \(p \) where:

\[
P(\vec{z}) \Leftrightarrow R(f_1(z_1), \ldots, f_r(z_r)).
\]

(b) Let \(\pi' \supset \pi \) such that \(\pi' : M \rightarrow \Sigma_0^{(n)} M' \). Let \(R' \) be \(\Sigma_0^{(n)}(M') \) by the same definition as \(R \). Then \(P' \) is \(\Sigma_0^{(n)}(M') \) in \(\pi'(p) \) by the same definition as \(P \) in \(p \), where:

\[
P'(\vec{z}) \Leftrightarrow R'(\pi'(f_1)(z_1), \ldots, \pi'(f_r)(z_r)).
\]

Before proving this lemma we note some corollaries:

Corollary 2.7.14. Let \(e = \{\langle \vec{z} \rangle | P(\vec{z}) \} \). Then \(e \in H \) and \(\pi(e) = \{\langle \vec{z} \rangle | P'(\vec{z}) \} \).

Proof: Clearly \(e \subset d = \bigtimes_{l=1}^{r} \text{dom}(f_l) \in H \). But then \(d \in H_{\rho^n} \) and \(e \in H_{\rho^n} \) since \(H_{\rho^n}, P \cap H_{\rho^n} \) is amenable. Hence \(e \in H \), since \(H = H_{\rho M}^M \) and therefore \(\mathcal{P}(u) \cap M \subset H \) for \(u \in H \).

Now set \(e' = \{\langle \vec{z} \rangle | P'(\vec{z}) \} \). Then \(e' \subset \pi(d) = \bigtimes_{l=1}^{r} \text{dom}(\pi(f_l)) \) since \(\pi' \supset \pi \) and hence \(\pi(\text{dom}(f_l)) = \text{dom}(\pi(f_l)) \). But

\[
\bigwedge_{\langle \vec{z} \rangle \in d} (\langle \vec{z} \rangle \in e \leftrightarrow P(\vec{z}))
\]
CHAPTER 2. BASIC FINE STRUCTURE THEORY

which is a $\Sigma_0^{(n)}$ statement about e,p. Hence the same statement holds of $\pi(e),\pi(p)$ in M'. Hence

$$\bigwedge (\bar{z}) \in \pi(d)(\langle \bar{z} \rangle \in \pi(e) \leftrightarrow P'(\bar{z})).$$

Hence $\pi(e) = e'$. QED (Corollary 2.7.14)

Corollary 2.7.15. $\langle M, \pi \rangle$ has at most one $\Sigma_0^{(n)}$ liftup (M', π').

Proof: Let $\langle M^*, \pi^* \rangle$ be a second such. Let $\varphi(v_1^1, \ldots, v_r^r)$ be a $\Sigma_0^{(n)}$ formula. (In fact, we could take it here as being $\Sigma_0^{(0)}$.) Let $e = \{ (\bar{z}) | M \models \varphi(f_1(z_1),\ldots,f_r(z_r)) \}$ where $f_l \in \Gamma^l_\pi(l = 1,\ldots,r)$. Then:

$$M' \models \varphi[\pi'(f_1)(x_1),\ldots,\pi'(f_r)(x_r)] \leftrightarrow$$

$$\leftrightarrow \langle x_1,\ldots,x_r \rangle \in \pi(e)$$

$$\leftrightarrow M^* \models \varphi[\pi^*(f_1)(x_1),\ldots,\pi^*(f_r)(x_r)]$$

for $x_l \in \pi(\text{dom}(f_l))(l = 1,\ldots,r)$.

Hence there is an isomorphism $\sigma : M' \rightarrow M^*$ defined by:

$$\sigma(\pi'(f)(x)) =: \pi^*(f)(x)$$

for $f \in \Gamma^n$, $x \in \pi(\text{dom}(f))$. But M', M^* are transitive. Hence $\sigma = \text{id}, M' = M^*, \pi' = \pi^*$. QED (Corollary 2.7.15)

We now prove Lemma 2.7.13 by induction on n.

Case 1 $n = 0$.

Then $f_1,\ldots,f_r \in M$ and P is Σ_0 in $p = \langle f_1,\ldots,f_r \rangle$, since f_l is rudimentary in p and for sufficiently large h we have:

$$P(\bar{z}) \leftrightarrow \bigvee_{y_1,\ldots,y_r} \in C_h(p)(\bigwedge_{i=1}^r y_i = f_i(\bar{z}_i) \land R(\bar{y}))$$

where R is Σ_0. If P' has the same Σ_0 definition over M' in $\pi'(p)$, then

$$P'(\bar{z}) \leftrightarrow \bigvee_{y_1,\ldots,y_r} \in C_h(\pi(p))(\bigwedge_{i=1}^r y_i = \pi(f_i)(z_i) \land R(\bar{y}))$$

$$\leftrightarrow R(\pi(\bar{f})(\bar{z}))$$

QED
2.7. LIFTUPS

Case 2 $n = \omega$.
Then $\Sigma_0^\omega = \bigcup_{h < w} \Sigma_1^{(h)}$. Let $R(x_1^{i_1}, \ldots, x_r^{i_r})$ be $\Sigma_1^{(h)}$. Since every $\Sigma_1^{(h)}$ relation is $\Sigma_1^{(k)}$ for $k \geq h$, we can assume h taken large enough that $i_1, \ldots, i_r \leq h$. We can also choose it large enough that:

$$f_l(z) \simeq G_l(z, \pi)$$

where G_l is a good $\Sigma_1^{(h)}$ map to H^c. (We assume w.l.o.g. that p is the same for $l = 1, \ldots, r$ and that $d_l = \text{dom}(f_l)$ is rudimentary in p.) Set:

$$P(z, y) : R(G_1 x_1, y), \ldots, G(x_r, y)).$$

By §6 Lemma 2.6.24, P is $\Sigma_1^{(h)}$ (uniformly in the $\Sigma_1^{(h)}$ definition of R and G_1, \ldots, G_r). Moreover:

$$P(z) \leftrightarrow P(z, \pi).$$

Thus P is uniformly $\Sigma_1^{(h)}$ in p, which proves (a). But letting P' have the same $\Sigma_1^{(h)}$ definition in $\pi'(p)$ over M', we have:

$$P'(z) \leftrightarrow P'(z, \pi'(p))$$

$$\leftrightarrow R'(\pi'(f_1)(z_1), \ldots, \pi'(f_r)(z_r)),$$

which proves (b).

QED (Case 2)

Case 3 $0 < n < \omega$.
Let $n = m + 1$. Rearranging arguments as necessary, we can take R as given in the form:

$$R(y_1^n, \ldots, y_s^n, x_1^{i_1}, \ldots, x_r^{i_r})$$

where $i_1, \ldots, i_r \leq m$. Let $f_l \in \Gamma^n_{t_l}$ for $l = 1, \ldots, r$ and let $g_1, \ldots, g_l \in \Gamma^n_{t_l}$.

Claim

(a) P is $\Sigma_0^{(n)}$ in a parameter p where

$$P(\vec{w}, z) \leftrightarrow R(\vec{g}(\vec{w}), \vec{f}(z)).$$

(b) If π', M' are as above and P' is $\Sigma_0^{(n)}(M')$ in $\pi'(p)$ by the same definition, then

$$P'(w, z) \leftrightarrow R'(\pi'(\vec{g})(\vec{w}), \pi'(\vec{f})(\vec{z}))$$

where R' has the same $\Sigma_0^{(n)}$ definition over M'.
We prove this by first substituting $\tilde{f}(\tilde{z})$ and then $\tilde{g}(\tilde{w})$, using two different arguments. The claim then follows from the pair of claims:

Claim 1 Let:

$$P_0(y^n, \tilde{z}) \leftrightarrow R(y^n, f_1(z_1), \ldots, f_r(z_r)).$$

Then:

(a) P_0 is $\Sigma_0^{(n)}(M)$ in a parameter p_0.

(b) Let π', M', R' be as above. Let P'_0 have the same $\Sigma_0^{(n)}(M')$ definition in $\pi'(p_0)$. Then:

$$P'_0(y^n, \tilde{z}) \leftrightarrow R'(y^n, \pi'(\tilde{f})(\tilde{z})).$$

Claim 2 Let

$$P(w, \tilde{z}) \leftrightarrow: P_0(g_1(w_1), \ldots, g_s(w_s), \tilde{z}).$$

Then:

(a) P is $\Sigma_0^{(n)}(M)$ in a parameter p.

(b) Let π', M', P'_0 be as above. Let P' have the same $\Sigma_1^{(n)}(M')$ definition in $\pi'(p)$. Then:

$$P'(w, \tilde{z}) \leftrightarrow P'_0(\pi'(\tilde{g})(\tilde{w}), \tilde{z}).$$

We prove Claim 1 by imitating the argument in Case 2, taking $h = m$ and using §6 Lemma 2.6.11. The details are left to the reader. We then prove Claim 2 by imitating the argument in Case 1: We know that $g_1, \ldots, g_s \in H^n$. Set: $p = \langle g_1, \ldots, g_n, p \rangle$. Then P is $\Sigma_0^{(n)}(M)$ in p, since:

$$P(w, \tilde{z}) \leftrightarrow \bigvee y_1 \ldots y_s \in C_h(p)(\bigwedge_{i=1}^s y_i = g_i(w_i) \land P_0(\tilde{y}, \tilde{z}))$$

where g_i, p_0 are rud in P, for a sufficiently large h. But if P' is $\Sigma_0^{(n)}(M')$ in $\Pi'(P)$ by the same definition, we obviously have:

$$P'(w, \tilde{z}) \leftrightarrow \bigvee y_1 \ldots y_s(\bigwedge_{i=1}^s y_i = \pi'(g)(w_i) \land P'_0(\tilde{y}, \tilde{z}))$$

$$P'_0(\pi'(\tilde{g})(\tilde{w}), \tilde{z}).$$

QED (Lemma 2.7.13)

We can repeat the proof in Case 3 with "extra" arguments \tilde{u}^n. Thus, after re-arranging arguments we would have $R(\tilde{u}^n, \tilde{y}^n, x_1^{i_1}, \ldots, x_r^{i_r})$ where $i_1, \ldots, i_r < n$. We would then define

$$P(w, \tilde{z}) \leftrightarrow: R(\tilde{u}^n, \tilde{g}(\tilde{w}), \tilde{f}(\tilde{z})).$$

This gives us:
Corollary 2.7.16. Let \(n < w \). Let \(R(\bar{u}^n, x_1^{i_1}, \ldots, x_r^{i_r}) \) be \(\Sigma_0^{(n)} \) where \(i_1, \ldots, i_r \leq n \). Let \(f_l \in \Gamma^n_i \) for \(l = 1, \ldots, r \). Set:

\[
P(\bar{u}^n, \bar{z}) \leftrightarrow R(\bar{u}^n, f_1(z_1), \ldots, f_r(z_r)).
\]

Then:

(a) \(P(\bar{u}^n, \bar{z}) \) is \(\Sigma_0^{(n)} \) in a parameter \(p \).

(b) Let \(\pi' \supset \pi \) such that \(\pi' : M \rightarrow \Sigma_0^{(n)} M' \). Let \(R' \) be \(\Sigma_0^{(n)} (M') \) by the same definition. Let \(P' \) be \(\Sigma_0^{(n)} (M') \) in \(\pi'(p) \) by the same definition. Then

\[
P'(\bar{u}^n, \bar{z}) \leftrightarrow R'(\bar{u}^n, \pi'(f_1)(z_1), \ldots, \pi'(f_r)(z_r)).
\]

By Corollary 2.7.15 \(\langle M, \pi \rangle \) can have at most one \(\Sigma_0^{(n)} \) liftup. But when does it have a liftup? In order to answer this — as before — define a term model \(D = D^{(n)} \) for the supposed liftup, which will then exist whenever \(D \) is well founded.

Definition 2.7.8. Let \(M, \tau, H, H', \pi \) be as above where \(\rho_M^n \geq \tau, n \leq w \). The \(\Sigma_0^{(n)} \) term model \(D = D^{(n)} \) is defined as follows: (Let e.g. \(M = \langle J_A^n, B \rangle \).)

We set: \(D = \langle D, \approx, \bar{\xi}, \bar{A}, \bar{B} \rangle \) where:

\[
D = D^{(n)} =: \ \text{the set of pairs } (f, x)
\]

such that \(f \in \Gamma^n(\tau, M) \) and

\[
x \in \pi(\text{dom}(f))
\]

\((f, x) \equiv (g, y) \leftrightarrow (x, y) \in \pi(e) \), where

\[
e = \{(z, w)|f(z) = g(w)\}.
\]

\((f, x) \bar{\xi} (g, y) \leftrightarrow (x, y) \in \pi(e) \), where

\[
e = \{(z, w)|f(z) \in g(w)\}
\]

(similarly for \(\bar{A}, \bar{B} \)).

We shall interpret the model \(D \) in a many sorted language with variables of type \(i < \omega \) if \(n = \omega \) and otherwise of type \(i \leq n \). The variables \(v^i \) will range over the domain \(D_i \) defined by:

Definition 2.7.9. \(D_i = D_i^{(n)} =: \{(f, x) \in D|f \in \Gamma_i^n\} \).

Under this interpretation we obtain Łos theorem in the form:
Lemma 2.7.17. Let \(\varphi(v_1^{i_1}, \ldots, v_r^{i_r}) \) be \(\Sigma_0^{(n)} \). Then:

\[
\mathbb{D} \models \varphi([f_1, x_1], \ldots, [f_r, x_r]) \leftrightarrow \langle x_1, \ldots, x_r \rangle \in \pi(e)
\]

where \(e = \{ \langle \bar{z} \rangle | M \models \varphi(f_1(z_1), \ldots, f_r(z_r)) \} \) and \((f_i, x_i) \in D_i \) for \(l = 1, \ldots, r \).

Proof: By induction on \(i \) we show:

Claim If \(i < n \) or \(i = n < \omega \), then the assertion holds for \(\Sigma_0^{(i)} \) formulae.

Proof: Let it hold for \(j < i \). We proceed by induction on the formula \(\varphi \).

Case 1 \(\varphi \) is primitive (i.e. \(\varphi \) is \(v_i \in v_j \), \(v_i = v_j \), \(\dot{A}v_i \) or \(\dot{B}v_i \) (for \(M = \langle J^A_\alpha, B \rangle \)). This is immediate by the definition of \(\mathbb{D} \).

Case 2 \(\varphi \) is \(\Sigma_0^{(j)} \) where \(j < i \) and \(h = 0 \) or \(1 \). If \(h = 0 \) this is immediate by the induction hypothesis. Let \(h = 1 \). Then \(\varphi = \bigvee w^j \Psi \), where \(\Psi \) is \(\Sigma_0^{(i)} \). By bound relettering we can assume \(w.l.o.g. \) that \(w^j \) is not in our good sequence \(v_1^{i_1}, \ldots, v_r^{i_r} \). We prove both directions, starting with \(\to \):

Let \(\mathbb{D} \models \varphi([f_1, x_1], \ldots, [f_r, x_r]) \). Then there is \(\langle g, y \rangle \in D_j \) such that

\[
\mathbb{D} \models \Psi([g, y], [f_1, x_1], \ldots, [f_r, x_r])
\]

\((w^j, \bar{v} \text{ being the good sequence for } \Psi) \). Set \(e' = \{ \langle w, \bar{z} \rangle | M \models \Psi[g(w), \bar{z}(\bar{x})] \} \). Then \(\langle y, \bar{x} \rangle \in \pi(e') \) by the induction hypothesis on \(i \). But in \(M \) we have:

\[
\bigwedge w, \bar{z}(\langle w, \bar{z} \rangle \in e' \to \langle \bar{z} \rangle \in e).
\]

This is a \(\Pi_1 \) statement about \(e' \), \(e \). Since \(\pi : H \to \Sigma_1 H' \) we can conclude:

\[
\bigwedge w, \bar{z}(\langle w, \bar{z} \rangle \in \pi(e') \to \langle \bar{z} \rangle \in \pi(e)).
\]

But \(\langle y, \bar{x} \rangle \in \pi(e') \) by the induction hypothesis. Hence \(\langle \bar{x} \rangle \in \pi(e) \). This proves \(\to \). We now prove \(\to \). Let \(\langle \bar{x} \rangle \in \pi(e) \). Let \(R \) be the \(\Sigma_0^{(j)} \) relation

\[
R(w, z_1, \ldots, z_r) \iff M \models \varphi[w, z_1, \ldots, z_r].
\]

Let \(G \) be a \(\Sigma_0^{(j)}(M) \) map to \(H^j \) which uniformizes \(R \). Then \(G \) is a specialization of a function \(G'(z_1^{h_1}, \ldots, z_r^{h_r}) \) such that \(h_l \leq j \) for \(l \leq j \). Thus \(G' \) is a good \(\Sigma_0^{(j)} \) function. But

\[
f_l(z) = F_l(z, p) \text{ for } z \in \text{dom}(f_l) \text{ for } l = 1, \ldots, r
\]
where F_l is a good $\Sigma_0^{(k)}$ map to H^h_l for $l = 1, \ldots, r$ and $j \leq k < i$. (We assume w.l.o.g. that the parameter p is the same for all $l = 1, \ldots, r_n$.) Define $G''(u, w)$ by:

$$G''(u, w) \simeq: G'((u)_0^{r-1}, \ldots, (u)_{r-1}^{r-1}, w)$$

then G'' is a good $\Sigma_1^{(k)}$ function. Define g by: $dom(g) = \bigcap_{i=1}^r dom(f_i)$ and: $g(\langle z \rangle) = G''(\langle z \rangle, p)$ for $\langle z \rangle \in \text{dom}(g)$. Then $g \in \Gamma^n$ and $g(\langle z \rangle) = G(f_1(z_1), \ldots, f_r(z_r))$. Hence, letting:

$$e' = \{ \langle w, z \rangle | M \models \Psi[g(w), \tilde{f}(z)] \},$$

we have:

$$\bigcap \tilde{z}(\langle z \rangle) \in e \iff \langle \langle z \rangle, z \rangle \in e'.$$

This is a Π_1 statement about e, e' in H. Hence in H' we have:

$$\bigcap \tilde{z}(\langle z \rangle) \in \pi(e) \iff \langle \langle z \rangle, z \rangle \in \pi(e').$$

But then $\langle \langle z \rangle, z \rangle \in \pi(e')$. By the induction hypothesis we conclude:

$$\mathcal{D} \models \Psi[\langle g, \langle z \rangle \rangle, \langle f_1, x_1 \rangle, \ldots, \langle f_r, x_r \rangle].$$

Hence:

$$\mathcal{D} \models \varphi[\langle f_1, x_1 \rangle, \ldots, \langle f_r, x_r \rangle].$$

QED (Case 2)

Case 3 φ is $\Psi_0 \land \Psi_1, \Psi_0 \land \Psi_1, \Psi_0 \rightarrow \Psi_1, \Psi_0 \leftrightarrow \Psi_1$, or $\neg \Psi$.

This is straightforward and we leave it to the reader.

Case 4 $\varphi = \bigvee u^i \in \nu_i \chi$ or $\bigwedge u^i \in \nu_i \chi$, where ν_i has type $\geq i$. We display the proof for the case $\varphi = \bigvee u^i \in \nu_i \chi$. We again assume w.l.o.g. that $u^i \neq u_j$ for $j = 1, \ldots, r$. Set: $\Psi = (u^i \nu \chi \land \chi)$. Then φ is equivalent to $\bigvee u^i \Psi$. Using the induction hypothesis for χ we easily get:

$$\mathcal{D} \models \Psi[\langle g, y \rangle, \langle f_1, x_1 \rangle, \ldots, \langle f_r, x_r \rangle] \leftrightarrow \langle y, x_1, \ldots, x_n \rangle \in \pi(e')$$

where $e' = \{ \langle w, z \rangle | M \models \Psi[g(w), \tilde{f}(z)] \}$. Using (*), we consider two subcases:

Case 4.1 $i < n$.

We simply repeat the proof in Case 2, using (*) and with i in place of j.
Case 4.2 $i = n < w$.

(Hence v_1 has type n.) For the direction (\rightarrow) we can again repeat the proof in Case 2. For the other direction we essentially revert to the proof used initially for Σ_0 liftups.

We know that $e \in H$ and $\langle \bar{x} \rangle \in \pi(e)$, where $e = \{ \langle \bar{z} \rangle | M \models \varphi[f_1(z_1), \ldots, f_r(z_r)] \}$. Set:

$$R(w^n, \bar{z}) \leftrightarrow M \models \Psi[w^n, f_1(z_1), \ldots, f_r(z_r)].$$

Then R is $\Sigma_0^{(n)}$ by Corollary 2.7.16. Moreover $\bigvee w^n R(w^n, \bar{z}) \leftrightarrow \langle \bar{z} \rangle \in e$. Clearly $f_i \in H^M_n$ since $f_i \in \Gamma^*_n$. Let $s \in H^M_n$ be a well ordering of $\bigcup \text{rng}(f_i)$. Clearly:

$$R(w^n, \bar{z}) \rightarrow w^n \in f_i(z_i)$$

$$\rightarrow w^n \in \bigcup \text{rng}(f_i).$$

We define a function g with domain e by:

$$g((\bar{z})) = \text{ the } s\text{-least } w \text{ such that } R(w, \bar{z}).$$

Since R is $\Sigma_0^{(n)}$, it follows easily that $g \in H^M_n$. Hence $g \in \Gamma^*_n$. But then

$$\bigwedge \exists(\bar{z}) \in e \leftrightarrow \langle \langle \bar{z}, \bar{z} \rangle \in e' \rangle,$$

where e' is defined as above, using this g.

Hence in H' we have:

$$\bigwedge \exists(\langle \bar{z} \rangle \in \pi(e) \leftrightarrow \langle \langle \bar{z}, \bar{z} \rangle \in \pi(e') \rangle.$$ Since $\langle \bar{x} \rangle \in \pi(e)$ we conclude that $\langle \langle \bar{x}, \bar{x} \rangle \in \pi(e') \rangle$. Hence:

$$\mathbb{D} \models \Psi[(g, \langle \bar{x} \rangle), (f_1, x_1), \ldots, (f_r, x_r)].$$

Hence:

$$\mathbb{D} \models \varphi[(f_1, x_1), \ldots, (f_r, x_r)].$$

QED (Lemma 2.7.17)

Exactly as before we get:

Lemma 2.7.18. If \bar{z} is ill founded, then the $\Sigma_0^{(n)}$ liftup of (M, π) does not exist.

We leave it to the reader and prove the converse:

Lemma 2.7.19. If \bar{z} is well founded, then the $\Sigma_0^{(n)}$ liftup of (M, π) exists.
2.7. LIFTUPS

Proof: We shall again use the term model \mathbb{D} to define an explicit $\Sigma_0^{(n)}$ liftup. We again define:

Definition 2.7.10. $x^* = \pi^*(x) =: \langle \text{const}_x, 0 \rangle$, where $\text{const}_x =: \{(x, 0)\}$ = the constant function x defined on $\{0\}$.

Using Łos theorem Lemma 2.7.17 we get:

1. $\pi^*: M \rightarrow_{\Sigma_0^{(n)}} \mathbb{D}$ (where the variables v^i range over D_i on the \mathbb{D} side).
 The proof is exactly like the corresponding proof for Σ_0-liftups ((1) in Lemma 2.7.5). In particular we have: $\pi^*: M \rightarrow_{\Sigma_0} \mathbb{D}$. Repeating the proof of (2) in Lemma 2.7.5 we get:

2. $\mathbb{D} \models$ Extensionality.
 Hence \cong is again a congruence relation and we can factor \mathbb{D}, getting:
 $$\hat{\mathbb{D}} = (\mathbb{D} \setminus \cong) = \langle \hat{D}, \hat{e}, \hat{A}, \hat{B} \rangle$$
 where
 $$\hat{D} =: \{s|s \in D\}, \hat{s} =: \{t|t \cong s\} \text{ for } s \in D$$
 $$\hat{s} \hat{e} \hat{t} \leftrightarrow s \hat{e} t$$
 $$\hat{A}s \leftrightarrow \hat{A}s, \hat{B}s \leftrightarrow \hat{B}s$$

Then $\hat{\mathbb{D}}$ is a well founded identity model satisfying extensionality. By Mostowski's isomorphism theorem there is an isomorphism k of \mathbb{D} onto M', where $M' = \langle |M'|, \in, A', B' \rangle$ is transitive. Set:

$$[s] =: k(\hat{s}) \text{ for } s \in D$$
$$\pi'(x) =: [x^*] \text{ for } x \in M$$
$$H_i =: \{s|s \in D_i\} \text{ for } i < n \text{ or } i = n < \omega$$

We shall initially interpret the variables v^i on the M' side as ranging over H_i. We call this the pseudo interpretation. Later we shall show that it (almost) coincides with the intended interpretation. By (1) we have

3. $\pi': M \rightarrow_{\Sigma_0^{(n)}} M'$ in the pseudo interpretation. (Hence $\pi': M \rightarrow_{\Sigma_0^{(n)}} M'$.)

Lemma 2.7.19 then follows from:

Lemma 2.7.20. $\langle M', \pi' \rangle$ is the $\Sigma_0^{(n)}$ liftup of $\langle M, \pi \rangle$.
CHAPTER 2. BASIC FINE STRUCTURE THEORY

For \(n = 0 \) this was proven in Lemma 2.7.6, so assume \(n > 0 \). We again use the abbreviation:

\[
[f, x] =: [\langle f, x \rangle] \text{ for } \langle f, x \rangle \in D.
\]

Defining \(\tilde{H} \) exactly as in the proof of Lemma 2.7.6, we can literally repeat our previous proofs to get:

(4) \(\tilde{H} \) is transitive.

(5) \([f, x] = \pi(f)(x) \) if \(f \in H \) and \(\langle f, x \rangle \in D \). (Hence \(\tilde{H} = H' \).)

(6) \(\pi' \supseteq \pi \).

(However (7) in Lemma 2.7.6 will have to be proven later.)

In order to see that:

\[
\mathcal{M} \models \left[\pi(x) \right]_n =: \left[\pi(x) \right]_0 \text{ in the pseudo interpretation}
\]

we must show that \(H_i = H^{i}_{M} \) for \(i < n \) and that \(H_n \subseteq H^{n}_{M} \). As a first step we show:

(7) \(H_i \) is transitive for \(i \leq n \).

Proof: Let \(s \in H_i, t \in s \). Let \(s = [f, x] \) where \(f \in \Gamma^i_n \). We must show that \(t = [g, y] \) for \(g \in \Gamma^i_n \). Let \(t = [g', y] \). Then \(\langle y, x \rangle \in \pi(e) \) where

\[
e = \{ \langle u, v \rangle | g'(u) \in f(v) \}.
\]

Set:

\[
a =: \{ u | g'(u) \in \text{rng}(f) \}, g = g' | a.
\]

Claim 1 \(g \in \Gamma^i_n \).

Proof: \(a \subseteq \text{dom}(g') \) is \(\Sigma^0_{ij} \). Hence \(a \in H \) and \(g \in \Gamma^i_n \). If \(i < n \), then \(\text{rng}(g) \subseteq \text{rng}(f) \subset H^i_{M} \). Hence \(g \in \Gamma^i_n \). Now let \(i = n \). Then \(\text{rng}(f) \in \Gamma^n_n \) and the relation \(z = g(y) \) is \(\Sigma^0_{0} \). Hence \(g \in H^i_{M} \).

QED (Claim 1)

Claim 2 \(t = [g, y] \)

Proof:

\[
\bigwedge u, v(\langle u, v \rangle \in e \rightarrow \langle u, u \rangle \in e')
\]

where \(e' = \{ \langle u, w \rangle | g(u) = g'(w) \} \). Hence the same \(\Pi_1 \) statement holds of \(\pi(e), \pi(e') \) in \(H' \). Hence \(\langle y, y \rangle \in \pi(e') \). Hence \([g, y] = [g', y] = t \).

QED (7)

We can improve (3) to:

(8) Let \(\Psi = \bigvee v^1_l, \ldots, v^r_l \varphi \), where \(\varphi \) is \(\Sigma^0_{ij} \) and \(i_l < n \) or \(i_l = n < \omega \) for \(l = 1, \ldots, r \). Then \(\pi' \) is "\(\Psi \)-elementary" in the sense that:

\[
\mathcal{M} \models \Psi[\tilde{x}] \leftrightarrow \mathcal{M}' \models \Psi'[\pi'(\tilde{x})] \text{ in the pseudo interpretation.}
\]
2.7. LIFTUPS

Proof: We first prove \((\to)\). Let \(M \models \varphi[z, \alpha]\). Then \(M' \models \varphi[\pi'(\hat{z}), \pi'(\hat{\alpha})]\) by (3).

We now prove \((\leftarrow)\). Let:

\[
M' \models \varphi[[f_1, z_1], \ldots, [f_r, z_r], \pi'(\hat{\alpha})]
\]

where \(f_l \in \Gamma_n^u\) for \(l = 1, \ldots, r\). Since \(\pi'(x) = [\text{const}_x, 0]\), we then have:

\[
(z_1, \ldots, z_r, 0 \ldots 0) \in \pi(e), \quad \text{where:}
\]

\[
e = \{(u_1, \ldots, u_r, 0 \ldots 0) : M \models \varphi[\hat{f}(\hat{u}), \hat{\alpha}]\}.
\]

Hence \(e \neq \emptyset\). Hence

\[
\bigwedge v_1 \ldots v_r M \models \varphi[\hat{f}(\hat{v}), \hat{\alpha}]
\]

where \(\text{rng}(f_l) \subseteq H^i\) for \(l = 1, \ldots, r\). Hence \(M \models \Psi[\hat{\alpha}]\). QED (8)

If \(i < n\), then every \(\Pi_1^{(i)}\) formula is \(\Sigma_0^{(n)}\). Hence by (8):

(9) If \(i < n\) then

\[
\pi' : M \rightarrow_{\Sigma_2^{(i)}} M' \text{ in the pseudo interpretation.}
\]

We also get:

(10) Let \(n < w\). Then:

\[
\pi' | H^u_M : H^u_M \rightarrow_{\Sigma_0} H_n \text{ cofinally.}
\]

Proof: Let \(x \in H_n\). We must show that \(x \in \pi'(a)\) for an \(a \in H^u_M\). Let \(x = [f, y]\), where \(f \in \Gamma_n^u\). Let \(d = \text{dom}(f), a = \text{rng}(f)\). Then \(y \in \pi(d)\) and:

\[
\bigwedge z \in d \langle z, 0 \rangle \in e
\]

where

\[
e = \{\langle u, v \rangle | f(u) \in \text{const}_a(v)\}
\]

\[
= \{\langle u, 0 \rangle | f(u) \in a\}.
\]

This is a \(\Sigma_0\) statement about \(d, e\). Hence the same statement holds of \(\pi(d), \pi(e)\) in \(H_n\). Hence \(\langle z, 0 \rangle \in \pi(e)\). Hence \([f, y] \in \pi'(a)\). QED (10)

(Note: (10) and (3) imply that \(\pi' : M \rightarrow_{\Sigma_0^{(n)}} M'\) is the pseudo interpretation, but this also follows directly from (8).)

Letting \(M = \langle J^A_0, B \rangle\) and \(M' = \langle |M'|, A', B' \rangle\) we define:

\[
M_i = \langle H^u_M, A \cap H^u_M, B \cap H^u_M \rangle, M'_i = \langle H_i, A' \cap H_i, B' \cap H_i \rangle
\]

for \(i < n\) or \(i = n < w\). Then each \(M_i\) is acceptable. It follows that:
(11) M'_i is acceptable.

Proof: If $i = n$, then $\pi' \downarrow M_n : M_n \rightarrow \Sigma_0 M'_n$ cofinally by (3) and (10). Hence M'_n is acceptable by §5 Lemma 2.5.5. If $i < n$, then $\pi' \downarrow M_i : M_i \rightarrow \Sigma_0 M'_i$ by (9). Hence M'_i is acceptable since acceptability is a Π_2 condition. QED (11)

We now examine the "correctness" of the pseudo interpretation. As a first step we show:

(12) Let $i + 1 \leq n$. Let $A \subset H_{i+1}$ be $\Sigma_1^{(i)}$ in the pseudo interpretation. Then (H_{i+1}, A) is amenable.

Proof: Suppose not. Then there is $A' \subset H_{i+1}$ such that A' is $\Sigma_1^{(i)}$ in the pseudo interpretation, but (H_i, A') is not amenable. Let:

$$A'(x) \leftrightarrow B'(x, p)$$

where B' is $\Sigma_1^{(i)}$ in the pseudo interpretation. For $p \in M'$ we set:

$$A'_p =: \{x | B'(x, p)\}.$$

Let B be $\Sigma_1^{(i)}(M)$ by the same definition. For $p \in M$ we set:

$$A_p =: \{x | B(x, p)\}.$$

Case 1 $i + 1 < n$.

Then $\forall p \forall a^{i+1} \land b^{i+1} b^{i+1} \neq a^{i+1} \cap A'_p$ holds in the pseudo interpretation. This has the form: $\forall p \forall a^{i+1} \varphi(p, a^{i+1})$ where φ is $\Pi_1^{(i+1)}$, hence $\Sigma_0^{(n)}$ in the pseudo interpretation. By (8) we conclude that $M \models \varphi(p, a^{i+1})$ for some $p, a^{i+1} \in M$. Hence (H_{i+1}^n, A_p) is not amenable, where A_p is $\Sigma_1^{(i)}(M)$. Contradiction! QED (Case 1)

Case 2 Case 1 fails.

Then $i + 1 = n$. Since π' takes H_M^n cofinally to H_n. There must be $a \in H_M^n$ such that $\pi(a) \cap A' \notin H_n$. From this we derive a contradiction. Let $A' = A'_p$ where $p = [f, z]$. Set: $\bar{B} = \{(z, w) | B(w, f(z))\}$. Then \bar{B} is $\Sigma_1^{(i)}(M)$. Set: $b = (d \times a) \cap \bar{B}$, where $d = \text{dom}(f)$. Then $b \in H_M^n$. Define $g : d \rightarrow H_M^n$ by:

$$g(z) =: A_{f(z)} \cap a = \{x \in a | \{z, x\} \in b\}.$$

Then $g \in H_M^n$, since it is rudimentary in $a, b \in H_M^n$. Let $\varphi(u^n, v^n, w)$ be the $\Sigma_0^{(n)}$ statement expressing

$$u = A_w \cap v^n$$

in M.

\[\]
Then setting:

\[e = \{ (v, 0, w) | M \models \varphi[g(v), a, f(z)] \} \]

we have:

\[\bigwedge v \in d \langle v, 0, v \rangle \in e. \]

But then the same holds of \(\pi(d), \pi(e) \) in \(H_n \). Hence \(\langle z, 0, z \rangle \in \pi(e) \). Hence:

\[[g, z] = A_f[z] \cap \pi(a) \in H_n. \]

Contradiction! \(\text{QED (12)} \)

On the other hand we have:

(13) Let \(i + 1 < n \). Let \(A \subset H_M^{i+1} \) be \(\Sigma^i_1(M) \) in the parameter \(p \) such that \(A \notin M \). Let \(A' \) be \(\Sigma^i_1(M') \) in \(\pi'(p) \) by the same \(\Sigma^i_1(M') \) definition in the pseudo interpretation. Then \(A' \cap H_{i+1} \notin M' \).

Proof: Suppose not. Then in \(M' \) we have:

\[\bigvee a \bigwedge v^{i+1} (v^{i+1} \in a \leftrightarrow A'(v^{i+1})). \]

This has the form \(\bigvee a \varphi(a, \pi(p)) \) where \(\varphi \) is \(\Pi^i_{i+1} \) hence \(\Sigma^0_0 \). By (8) it then follows that \(\bigvee a \varphi(a, p) \) holds in \(M \). Hence \(A \in M \).

Contradiction! \(\text{QED (13)} \)

Recall that for any acceptable \(M = (J^A_A, B) \) we can define \(\rho^i_M, H^i_M \) by:

\[\rho^0 = \alpha \]

\[\rho^{i+1} = \text{the least } \rho \text{ such that there is } A \text{ which is } \Sigma^i_1(M) \text{ with } A \cap \rho \notin M \]

\[H^i = J_{\rho^i}[A]. \]

Hence by (11), (12), (13) we can prove by induction on \(i \) that:

(14) Let \(i < n \). Then

(a) \(\rho^i_M = \rho_i, H^i_M = H_i \)

(b) The pseudo interpretation is correct for formulae \(\varphi \), all of whose variables are of type \(\leq i \).

By (9) we then have:

(15) \(\pi' : M \rightarrow \Sigma^i_2(M') \) for \(i < n \).

This means that if \(n = \omega \), then \(\pi' \) is automatically \(\Sigma^* \)-preserving. If \(n < \omega \), however, it is not necessarily the case that \(H_n = H^i_M \), — i.e. the pseudo interpretation is not always correct. By (12), however we do have:
CHAPTER 2. BASIC FINE STRUCTURE THEORY

(16) \(\rho_n \leq \rho_M^n \), (hence \(H_n \subseteq H_M^n \)).

Using this we shall prove that \(\pi' \) is \(\Sigma_0^n \)-preserving. As a preliminary
we show:

(17) Let \(n < w \). Let \(\varphi \) be a \(\Sigma_0^n \) formula containing only variables of type
\(i \leq n \). Let \(v_1, \ldots, v_r \) be a good sequence for \(\varphi \). Let \(x_1, \ldots, x_r \in M' \)
such that \(x_l \in H_n \) for \(l = 1, \ldots, r \). Then \(M \models \varphi[x_1, \ldots, x_r] \) holds in
the correct sense iff it holds in the pseudo interpretation.

Proof: (sketch)

Let \(C_0 \) be the set of all such \(\varphi \) with: \(\varphi \) is \(\Sigma_1^{(i)} \) for an \(i < n \). Let \(C \) be the
closure of \(C_0 \) under sentential operation and bounded quantifications
of the form \(\bigwedge v^n \in w^n \varphi, \bigvee v^n \in w^n \varphi \). The claim holds for \(\varphi \in C_0 \)
by (15). We then show by induction on \(\varphi \) that it holds for \(\varphi \in C \). In
passing from \(\varphi \) to \(\bigwedge v^n \in w^n \varphi \) we use the fact that \(w^n \) is interpreted
by an element of \(H_n \).

QED (17)

Since \(\pi'' H_M^i \subseteq H_i \) for \(i \leq n \), we then conclude:

(18) \(\pi': M \rightarrow \Sigma_0^n M' \).

It now remains only to show:

(19) \([f, x] = \pi'(f)(x) \).

Proof: Let \(f(x) = G(x, p) \) for \(x \in \text{dom}(f) \), where \(G \) is \(\Sigma_1^{(j)} \) good for
a \(j < n \). Let \(a = \text{dom}(f) \). Let \(\Psi(u, v, w) \) be a good \(\Sigma_1^{(j)} \) definition of
\(G \). Set:

\[e = \{ (z, y, w) | M \models \Psi[f(z), \text{id}_a(y), \text{const}_p(w)] \} \]

Then \(z \in a \rightarrow (z, z, 0) \in e \). Hence the same holds of \(\pi(a), \pi(e) \). But
\(x \in \pi(a) \). Hence:

\[M' \models \Psi[[f, x], [\text{id}_a, x], [\text{const}_p, x]] \]

where \([\text{id}_a, x] = x, [\text{const}_p, 0] = \pi'(p) \). Hence:

\[[f, x] = G'(x, \pi'(p)) = \pi'(f)(x) \]

where \(G' \) has the same \(\Sigma_1^{(j)} \) definition.

QED (19)

Lemma 2.7.20 is then immediate from (6), (18) and (19).

QED (Lemma 2.7.19)

As a corollary of the proof we have:

Lemma 2.7.21. Let \(\langle M', \pi' \rangle \) be the \(\Sigma_0^n \) liftup of \(\langle M, \pi \rangle \). Let \(i < n \). Then
2.7. LIFTUPS

(a) \(\pi' : M \rightarrow_{\Sigma_2} M' \)

(b) If \(\rho_M^i \in M \), then \(\pi'(\rho_M^i) = \rho_{M'}^i \).

(c) If \(\rho_M^i = \text{On}_M \), then \(\rho_{M'}^i = \text{On}_{M'} \).

Proof:

(a) follows by (9) and (14).

(b) In \(M \) we have:
\[
\bigwedge \xi^0 \bigvee \xi^i (\xi^0 < \rho_M^i \leftrightarrow \xi^0 = \xi^i) .
\]
This has the form \(\bigwedge \xi^0 \Psi(\xi^0, \rho_M^i) \) where \(\Psi \) is \(\Sigma_0^{(n)} \). But then the same holds of \(\pi'(\rho_M^i) \) in \(M' \) by (8) and (14) — i.e.
\[
\bigwedge \xi^0 \bigvee \xi^i (\xi^0 < \pi(\rho_M^i) \leftrightarrow \xi^0 = \xi^i) .
\]

(c) In \(M \) we have \(\bigwedge \xi^0 \bigvee \xi^i \xi^0 = \xi^i \), hence the same holds in \(M' \) just as above.

QED (Lemma 2.7.21)

The interpolation lemma for \(\Sigma_0^{(n)} \) lifts reads:

Lemma 2.7.22. Let \(\sigma : H' \rightarrow_{\Sigma_0} |M^*| \) and \(\pi^* : M \rightarrow_{\Sigma_0^{(n)}} M^* \) such that \(\pi^* \supset \sigma \pi \). Then the \(\Sigma_0^{(n)} \) liftup \(\langle M', \pi' \rangle \) of \(\langle M, \pi \rangle \) exists. Moreover there is a unique map \(\sigma' : M' \rightarrow_{\Sigma_0^{(n)}} M^* \) such that \(\sigma' \mid H' = \sigma \) and \(\sigma' \pi' = \pi^* \).

Proof: \(\bar{\varepsilon} \) is well founded since:
\[
\langle f, x \rangle \in \langle g, y \rangle \leftrightarrow \pi^*(f)(\sigma(x)) \in \pi^*(g)(\sigma(y)).
\]
Thus \(\langle M', \pi' \rangle \) exists. But for \(\Sigma_0^{(n)} \) formulae \(\varphi = \varphi(v_1^{i_1}, \ldots, v_r^{i_r}) \) we have:
\[
M' \models \varphi[\pi'(f_1)(x_1), \ldots, \pi'(f_r)v_r]
\]
\[
\leftrightarrow \langle x_1, \ldots, x_n \rangle \in \pi(e)
\]
\[
\leftrightarrow \langle \sigma(x_1), \ldots, \sigma(x_n) \rangle \in \sigma(\pi(e)) = \pi^*(e)
\]
\[
\leftrightarrow M^* \models \varphi[\pi^*(f_1)(\sigma(x_1)), \ldots, \pi^*(f_r)(\sigma(x_r))]
\]
where:
\[
e = \{ \langle x_1, \ldots, x_r \rangle \mid M \models \varphi[f_1(x_1), \ldots, f_r(x_r)] \}.
\]
and \(\langle f_i, x_i \rangle \in \Gamma_i^n \) for \(i = 1, \ldots, r \). Hence there is a \(\Sigma_0^{(n)} \)–preserving embedding \(\sigma : M' \to M^* \) defined by:

\[
\sigma'(\pi'(f)(x)) = \pi^*(f)(\sigma(x)) \quad \text{for} \quad \langle f, x \rangle \in \Gamma^n.
\]

Clearly \(\sigma' \restriction H' = \sigma \) and \(\sigma' \pi' = \pi^* \). But \(\sigma' \) is the unique such embedding, since if \(\tilde{\sigma} \) were another one, we have

\[
\tilde{\sigma}(\pi'(f)(x)) = \pi^*(f)(\sigma(x)) = \sigma'(\pi'(f)(x)).
\]

QED (Lemma 2.7.22)

We can improve this result by making stronger assumptions on the map \(\pi \), for instance:

Lemma 2.7.23. Let \(M^*, \pi^* \) be the \(\Sigma_0^{(n)} \) liftup of \(\langle M, \pi \rangle \). Let \(\pi^* \restriction \rho_{M^*}^{n+1} = \text{id} \) and \(\mathbb{P}(\rho_M^{n+1}) \cap M^* \subset M \). Then \(\rho_{M^*}^{n} = \sup \pi^*\rho_{M}^{n} \).

(Hence the pseudo interpretation is correct and \(\pi^* \) is \(\Sigma_1^{(n)} \) preserving.)

Proof: Suppose not. Let \(\tilde{\rho} = \sup \pi^{**}\rho_{M}^{n} < \rho_{M^*}^{n} \). Set:

\[
H^n = H_{M}^{n} = J_{\tilde{\rho}_M}^{A_M}; \quad \tilde{H} = J_{\tilde{\rho}}^{A_M}.
\]

Then \(\tilde{H} \in M^* \). Let \(A \) be \(\Sigma_1^{(n)} \)(\(M \)) in \(p \) such that \(A \cap \rho_{M}^{n+1} \notin M \). Let:

\[
Ax \leftrightarrow \bigvee y^n B(y^n, x),
\]

where \(B \) is \(\Sigma_0^{(n)} \) in \(p \). Let \(B^* \) be \(\Sigma_0^{(n)} \)(\(M^* \)) in \(\pi^*(p) \) by the same definition. Then

\[
\pi^* \restriction H^n : \langle H^n, B \cap H^n \rangle \to \Sigma_1 \langle \tilde{H}, B^* \cap \tilde{H} \rangle.
\]

Then \(A \cap \rho_{M}^{n+1} = \tilde{A} \cap \rho_{M}^{n+1} \), where:

\[
\tilde{A} = \{ x \mid \bigvee y^n \in \tilde{H} B^*(y, x) \}.
\]

But \(\tilde{A} = \Sigma_1^{(n)} \)(\(M^* \)) in \(\pi^*(p) \) and \(\tilde{H} \). Hence

\[
A \cap \rho_{M}^{n+1} = \tilde{A} \cap \rho_{M}^{n+1} \in \mathbb{P}(\rho_{M}^{n+1}) \cap M^* \subset M.
\]

Contradiction! QED (Lemma 2.7.23)
Chapter 3

Mice

3.1 Introduction

In this chapter we develop some of the tools needed to construct fine structural inner models which go beyond L. The concept of "mouse" is central to this endeavor. We begin with a historical introduction which traces the genesis of that notion. This history, and the concepts which it involves, are familiar to many students of set theory, but the thread may grow fainter as the history proceeds. If you, the present reader, find the introduction confusing, we advise you to skim over it lightly and proceed to the formal development in §3.2. The introduction should then make more sense later on.

Fine structure theory was originally developed as a tool for understanding the constructible hierarchy. It was used for instance in showing that $V = L$ implies \square_β for all infinite cardinals β, and that every non weakly compact regular cardinal carries a Souslin tree. It was then used to prove the covering lemma for L, a result which pointed in a different direction. It says that, if there is no non trivial elementary embedding of L into itself, then every uncountable set of ordinals is contained in a constructible set having the same cardinality. This implies that if any $\alpha \geq \omega_2$ is regular in L, then its cofinality is the same as its cardinality. In particular, successors of singular cardinals are absolute in L. Any cardinal $\alpha \geq \omega_2$ which is regular in L remains regular in V. In general, the covering lemma says that despite possible local irregularities and cofinalities in L is retained in V.

If, however, L can be imbedded non trivially into itself, then the structure of cardinalities and cofinalities in L is virtually wiped out in V. There is
then a countable object known as $0^\#$ which encodes complete information about the class L and a non trivial embedding of L. $0^\#$ has many concrete representations, one of the most common being a structure $L^U_\nu = (L_\nu[U], \in, U)$, where ν is the successor of an inaccessible cardinal κ in L and U is a normal ultrafilter on $\mathbb{P}(\kappa) \cap L$. (Later, however, we shall find it more convenient to work with extenders than with ultrafilters.) This structure, call it M_0, is iterable, giving rise to iterates $M_i(i < \infty)$ and embedding $\pi_{ij} : M_i \rightarrow \Sigma_0 M_j$ $(i \leq j < \infty)$. The iteration points κ_i $(i < \infty)$ are called the indiscernibles for L and form a closed proper class of ordinals. Each κ_c is inaccessible in L. Thus there are unboundedly many inaccessibles of L which become ω–cofinal cardinals in V. It can also be shown that all infinite successor cardinals in L are collapsed and become ω–cofinal in V. If we chose κ_0 minimally, then $M_0 = 0^\#$ is unique. We briefly sketch the argument for this, since it involves a principle which will be of great importance later on. By the minimal choice of κ_0 it can be shown that $h_{M_0}(\emptyset) = M_0$ (i.e. $\rho_{M_0}^1 = \omega$ and $\emptyset \in P^1_{M_0}$). Now let $M_0' = L^U_{\kappa_0'}$ be another such structure. Iterate M_0, M_0' out to ω_1, getting iteration $(M_i|i \leq \omega_1), \{M_i|i \leq \omega_1\}$ with iteration points κ_i, κ_i'. Then $\kappa_{\omega_1} = \kappa'' = \omega_1$. Moreover the sets:

$$C = \{\kappa_i|i < \omega_1\}, \ C' = \{\kappa_i'|i < \omega_1\}$$

are club in ω_1. Hence $C \cap C'$ is club in ω_1. But the ultrafilters $U_{\omega_1}, U'_{\omega_1}$ are uniquely determined by $C \cap C'$. Hence $M_{\omega_1} = M'_{\omega_1}$. But then:

$$M_0 \simeq h_{M_{\omega_1}}(\emptyset) = h_{M'_{\omega_1}}(\emptyset) \simeq M_0'.$$

Hence $M_0 = M_0'$. This comparison iteration of two iterable structures will play a huge role in later chapters of this book.

The first application of fine structure theory to an inner model which significantly differed from L was made by Solovay in the early 1970’s. Solovay developed this fine structure of L^U (where U is a normal measure on $\mathbb{P}(\kappa) \cap L^U$). He showed that each level $M = J^U_\alpha$ had a viable fine structure, with $\rho_M^1, P^1_M, R^1_M(n < \omega)$ defined in the usual way, although M might be neither acceptable nor sound. If e.g. $\alpha > \kappa$ and $\rho_1^1 < \kappa$ (a case which certainly occurs), the we clearly have $R^1_M = \emptyset$. However, M has a standard parameter $p = p_M \in P^1_M$ and if we transitivize $h_M(P)$, we get a structure $\mathcal{M} = J^P_{\alpha}$ which iterates up to M in κ many steps. \mathcal{M} is then called the core of M. (\mathcal{M} itself might still not be acceptable, since a proper initial segment of \mathcal{M} might not be sound.) (If $n < 1$ and $\rho^n_M < \kappa$, we can do essentially the same analysis, but when iterating \mathcal{M} to M we must use Σ^1_0–preserving ultrapowers, as defined in the next section.)

Dodd and Jensen then turned Solovay’s analysis on its head by defining a mouse (or Solovay mouse) to be (roughly) any J_α or iterable structure of the
form $M = J^U_\alpha$ where U is a normal measure at some κ on M and $\rho^*_M \leq \kappa$. They then defined the core model K to be the union of all Solvay mice. They showed that, if there is no non trivial elementary embedding of K into K, then the covering lemma for K holds. If, on the other hand, there is such an embedding π with critical point κ, then U is a normal measure on κ in $L^U = (L[u], \in, u)$, where:

$$U = \{ x \in \mathcal{P}(\kappa) \cap K | \kappa \in \pi(X) \},$$

(This showed, in contrast to the prevailing ideology, that an inner model with a measurable cardinal can indeed be "reached from below"). The simplest Solovay mouse is $0^#$ as described above. What K is depends on what there is. If $0^#$ does not exist, then $K = L$. If $0^#$ exists but $0^{##}$ does not, then $K = L(0^#)$ etc. In order to define the general notion of Solovay mouse, one must employ the full paraphanalia of fine structure theory.

Thus we have reached the situation that fine structure theory is needed not only to analyze a previously defined inner model, but to define the model itself.

If we have reached L^U with U a normal ultrafilter on κ and $\tau = \kappa^+$ in L^U, then we can regard L^U_{τ} as the "next mouse" and continue the process. If $(L^\kappa_\tau)^#$ does not exist, however, this will mean that L^U is the core model. The full covering lemma will then not necessarily hold, since V could contain a Prikry sequence for κ.

However, we still get the weak covering lemma:

$$cf(\beta) = \text{card}(\beta) \text{ if } \beta \geq \omega_2 \text{ is a cardinal in } K.$$

We also have generic absoluteness:

The definition of K is absolute
in every set generic extension of V.

In the ensuring period a host of "core model constructions" were discovered. For instance the "core model below two measurables" defined a unique model with the above properties under the assumption that there is no inner model with two measurable cardinals. Similarly with the "core model up to a measurable limit of measurables" etc. Initially this work was pursued by Dodd and Jensen, on the one hand, and by Bill Mitchell on the other. Mitchell got further, introducing several important innovations. He divided the construction of K into two stages: In the first he constructed an inner model K^C, which may lack the two properties stated above. He then "extracted" K from K^C, in the process defining an elementary embedding of K into K^C. This approach has been basic to everything done since. Mitchell
also introduced the concept of extenders, having realized that the normal ultrafilters alone could not code the embeddings involved in constructing K.

There are many possible concrete representations of mice, but in general a mouse is regarded as a structure $M = J^E$ where E describes an indexed sequence of ultrafilters or extenders. A major requirement is that M be iterable, which entails that any of the indexed extenders or ultrafilters can be employed in the iteration. But this would seem to imply that any F lying on the indexed sequence must be total — i.e. an ultrafilter or extender on the whole of $\mathcal{P}(\kappa) \cap M$ (κ being the critical point). Unfortunately the most natural representations of mice involve "allowing extenders (or ultrafilters) to die". Letting $M = J^U_\nu$ be the representation of $0^\#$ described above, it is known that $\rho^1_M = \omega$. Hence $J^U_{\nu+1}$ contains new subsets of κ which are not "measured" by the ultrafilter U. The natural representation of $0^{\#\#}$ would be $M' = J^U_{\nu^U}$ where:

$$U' = \{X|\kappa' \in \pi(x)\},$$

and π is an embedding of L^U into itself with critical point $\kappa' > \kappa$. But U is not total. How can one iterate such a structure? Because of this conundrum, researchers for many years followed Solovay’s lead in allowing only total ultrafilters and extenders to be indexed in a mouse. Thus Solovay’s representation of $0^{\#\#}$ was J^U_ν. This structure is not acceptable, however, since there is a $\gamma < \nu'$ set. $\kappa' < \gamma$ and $\rho^1_{J^U_\gamma} = \omega < \kappa'$. Such representation of mice were unnatural and unwieldy. The conundrum was finally resolved by Mitchell and Stewart Baldwin, who observed that the structures in which extenders are "allowed to die" are in fact, iterable in a very good sense. We shall deal with this in §3.4. All of the innovations mentioned here were then incorporated into [MS] and [CMI]. They were also employed in [MS] and [NFS].

It was originally hoped that one could define the core model below virtually any large cardinal — i.e. on the assumption that no inner model with the cardinal exists one could define a unique inner model K satisfying weak covering and generic absoluteness. It was then noticed, however, that if we assume the existence of a Woodin cardinal, then the existence of a definable K with the above properties is provably false. (This is because Woodin’s “stationary tower” forcing would enable us to change the successor of ω_ω while retaining ω_ω as a singular cardinal. Hence, by the covering lemma, K would have to change.) This precludes e.g. the existence of a core model below "an inaccessible above a Woodin", but it does not preclude constructing a core model below one Woodin cardinal. That is, in fact, the main theorem of this book: Assuming that no inner model with a Woodin cardinal exists, we define K with the above two properties.

In 1990 John Steel made an enormous stride toward achieving this goal by
proving the following theorem: Let κ be a measurable cardinal. Assume that V_κ has no inner model with a Woodin cardinal. Then there is V–definable inner model K of V_κ which, relativized to V_κ, has he above two properties. This result, which was exposited in [CMI] was an enormous breakthrough, which laid the foundation for all that has been done in inner model theory since then. There remained, however, the pesky problem of doing without the measurable — i.e. constructing K and proving its properties assuming only "$\text{ZFC}+$ there is no inner model with a Woodin". The first step was to construct the model K^C from this assumption. This was almost achieved by Mitchell and Schindler in 2001, except that they needed the additional hypothesis: GCH. Steel then showed that this hypothesis was superfluous. These results were obtained by directly weakening the "background condition" originally used by Steel in constructing K^C. The result of Mitchell and Schindler were published in [UEM]. Independently, Jensen found a construction of K^C using a different background condition called "robustness". This is exposited in [RE]. There remained the problem of extracting a core model K from K^C. Jensen and Steel finally achieved this result in 2007. It was exposited in [JS].

In the next section we deal with the notion of extenders, which is essential to the rest of the book. (We shall, however, deal only with so called "short extenders", whose length is less than or equal to the image of the critical points.)

3.2. EXTENDERS

The *extender* is a generalization of the normal ultrafilter. A normal ultrafilter at κ can be described by a two valued function on $\mathcal{P}(\kappa)$. An extender, on the other hand, is characterized by a map of $\mathcal{P}(\kappa)$ to $\mathcal{P}(\lambda)$, where $\lambda > \kappa$. λ is then called the *length* of the extender. Like a normal ultrafilter an extender F induces a canonical elementary embedding of the universe V into an inner model W. We express this in symbols by: $\pi : V \rightarrow F W$. W is then called the *ultrapower* of V by F and π is called the *canonical embedding* induced by F. The pair $\langle W, \pi \rangle$ is called the *extension* of V by F. We will always have: $\lambda \leq \pi(\kappa)$. However, just as with ultrafilters, we shall also want to apply extenders to transitive models M which may be smaller than V. F might then not be an element of M. Moreover $\mathcal{P}(\kappa)$ might not be a subset of M, in which case F is defined on the smaller set $U = \mathcal{P}(\kappa) \cap M$. Thus we must generalize the notion of extenders, countenancing "suitable" subsets of $\mathcal{P}(\kappa)$ as extenders domain. (However, the ultrapower of M by F may not exist.)
We first define:

Definition 3.2.1. S is a base for κ iff S is transitive and $\langle S, \in \rangle$ models:

$$\text{ZFC}^- + \kappa \text{ is the largest cardinal.}$$

By a suitable subset of $\mathbb{P}(\kappa)$ we mean $\mathbb{P}(\kappa) \cap S$, where S is a base for κ.

We note:

Lemma 3.2.1. Let S be a base for κ. Then S is uniquely determined by $\mathbb{P}(\kappa) \cap S$.

Proof: For $a, e \in \mathbb{P}(\kappa) \cap S$ set:

$$u(a, e) \models: \text{that transitive } u \text{ such that}$$

$$\langle u, \in \rangle \text{ is isomorphic to } \langle a, e \rangle,$$

where $\bar{e} = \{ \langle \nu, \tau \rangle \mid \nu, \tau > \in e \}$.

Claim S = the union of all $u(a, e)$ such that $a, e \in \mathbb{P}(\kappa) \cap S$ and $u(a, e)$ is defined.

Proof: To prove (\subseteq), note that if $u \in S$ is transitive, then there exist $\alpha \leq \kappa, f \in S$ such that $f : \alpha \leftrightarrow u$. Hence $u = u(\alpha, e)$ where $e = \{ \langle \nu, \tau \rangle \mid f(\nu) \in f(\tau) \}$. Conversely, if $u = u(a, e)$ and $a, e \in \mathbb{P}(\kappa) \cap S$, then $u \in S$, since the isomorphism can be constructed in S. QED (Lemma 3.2.1)

Definition 3.2.2. An ordinal λ is called Gödel closed iff it is closed under Gödel’s pair function \langle, \rangle as defined in §2.4. (It follows that λ is closed under Gödel n–tuples $\langle x_1, \ldots, x_n \rangle$.)

We now define

Definition 3.2.3. Let S be a base for κ. Let λ be Gödel closed. F is an extender at κ with length λ, base S and domain $\mathbb{P}(\kappa) \cap S$ iff the following hold:

- F is a function defined on $\mathbb{P}(\kappa) \cap S$
- There exists a pair $\langle S', \pi \rangle$ such that
 - (a) $\pi : S \prec S'$ where S' is transitive
 - (b) $\kappa = \text{crit}(\pi), \pi(\kappa) \geq \lambda > \kappa$
(c) Every element of S' has the form $\pi(f)(\alpha)$ where $\alpha < \lambda$ and $f \in S$ is a function defined on κ.

(d) $F(X) = \pi(X) \cap \lambda$ for $X \in \mathcal{P}(\kappa) \cap S$.

Note. If F is an extender at κ, then κ is its critical point in the sense that $F|\kappa = \text{id}$, $F(\kappa)$ is defined, and $\kappa < F(\kappa)$. Thus we set: $\text{crit}(F) =: \kappa$.

Note. (c) can be equivalently replaced by:

$$\pi : S \rightarrow S'$$

cofinally.

We leave this to the reader.

Note. $\mathcal{P}(\kappa) \cap S \subset S'$ since $X = \pi(X) \cap \kappa \in S'$. But the proof of Lemma 3.2.1 then shows that $S \subset S'$. (We leave this to the reader.)

Note. As an immediate consequence of this definition we get a form of Łos Theorem for the base:

$$S' \models \varphi[\pi(f_1)(\alpha_1), \ldots, (f_n)(\alpha_n)] \Leftrightarrow \langle \xi \rangle \in F(\{\xi \mid S \models \varphi[f_1(\xi_1), \ldots, f_n(\xi_n)]\})$$

where $\alpha_1, \ldots, \alpha_n < \lambda$ and $f_i \in S$ is a function defined on κ for $i = 1, \ldots, n$.

Note. (S', π) is uniquely determined by F since if $(\tilde{S}, \tilde{\pi})$ were a second such pair, we would have:

$$\pi(f)(\alpha) \in \pi(g)(\beta) \Leftrightarrow \alpha, \beta \in F(\{\xi \mid f(\xi) \in g(\xi)\})$$

$$\Leftrightarrow \tilde{\pi}(f)(\alpha) \in \tilde{\pi}(g)(\beta).$$

Thus there is an isomorphism $i : S' \cong \tilde{S}$ defined by $i(\pi(f)(\alpha)) = \tilde{\pi}(f)(\alpha)$.

Since S', \tilde{S} are transitive, we conclude that $i = \text{id}, S' = \tilde{S}$.

But then we can define:

Definition 3.2.4. Let S, F, S', π be as above. We call (S', π) the extension of S by F (in symbols: $\pi : S \rightarrow_F S'$).

Note. It is easily seen that:

- S' is a base for $\pi(\kappa)$
- The embedding $\pi : S \rightarrow S'$ is cofinal (since $\pi(f)(\alpha) \in \pi(\text{rng}(f))$).

Note. The concept of extender was first introduced by Bill Mitchell. He regarded it as a sequence of ultrafilters (or measures) $\langle F_\alpha|\alpha < \lambda \rangle$, where $F_\alpha = \{X|\alpha \in F(X)\}$. For this reason he called it a hypermeasure. We shall retain this name and call $\langle F_\alpha|\alpha < \lambda \rangle$ the hypermeasure representation of F.

We can recover F by: $F(X) = \{\alpha|X \in F_\alpha\}$.

Definition 3.2.5. We call an extender F on κ with base S and extension $\langle S', \pi \rangle$ full iff $\pi(\kappa)$ is the length of F.

In later sections we shall work almost entirely with full extenders. We leave it to the reader to show that if S is a ZFC model with largest cardinal κ and $\pi : S \prec S'$ cofinally. Then $\pi \upharpoonright \mathcal{P}(\kappa)$ is a full extender with base S and extension $\langle S', \pi \rangle$.

Lemma 3.2.2. Let F be an extender with base S and extension $\langle S', \pi \rangle$. Then:

(a) $\langle S', \pi \rangle$ is amenable

(b) If F is full, then $\langle S', F \rangle$ is amenable.

Proof: (b) follows from (a), since then:

$$F \cap u = \{(Y, X) \in \pi \cap u | X \subset \kappa \land Y \subset \lambda\}.$$

We prove (a). Since π takes S to S' cofinally, it suffices to show: $\pi \cap \pi(u) \in S'$ for $u \in S$. We can assume w.l.o.g. that u is transitive and non empty. If $\langle \pi(X), X \rangle \in \pi \cap \pi(u)$, then $\pi(X) \in \pi(u)$ by transitivity, hence $X \in u$. Thus $\pi \cap \pi(u) = \langle \pi \cap u \rangle \cap \pi(u)$ and it suffices to show:

Claim $\pi \upharpoonright u \in S'$.

Let $f = \{f(i) | i < \kappa\}$ enumerate u. Then $\pi \upharpoonright u = \{\langle \pi(f)(i), f(i) \rangle | i < \kappa\}$.

QED (Lemma 3.2.2)

Definition 3.2.6. Let F be an extender at κ with base S, length λ, and extension $\langle S', \pi \rangle$. The expansion of F is the function F^* on $\bigcup_{n<\omega} \mathcal{P}(\kappa^n) \cap S$ defined by:

$$F^*(X) = \pi(X) \cap \lambda^n \text{ for } X \in \mathcal{P}(\kappa^n) \cap S.$$

We also expand the hypermeasure by setting:

$$F^*_{\alpha_1, \ldots, \alpha_n} = \{X | \langle \tilde{\alpha} \rangle \in F^*(X)\}$$

for $\alpha_1, \ldots, \alpha_n < \lambda$. By an abuse of notation we shall usually not distinguish between F and F^*, writing $F(X)$ for $F^*(X)$ and $F_{\tilde{\alpha}}$ for $F^*_{\tilde{\alpha}}$.

Using this notation we get another version of Los Lemma:

$$S' \models \varphi[\pi(f_1)(\tilde{\alpha}), \ldots, \pi(f_n)(\tilde{\alpha})] \iff$$

$$\{\langle \tilde{\xi} \rangle | S \models \varphi[f_1(\tilde{\xi}), \ldots, f_n(\tilde{\xi})] \} \in F_{\tilde{\alpha}}$$

for $\alpha_1, \ldots, \alpha_m < \lambda$ and $f_i \in M$ a function with domain k^m for $i = 1, \ldots, n$.
3.2. EXTENDERS

Note. Most authors permit extenders to have length which are not Gödel closed. We chose not to for a very technical reason: If \(\lambda \) is not Gödel closed, the expanded extender \(F^* \) is not necessarily determined by \(F = F^* \upharpoonright \mathcal{P}(\kappa) \).

Hence if we drop the requirement of Gödel completeness, we must work with expanded extenders from the beginning. We shall, in fact, have little reason to consider extenders whose length is not Gödel closed, but for the sake of completeness we give the general definition:

Definition 3.2.7. Let \(S \) be a base for \(\kappa \). Let \(\lambda > \kappa \). \(F \) is an expanded extender at \(\kappa \) with base \(S \), length \(\lambda \), and extension \(\langle S', \pi \rangle \) iff the following hold:

- \(F \) is a function defined on \(\bigcup_{n<\omega} \mathcal{P}(\kappa^n) \cap S \)
- \(\pi : S \prec S' \) where \(S' \) is transitive
- \(\kappa = \text{crit}(\pi), \pi(\kappa) \geq \lambda \)
- Every element of \(S' \) has the form \(\pi(f)(\alpha_1, \ldots, \alpha_n) \) where \(\alpha_1, \ldots, \alpha_n < \lambda \) and \(f \in S \) is a function defined on \(\kappa^n \)
- \(F(X) = \pi(X) \cap \kappa^n \) for \(X \in \mathcal{P}(\kappa^n) \cap S \).

This makes sense for any \(\lambda > \kappa \). If, indeed, \(\lambda \) is Gödel closed and \(F \) is an extender of length \(\lambda \) as defined previously, then \(F^* \) is the unique expanded extender with \(F = F^* \upharpoonright \mathcal{P}(\kappa) \).

Definition 3.2.8. Let \(F \) be an extender at \(\kappa \) of length \(\lambda \) with base \(S \) and extension \(\langle S', \pi \rangle \). \(X \subset \lambda \) is a set of generators for \(F \) iff every \(\beta < \lambda \) has the form \(\beta = \pi(f)(\bar{\alpha}) \) where \(\alpha_1, \ldots, \alpha_n \in X \) and \(f \in S \).

If \(X \) is a set of generators, then every \(x \in S' \) will have the form \(\pi(f)(\bar{\alpha}) \) where \(\alpha_1, \ldots, \alpha_n \in X \) and \(f \in S \). Thus only the generators are relevant. In some cases \(\{\kappa\} \) will be a set of generators. (This will happen for instance if \(\lambda \) is the first admissible above \(\kappa \) or if \(\lambda = \kappa + 1 + F \) is the expanded extender.) This means that every element of \(S' \) has the form \(\pi(f)(\kappa) \) and that:

\[
S' \models \varphi[\pi(f)(\kappa)] \leftrightarrow \{\xi | S \models \varphi[\pi(\xi)]\} \in F_\kappa.
\]

Thus, in this case, \(S' \) is the ultrapower of \(S \) by the normal ultrafilter \(F_\kappa \).

In §2.7 we used a "term model" construction to analyze the conditions under which the liftup of a given embedding exists. This construction emulated the well known construction of the ultrapower by a normal ultrafilter. We
could use a similar construction to determine whether a given \(F \) is, in fact, an extender with base \(S \) — i.e. whether the extension \(\langle S', \pi \rangle \) by \(F \) exists. However, the only existence theorem for extenders which we shall actually need is:

Lemma 3.2.3. Let \(S \) be a base for \(\kappa \). Let \(\pi^* : S < S^* \) such that \(\kappa = \text{crit}(\pi^*) \) and \(\kappa < \lambda \leq \pi^*(\kappa) \) where \(\lambda \) is Gödel closed. Set

\[
F(X) =: \pi^*(X) \cap \lambda \text{ for } X \in \mathcal{P}(\kappa) \cap S.
\]

Then

(a) \(F \) is an extender of length \(\lambda \).

(b) Let \(\langle S', \pi \rangle \) be the extension by \(F \). Then there is a unique \(\sigma : S' < S^* \) such that \(\sigma \pi = \pi^* \) and \(\pi \upharpoonright \lambda = \text{id} \).

Proof: We first prove (a). Let \(Z \) be the set of \(\pi^*(f)(\alpha) \) such that \(\alpha < \lambda \) and \(f \in S \) is a function on \(\kappa \).

1. \(Z \prec S^* \)

Proof: Let \(S^* \models \forall \, \phi(x) \) where \(x_1, \ldots, x_n \in Z \). We must show:

Claim \(\forall y \in Z \models \phi(y, \bar{x}) \).

We know that there are functions \(f_i \in S \) and \(\alpha_i < X \) such that \(x_i = \pi^*(f_i)(\alpha_i) \) for \(i = 1, \ldots, n \). By replacement there is a \(g \in S \) such that \(\text{dom}(g) = \kappa \) and in \(S \):

\[
\land_{\xi_i < \kappa} \left(\forall x_\phi(y, f_1(\xi_1), \ldots, f_n(\xi_n)) \rightarrow \phi(g(\xi_1), \ldots, \xi_n), f_1(\xi_1), \ldots, f_n(\xi_n)) \right).
\]

But then the corresponding statement holds of \(\pi^*(\kappa), \pi^*(g), \pi^*(f_1), \ldots, \pi^*(f_n) \) in \(S^* \). Hence, setting \(\beta = \langle \alpha_1, \ldots, \alpha_n \rangle > \) we have:

\[
S^* \models \phi(\pi^*(g)(\beta), \pi^*(f_1)(\alpha_1), \ldots, \pi^*(f_n)(\alpha_n)).
\]

QED (1)

Now let \(\sigma : S' \overset{\sim}{\to} Z \) where \(S' \) is transitive. Set: \(\pi = \sigma^{-1} \pi^* \). Then \(S < S' \) and \(\sigma(\pi(f)(\alpha)) = (\pi^*(f)(\alpha) \text{ for } \alpha < \lambda \). It follows easily that \(F \) is an extender and \(\langle S', \pi \rangle \) is the extension by \(F \).

This proves (a). It also proves the existence part of (b), since \(\sigma \upharpoonright \lambda = \text{id} \) and \(\sigma \pi = \pi^* \). But if \(\sigma' \) also has the properties, then \(\sigma'(\pi(f)(\alpha)) = \pi^*(f)(\alpha) = \sigma(\pi(f)(\alpha)) \). Then \(\sigma' = \sigma \) and \(\sigma \) is unique.

QED (Lemma 3.2.3)
Definition 3.2.9. Let F be an extender at κ with extension $\langle S', \pi \rangle$. Let $\kappa < \lambda \leq \pi(\kappa)$ where λ is Gödel closed. $F|\lambda$ is the function F' defined by: $\text{dom}(F') = \text{dom}(F)$ and $F'(X) = \pi(X) \cap \lambda$ for $X \in \text{dom}(F)$.

It follows immediately from Lemma 3.2.3 that $F|\lambda$ is an extender at κ with length λ.

The main use of an extender F with base S is to embed a larger model M with $P(\kappa) \cap M = P(\kappa) \cap S \in M$ into another transitive model M', which we then call the ultrapower of M by F. There is a wide class of models to which F can be so applied, but we shall confine ourselves to J-models.

Definition 3.2.10. Let M be a J–model. F is an extender at κ on M iff F is an extender with base S and $P(\kappa) \cap M = P(\kappa) \cap S \in M$, where κ is the largest cardinal in S. (In other words $S = H^M_\kappa \in M$ where $\tau = \kappa^+$.)

Making use of the notion of liftups developed in §2.7.1 we define:

Definition 3.2.11. Let F be an extender at κ on M. Let $H = H^M_\kappa$ be the base of F and let $\langle H', \pi' \rangle$ be the extension of H by F. We call $\langle N, \pi \rangle$ the extension of M by F (in symbols $\pi : M \rightarrow F N$) iff $\langle N, \pi \rangle$ is the liftup of $\langle M, \pi' \rangle$.

We then call N the ultrapower of M by F. We call π the canonical embedding given by F.

Note. that π is Σ_0 preserving but not necessarily elementary.

Lemma 3.2.4. Let F be an extender at κ on M of length λ. Let $\langle N, \pi \rangle$ be the extension of M by F. Then every element of N has the form $\pi(f)(\alpha)$ where $\alpha < \lambda$ and $f \in M$ is a function with domain κ.

Proof: Let $H = H^M_\kappa$ and let $\langle H', \pi' \rangle$ be the extension of H by F, where $\tau = \kappa^+M$. Each $x \in N$ has the form $x = \pi(f)(z)$, where $f \in M$ is a function, $\text{dom}(f) \in H$ and $z \in \pi(\text{dom}(f))$. But then $z = \pi(g)(\alpha)$ where $\alpha < \lambda$, $g \in H$ and $\text{dom}(g) = \kappa$. We may assume w.l.o.g. that $\text{rng}(g) \subset \text{dom}(f)$. (Otherwise redefine g slightly.) Thus $x = \pi(f \circ g)(\alpha)$. QED (Lemma 3.2.4)

Using the expanded extenders we then get Los Theorem in the form:

Lemma 3.2.5. Let M, F, λ, N, π be as above. Let $\alpha_1, \ldots, \alpha_n < \lambda$ and let $f_i \in M$ be such that $f_i : \kappa^m \rightarrow M$ for $i = 1, \ldots, n$. Let φ be Σ_0. Then $N \models \varphi[\bar{f}(\bar{\alpha})] \leftrightarrow \{\xi \mid \forall \alpha \in \kappa^m \models \varphi[\bar{f}(\xi)]\} \in F_{\alpha}$.

Proof: As in §2.7.1 we set:

$$\Gamma^0 = \Gamma^0(\tau, M) = \text{the set of } f \in M \text{ such that } f \text{ is a function and } \text{dom}(f) \in H^M_\tau.$$

Then $f_i \in \Gamma^0$, $\text{dom}(f_i) = \kappa_m$. By Łos Theorem for liftups we get:

$$N \models \varphi[\bar{f}(\bar{x})] \iff \langle \bar{a} \rangle \in \pi(e) \cap \lambda^m = F(e)$$

where

$$e = \{ \langle \xi \rangle | M \models \varphi[\bar{f}(\bar{x})] \}.$$

QED (Lemma 3.2.5)

The following lemma is often useful:

Lemma 3.2.6. Let F, κ, M, π be as above. Let τ be regular in M such that $\tau \neq \kappa$. Then $\pi(\tau) = \sup \pi'' \tau$.

Proof: If $\tau < \kappa$ this is trivial. Now let $\tau > \kappa$. Let $\xi = \pi(f)(\alpha) < \pi(\tau)$, where $\alpha < \lambda$. Set $\beta = \sup f'' \kappa$. Then $\beta < \tau$ by regularity. Hence:

$$\xi = \pi(f)(\alpha) \leq \sup \pi(f)'' \pi(\kappa) = \pi(\beta) < \pi(\tau).$$

QED (Lemma 3.2.6)

3.2.1 Extendability

Definition 3.2.12. Let F be an extender at κ on M. M is extendible by F iff the extension $\langle N, \pi \rangle$ of M by F exists.

Note. This requires that N be a transitive model.

$\langle N, \pi \rangle$, if it exists, is the liftup of $\langle M, \pi' \rangle$ where $H = H^M_\tau$, $\tau = \kappa^+ M$ and $\langle H', \pi' \rangle$ is the extension of its base H by F. In §2.7.1 we formed a term model \mathcal{D} in order to investigate when this liftup exists. The points of \mathcal{D} consisted of packs $\langle f, z \rangle$ where

$$f \in \Gamma^0(\tau, M) := \text{ the set of functions } f \in M \text{ such that } \text{dom}(f) \in H.$$

The equality and set membership relation were defined by

$$\langle f, z \rangle \simeq \langle g, w \rangle \iff \langle z, w \rangle \in \pi'(\{ \langle x, y \rangle | f(x) = g(y) \})$$

$$\langle f, z \rangle \bar{\in} \langle g, w \rangle \iff \langle z, w \rangle \in \pi'(\{ \langle x, y \rangle | f(x) = g(y) \})$$

Now set:
Definition 3.2.13. $\Gamma^0 = \Gamma^0_\chi(\kappa, M) := \{ f \in \Gamma^0 | \text{dom}(f) = \kappa \}$.

Set $\mathbb{D}^* = \mathbb{D}^*(\kappa, M) =: \text{the restriction of } \mathbb{D} \text{ to terms } \langle t, \alpha \rangle \text{ such that } t \in \Gamma^0$ and $\alpha < \lambda$. The proof of Lemma 3.2.4 implicitly contains a barely disguised proof that:

$$\bigwedge x \in \mathbb{D} \bigvee y \in \mathbb{D}^* x \simeq y.$$

The set membership relation of \mathbb{D}^* is:

$$\langle f, \alpha \rangle \in^* \langle g, \beta \rangle \iff \alpha, \beta \in \pi'([\{\xi, \zeta\}|f(\xi) \in g(\zeta)}) \rangle.$$

In §2.7.1, we used the term model to show that the liftup $\langle N, \pi \rangle$ exists if and only if $\bar{\xi}$ is well founded. In this case \mathbb{D}^* contains all the points of interest, so we may conclude:

Lemma 3.2.7. M is extendible iff \in^* is well founded.

Note. In the future, when dealing with extenders, we shall often fail to distinguish notationally between $\Gamma^0, \mathbb{D}^*, \in^*$ and $\Gamma^0, \mathbb{D}, \bar{\xi}$.

Using this principle we develop a further criterion of extendability. We define:

Definition 3.2.14. Let \bar{F} be an extender on \bar{M} at $\bar{\pi}$ of length $\bar{\chi}$. Let F be an extender on M at κ of length λ.

$$\langle \pi, g \rangle : \langle \bar{M}, \bar{F} \rangle \rightarrow \langle M, F \rangle$$

means:

(a) $\pi : \bar{M} \rightarrow_{\Sigma_0} M$ and $\pi(\bar{\pi}) = \kappa$

(b) $g : \bar{\lambda} \rightarrow \lambda$

(c) Let $\bar{X} \subset \bar{\pi}, \pi(\bar{X}) = X$, $\alpha_1, \ldots, \alpha_n < \bar{\lambda}$. Let $\beta_i = g(\alpha_i)$ for $i = 1, \ldots, n$. Then

$$< \bar{\alpha} > \in \bar{F}(\bar{X}) \iff < \beta > \in F(X).$$

Lemma 3.2.8. Let $\langle \pi, g \rangle : \langle \bar{M}, \bar{F} \rangle \rightarrow \langle M, F \rangle$, where M is extendible by F. Then \bar{M} is extendible by \bar{F}. Moreover, if $\langle N, \sigma \rangle, \langle \bar{N}, \bar{\sigma} \rangle$ are the extensions of M, N respectively, then there is a unique π' such that

$$\pi' : \bar{N} \rightarrow_{\Sigma_0} N, \pi'\sigma = \sigma\pi, \text{ and } \pi'|\bar{X} = g.$$

π' is defined by:

$$\pi'(\sigma(f)(\alpha)) = \sigma\pi(f(\alpha))$$

for $f \in \Gamma^0$ and $\alpha < \bar{\lambda}$.

CHAPTER 3. MICE

Proof: We first show that \overline{M} is extendible by F. Let $\sigma : M \rightarrow_F N$. The relation $\bar{\cdot}$ on the term model $\overline{D} = D(\pi, \overline{M})$ is well founded, since:

$$\langle f, \alpha \rangle \bar{\sim} \langle h, \beta \rangle \iff \alpha, \beta \bar{\in} F(\{ \langle \xi, \zeta \rangle \mid f(\xi) \in h(\zeta) \})$$

$$\iff g(\alpha), g(\beta) \bar{\in} F(\{ \langle \xi, \zeta \rangle \mid \pi(f)(\xi) \in \pi(h)(\zeta) \})$$

$$\iff \sigma \pi(f)(g(\alpha)) \in \sigma \pi(h)(g(\beta))$$

Now let $\bar{\sigma} : \overline{M} \rightarrow \overline{N}$. Let φ be a Σ_0 formula.

Then:

$$\overline{N} \models \varphi(\overline{f}(1), \ldots, \overline{f}(n)(\alpha_n))$$

$$\iff \langle \bar{\alpha} \rangle \in F(\{ \langle \bar{\xi} \rangle \mid \overline{D} \models \varphi[\bar{\xi}] \})$$

$$\iff \langle g(\bar{\alpha}) \rangle \in F(\{ \langle \bar{\xi} \rangle M \models \varphi[\pi(\bar{f})(\bar{\xi})] \})$$

$$\iff N \models \varphi(\sigma \pi(f_1)(g(\alpha_1)), \ldots, \sigma \pi(f_n)(g(\alpha_n))).$$

Hence there is $\pi' : \overline{N} \rightarrow_{\Sigma_0} N$ defined by:

$$\pi'(\sigma(f)(\alpha)) = \sigma \pi(f)(g(\alpha)).$$

But any π' fulfilling the above conditions will satisfy this definition.

QED (Lemma 3.2.8)

3.2.2 Fine Structural Extensions

These lemmas show that N is the ultrapower of M in the usual sense. However, the canonical embedding can only be shown to be Σ_0–preserving. If, however, M is acceptable and $\kappa < \rho^n_M$, the methods of §2.7.8 suggest another type of ultrapower with a Σ_0–preserving map. We define:

Definition 3.2.15. Let M be acceptable. Let F be an extender at κ on M. Let $H = H^M_F$ be the base of F and let $\langle H', \pi' \rangle$ be the extension of H by F. Let $\rho^n_M > \kappa$ (hence $\rho^n_M \geq \tau$). We call $\langle N, \pi \rangle$ the Σ_0–extension of M by F (in symbols: $\pi : M \rightarrow_F N$ iff $\langle N, \pi \rangle$ is the Σ_0–liftup of $\langle M, \pi' \rangle$).

The extension we originally defined is then the Σ_0 ultrapower (or $\Sigma_0^{(0)}$ ultrapower). The $\Sigma_0^{(n)}$ analogues of Lemma 3.2.4 and Lemma 3.2.5 are obtained by a virtual repetition of our proofs, which we leave to the reader.

Letting $\Gamma^n = \Gamma^n(\tau, M)$ be defined as in §2.7.2 we get the analogue of Lemma 3.2.4.

Lemma 3.2.9. Let F be an extender at κ on M of length λ. Let $\rho^n_M > \kappa$ and let $\langle N, \pi \rangle$ be the $\Sigma_0^{(n)}$ extension of M by F. Then every element of N has the form $\pi(f)(\alpha)$ where $\alpha < \lambda$ and $f \in \Gamma^n$ such that $\text{dom}(f) = \kappa$.
Lemma 3.2.10. Let M, F, λ, N, π be as above. Let $\alpha_1, \ldots, \alpha_m < \lambda$ and let $f_i \in \Gamma^n$ such that $\text{dom}(f_i) = \kappa^m$ for $i = 1, \ldots, p$. Let φ be a $\Sigma_0^{(n)}$ formula. Then:

$$N \models \varphi[\pi(\bar{f})(\bar{a})] \leftrightarrow \{\langle \bar{\xi} \rangle | M \models \varphi[\bar{f}(\bar{\xi})] \} \in F_\delta.$$

Note. We remind the reader that an element f of Γ^n is not, in general, an element of M. The meaning of $\pi(f)$ is explained in §2.7.2.

Using Lemma 2.7.22 we get:

Lemma 3.2.11. Let $\pi^* : M \rightarrow \Sigma_0^{(n)} M^*$ where $\kappa = \text{crit}(\pi^*)$ and $\pi^*(\kappa) \geq \lambda$, where λ is Gödel closed. Assume: $\mathbb{P}(\kappa) \cap M \in M$. Set:

$$F(X) =: \pi^*(X) \cap \lambda$$

for $X \in \mathbb{P}(\kappa) \cap M$.

Then:

(a) F is an extender at κ of length λ on M.

(b) The $\Sigma_0^{(n)}$ extension (M', π) of M by F exists.

(c) There is a unique $\sigma : M' \rightarrow \Sigma_0^{(n)} M^*$ such that $\sigma' \upharpoonright \lambda = \text{id}$ and $\sigma \pi = \pi^*$.

Proof: Let $H = H_\uparrow^M$, $H^* = \pi^*(H)$. Then H is a base for κ and $\pi^* \upharpoonright H : H \prec H^*$. Hence by Lemma 3.2.3 F is an extender at κ with base H and extension (H', π'). Moreover, there is a unique $\sigma' : H' \prec H^*$ such that $\sigma' \upharpoonright \lambda = \text{id}$ and $\sigma' \pi' = \pi^* \upharpoonright H$. But by Lemma 2.7.22 the $\Sigma_0^{(n)}$ liftup (M', π) of (M, π') exists. Moreover, there is a unique $\sigma : M' \rightarrow \Sigma_0^{(n)} M^*$ such that $\sigma \upharpoonright H' = \sigma'$ and $\sigma \pi' = \pi^*$. In particular, $\sigma \upharpoonright \lambda = \text{id}$. But σ is then unique with these properties, since if $\tilde{\sigma}$ had them, we would have:

$$\tilde{\sigma}(\pi(f)(\alpha)) = \pi^*(f)(\alpha) = \sigma(\pi(f)(\alpha))$$

for $f \in \Gamma^n$, $\text{dom}(f) = \kappa$, $\alpha < \lambda$. QED (Lemma 3.2.11)

By Lemma 2.7.21 we get:

Lemma 3.2.12. Let $\pi : M \rightarrow \Sigma_0^{(n)} N$. Let $i < n$. Then:

(a) π is $\Sigma_2^{(i)}$ preserving.

(b) $\pi(\rho^i_M) = \rho^i_{M'}$ if $\rho^i_M \in M$.

(c) $\rho^i_{M'} = \text{On} \cap M'$ if $\rho^i_M = \text{On} \cap M$.

The following definition expresses an important property of extenders:

Definition 3.2.16. Let F be an extender at κ of length λ with base S. F is weakly amenable iff whenever $X \in \mathcal{P}(\kappa^2) \cap S$, then $\{\nu < \kappa | (\nu, \alpha) \in F(X)\} \in S$ for $\alpha < \lambda$.

Lemma 3.2.13. Let F be an extender at κ with base S and extension (S', π). Then F is weakly amenable iff $\mathcal{P}(\kappa) \cap S' \subset S$.

Proof:

(\rightarrow) Let $Y \in \mathcal{P}(\kappa) \cap S'$, $Y = \pi(f)(\alpha)$, $\alpha < \lambda$. Set $X = \{ (\nu, \xi) \in \kappa^2 | \nu \in f(\xi) \}$. Then $\pi(f)(\alpha) = \{ \nu < \kappa | (\nu, \alpha) \in F(X) \} \in S$, since $F(X) = \pi(X) \cap \lambda$.

(\leftarrow) Let $X \in \mathcal{P}(\kappa^2) \cap S$, $\alpha < \lambda$. Then $\{ \nu < \kappa | (\nu, \alpha) \in \pi(X) \} \in \mathcal{P}(\kappa) \cap S' \subset S$.

QED (Lemma 3.2.13)

Corollary 3.2.14. Let M be acceptable. Let F be a weakly amenable extender at κ on M. Let (N, π) be the $\Sigma_0^{(n)}$ extension of M by F. Then $\mathcal{P}(\kappa) \cap N \subset M$.

Proof: Let $H = H^M_\pi$, $\tilde{H} = \bigcup_{u \in H} \pi(u)$, $\tilde{\pi} = \pi | H$. Then H is the base for F and $(\tilde{H}, \tilde{\pi})$ is the extension of H by F. Hence $\mathcal{P}(\kappa) \cap \tilde{H} \subset H \subset M$. Hence it suffices to show:

Claim $\mathcal{P}(\kappa) \cap N \subset \tilde{H}$.

Proof: Since $\pi(\kappa) > \kappa$ is a cardinal in N and N is acceptable, we have:

$\mathcal{P}(\kappa) \cap N \subset H^N_{\pi(\kappa)} = \pi(H^M_\kappa) \in \tilde{H}$.

QED (Corollary 3.2.14)

Corollary 3.2.15. Let M, F, N, π be as above. Then κ is inaccessible in M (hence in N by Corollary 3.2.14).

Proof:

(1) κ is regular in M.

Proof: If not there is $f \in M$ mapping a $\gamma < \kappa$ cofinally to κ. But then $\pi(f)$ maps γ cofinally to $\pi(\kappa)$. But $\pi(f)(\xi) = \pi(f(\xi)) = f(\xi) < \kappa$ for $\xi < \gamma$. Hence $\sup \{ \pi(f)(\xi) | \xi < \gamma \} \subset \kappa$. Contradiction!
3.2. EXTENDERS

(2) \(\kappa \neq \gamma^+ \) in \(M \) for \(\gamma < \kappa \).

Proof: Suppose not. Then \(\pi(\kappa) = \gamma^+ \) in \(N \) where \(\pi(\kappa) > \kappa \). Hence \(\overline{\kappa} = \gamma \) in \(N \) and \(N \) has a new subset of \(\kappa \). Contradiction!

QED (Corollary 3.2.15)

By Corollary 3.2.14 and Lemma 2.7.23 we get:

Lemma 3.2.16. Let \(\pi : M \rightarrow \gamma_F(n) N \) where \(F \) is weakly amenable. Let \(n \) be maximal such that \(\rho^n_M > \kappa \). Then \(\rho^n_M = \sup \pi^n(\rho^n_M) \). (Hence \(\pi \) is \(\Sigma_1^{(n)} \) preserving.)

With further conditions on \(F \) and \(n \) we can considerably improve this result. We define:

Definition 3.2.17. Let \(F \) be an extender at \(\kappa \) on \(M \) of length \(\lambda \). \(F \) is close to \(M \) if \(F \) is weakly amenable and \(F \) is \(1 \)–preserving. (Hence \(\pi \) is \(\Sigma_1^{(n)} \) preserving.)

This very important notion is due to John Steel. Using it we get the following remarkable result:

Theorem 3.2.17. Let \(M \) be acceptable. Let \(F \) be an extender at \(\kappa \) on \(M \) which is close to \(M \). Let \(\langle N, \pi \rangle \) be the \(\Sigma_0^{(n)} \) extension of \(M \) by \(F \). Then \(\pi \) is \(\Sigma^* \) preserving.

Proof: If \(n = \omega \) this is immediate, so let \(n < \omega \). Then \(\rho^{n+1} \leq \kappa < \rho^n \) in \(M \). By the previous lemma \(\pi \) is \(\Sigma_1 \)–preserving. Hence \(\pi(\kappa) \) is regular in \(N \). Set: \(H = H^M \). Then \(H = H^N \).

(1) Let \(D \subset H \) be \(\Sigma_1^{(n)}(N) \). Then \(D \) is \(\Sigma_1^{(n)}(M) \).

Proof: Let:

\[
D(z) \leftrightarrow \bigvee x^n D'(x^n, z, \pi(f)(\alpha))
\]

where \(\alpha < \lambda, f \in \Gamma^n \) such that \(\text{dom}(f) = \kappa \), and \(D' \) is \(\Sigma_0^{(n)} \). Then by Lemma 3.2.16:

\[
D(z) \leftrightarrow \bigvee u \in H^M_N \bigvee x \in \pi(u) D'(x, z, \pi(f)(\alpha)) \\
\leftrightarrow \bigvee u \in H^M_N \alpha \in \pi(e) \\
\leftrightarrow \bigvee u \in H^M_N e \in F_\alpha
\]

where \(e = \{ \xi \mid \bigvee x \in u D'(x, z, f(\xi)) \} \) where \(D' \) is \(\Sigma_0^{(n)}(M) \) by the same definition as \(D' \) over \(N \).

QED (1)
By induction on \(m > n\) we then prove:

\[
\begin{align*}
(2) \quad & (a) \quad H_M^m = H_N^m \\
& (b) \quad \Sigma_1^{(m)}(M) \cap \mathbb{P}(H) = \Sigma_1^{(m)}(N) \cap \mathbb{P}(H) \\
& (c) \quad \pi \text{ is } \Sigma_1^{(m)} \text{-preserving.}
\end{align*}
\]

Proof:

Case 1 \(m = n + 1\)

(a) Let \(M = \langle J_{\alpha}^A, B \rangle\), \(N = \langle J_{\alpha}^{A'}, B' \rangle\). Then: \(H = J_{\alpha}^A = J_{\alpha}^{A'}\). But

\[
\mathbb{P}(\rho) \cap M = \mathbb{P}(\rho) \cap N = \mathbb{P}(\rho) \cap H \text{ for } \rho \leq \kappa.
\]

But then in \(M\) and \(N\) we have:

\[
\rho^m = \text{the least } \rho < \kappa \text{ such that } D \cap J_{\rho}^A \neq H \text{ for } D \in \Sigma_1^{(n)} \quad \text{and } H^m = J_{\rho}^A.
\]

Hence \(\rho^M_M = \rho^N_N, H^m_M = H^m_N\). QED (a)

(b) Let \(\overline{A}(\overline{x}^m, x_{i_1}, \ldots, x_{i_p})\) be \(\Sigma_1^{(m)}(M)\), where \(i_1, \ldots, i_p \leq n\). Let \(A\) be \(\Sigma_1^{(m)}(N)\) by the same definition. Then there are \(\Sigma_1^{(m)}(M)\) relations \(\overline{B}^j(\overline{x}^m, \overline{x})(j = 1, \ldots, q)\) and a \(\Sigma_1\) formula \(\varphi\) such that

\[
\overline{A}(\overline{x}^m, \overline{x}) \leftrightarrow \overline{H}^m_{\overline{x}} \models \varphi[\overline{x}^m]
\]

where \(\overline{H}^m_{\overline{x}} = \langle H^m, B^1_{\overline{x}}, \ldots, B^q_{\overline{x}} \rangle\) and

\[
\overline{B}^j_{\overline{x}} = \{\langle \overline{x}^m \rangle | \overline{B}(\overline{x}^m, \overline{x})\}(j = 1, \ldots, q).
\]

Let \(B^j(\overline{x}^m, \overline{x})\) have the same \(\Sigma_1^{(n)}\) definition over \(N\). Define \(H^m_{\overline{x}}\) the same way, using \(B^1, \ldots, B^q\) in place of \(B^1_{\overline{x}}, \ldots, B^q_{\overline{x}}\). Then

\[
A(\overline{x}^m, \overline{x}) \leftrightarrow H^m_{\overline{x}} \models \varphi[\overline{x}^m].
\]

But \(H^m_M = H^m_N\). Hence, since \(\pi\) is \(\Sigma_1^{(n)}\) preserving, we have: \(\overline{B}^j_{\pi(\overline{x})} = B^j_{\pi(\overline{x})}\). Hence \(\overline{H}^m_{\pi(\overline{x})} = H^m_{\pi(\overline{x})}\). But then:

\[
\begin{align*}
\overline{A}(\overline{x}^m, \overline{x}) & \leftrightarrow \overline{H}^m_{\pi(\overline{x})} \models \varphi[\overline{x}^m] \\
& \leftrightarrow H^m_{\pi(\overline{x})} \models \varphi[\overline{x}^m] \\
& \leftrightarrow A(\overline{x}^m, \pi(\overline{x})) \\
& \leftrightarrow A(\pi(\overline{x}^m), \pi(\overline{x}))
\end{align*}
\]

since \(\pi(x^m) = x^m\). QED (b)
(c) The direction \subset follows straightforwardly from (c). We prove the direction \supset. Let $A \subset H_N^m$ be $\Sigma_1^{(m)}(N)$. Then there are $B^i \subset H_N^m (j = 1, \ldots, q)$ and a Σ_1 formula φ such that B^i is $\Sigma_1^{(n)}(N)$ and

$$A_x \leftrightarrow \langle H_N^h, B^1, \ldots, B^q \rangle \models \varphi[x].$$

But $H_N^M = H_N^N$ and B^1, \ldots, B^q are $\Sigma_1^{(n)}(M)$ by (1). Hence A is $\Sigma_1^{(m)}(M)$. QED (Case 1)

Case 2 $m = h + 1$ where $h > n$.

This is virtually identical to Case 1 except that we use:

$$\Sigma_1^{(h)}(M) \cap \mathbb{P}(H_M^m) = \Sigma_1^{(h)}(N) \cap \mathbb{P}(H_N^m)$$

in place of (1). QED (Theorem 3.2.17)

As a corollary of the proof we have:

Corollary 3.2.18. Let $m > n$ where M, N, n are as in Theorem 3.2.17. Then

- $H_M^m = H_N^m$
- $\Sigma_1^{(m)}(M) \cap \mathbb{P}(H_M^m) = \Sigma_1^{(m)}(N) \cap \mathbb{P}(H_N^m)$.

Theorem 3.2.17 justifies us in defining:

Definition 3.2.18. Let F be an extender at κ on M. Let $n \leq \omega$ be maximal such that $\rho_M^n > \kappa$. We call $\langle N, \pi \rangle$ the $\Sigma^*-extension$ of M by F (in symbols $\pi : M \rightarrow \kappa, N$) iff F is close to M and $\langle N, \pi \rangle$ is the $\Sigma_0^{(n)}$ extension by F.

3.2.3 n–extendibility

Definition 3.2.19. Let F be an extender of length λ at κ on M. M is n–extendible by F iff $\kappa < \rho_M^n$ and the $\Sigma_0^{(n)}$ extension $\langle N, \pi \rangle$ of M by F exists.

$\langle N, \pi \rangle$, if it exists, is the $\Sigma_0^{(n)}$ liftup of $\langle M, \pi' \rangle$ where $H = H_\tau^M$ is the base of F, $\tau = \kappa^+M$, and $\langle M', \pi' \rangle$ is the extension of H by F. To analyse this situation we use the term model $\mathbb{D} = \mathbb{D}_n^{(\pi', M)}$ defined in §2.7.2. The points of \mathbb{D} are pairs (f, z) such that $f \in \Gamma^n = \Gamma^n(\tau, M)$ as defined in §2.7.2.
and \(z \in \pi'(\text{dom}(f)) \). The equality and set membership relation of \(\mathcal{D} \) are again defined by:

\[
\langle f, z \rangle \simeq \langle g, w \rangle \iff (z, w) \in \pi'(\{\langle x, y \rangle | f(x) = g(y)\})
\]
\[
\langle f, z \rangle \notin (g, w) \iff (z, w) \in \pi'(\{\langle x, y \rangle | f(x) = g(y)\})
\]

Set: \(\Gamma^n_* = \Gamma^n(\kappa, M) =: \) the set of \(f \in \Gamma^n \) such that \(\text{dom}(f) = \kappa \). Let \(\mathcal{D}_* = \mathcal{D}_n^*(F, M) \) be the restriction of \(\mathcal{D} \) to points \((f, d) \) such that \(f \in \Gamma^n_* \) and \(\alpha < \lambda \). The proof of Lemma 3.2.7 tells us that

\[
\bigwedge x \in \mathcal{D} \bigvee y \in \mathcal{D}_* x \simeq y.
\]

Hence \(M \) is \(\Sigma_0^{(n)} \) extendable iff the restriction \(\bar{\varepsilon}^* \) of the relation \(\varepsilon \) to \(\mathcal{D}_* \) is well founded.

We have:

\[
\langle f, \alpha \rangle \in^* \langle g, \beta \rangle \iff \langle \alpha, \beta \rangle \in F(\{\langle \xi, \zeta \rangle | f(\xi) = g(\zeta)\}).
\]

Note. When dealing with extenders, we shall again sometimes fail to distinguish notationally between \(\Gamma^n_*, \mathcal{D}_n^*(\pi, M), \varepsilon^* \) and \(\Gamma^n, \mathcal{D}(\pi, M) \).

We now prove:

Lemma 3.2.19. Let \(\langle \pi, g \rangle : \langle M, \mathcal{F} \rangle \rightarrow \langle M, F \rangle \), where \(M \) is \(m \)-extendible by \(F \). Let \(n \leq m \) and let \(\pi \) be \(\Sigma_0^{(n)} \) preserving with \(\pi < \rho^n \) in \(\overline{M} \), where \(\pi = \text{crit} \mathcal{F} \). Then \(\mathcal{M} \) is \(n \)-extendible by \(\mathcal{F} \). Moreover, if \(\langle N, \sigma \rangle \) is the \(\Sigma_0^{(m)} \) extension of \(M \) by \(F \) and \(\langle N, \overline{\sigma} \rangle \) is the \(\Sigma_0^{(n)} \) extension of \(\overline{M} \) by \(F \), then there is a unique \(\pi' \) such that

\[
\pi' : N \rightarrow \Sigma_0^{(m)} N, \pi' \overline{\sigma} = \sigma N, \pi' | \overline{\lambda} = g.
\]

\(\pi' \) is defined by:

\[
\pi'(\overline{\sigma}(\alpha)) = \sigma \pi(f)(g(\alpha))
\]

for \(f \in \Gamma^n(\pi, M) \), \(\alpha < \overline{\beta} \).

Proof: Let \(\varepsilon \) be the set membership relation of \(\mathcal{D}_* = \mathcal{D}_n(F, M) \).

Then:

\[
\langle f, \alpha \rangle \in^* \langle h, \beta \rangle \iff \langle \alpha, \beta \rangle \in \mathcal{F}(\{\langle \xi, \zeta \rangle | f(\xi) \in g(\zeta)\})
\]
\[
\iff \langle g(\alpha), g(\beta) \rangle \in F(\{\langle \xi, \zeta \rangle | \pi(f)(\xi) \in \pi(h(\zeta))\})
\]
\[
\iff \sigma \pi(f)(\alpha) \in \sigma \pi(f)(\beta).
\]
3.2. EXTENDERS

Hence there is \(\pi' : \overline{N} \rightarrow \Sigma^{(\alpha)}_0 N \) defined by:

\[
\pi'(\sigma(f)(\alpha)) = \sigma(f)(g(\alpha)).
\]

But any \(\pi' \) fulfilling the above conditions satisfies this definition.

QED (Lemma 3.2.19)

Taking \(\pi, g \) as id, we get:

Corollary 3.2.20. Let \(M \) be \(\Sigma_0^{(m)} \) extendible by \(F \). Let \(n \leq m \). Then \(M \) is \(\Sigma_0^{(n)} \) extendible by \(F \). Moreover, if \(\sigma : M \rightarrow^{(m)}_F N \) and \(\varphi : M \rightarrow^{(m)}_F \overline{N} \), there is \(\pi : \overline{N} \rightarrow \Sigma^{(\alpha)}_0 N \) defined by:

\[
\pi(\varphi(f)(\alpha)) = \sigma(f)(\alpha) \text{ for } f \in \Gamma^n, \alpha < \lambda.
\]

Lemma 3.2.19 is normally applied to the case \(n = m \). The condition \(\overline{\alpha} < \rho^M_\Sigma \)

will be satisfied if the map \(\pi \) is strictly \(\Sigma_0^{(n)} \)-preserving. However, it does not

follows that \(\pi' \) is strictly \(\Sigma_0^{(n)} \)-preserving. Similarly, even if we assume that

\(\pi \) is fully \(\Sigma_0^{(n)} \)-preserving, we get no corresponding strengthening of \(\pi' \). We

can remedy this situation by strengthening our basic premise:

\[
\langle \pi, g \rangle : \langle \overline{M}, \overline{F} \rangle \rightarrow \langle M, F \rangle
\]

We define:

Definition 3.2.20. \(\langle \pi, g \rangle : \langle \overline{M}, \overline{F} \rangle \rightarrow \langle M, F \rangle \) iff the following hold:

- \(\langle \pi, g \rangle : \langle \overline{M}, \overline{F} \rangle \rightarrow \langle M, F \rangle \)
- \(\overline{F}, F \) are weakly amenable
- Let \(\alpha < \lambda = \text{length } (\overline{F}) \). Then \(\overline{F}_\alpha \) is \(\Sigma_1(\overline{M}) \) in a parameter \(\overline{p} \) and
 \(F_{\varphi(\alpha)} \) is \(\Sigma_1(M) \) in \(p = \pi(\overline{p}) \) by the same definition.

(Hence \(\overline{F} \) is close to \(\overline{M} \).) Taking \(n = m \) in Lemma 3.2.19 we prove:

Lemma 3.2.21. Let \(\langle \pi, g \rangle = \langle \overline{M}, \overline{F} \rangle \rightarrow^{*} \langle M, F \rangle \). Let \(\sigma : M \rightarrow^{(n)}_F N \) where \(\pi \) is \(\Sigma_1^{(n)} \) preserving. Let \(\varphi : \overline{M} \rightarrow^{(n)}_F \overline{N}, \pi' : \overline{N} \rightarrow N \) be given by Lemma 3.2.19. Then \(\pi' \) is \(\Sigma_1^{(n)} \) preserving.

We derive this from a stronger lemma:
Lemma 3.2.22. Let \(\langle \pi, g \rangle : \langle M, F \rangle \to^* \langle M', F' \rangle \). Let \(n, N, \pi' \) be as above, where \(\pi \) is \(\Sigma_1^{(n)} \) preserving. Let \(\overline{D}(y, x_1, \ldots, x_r) \) be \(\Sigma_1^{(n)}(N) \) and \(D(y, x_1, \ldots, x_r) \) be \(\Sigma_1^{(n)}(N) \) by the same definition. Let \(\pi'(x_i) = x_i (i = 1, \ldots, r) \). Then
\[
\{ \langle \bar{y} \rangle \in H_{\kappa}^M | D(y, x_1, \ldots, x_r) \}
\]
is \(\Sigma_1^{(n)}(M) \) in a parameter \(\mathfrak{p} \)
and:
\[
\{ \langle \bar{y} \rangle \in H_{\kappa}^M | D(y, x_1, \ldots, x_r) \}
\]
is \(\Sigma_1^{(n)}(M) \) in \(p = \pi(\mathfrak{p}) \) by the same definition.

Before proving Lemma 3.2.22 we show that it implies Lemma 3.2.21. Let \(\overline{D}(x_1, \ldots, x_r) \) be \(\Sigma_1^{(n)}(N) \) and let \(D(x_1, \ldots, x_r) \) be \(\Sigma_1^{(n)}(N) \) by the same definition. Set:
\[
D'(y, \bar{x}) \iff y = \emptyset \land D(\bar{x}); \quad \overline{D}'(y, \bar{x}) \iff y = \emptyset \land \overline{D}(\bar{x}).
\]
Let \(\pi'(x_i) = x_i \) (\(i = 1, \ldots, r \)). Applying Lemma 3.2.22 and the \(\Sigma_1^{(n)} \) preservation of \(\pi \) we have:
\[
\overline{D}(x_1, \ldots, x_r) \iff \emptyset \in \{ y \in H_{\kappa}^M | \overline{D}(y, x_1, \ldots, x_r) \}
\]
\[
\iff \emptyset \in \{ y \in H_{\kappa}^M | D'(y, x_1, \ldots, x_r) \}
\]
\[
\iff \overline{D}(x_1, \ldots, x_r).
\]
QED

We now prove Lemma 3.2.22. For the sake of simplicity we display the proof for the case \(r = 1 \). Let \(\overline{D}(\bar{y}, x) \) be \(\Sigma_1^{(n)}(N) \) and \(D(\bar{y}, x) \) be \(\Sigma_1^{(n)}(N) \) by the same definition. We may assume:
\[
\overline{D}(\bar{y}, x) \leftrightarrow \bigvee z^n B(z^n, y, x), \quad D(\bar{y}, x) \leftrightarrow \bigvee z^n B(z^n, y, x)
\]
where \(B \) is \(\Sigma_0^{(n)}(N) \) and \(B \) is \(\Sigma_0^{(n)}(N) \) by the same definition. Let \(A \) have the same definition over \(M \) and \(A \) the same definition over \(M \). Let \(x = \pi'(\bar{x}) \). Then \(\bar{x} = \sigma(f)(\alpha) \) for an \(f \in \Gamma^\alpha \) and \(\alpha < \bar{\alpha} \). Hence \(x = \sigma \pi(f)(g(\alpha)) \). Then for \(\bar{y} \in H_{\kappa}^M \):
\[
\overline{D}(\bar{y}, x) \leftrightarrow \bigvee z^n \overline{B}(z^n, \bar{y}, \bar{x})
\]
\[
\leftrightarrow \bigvee u \in H_{\kappa}^M \bigvee z \in \sigma(u) \overline{B}(z^n, \bar{y}, \sigma(f)(\alpha))
\]
\[
\leftrightarrow \bigvee u \in H_{\kappa}^M \{ \xi < \kappa | \bigvee z \in u A(z, \bar{y}, f(\xi)) \} \in \overline{F}_\alpha.
\]
Similarly for \(\bar{y} \in H \) we get:
\[
\overline{D}(\bar{y}, x) \leftrightarrow \bigvee u \in H_{\kappa}^M \{ \xi < \kappa | \bigvee z \in u A(z, \bar{y}, \pi(f)(\xi)) \} \in F_{\pi(\alpha)}.
3.2. EXTENDERS

\[F_\alpha \] is \(\Sigma_1(\overline{M}) \) in a parameter \(\overline{\varphi} \) and \(F_{g(\alpha)} \) is \(\Sigma_1(M) \) in a parameter \(p = \pi(\overline{\varphi}) \). But by the definition of \(\Gamma^n \) we know that there are \(\overline{q}, q \) such that either:

\[f = \overline{q} \in H^{p}_{\overline{M}} \text{ and } q = \pi(f) \]

or:

\[f(\xi) \simeq \mathcal{G}(\xi, \overline{q}) \] where \(\mathcal{G} \) is a good \(\Sigma_1^{(i)}(\overline{M}) \) map

and:

\[\pi(f)(\xi) \simeq G(\xi q) \] where \(G \) has the same good definition over \(M \).

Hence:

\[\{ \langle \overline{y} \rangle \in H^{\overline{M}}_{\pi} | D(\overline{y}, \overline{x}) \} \]

is \(\Sigma_1^{(n)}(\overline{M}) \) in \(\pi, q, p \) and:

\[\{ \langle \overline{y} \rangle \in H^{M}_{\xi} | D(\overline{y}, x) \} \]

is \(\Sigma_1^{(m)}(M) \) in \(\kappa, q, p \) by the same definition. QED (Lemma 3.2.22)

3.2.4 \(\ast \)-extendability

Definition 3.2.21. Let \(F \) be an extender of length \(\lambda \) at \(\kappa \) on \(M \). \(M \) is \(\ast \)-extendible by \(F \) iff \(F \) is close to \(M \) and \(M \) is \(n \)-extendible by \(F \), where \(n \leq w \) is maximal such that \(\kappa < \rho_{M}^{n} \).

(Hence \(\pi : M \rightarrow^{\ast}_{F} N \) where \(\langle N, \pi \rangle \) is the \(\Sigma_0^{(n)} \)-extension.)

Lemma 3.2.23. Assume \(\langle \pi, g \rangle : \langle \overline{M}, \overline{F} \rangle \rightarrow^{\ast} \langle M, F \rangle \) where \(M \) is \(\ast \)-extendible by \(F \). Assume that \(\pi \) is \(\Sigma^* \) preserving. Then \(\overline{M} \) is \(\ast \)-extendible by \(E \). Moreover, if \(\overline{\sigma} : \overline{M} \rightarrow^{\ast}_{\overline{F}} \overline{N} \) and \(\sigma : M \rightarrow^{\ast}_{F} N \), there is a unique \(\pi' : N \rightarrow \Sigma^0 \) \(N \) such that \(\pi' \overline{\sigma} = \overline{\sigma} \pi \) and \(\pi' \overline{\sigma} \overline{\sigma} = g \).

Proof: Let \(n \) be maximal such that \(\kappa < \rho_{M}^{n} \). Let \(\sigma : M \rightarrow^{(n)}_{F} N \). By Lemma 3.2.21 we have \(\pi < \rho_{M}^{n} \) and there is \(\sigma : \overline{M} \rightarrow^{(n)}_{\overline{F}} \overline{M} \). Moreover there is \(\pi' : N \rightarrow \Sigma^{(n)} \) \(N \) such that \(\pi' \overline{\sigma} = \overline{\sigma} \pi \) and \(\pi' \overline{\sigma} \overline{\sigma} = g \).

Claim 1 \(n \) is maximal such that \(\pi < \rho_{M}^{n} \)

Proof: If not, then \(n < w \) and \(\rho_{M}^{n+1} \leq \kappa < \rho_{M}^{n} \). Hence

\[\bigwedge z^{n+1} z^{n+1} \neq \kappa \text{ holds in } M. \]

Thus \(\bigwedge z^{n+1} z^{n+1} \neq \pi \) in \(\overline{M} \), since \(\pi \) is \(\Sigma_0^{(n+1)} \) preserving. Hence \(\rho_{M}^{n+1} \leq \pi < \rho_{M}^{n} \). (QED Claim 1)
Note. In the case $n < w$ we needed only the Σ_0^{n+1} preservation of π to establish Claim 1.

By Claim 1 we then have:

(1) $\pi : \overline{M} \to \overline{\overline{N}}$.

Hence \overline{M} is \ast-extendible by \overline{F}. It remains only to show:

Claim 2 π' is Σ^* preserving.

Proof: If $n = w$, there is nothing to prove, so assume $n < w$. We must show that π' is $\Sigma_0^{(m)}$ preserving for $n < m < w$. Let $n < m < w$. Since $\sigma : M \to \overline{\overline{N}}$, we know that:

(2) $\rho^m_M = \rho^m_N$ and $\sigma | \rho^m_M = \text{id}$.

By Claim 1 an (1) we similarly conclude:

(3) $\rho^m_M = \rho^m_N$ and $\sigma | \rho^m_M = \text{id}$.

Using (2), (3) and Lemma 3.2.22 we can then show:

(4) Let $D'(\bar{y}^m, \bar{x})$ be $\Sigma_j^{(m)}(\overline{N})$. Let $D(\bar{y}^m, \bar{x})$ be $\Sigma_j^{(m)}(N)$ by the same definition. Let $\pi'(\bar{x}_i) = x_i (i = 1, \ldots, r)$.

Then:

$D_{\bar{x}_1, \ldots, \bar{x}_r} = \{ (\bar{y}_m) | D(\bar{y}^m, \bar{x}_1, \ldots, \bar{x}_r) \}$

is $\Sigma_j^{(m)}(\overline{M})$ in a parameter p and:

$D_{\bar{x}_1, \ldots, \bar{x}_r} = \{ (\bar{y}_m) | D(\bar{y}_m, x_1, \ldots, x_r) \}$

is $\Sigma_j^{(m)}(M)$ in $p = \pi(p)$ by the same definition.

Proof: By induction on m.

Case 1 $m = n + 1$

We know:

$\overline{D}(\bar{y}_m, \bar{x}) \leftrightarrow \overline{H}^m_{\bar{x}} \models \varphi[\bar{y}^m]$

where φ is Σ_j and

$\overline{H}^m_{\bar{x}} = \langle H^m_M, \overline{B}^1_{\bar{x}}, \ldots, \overline{B}^3_{\bar{x}} \rangle$
where $B_i^j = \{ (\overline{z^n}^m) | B^i(\overline{z^n}, x) \}$ and B^i is $\Sigma^1_1(N)$ for $i = 1, \ldots, q$. Since $D(y^n, \overline{x})$ has the same $\Sigma^1_j(m)$ definition, we can assume

$$D(\overline{y^m}, \overline{x}) \leftrightarrow H^m_{\overline{x}} \models \varphi[\overline{y^m}]$$

where:

$$H^m_{\overline{x}} = \langle (H^m_{\overline{M}}, B^1_{\overline{x}}, \ldots, B^q_{\overline{x}}) \rangle$$

where $B^i_j = \{ (\overline{z^n}) | B^i(\overline{z^n}, x) \}$ and B^i is $\Sigma^1_j(n)$ for $i = 1, \ldots, q$. Since $D(y^m, \overline{x})$ has the same definition as B^i over \overline{N}. Letting $\pi'(\overline{x}_i) = x_i$ ($i = q, \ldots, r$), we know by Lemma 3.2.22 that each of $\overline{B}_{\overline{x}_1, \ldots, \overline{x}_r}$ is $\Sigma^1_1(M)$ in a parameter p and $B^i_{\overline{x}_1, \ldots, \overline{x}_r}$ is $\Sigma^1_j(n)$ in $p = \pi(\overline{p})$ by the same definition. (We can without loss of generality assume that p is the same for $i = 1, \ldots, r$.) But then $D_{\overline{x}_1, \ldots, \overline{x}_r}$ is $\Sigma^1_j(n)$ in p and $D_{\overline{x}_1, \ldots, \overline{x}_r}$ is $\Sigma^1_j(n)$ in $p = \pi(p)$ by the same definition.

Case 2 $m = h + 1$ where $h > n$.

We repeat the same argument using the induction hypothesis in place of Lemma 3.2.22. QED (4)

But Claim 2 follows easily from Claim 4 and the fact that π is Σ^* preserving. Let $D(\overline{x})$ be $\Sigma^1_0(n)$ and $D(\overline{x})$ be $\Sigma^1_0(n)$ by the same definition. Set:

$$D'(y, \overline{x}) \leftrightarrow y = 0 \land D(\overline{x})$$

By (4) we have:

$$D'(y, \overline{x}) \leftrightarrow 0 \in D_{\overline{x}} \leftrightarrow 0 \in D_{\pi'(\overline{x})} \leftrightarrow D(\pi'(\overline{x}))$$

for $x_1, \ldots, x_r \in M$, using the $\Sigma^1_0(m)$ preservation of π and $\pi(0) = 0$.

Note. The last part of the proof also shows that π' is $\Sigma^1_j(m)$ preserving if π is.

As a corollary of the proof we also get:

Lemma 3.2.24. Let $(\pi, g) : (\overline{M}, \overline{F}) \rightarrow (M, F)$. Let M be \ast-extendible by F. Let n be the maximal n such that $\kappa = \text{crit}(F) < \rho^M_n$. Let $n < r < \omega$ and suppose that π is $\Sigma^1_j(r)$ preserving, where $j < \omega$. Then:

(a) n is maximal such that $\overline{\kappa} = \text{crit}(F) < \rho^M_n$.

(b) \overline{M} is \ast-extendible by F.
(c) Let \(\pi' \) be the unique \(\pi' : \overline{N} \rightarrow_{\Sigma_0} N \) such that \(\pi'\overline{\sigma} = \sigma \pi \) and \(\pi' \restriction \overline{\lambda} = g \). Then \(\pi' \) is \(\Sigma_j^{(r)} \) preserving.

Proof. (a) follows by the proof of Claim 1 in Lemma 3.2.23, since that only need that \(\pi \) is \(\Sigma_0^{n+1} \)-preserving. (1) then follows as before. Hence \(\overline{M} \) is \(\ast \)-extendible by \(\overline{F} \). (2) and (3) follows for \(r \geq m > n \), using the \(\Sigma_0^{(r)} \) preservation of \(\pi \). Hence (4) follows as before and we can conclude that \(\pi' \) is \(\Sigma_j^{(n)} \) preserving as before.

QED(Lemma 3.2.24)

Notation. \(\Gamma_n^\ast(\kappa, M) = \{ f \in \Gamma_n(\tau, M) : \text{dom}(f) = \kappa \} \) and \(\Gamma^\ast(\kappa, M) = \Gamma_n^\ast(\kappa, M) \) where \(n \leq \omega \) is maximal such that \(\kappa < \rho_M^\ast \).

3.3 Premice

A major focus of modern set theory is the subject of "strong axioms of infinity". These are principles which posit the existence of a large set or class, not provable in ZFC. Among these principles are the *embedding axioms*, which posit the existence of a non trivial elementary embedding of one inner model into another. The best known example of this is the *measurability axiom*, which posits the existence of a non trivial elementary embedding \(\pi \) of \(V \) into an inner model. ("Non trivial" here means simply that \(\pi \neq \text{id} \).) Hence there is a unique critical point \(\kappa = \text{crit}(\pi) \) such that \(\pi \restriction \kappa = \text{id} \) and \(\pi(\kappa) > \kappa \).) The critical point \(\kappa \) of \(\pi \) is then called a *measurable cardinal*, since the existence of such an embedding is equivalent to the existence of an ultrafilter (or *two valued measure*) on \(\kappa \).

This is a typical example of the recursing case that an axiom positing the existence of a proper class (hence not formulable in ZFC) reduces to a statement about set existence. The weakest embedding axiom posits the existence of a non trivial embedding of \(L \) into itself. This is equivalent to the existence of a countable transitive set called \(0^\# \), which can be coded by a real number. (There are many representations of \(0^\# \), but all have the same degree of constructability.) The "small" object \(0^\# \) in fact contains complete information about both the proper class \(L \) and an embedding of \(L \) into itself. We can then form \(L(0^\#) \), the smallest universe containing the set \(0^\# \). If \(L(0^\#) \) is embeddable into itself we get \(0^{\#\#} \), which gives complete information about \(L(0^\#) \) and its embedding ... etc. This process can be continued very far. Each stage in this progression of embeddings, leading to larger and larger universes, is coded by a specific set, called a *mouse*. \(0^\# \) and \(0^{\#\#} \) are the first two examples of mice. It is not yet known how far this process goes, but
it is conjectured that all stages can be represented by mice, as long as the embeddings are representable by extenders. (Extenders in our sense are also called short extenders, since one must modify the notion in order to go still further.) The concept of mouse, however hard it is to explicate, will play a central role in this book.

We begin, therefore, with an informal discussion of the sharp operation which takes a set a to $a^\#$, since applications of this operation give us the smallest mice $0^\#, 0^{\#\#}$, etc.

Let a be a set such that $a \in L[a]$. Suppose moreover that there is an elementary embedding π of $L^a = (L[a], \in, a)$ into itself such that $a \in L^a_\kappa$, where $\kappa = \text{crit}(\pi)$. We also assume without loss of generality, that κ is minimal for π with this property. Let $L^a_\kappa = \text{crit}(\pi)$. We also assume without loss of generality, that $\tau \subseteq L^a_\kappa$, $L^a_\kappa = \text{crit}(\tau)$. Then $\tilde{\pi} : L^a_\tau \prec L^a_\nu$ cofinally, where $\tilde{\pi} = \pi | L^a_\tau$. Set $F = \pi | \mathcal{P}(\kappa)$. F is then an extender at κ with base $L^a_\tau[a]$ and extension $(L^a_\nu[a], \tilde{\pi})$.

$(L^a_\nu, F) = (L^a_\nu[a], a, F)$ is then amenable by Lemma 3.2.2. It can be shown, moreover, that F is uniquely defined by the above condition. We then define:

Definition 3.3.1. $a^\#$ is the structure $(L^a_\nu[a], a, F)$.

Note. In the literature $a^\#$ has many different representations, all of which have the same constructibility degree as $(L^a_\nu[a], a, F)$.

$a^\#$ has a number of interesting properties, which we state here without proof. F is clearly an extender at κ on (L^a_ν, F). Moreover, we can form the extension:

$$
\pi_0 : (L^a_\nu, F) \to (L^a_\nu, \nu_0, F_0) = F.
$$

We then have $\pi_0 \supseteq \tilde{\pi}$, $\pi_0(\kappa) = \nu$. (In fact $\pi_0 = \pi | L^a_\kappa$.) But we can then apply F_1 to (L^a_ν, F_1)... etc. This can be repeated indefinitely, showing that $a^\#$ is iterable in the following sense:

There are sequences $\kappa_i, \tau_i, \nu_i, F_i (i < \infty)$ and $\pi_{ij} (i \leq j < \infty)$ such that

- $\kappa_0 = \kappa$, $\tau_0 = \tau, \nu_0 = \nu, F_0 = F$.
- $\kappa_{i+1} = \pi_{i,i+1}^t(\kappa_i), \nu_i = \pi_{i,i+1}^t(\nu_i), \tau_i = \kappa_{i+1}^\kappa_{i+1} L^a_\tau$.
- F_i is a full extender at κ_i with base $L_{\tau_i}[a]$ and extension $(L_{\nu_i}[a], \pi_{i,i+1}^t | L^a_{\tau_i})$.
- $\pi_{i,i+1}^t : (L^a_{\nu_i}, F_i) \to (L^a_{\nu_{i+1}}, F_{i+1})$.
- The maps π_{ij}^t commute — i.e.

$$
\pi_{ii}^t = \text{id}; \quad \pi_{ij}^t \pi_{hi}^t = \pi_{hj}^t.
$$
For limit λ, $\langle L^\beta_\lambda, F_\lambda \rangle$, $\langle \pi^i_\lambda | i < \lambda \rangle$ is the transitivized direct limit of $\langle (L^\beta_0, F_i) | i < \lambda \rangle$, $\langle \pi^i_j | i < j < \lambda \rangle$.

It turns out that $a^\# = \langle L^\nu_\omega, F \rangle$ is uniquely defined by the conditions:

- (L^ν_ω, F) is iterable in the above sense
- ν is minimal for such (L^ν_ω, F).

If $a = \emptyset$ we write: $0^\#$. $0^\# = \langle L_\nu, F \rangle$ is then acceptable. By a Löwenheim–Skolem type argument it follows that $0^\#$ is sound and $\rho^1_{0^\#} = \omega$. (To see this let $M = 0^\#, X = h_M(\omega)$. Let $\sigma : M \rightarrow X$ be the transitivization of X, where $M = \langle L_\nu, F \rangle$. Using the fact that $\sigma : M \rightarrow M$ is Σ_1-preserving and M is iterable, it can be shown that M is iterable. Hence $\overline{M} = M$, since $\overline{\nu} \leq \nu$ and ν is minimal.) But then $0^\#$ is countable and can be coded by a real number. But this is real giving complete information about the proper class L, since we can recover the satisfaction relation for L by:

$L \models \varphi[\vec{x}] \leftrightarrow L_{\kappa_i} \models \varphi[\vec{x}]$

where i is chosen large enough that $x_1, \ldots, x_n \in L_{\kappa_i}$. But from $0^\#$ we also recover a nontrivial elementary embedding of L into itself, namely:

$\pi : L \rightarrow_F L$ where $0^\# = \langle L_\nu, F \rangle$.

$0^\#$ is our first example of a mouse. All of its iterates, however, are not sound, since if $i > 0$, then $\text{rng}(\pi_0) = h_M(\omega)$, where $\rho^1_M = \rho^1_M = \omega$. But $\kappa_0 \notin \text{rng}(\pi_0)$.

We can iterate the operation $\#$, getting $0^\#, (0^\#)^\#$, etc. This notation is not literally correct, however, since $a^\#$ is defined only when $a \in L[a]$. Thus, setting:

$0^\#(n) = (0^\# \# \cdots \#)$,

we need to set: $0^\#(n+1) = (e^n)^\#$, where e^n codes $0, \ldots, 0^\#(n)$. If we do this in a uniform way, we can in fact define $0^\#(\xi)$ for all $\xi < \infty$.

Definition 3.3.2. Define $e^i, \nu_i, 0^\#(i) = (L^e_{\nu_i}, E_{\nu_i})(i < \infty)$ as follows:

$e^i = \{ (x, \nu_i) | j < i \land x \in E_{\nu_j} \}$ (hence $e^0 = \emptyset$)

$0^\#(0) = \langle \emptyset, \emptyset \rangle$ (hence $\nu_0 = 0$)

$0^\#(i+1) = (e^i)^\#$ (hence $\nu_{i+1} > \nu_i$)

For limit λ we set:

$\nu = \sup_{i < \lambda} \nu_i$, $0^\#(\lambda) = \langle L^e_{\nu_\lambda}, \emptyset \rangle$, (hence $\emptyset = E_{\nu_\lambda}$).
3.3. PREMICE

By induction on \(i < \infty \) it can be shown that each \(\emptyset^+(i) \) is acceptable and sound, although we skip the details here. Each \(\emptyset^+(i) \) is also iterable in a sense which we have yet to explicate. As before, it will turn out that the iterates are acceptable but not necessarily sound. Set:

\[
E =: \bigcup_{i < \infty} e^i.
\]

Then \(L[E] \) is the smallest inner model which is closed under the \(\# \) operation. (For this reason it is also called \(L^\# \).) We of course set: \(L^E =: \langle L[E], \in, E \rangle \).

\(L^E \) is a very \(L \)-like model, so much so in fact, that we can obtain the next mouse after all the \(\emptyset^+(i)(i < \infty) \) by repeating the construction of \(\emptyset^+ \) with \(L^E \) in place of \(L \): Suppose that \(\pi : L^E < L^E \) is a nontrivial elementary embedding. Without loss of generality assume the critical point \(\kappa \) of \(\pi \) to be minimal for all such \(\pi \). Let \(\tau = \kappa^+L^E \) and \(\nu = \sup \pi''\tau \). Then \(\tilde{\pi} = \pi \upharpoonright L^E \).

Set: \(F = \pi \upharpoonright P(\kappa) \). Then \(F \) is an extender with base \(L_\tau[E] \) and extension \(\langle L_\nu[E], \tilde{\pi} \rangle \). The new mouse is then \(\langle L^E, F \rangle \).

As before, we can recover full information about \(L^E \) from \(\langle L^E_\nu, F \rangle \) and we can recover a nontrivial embedding of \(L^E \) by: \(\pi : L^E \to_F L^E \). \(e = E \cup \{ \langle x, \nu \rangle | x \in F \} \) then codes all the mice up to and including \(\langle L^E_\nu, F \rangle \), so the next mouse is \(e^\# \ldots \) etc.

Note. that \(L^E \upharpoonright \nu = \langle L^E_\nu, \emptyset \rangle \) since, if \(\kappa_i = \text{crit}(E_{\nu+1}) \), then the sequence \(\langle \kappa_i | i < \infty \rangle \) of all critical points of previous mice is discrete, whereas \(\kappa = \text{crit}(F) \) is a fixed point of this sequence.

This process can be continued indefinitely. At each stage it yields a set which encodes full information about an inner model. We call these sets **mice**. Each mouse will be an acceptable structure of the form \(M = \langle J^E_\nu, E_\nu \rangle \) where \(E = \{ \langle x, \nu \rangle | \nu < \alpha \land x \in E_\nu \} \) codes the set of 'previous' mice. For \(\nu = \alpha \) we have: Either \(E_\nu = \emptyset \) or \(\nu \) is a limit ordinal and \(E_\nu \) is a full extender at a \(\kappa < \nu \) with extension \(\langle J_\nu[E], \pi \rangle \) and base \(J_\tau[E] \), where \(\tau = \kappa^+M \).

For limit \(\xi \leq \alpha \) we set: \(M \upharpoonright \xi =: \langle J^E_\xi, E_\xi \rangle \). A class model \(L^E \) is called a **weasel** iff \(E = \{ \langle x, \nu \rangle | \nu < \infty \land x \in E_\nu \} \) and \(L^E \upharpoonright \alpha =: \langle J^E_\alpha, E_\alpha \rangle \) is a mouse of all limit \(\alpha \).

When dealing with such structures \(M \) satisfying, we shall often use the following notation: If \(E_\nu \neq \emptyset \), then \(\kappa_\nu \) is the critical point of \(E_\nu \), \(\tau_\nu = \kappa^+J^E_\nu \), and \(\lambda_\nu = \text{length of } E_\nu = \pi(\kappa_\nu) \), where \(\langle J^E_\nu, \pi \rangle \) is the extension of \(J^E_\nu \) by \(E_\nu \).

In the above examples, the extenders \(E_\nu \) were so small that \(\tau_\nu \) eventually got collapsed in \(L[E_\nu] \). Thus \(E_\nu \) was no longer an extender in \(L[E_\nu] \), since
it was not defined on all subsets of \(\kappa \). However, if we push the construction far enough, we will eventually reach an \(E_\nu \) which does not have this defect. \(L[E_\nu] \) will then be the smallest inner model with a measurable cardinal.

In the above examples the extender \(E_\nu \) is always generated by \(\{ \kappa_\nu \} \). Hence we could just as well have worked with ultrafilters as with extenders. Eventually, however, we shall reach a point where genuine extenders are needed. In the examples we also chose \(\lambda_\nu = \pi(\kappa_\nu) \) minimally — i.e. we imposed an initial segment condition which says that \(E_\nu|\lambda \) is not a full extender for any \(\lambda < \lambda_\nu \). This condition can become unduly restrictive, however: It might happen that we wish to add a new extender \(E_\nu \) and that \(E_\nu|\lambda \) is an extender which we added at an earlier stage. In that case we will have: \(E_\nu|\lambda \in J^E_\nu \). In order to allow for this situation we modify the initial segment condition to read:

Definition 3.3.3. Let \(F \) be a full extender at \(\kappa \) with base \(S \) and extension \(\langle S', \pi \rangle \). \(F \) satisfies the initial segment condition iff whenever \(\lambda < \pi(\kappa) \) such that \(F|\lambda \) is a full extender, then \(F|\lambda \in S' \).

As indicated above, we expect our mice to be iterable. The example of an iteration given above is quite straightforward, but the general notion of iterability which we shall use is quite complex. We shall, therefore, defer it until later. We mention, however, that, since mice are fine structural entities, we shall iterate by \(\Sigma^1 \)–extensions rather than the usual \(\Sigma^0 \)–extensions. In the above examples, the minimal choice we made in our construction guaranteed that the mice we constructed were sound. However, in general we want the iterates of mice to themselves be mice. Thus we cannot require all mice to be sound: Suppose e.g. that \(M = \langle J^E_\nu, F \rangle \) is a mouse and we form: \(\pi : M \rightarrow \pi^*_P M' \). Then \(M' \) is no longer sound. (To see this, let \(p \in P^1_M \). It follows easily that \(\pi(p) \in P^1_{M'} \). But \(\kappa \notin \operatorname{rng}(\pi) \); hence \(\kappa \) is not \(\Sigma_1(M') \) in \(\pi(p) \).)

As we said, however, our initial construction is designed to produce sound structures. Hence we can require that if \(M = \langle J^E_\nu, F \rangle \) is a mouse and \(\lambda < \nu \), then \(M||\lambda \) is sound, since this property will not be changed by iteration.

By a premouse we mean a structure which has the salient properties of a mouse, but is not necessarily iterable. Putting our above remarks together, we arrive at the following definition:

Definition 3.3.4. \(M = \langle J^E_\nu, F \rangle \) is a premouse iff it is acceptable and:

(a) Either \(F = \emptyset \) or \(F \) is a full extender at a \(\kappa < \nu \) with base \(J_\nu[E] \), where \(\tau = \kappa^+M \), and extension \(\langle J_\nu[E], \pi \rangle \). Moreover \(F \) is weakly amenable and satisfies the initial segment condition. (Recall that \(J = \langle J_\nu[E], E \cap J_\nu[E] \rangle \)).
(b) Set $E_{\gamma} = E'\{\gamma\}$ for $\gamma < \nu$. If $\gamma < \nu$ is a limit ordinal, then $M|\gamma =: <J^E_{\gamma}, E_{\gamma}>$ is sound and satisfies (a).

(c) $E = \{<x, \eta>| x \in E_\eta \cap \eta < \nu \text{ is a limit ordinal}\}$.

We call a premouse $M = <J^E, F>$ active iff $F \neq \emptyset$. If F is inactive we often write J^E_F for $<J^E_{\nu}, \emptyset>$. We classify active premice into three types:

Definition 3.3.5. Let F be an extender on κ with base S and extension $<S', \pi>$. We set:

- $C = C_F =: \{\lambda|\kappa < \lambda < \pi(\kappa) \land F|\lambda \text{ is full}\}$
- F is of type 1 iff $C = \emptyset$
- F is of type 2 iff $C \neq \emptyset$ but is bounded in $\pi(\kappa)$
- F is of type 3 iff C is unbounded in $\pi(\kappa)$
- Let $M = <J^E_F, F>$ be a premouse. The type of M is the type of F. We also set: $C_M =: C_F$.

It is evident that F satisfies the initial segment condition iff $F|\lambda \in S'$ whenever $\lambda \in C_F$.

Premice of differing type will very often require different treatment in our proofs. In much of this book we will assume that there is no inner model with a Woodin cardinal, which implies that all mice are of type 1. For now, however, we continue to work in greater generality.

Lemma 3.3.1. Let F be an extender at κ with base S and extension $<S', \pi>$. Let $\kappa < \lambda < \pi(\kappa)$. Then $\lambda \in C_F$ iff $\pi(f)(\alpha_1, \ldots, \alpha_n) < \lambda$ for all $f \in M$ such that $f : \kappa^n \rightarrow \kappa$ and all $\alpha_1, \ldots, \alpha_n < \lambda$.

Proof: We first prove the direction (\rightarrow). Let $F^* = F|\lambda$ be full with extension $<S^*, \pi^*>$. Let $f, \alpha_1, \ldots, \alpha_n$ be as above. Let $\beta = \pi^*(f)(\bar{\alpha})$. Set $e = \{<\xi_1, \ldots, \xi_n, \delta>|f(\xi) = \delta\}$. Then $\beta < \lambda$ and:

$$\langle \bar{\alpha}, \beta \rangle \in F^*(e) = \lambda^{n+1} \cap F(e).$$

Hence $\pi(f)(\bar{\alpha}) = \beta < \lambda$. QED ($\rightarrow$)

We now prove (\leftarrow). Let $f, \alpha_1, \ldots, \alpha_n$ be as above. Then $\pi(f)(\bar{\alpha}) = \beta < \lambda$. Hence

$$\langle \bar{\alpha}, \beta \rangle \in F(e) \cap \lambda^{n+1} = F^*(e).$$

Hence $\pi^*(f)(\bar{\alpha}) = \beta < \lambda$. But each $\gamma < \pi^*(\kappa)$ has the form $\pi^*(f)(\bar{\alpha})$ for some such $f, \alpha_1, \ldots, \alpha_n < \lambda$. Hence $\pi^*(\kappa) = \lambda = \text{length}(F^*)$.

QED (Lemma 3.3.1)
Corollary 3.3.2. \(C_F \) is closed in \(\pi(\kappa) \).

Corollary 3.3.3. Let \(F, S, S', \pi \) be as above and let \(F \) be weakly amenable. Then \(C_F \) is uniformly \(\Pi_1(\langle S', F \rangle) \) in \(\kappa \).

Proof: \(S' \) is admissible and the Gödel function \(\langle, \rangle \) is uniformly \(\Sigma_1 \) over admissible structures. By weak amenability we know that \(\mathcal{P}(\kappa^2) \cap S = \mathcal{P}(\kappa^2) \cap S' \). \(S' \) is admissible and Gödel’s pair function \(\langle, \rangle \) is \(\Sigma_1(S') \) and defined on \(\langle \text{On}_{S'} \rangle^2 \). Then "\(\lambda \) is Gödel–closed" is \(\Delta_1(S') \), since it is expressed by \(\bigwedge \xi, \delta < \lambda \prec \xi, \delta \succ \lambda \). By Lemma 3.3.1, "\(\lambda \in C_F \)" is equivalent in \(S' \) to:

\[
\kappa < \lambda \subset \pi(\kappa) \land \lambda \text{ is Gödel–closed}
\]

\[
\land \land f : n \to \kappa \land \alpha < \lambda \lor \beta < \lambda < \alpha, \beta \in F(e_f)
\]

where \(e_f = \{ \langle \delta, \xi \succ \kappa | f(\xi) = \delta \} \). The function \(f \mapsto e_f \) is \(\Sigma_1(S') \) in \(\kappa \) and defined on \(\{ f \in S | f : \kappa \to \kappa \} \). Note that \(\mu = \pi(\kappa) \) is expressible over \(\langle S', F \rangle \) by \(\langle \mu, \kappa \rangle \in F \) and \(e' = F(e) \) is expressible by \(\langle e', e \rangle \in F \). Thus \(\lambda \in C_F \) is equivalent to the conjunction of ‘\(\lambda \) is Gödel–closed’ and:

\[
\land e, e', \mu, f((\langle e', e \rangle \in F \land \langle \mu, \kappa \rangle \in F \land f : \kappa \to \kappa \land e = e_f) \to (\kappa < \lambda < \mu \land \land \alpha < \lambda \lor \beta < \lambda < \alpha, \beta \in e')
\]

QED (Lemma 3.3.3)

We now turn to the task of analyzing the complexity of the property of being a premouse and the circumstances under which this property is preserved by an embedding \(\sigma : M \to M' \). If \(M = \langle M_{^G}^E, F \rangle \) is an active premouse, the answer to these question can vary with the type of \(F \).

We shall be particularly interested in the case that, for some weakly amenable extender \(G \) on \(M \) at a \(\tilde{\kappa} < \rho_M^G \), \(M' \) is the \(\Sigma_0^{(n)} \) extension \(\langle M', \sigma \rangle \) of \(M \) by \(G \) (i.e. \(\sigma : M \to M' \)). In this case we shall prove:

- \(M' \) is a premouse
- If \(M \) is active, then \(M' \) is active and of the same type
- If \(M \) is of type 2, then \(\sigma(\max C_M) = \max C_{M'} \).

This will be the content of Theorem 3.3.22 below. Note that if \(G \) is close to \(M \) in the sense of §3.2, and \(n \) is maximal with \(\tilde{\kappa} < \rho_M^G \), then \(M' \) is a fully \(\Sigma^* \)-preserving ultrapower of \(M \) (i.e. \(\sigma : M \to M' \)). In later sections we shall consider mainly iterations of premice by \(\Sigma^* \)-ultrapowers.
3.3. PREMICE

Note. In later sections we shall mainly restrict ourselves to premice of type 1. For the sake of completeness, however, we here prove the above result in full generality. The proof will be arduous.

We first define:

Definition 3.3.6. $M = \langle J^E_\nu, F \rangle$ is a mouse precursor (or precursor for short) at κ iff the following hold:

- M is acceptable
- $\kappa \in M$ and $\tau = \kappa^+ \in M$
- F is a full extender at κ on J^E_ν with extension $\langle J^E_\nu, \pi \rangle$.

Note. F then has base $J_\tau[E]$ and extension $\langle J_\tau[E], \pi \rangle$.

Note. F is weakly amenable, since $\mathbb{P}(\kappa) \cap M \subset J_\tau[E]$ by acceptability.

Lemma 3.3.4. $M = \langle J^E_\nu, F \rangle$ is a precursor at κ iff the following hold:

(a) M is acceptable
(b) F is a function defined on $\mathbb{P}(\kappa) \cap M$
(c) $F \upharpoonright \kappa = \text{id}$, $\kappa < F(\kappa) = \lambda$, where λ is the largest cardinal in M.
(d) Let $a_1, \ldots, a_n \in \mathbb{P}(\kappa) \cap M$. Let φ be a Σ_1 formula. Then:

$$J^E_\nu \models \varphi[\bar{a}] \iff J^E_\nu \models \varphi[F(\bar{a})]$$

(e) Let $\xi < \nu$. There is $X \in \mathbb{P}(\kappa) \cap M$ such that

$$F(X) \notin J^E_\xi.$$

Proof: We first note that $J^E_\nu \models \varphi[\bar{a}]$ can be replaced by $J^E_\tau \models \varphi[\bar{a}]$ where $\tau = \kappa^+ \in M$, by acceptability. The direction (\Rightarrow) then follows easily. We prove (\Leftarrow).

We first note that F injects $\mathbb{P}(\kappa) \cap M$ into $\mathbb{P}(\lambda) \cap M$. F is injective by (d). But if $X \subset \kappa$, then $F(X) \subset F(\kappa) = \lambda$ by (d).

(1) $J^E_\kappa \prec J^E_\lambda$.
Proof: We first recall that by §2.4 each \(x \in J^E_{\kappa} \) has the form \(f(a) \) for some first \(a \subset \kappa \), where \(f \) is \(\Sigma_1(J^E_{\kappa}) \). By §2.4 we can choose the \(\Sigma_1 \) definition of \(f \) as being functionally absolute in \(J \)-models. Now let \(x_1, \ldots, x_n \in J^E_{\kappa} \).

Let \(\varphi \) be a first order formula. We claim:

\[
J^E_{\kappa} \models \varphi[\overline{x}] \rightarrow J^E_{\lambda} \models \varphi[\overline{x}].
\]

Let \(x_i = f_i(a_i) \), where \(a_i \subset \kappa \) is finite and \(f_i \) has a functionally absolute definition \('x = f_i(a)' \). Then \(J^E_{\kappa} \models 'x_i = f_i(a_i)' \) for \(i = 1, \ldots, n \). Let \(\Psi \) be the formula:

\[
\bigvee x_1 \ldots x_n (\bigwedge_{i=1}^n x_i = f_i(a_i) \land \varphi(\overline{x})).
\]

Then:

\[
J^E_{\kappa} \models \varphi[\overline{x}] \leftrightarrow J^E_{\kappa} \models \Psi[\overline{a}]
\]

and:

\[
J^E_{\lambda} \models \varphi[\overline{x}] \leftrightarrow J^E_{\lambda} \models \Psi[\overline{a}].
\]

But \(J^E_{\kappa} \models \Psi[\overline{a}] \) is \(\Sigma_1(M) \) in \(\kappa, \overline{a} \) and \(J^E_{\lambda} \models \Psi[\overline{a}] \) is \(\Sigma_1(M) \) in \(\lambda, \overline{a} \) by the same definition. Moreover \(F(a_i) = a_i \) for \(i = 1, \ldots, n \) and \(F(\kappa) = \lambda \).

Hence by (d):

\[
J^E_{\kappa} \models \varphi[\overline{x}] \leftrightarrow J^E_{\kappa} \models \Psi[\overline{a}]
\]

\[
\leftrightarrow J^E_{\lambda} \models \Psi[\overline{a}]
\]

\[
\leftrightarrow J^E_{\lambda} \models \varphi[\overline{x}].
\]

QED (1)

It follows easily, using acceptability, that \(J^E_{\kappa} \) and \(J^E_{\lambda} \) are \(\text{ZFC}^- \) models. Gödel’s pair function \(\langle, \rangle \) then has a uniform definition on \(J^E_{\kappa} \) and \(J^E_{\lambda} \).

Hence \(\langle \alpha, \beta \rangle \in J^E_{\kappa} \) is \(\Sigma_1(M) \) in \(\kappa \) and \(\langle \alpha, \beta \rangle \in J^E_{\lambda} \) is \(\Sigma_1(M) \) in \(\lambda \) by the same definition.

For any \(X \subset \kappa \) there is at most one function \(\Gamma = \Gamma_X \) defined on \(\kappa \) such that \(\Gamma(\alpha) = \{\Gamma(\beta) | (\beta, \alpha) \in X\} \) for \(\alpha < \kappa \). For \(X \in \mathcal{P}(\kappa) \cap M \) the statement \(f = \Gamma_X \) is uniformly \(\Sigma_1(M) \) in \(X, f, \kappa \). Moreover the statement \(\bigvee f f = \Gamma_X \) (‘\(\Gamma_X \) is defined’) is uniformly \(\Sigma_1(M) \) in \(X, \kappa \). The same is true at \(\lambda \): For \(Y \subset \lambda \) the statement \(f = \Gamma_Y \) is uniformly \(\Sigma_1(M) \) in \(Y, f, \lambda \) and the statement \(\bigvee f f = \Gamma_Y \) is uniformly \(\Sigma_1(M) \) in \(Y, \lambda \) by the same definition.

We must define a \(\pi \) such that \(J_\nu[E], \pi \) is the extension of \(F \). The above remarks suggest a way of doing so:

Definition 3.3.7. Let \(x \in J^E_{\tau}, x \in u \), where \(u \in J^E_{\tau} \) is transitive. Let \(f \in J^E_{\tau} \) map \(\kappa \) onto \(u \). Set:

\[
X =: \{ \langle \alpha, \beta \rangle \in f(\beta) \},
\]

where \(\langle, \rangle \) is the Gödel’s pair function.
then \(f = \Gamma_X \). Let \(f' =: \Gamma_{F(X)} \). Let \(x = f(\xi) \) where \(\xi < \kappa \). Set:

\[
\pi(x) = \pi_{f,\xi}(x) =: f'(\xi).
\]

We must first show that \(\pi \) is independent of the choice of \(f, \xi \). Suppose that \(x \in v \), where \(v \in J^E_\tau \) is transitive, and \(g \in J^E_\tau \) maps \(\kappa \) onto \(v \). Then, letting \(Y = \{ \prec \alpha, \beta \rightarrow |g(\alpha) \in g(\beta)\} \), we have: Let \(x = g(\zeta) \). Then by (d):

\[
f(\xi) = \Gamma_X(\xi) = \Gamma_Y(\zeta) \rightarrow \pi_{f,\xi}(x) = \Gamma_{F(X)}(\xi) = \Gamma_{F(Y)}(\zeta) = \pi_{g,\zeta}(x).
\]

Similarly we get:

(2) \(\pi : J^E_\tau \rightarrow \Sigma_0 \). \(J^E_\nu \).

Proof: Let \(x_1, \ldots, x_n \in J^E_\tau \). Let \(x_1, \ldots, x_n \in u \), where \(u \in J^E_\tau \) is transitive. Let \(f_i \in J^E_\tau \) map \(\kappa \) onto \(u(i = 1, \ldots, n) \). Set: \(X_i = \{ \prec \alpha, \beta \rightarrow |f_i(\alpha) \in f_i(\beta)\} \). Let \(x_i = f_i(\xi_i) \). Let \(\varphi \) be \(\Sigma_0 \). By (d) we conclude:

\[
J^E_\tau \models \varphi[x] \leftrightarrow J^E_\tau \models \varphi(\Gamma_X(\xi)) \leftrightarrow J^E_\tau \models \varphi(\Gamma_{F(X)}(\xi))
\]

where \(F(X_i)(\xi_i) = \pi(\xi_i) \). QED (2)

(3) \(F(X) = \pi(X) \) for \(X \in \mathcal{P}(\kappa) \cap M \).

Proof: Let \(X = f(\mu) \) where \(\mu < \kappa, f \in J^E_\tau \), and \(f : \kappa \rightarrow u \), where \(u \) is transitive. Set: \(Y =: \{ \prec \alpha, \beta \rightarrow |f(\alpha) \in f(\beta)\} \). Then \(f = \Gamma_Y \) and \(X = \Gamma_Y(\mu) \). By (d) we conclude:

\[
F(X) = \Gamma_{F(Y)}(\mu) = \pi(X).
\]

QED (3)

It remains only to show:

(4) \(\pi : J^E_\tau \rightarrow J^E_\mu \) cofinally.

Proof: Let \(y \in J^E_\mu \). If \(y \in J^E_\xi, \xi < \nu \), there is an \(X \in \mathcal{P}(\kappa) \cap M \) such that \(F(X) \notin J^E_\xi \). Let \(X \in J^E_\mu, \mu < \tau \). Then:

\[
F(X) = \pi(X) \in J^E_{\pi(\mu)}.
\]

Hence \(\pi(\mu) > \xi \) and:

\[
y \in J^E_{\pi(\mu)} = \pi(J^E_{\mu}).
\]

QED (Lemma 3.3.4)
Corollary 3.3.5. Let $M = \langle J^{E}_\nu, F \rangle$. The statement 'M is a precursor' is uniformly $\Pi_2(M)$.

Proof: The conjunction of (a) – (e) is uniformly $\Pi_2(M)$ in the parameters κ, λ. Let it have the form $R(\kappa, \lambda)$, where R is Π_2. It is evident that if $R(\kappa, \lambda)$ holds, then $\langle \kappa, \lambda \rangle$ is the unique pair of ordinals which is an element of F. Hence the conjunction (a) – (e) is expressible by:

$$\forall \kappa, \lambda \langle \kappa, \lambda \rangle \in F \land \forall \kappa, \lambda (\langle \kappa, \lambda \rangle \in F \rightarrow R(\kappa, \lambda)).$$

QED (Corollary 3.3.5)

Definition 3.3.8. $M = \langle J^{E}_\nu, F \rangle$ is a good precursor iff M is a precursor and F satisfies the initial segment condition.

Corollary 3.3.6. Let $M = \langle J^{E}_\nu, F \rangle$. The statement 'M is a good precursor at κ' is uniformly $\Pi_3(M)$.

Proof: Let M be a precursor. Then F satisfies the initial segment condition iff in M we have, letting $C := C_F$:

$$\land \eta \in C \forall F' (F' \text{ is a function } \land \text{dom}(F) = P(\kappa))$$

$$\land \land Y, X (Y, X) \in F \rightarrow (Y \cap \eta, X) \in F')$$

This is Π_3 since C is Π_2. QED (Lemma 3.3.6)

Lemma 3.3.7. Let $M = \langle J^{E}_\nu, F \rangle$ be a precursor at κ. Let $\tau = \kappa^{+M}$ and let $\langle J^{E}_\nu, \pi \rangle$ be the extension of J^{E}_ν by F. Then π and dom(π) are uniformly $\Delta_1(M)$.

Proof: π is uniformly $\Sigma_1(M)$ in κ, λ since by the definition of π in the proof of Lemma 3.3.4 we have:

$$y = \pi(x) \leftrightarrow \lor f \lor u \lor X \lor \xi \lor Y (u \text{ is transitive} \land$$

$$f : \kappa \rightarrow u \land x = f(\xi) \land X = \{< \alpha, \beta \mid f(\alpha) \in f(\beta)\}$$

$$\land Y = F(X) \land y = \Gamma_Y(\xi).$$

Let $\varphi(\kappa, \lambda, y, x)$ be the uniform Σ_1 definition of π from κ, λ. Then $\langle \kappa, \lambda \rangle$ is the unique pair of ordinals such that $\langle \kappa, \lambda \rangle \in F$. Hence:

$$y = \pi(x) \leftrightarrow \lor \kappa, \lambda (\langle \kappa, \lambda \rangle \in F \land M \models \varphi[\kappa, \lambda, y, x]).$$

Then π is uniformly $\Sigma_1(M)$. But dom(π) = J^{E}_ν; hence:

$$y \in \text{dom } \pi \leftrightarrow \lor \kappa, \lambda (\langle \kappa, \lambda \rangle \in F \land y \in (J^{E}_{\kappa^+})^{J^{E}_\nu})$$

$$\land \kappa, \lambda (\langle \kappa, \lambda \rangle \in F \rightarrow y \in (J^{E}_{\kappa^+})^{J^{E}_\nu}).$$
Thus \(\text{dom}(\pi) \) is uniformly \(\Delta_1(M) \). But then
\[
y = \pi(x) \leftrightarrow (y \in \text{dom}(\pi) \land y' \in M(y \neq y' \rightarrow y' \neq \pi(x))).
\]
Thus \(\pi \) is \(\Delta_1(M) \). \(\text{QED} \) (Lemma 3.3.7)

But then:

Corollary 3.3.8. Let \(\sigma : M \rightarrow \Sigma_1 \) \(M' \) where \(M = \langle J^E_\nu, F \rangle \) and \(M' = \langle J^{E'}_\nu F' \rangle \) are precursors. Let \(\langle J^E_\nu, \pi \rangle \) be the extension of \(J^E_\nu \) by \(F \) and \(\langle J^{E'}_\nu, \pi' \rangle \) be the extension of \(J^{E'}_\nu \) by \(F' \). Then:
\[
\sigma \pi(x) \simeq \pi' \sigma(x) \text{ for } x \in M.
\]

The satisfaction relation for an amenable structure \(\langle J^E_\nu, B \rangle \) is uniformly \(\Delta_1(M) \) in the parameter \(\langle J^E_\nu, B \rangle \) whenever \(M \supseteq \langle J^E_\nu, B \rangle \) is transitive and rudimentarily closed.

(To see this note that, letting \(E = E \cap J^E_\nu \), the structure \(\langle M, E, B \rangle \) is rud closed. Hence its \(\Sigma_0 \)-satisfaction is \(\Delta_1((M, E, B)) \) or in other words \(\Delta_1(M) \) in \(E, B \). But if \(\varphi \) is any formula in the language of \(\langle J^E_\nu, B \rangle \), we can convert it to a \(\Sigma_0 \) formula \(\varphi \) in the language of \(\langle M, E, B \rangle \) simply by bounding all quantifiers by a new variable \(v \). Then:
\[
\langle J^E_\nu, B \rangle \models \varphi[\bar{x}] \iff (M, E, B) \models \varphi[J_\nu[E], \bar{x}]
\]
for all \(x_1, \ldots, x_n \in J^E_\nu \).

It is apparent from §2.5 that for each \(n \) there is a statement \(\varphi_n \) such that
\[
\langle J^E_\nu, B \rangle \text{ is } n\text{-sound } \iff \langle J^E_\nu, B \rangle \models \varphi_n.
\]
Moreover the sequence \(\langle \varphi_n | n < \omega \rangle \) is recursive. Thus

Lemma 3.3.9. "\(\langle J^E_\nu, B \rangle \) is sound" is uniformly \(\Pi_1(M) \) in \(\langle J^E_\nu, B \rangle \) for all transitive rud closed \(M \supseteq \langle J_\nu, B \rangle \).

Using this we get:

Lemma 3.3.10. Let \(J^E_\nu \) be acceptable. The statement '\(\langle J^E_\nu, \emptyset \rangle \) is a premouse' is uniformly \(\Pi_1(J^E_\nu) \).

Proof: \(\langle J^E_\nu, \emptyset \rangle \) is a premouse iff the following hold in \(J^E_\nu \):

- \(\bigwedge x \in E \bigvee \nu, z \in TC(x)(x = \langle z, \nu \rangle \land \nu \in \text{Lm} \land z \in J^E_\nu) \)
• $\forall \nu (\nu \in \text{Lm} \rightarrow \langle J^E_\nu, E''_\nu \{\nu\} \rangle$ is sound)
• $\forall \nu (E''_\nu \{\nu\} \neq \emptyset \rightarrow \langle J^E_\nu, E''_\nu \{\nu\} \rangle$ is a good precursor).

QED (Lemma 3.3.10)

An immediate corollary is:

Corollary 3.3.11. Let \overline{M}, M be acceptable. Then:

• If $\pi : \overline{M} \to \Sigma_1 M$ and \overline{M} is a passive premouse, then so is M.
• If $\pi : \overline{M} \to \Sigma_0 M$ and M is a passive premouse, then so is \overline{M}.

The property of being an active premouse will be harder to preserve. $\langle J^E_\nu, F \rangle$ is an active premouse iff $\langle J^E_\nu, \emptyset \rangle$ is a passive premouse and $\langle J^E_\nu, F \rangle$ is a good precursor. Hence:

Lemma 3.3.12. '$\langle J^E_\nu, F \rangle$ is an active premouse' is uniformly $\Pi_3(\langle J^E_\nu, F \rangle)$.

Note. This uses that being acceptable is uniformly $\Pi_1(\langle J^E_\nu, F \rangle)$ when $\nu \in \text{Lm}$.

An immediate, but not overly useful, corollary is:

Corollary 3.3.13. Let \overline{M}, M, be J–models.

• If $\pi : \overline{M} \to \Sigma_3 M$ and \overline{M} is an active premouse, then so is M.
• If $\pi : \overline{M} \to \Sigma_2 M$ and M is an active premouse, then so is \overline{M}.

In order to get better preservation lemmas, we must think about the *type* of F in $\langle J^E_\nu, F \rangle$. F is of type 1 iff $C_F = \emptyset$. By Corollary 3.3.3 the condition $C_F = \emptyset$ is $\Pi_2(\langle J_\nu, F \rangle)$ uniformly. Hence:

Lemma 3.3.14. The statement 'M is an active premouse of type 1' is uniformly $\Pi_2(M)$ for $M = \langle J^E_\nu, F \rangle$.

Hence:

Corollary 3.3.15. Let \overline{M}, M be J–models.

• If $\pi : \overline{M} \to \Sigma_2 M$ and \overline{M} is an active premouse of type 1, then so is M.
• If $\pi : \overline{M} \to \Sigma_1 M$ and M is an active premouse of type 1, then so is \overline{M}.
A more important theorem is this:

Lemma 3.3.16. Let M be an active premouse of type 1. Let $M = (J^E_{\omega}, F)$ where $\kappa = \text{crit}(F)$. Let G be a weakly amenable extender on M at $\tilde{\kappa}$, where $\tilde{\kappa} < p^M_\omega$. Let (M', σ) be the $\Sigma_0^{(n)}$ extension of M by G. Then M' is an active premouse of type 1.

Proof: We consider two cases:

Case 1 $n = 0$.

Claim 1 $M' = (J^{E'}_{\omega}, F')$ is a precursor.

1. F' is a function and $\text{dom}(F') \subset \mathbb{P}(\kappa)$, since these statements are Π_1 and σ is Σ_1 preserving.
 For $\xi < \tau = \kappa^+M$ set: $\pi[\xi] = \pi \upharpoonright J^E_{\xi}$, $\pi'[\xi] = \sigma(\pi[\xi])$, then
2. $\pi'[\xi] : J^E_{\sigma(\xi)} < J^E_{\pi(\xi)}$.
 Since $\pi[\xi] : J^E_{\xi} < J^E_{\pi(\xi)}$.
 Set: $\pi' = \bigcup_\xi \pi'[\xi]$. Since $\sup \pi'' \tau = \nu$ and $\sup \sigma'' \nu = \nu'$, we have
3. $\sigma : \langle M, \pi \rangle \to_{\Sigma_0} (M', \pi')$ cofinally.
4. $\text{dom}(\pi') = \bigcup_{\xi < \tau} \tau(J^E_{\xi}) = J^{E'}_{\omega}$,
 where $\tau' = \sigma(\tau) = \kappa'^+M'$ and $\kappa' = \sigma(\kappa)$. Hence
5. $\pi' : J^{E'}_{\omega} \to_{\Sigma_0} J^{E'}_{\omega}$ cofinally.
6. $F' = \pi' \upharpoonright \mathbb{P}(\kappa')$ by (3) and:

$$\bigwedge X (X \in J^E_{\sigma(\xi)} \cap \mathbb{P}(\kappa') \to \langle \pi'(X), X \rangle \in F'),$$

since the corresponding Π_1 statement holds of ξ in M.

It follows easily that $\langle J^{E'}_{\omega}, \pi' \rangle$ is the extension of J^E_{ω} by F'.

QED (Claim 1)

Claim 2 F' is of type 1 (hence F' satisfies the initial segment condition).

Proof: Let $\xi < \lambda' = \pi'(\kappa')$. Using Lemma 3.3.1 we show:

Claim $\xi \notin C^{F'}_{\pi'}$.

Let $\zeta \in M$ be least such that $\sigma(\zeta) \geq \zeta$. Since $\zeta \notin C_F$, there is $f : \kappa^n \to \kappa$ in M such that $\pi(f)(\bar{\alpha}) > \zeta$ for some $\alpha_1, \ldots, \alpha_n < \zeta$. But then $\sigma(\alpha_1), \ldots, \sigma(\alpha_n) < \xi$ and $\pi'(\sigma(f))(\sigma(\bar{\alpha})) = \sigma(\pi(f))(\bar{\alpha})) > \sigma(\zeta) \geq \xi.$
Hence $\xi \notin C_{F'}$. QED (Claim 2)

Thus $J^E_{\nu'}$ is a premouse by Corollary 3.3.11 and M' is a good precursor of type 1. Hence M' is a premouse of type 1. QED (Case 1)

Case 2 $n > 1$.

Then σ is Σ_2–preserving by Lemma 3.2.12. Hence M' is a premouse of type 1 by Corollary 3.3.15 QED (Corollary 3.3.16)

We now consider premice of type 2. $M = (J^E, F)$ is a premouse of type 2 iff J^E_{ν} is a premouse, M is a precursor and $F|\eta \in J^E_{\nu}$ where $\eta = \max C_F$. (It then follows that $F|\mu = (F|\eta)|\mu \in J^E_{\nu}$ whenever $\mu \in C_F$.) The statement $e = F|\mu$ is uniformly $\Pi_1(M)$ in e, u, μ, since it says:

$$e$$ is a function \(\Lambda x \in \mathbb{P}(\kappa) \cap Me(X) = F(X) \cap \mu. \)

But then the statement:

$$e = F|\eta \wedge \eta = \max C_F$$

is $\Pi_2(M)$ in e, η, κ uniformly, since it says: $e = F|\eta \wedge C_F \setminus \eta = \emptyset$, where C_F is uniformly $\Pi_2(M)$. It then follows easily that:

Lemma 3.3.17. Let $M = (J^E, F)$, $M = (J^E_{\nu'}, F')$.

- If $\pi : \overline{M} \to \Sigma_2$ M and \overline{M} is a premouse of type 2, then so is M. Moreover, $\pi(\max C_F) = \max C_F$.
- If $\pi : \overline{M} \to \Sigma_1$, M is a premouse of type 2 and $e = F|\max(C_F) \in \text{rng}(\pi)$, then \overline{M} is a premouse of type 2 and $\pi(\max C_{\pi}) = \max C_F$.

We also get:

Lemma 3.3.18. Let M be a premouse of type 2. Let G be a weakly amenable extender on M at κ, where $\kappa < \rho_M$. Let (M', σ) be the $\Sigma_0^{(n)}$ extension of M by G. Then M' is a premouse of type 2. Moreover, $\sigma(\max C_M) = \max C_{M'}$.

Proof: If $n > 0$, then σ is Σ_2–preserving and the result follows by Lemma 3.3.17. Now let $n = 0$. Let $M = (J^E_{\nu}, F)$ where F is an extender at κ on J^E_{τ} (where $\tau = \kappa^+ M$. Let $M' = (J^E_{\nu'}, F')$). It follows exactly as in Lemma 3.3.16 that $J^E_{\nu'}$ is a premouse and M' is a precursor. We must prove:

Claim F' is of type 2. Moreover, $\tau(\max C_F) = \max C_{F'}$.

Proof: Let $\eta = \max C_F$, $e = F|\eta$. Then $\sigma(e) = F'|\eta'$, since this is a Π_1 condition. But then $C_{F'} \setminus \eta' = \emptyset$ follows exactly as in Lemma 3.3.16, since $C_F \setminus \eta = \emptyset$ and σ takes $\lambda = F(\kappa)$ cofinally to $\lambda' = F'(\kappa')$. QED (Lemma 3.3.18)
We now turn to premice of type 3. One very important property of these structures is:

Lemma 3.3.19. Let \(M = \langle J^E_\alpha, F \rangle \) be a premouse of type 3. Let \(\lambda = F(\kappa) \) where \(F \) is at \(\kappa \). Then \(\rho^1_M = \lambda \).

Proof:

1. \(h_M(\lambda) = M \) (hence \(\rho^1_M \leq \lambda \)).

 Proof: Note that if \(X \in \mathcal{P}(\kappa) \cap M \), then \(X \in J^E_\tau \subset h_M(\tau) \). Hence \(F(X) \in h_M(\tau) \). Now let \(\langle J^E_\nu \rangle \) be the extension of \(J^E_\nu \) by \(F \). Then \(\pi'' \) is cofinal in \(\nu \). But if \(f \in M \), then \(f : \kappa \leftrightarrow \eta \), and \(X = \{ < \xi, \zeta > | f(\xi) < f(\zeta) \} \), then \(F(X) = \{ < \xi, \zeta > | \pi(f)(\xi) < \pi(f)(\zeta) \} \), where \(\pi(f) : \lambda \leftrightarrow \pi(\eta) \). Hence \(\pi(\eta) = \text{otp}(F(X)) \in h_M(\tau) \).

 But if \(g = \text{the} \ J^E_\tau \text{-least} \ g : \lambda \rightarrow \pi(\eta) \), then \(g \in h_M(\tau) \). Hence \(\pi(\eta) = g'' \in h_M(\lambda) \) for all \(\eta < \tau \). Hence \(\nu \subset h_M(\lambda) \). QED (1)

2. Let \(D \subset \lambda \) be \(\Sigma_1(M) \). Then \(\langle J^E_\lambda, D \rangle \) is amenable. (Hence \(\rho^1_M \geq \lambda \)).

 Proof: By (1) \(D \) is \(\Sigma_1(M) \) in a parameter \(\alpha \leq \lambda \). Let \(\eta \in C_F \) such that \(\eta > \alpha \). Then \(E = F|\eta \in M \). Since \(J^E_\lambda \) is a \(\mathcal{ZFC}^- \) model, we have:

 \[\langle J^E_\nu, \mathcal{F} \rangle \in J^E_\lambda, \text{ where } \pi : J^E_\nu \rightarrow J^E_\lambda. \]

 We then observe that there is a unique \(\sigma : J^E_\nu \rightarrow J^E_\lambda \) defined by

 \[\sigma(\pi(f)(\beta)) = \pi(f)(\beta) \] for

 \[f \in J^E_\nu, f : \kappa \rightarrow J^E_\nu, \beta < \eta. \]

 Moreover, \(\sigma \upharpoonright \eta = \text{id} \) and \(\sigma \) is cofinal.

 (To see that this definition works, let \(\beta_1, \ldots, \beta_n < \eta \), \(f_1, \ldots, f_n \in \tau \) such that \(f_i : \kappa \rightarrow J^E_\nu \) for \(i = 1, \ldots, n \). Set:

 \[X = \{ < \xi_1, \ldots, \xi_n > | J^E_\nu \models \varphi[f_1(\xi_1), \ldots, f_n(\xi_n)] \} \].

 Then:

 \[J^E_\nu \models \varphi[\pi(f(\beta))] \iff < \beta > \in \mathcal{F}(X) = \eta \cap F(X) \]

 \[\iff J^E_\nu \models \varphi[\pi(f(\beta))] \] for

 \[f \in J^E_\nu, f : \kappa \rightarrow J^E_\nu, \beta < \eta. \]

But \(\sigma(\mathcal{F}(Z), Z) = \mathcal{F}(Z), Z) \) for \(Z \in \mathcal{P}(\kappa) \cap M \). Hence:

\[\sigma(\mathcal{F} \cap U) = \sigma''(\mathcal{F} \cap U) = F \cap U. \]

By this we get:

\[\sigma : \langle J^E_\nu, \mathcal{F} \rangle \rightarrow_{\Sigma_0} \langle J^E_\nu, F \rangle \text{ cofinally.} \]

Thus \(\overline{D} = D \cap \eta \) is \(\Sigma_1(\langle J^E_\nu, \mathcal{F} \rangle) \) in \(\alpha \) by the same definition as \(D \) over \(\langle J^E_\nu, F \rangle \). Hence \(\overline{D} \in J^E_\nu \), since \(\langle J^E_\nu, \mathcal{F} \rangle \in J^E_\nu \). QED (Lemma 3.3.19)
If \(M = \langle J^E_\nu, F \rangle \) is a precursor, then "\(F \) is of type 3" is uniformly \(\Pi_3(M) \) in \(\kappa \), since it is the conjunction:

\[
\bigwedge \xi < \lambda \bigvee \eta < \lambda \cdot \eta \in C_F \wedge \bigwedge \xi < \eta \in C_F \bigvee e \in J^E_\lambda e = F|\eta.
\]

Hence:

Lemma 3.3.20. (a) Let \(\pi : \overline{M} \rightarrow \Sigma_3 \) \(M \) where \(\overline{M} \) is a premouse of type 3. Then so is \(M \).

(b) Let \(\pi : \overline{M} \rightarrow \Sigma_2 \) \(M \) where \(M \) is a premouse of type 3. Then so is \(\overline{M} \).

We also get:

Lemma 3.3.21. Let \(M = \langle J^E_\nu, F \rangle \) be a premouse of type 3. Let \(G \) be a weakly amenable extender at \(\kappa \) on \(M \). Let \(\kappa < \rho^0_M \) and let \(\langle M', \sigma \rangle \) be the \(\Sigma_0^{(n)} \) extension of \(M \) by \(G \). Then \(M' \) is a premouse of type 3.

Proof: Let \(M' = \langle J^E_{\nu'}, F' \rangle \). We consider three cases:

Case 1 \(n = 0 \).

Exactly as in the previous lemmas we get: \(J^E_{\nu'} \) is a premouse and \(M' \) is a precursor. We must show:

Claim \(F \) is of type 3.

We know that \(\sigma \) takes \(\lambda \) cofinally to \(\lambda' \). Let \(\eta < \lambda, \eta \in C_F \). Let \(e = F|\eta \in M \). Then \(\sigma(\eta) \in C_{F'} \) and \(\sigma(e) = F'|\sigma(\eta) \), since these statements are \(\Pi_1 \). Hence if \(\mu < \lambda' \) there is \(\eta \in C_F \) such that \(\mu \leq \sigma(\eta) \) and

\[
F'|\mu = (F'|\sigma(\eta))|\mu \in J^E_{\lambda'}.
\]

QED (Case 1)

Case 2 \(n = 1 \).

Then \(\sigma \) is \(\Sigma_2 \)-preserving. Hence \(J^E_{\nu'} \) is a premouse and \(M' \) is a precursor. Let \(\langle M, \pi \rangle \) be the extension of \(J^E_{\nu'} \) by \(F \) and \(\langle M', \pi' \rangle \) the extension of \(J^E_{\nu'} \) by \(F' \), where \(\tau = \kappa^+M, \tau' = \sigma(\tau) = \kappa'^+M' \).

We know that:

\[
\sigma \upharpoonright J^E_\lambda : J^E_\lambda \rightarrow G, J^E_{\rho'},
\]

where \(\lambda = \pi(\kappa) = \rho^1_M \) and \(\rho' = \sup \sigma'' \lambda = \rho^1_{M'} \). Since \(\tau \) is a successor cardinal in \(J^E_\lambda \), we have \(\tau \neq \text{crit}(G) \). But then \(\tau' = \sup \sigma'' \tau \) by Lemma 3.2.6 of §3.2. \(\pi \) takes \(\tau \) cofinally to \(\nu \) and \(\pi' \) takes \(\tau' \) cofinally to \(\nu' \).

Using this we see:

(1) \(\nu' = \sup \sigma'' \nu \).
3.3. PREMICE

Proof: Let $\xi < \nu'$. Let $\zeta < \tau'$ such that $\pi'(\zeta) > \xi$. Let $\eta < \tau$ such that $\sigma(\eta) > \zeta$. By Corollary 3.3.8 we have:

$$\sigma \pi(\eta) = \pi' \sigma(\eta) > \xi.$$

QED (1)

But then it suffices to show:

Claim $\sigma : M \rightarrow G M'$,

since then we can argue as in Case 1.

Let $x \in M'$. Let $\hat{\kappa} = \text{crit}(\pi)$. We must show that $x = \sigma(f)(\xi)$ for an $f \in M$ such that $f : \kappa \rightarrow M$. Since M' is the $\Sigma_0^{(1)}$-ultrapower, we know:

$$x = \sigma(f)(\xi), \text{ where } f : \kappa \rightarrow M \text{ is } \Sigma_1(M).$$

Choosing a functionally absolute definition for f we have:

$$v = f(w) \leftrightarrow \bigvee y A(y, v, w, p)$$

where A is $\Sigma_0(M)$ and $p \in M$. By functional absoluteness we have:

$$v = \sigma(f)(w) \leftrightarrow \bigvee y A'(\eta, v, w, \sigma(p))$$

where A' is $\Sigma_0(M')$ by the same definition. Let $A'(y, x, \xi, \sigma(p))$. Since σ takes M cofinally to M' there is $a \in M$ such that $y, x \in \sigma(a)$ and $\hat{\kappa} \subset a$. Set:

$$g(\mu) = \begin{cases}
 x & \text{if } x \in a \land \bigvee y \in aA(y, x, \mu, p) \\
 0 & \text{if no such } x \text{ exists.}
\end{cases}$$

Then $g \in M$, $g : \hat{\kappa} \rightarrow M$ and $x = \sigma(g)(\xi)$. QED (Case 2)

Case 3 $n > 1$.

Then $\rho_{M'}^1 = \tau(\rho_M^1) = \lambda'$ and σ is $\Sigma_2^{(1)}$-preserving by Lemma 3.2.12.

But C_F is now $\Sigma_0^{(1)}(M)$ and $e = F|\eta$ is $\Sigma_0^{(1)}(M)$ for $e, \eta \in J_\lambda^{E'\prime}$. The statements:

$$\bigwedge \xi < \lambda \bigvee \eta < \lambda(\xi < \eta \in C_F), \bigwedge \eta \in C_F(\bigvee e \in J_\lambda^{E'\prime} e = F|\eta)$$

are now $\Pi_2^{(1)}(M)$. Hence the corresponding statements hold in M'. Hence $C_{F'}$ is unbounded in λ' and $F'|\eta \in J_\lambda^{E'\prime}$ for $\eta \in C_{F'}$. Then M' is of type 3.

QED (Lemma 3.3.21)

Combining lemmas 3.3.11, 3.3.13, 3.3.18 and 3.3.21 we have:
CHAPTER 3. MICE

Theorem 3.3.22. Let M be a premouse. Let G be an extender at $\check{\kappa}$ on M where $p^\kappa_M > \kappa$. Let $\langle M', \sigma \rangle$ be the $\Sigma_0^{(n)}$ extension of M by G. Then:

- M' is a premouse
- If M is active then M' is active and of the same type
- If M is of type 2, then
 $$\sigma(\max C_M) = \max C_{M'}.$$

In order to show that premousehood is preserved under iteration we shall also need:

Theorem 3.3.23. Let M_0 be a premouse. Let $\pi_{ij} : M_i \to \Sigma_1 M_j$ for $i \leq j < \eta$, where:

- $\pi_{i+1} : M_i \to_G M_{i+1}$, where G_i is an extender at $\check{\kappa}_i$ on $G_i(i < \eta)$
- M_i is transitive and the π_{ij} commute
- If $\lambda < \eta$ is a limit ordinal, then $M_\lambda, \langle \pi_i \rangle_{i < \lambda}$ is the transitivized direct limit of $\langle M_i \rangle_{i < \lambda}, \langle \pi_{ij} \rangle_{i \leq j < \lambda}$.

Then:

- M_η is a premouse
- If M_0 is active, then M_η is active and of the same type as M_0
- If M_0 is of type 2, then $\pi_{0\eta}(C_{M_0}) = C_{M_\eta}$.

Proof: We proceed by induction on η. Thus the assertion holds at every $i < \eta$. The case $\eta = 0$ is trivial, as $\eta = \mu + 1$ by Theorem 3.3.22. Hence we assume that η is a limit ordinal. We make the following observation:

1. Let φ be a Π_3 formula. Let $i < \eta, x_1, \ldots, x_n \in M_i$ such that $M_j \models \varphi[\pi_{ij}(\bar{x})]$ for $i \leq j < \eta$. Then $M_\eta \models \varphi[\pi_{\eta}(\bar{x})].$

Proof: Let $y \in M_\eta$. Pick j such that $i \leq j < \eta$ and $y = \pi_{i\eta}(\bar{y})$. Then $M_j \models \Psi[\bar{y}, \pi_{ij}(\bar{x})]$, where $\varphi = \bigwedge \nu \Psi$. Hence $M_j \models \chi[z, \bar{x}, \pi_{ij}(\bar{x})]$ for some π, where $\Psi = \bigvee u \chi$. Hence $M_\eta \models \chi[z, y, \pi_{\eta}(\bar{x})]$ where $z = \pi_{i\eta}(\bar{x})$, since $\pi_{i\eta}$ is Σ_1-preserving. QED (1)
3.4. ITERATING PREMICE

Each M_i is a premouse for $i < \eta$. But this condition is uniformly $\Pi_3(M_i)$ by Lemma 3.3.12. Hence M_η is a premouse. If M_0 is of type 1, then $C_{M_i} = \emptyset$ for $i < \eta$. But this condition is uniformly $\Pi_2(M_i)$; Hence M_η is of type 1.

Now let M_0 be of type 2 and let $\mu_0 = \max C_{M_0}$. Then M_i is of type 2 and $\mu_i = \max C_{M_i}$ for $i < \eta$, where $\mu_i = \Pi_0(\mu_0)$. Let $e_0 = F_0|\mu_0$ where $M_0 = \langle J_{x_0}^{F_0}, F_0 \rangle$. Then $e_i = F_{i}|\mu_i$ for $i < \eta$, since $e = F|\mu$ is a Π_1 condition. Thus for $i < \rho$ each M_i satisfies the Π_2 condition in e_i, μ_i:

$$e_0 = F_{i}|\mu_i \land C_{F_i} \setminus \mu_i = \emptyset.$$

Hence M_η satisfies the corresponding condition. Hence M_η is of type 2 and $\mu_\eta = \max(C_\eta)$. Clearly $C_{M_i} = C_{F_i} \cup \{\max C_{M_i}\}$ for $i \leq \eta$. Hence $\pi_{ij}(C_{M_i}) = C_{M_i}$.

Now assume that M_0 is of type 3. Then each $M_i(i < \eta)$ satisfies the Π_3 condition:

$$\land \xi < \lambda_i \land \land \zeta < \lambda_i(\xi < \zeta \in C_{M_i}),$$

$$\land \zeta \in C_{M_i} \land \land e \in J_{x_i}^{F_i} e = F_i|\zeta.$$

But then M_η satisfies the corresponding conditions. Hence M_η is of type 3. QED (Theorem 3.3.23)

3.4 Iterating premice

3.4.1 Introduction

We have stated that a mouse will be an iterable premouse, but left the meaning of the term "iterable" and "iteration" vague. Iteration turns out, indeed, to be a rather complex notion. Let us begin with the simplest example. most logicians are familiar with the iteration of a structure $\langle hM;U_i \rangle$, where M is, say, a transitive ZFC^- model and $U \in M$ is a normal ultrafilter on $\mathcal{P}(U) \cap M$. Set: $M_0 = M, U_0 = U$. Applying U_0 to M_0 gives the ultraproduct $\langle M_1, U_1 \rangle$ and the extension $\Pi_{0,1} : \langle M_0, U_0 \rangle \rightarrow \langle M_1, U_1 \rangle$ by U_0. We then repeat the process at $\langle M_1, U_1 \rangle$ to get $\langle M_2, U_2 \rangle$ etc. After $1 + \mu$ repetitions we get an iteration of length μ, consisting of a sequence $\langle \langle M_i, U_i \rangle | i < \mu \rangle$ of models and a commutative sequence $\langle \pi_{ij} | i \leq j < \mu \rangle$ of iteration maps $\pi_{ij} : M_i \rightarrow M_j$. These sequences are characterized by the conditions:

- $\pi_{i,i+1} : \langle M_i, U_i \rangle \rightarrow \langle M_{i+1}, U_i \rangle$ is the extension by U_i.

- The π_{ij} commute — i.e. $\pi_{ij} = \text{id}$ and $\pi_{ij} \pi_{hi} = \pi_{hj}$ for $h \leq i \leq j < \mu$.
If $\lambda < \mu$ is a limit ordinal, then $M, \langle \pi _ i | i < \lambda \rangle$ is the direct limit of:

$$\langle M_i | i < \lambda \rangle, \langle M_{ij} | i \leq j < \lambda \rangle.$$

Now suppose we are given a structure $hM;S_i$ where $S_i = \{ \langle X, \kappa \rangle | X \in U_\kappa \}$ and for each $\kappa \in M$, either $U_\kappa = \emptyset$ or else κ is a measurable cardinal in M and $U_\kappa \in M$ is a normal ultrafilter on $\mathcal{P}(\kappa) \cap M$. An **iteration** of $\langle M, S \rangle$ then consists of sequences $\langle \langle M_i, S_i \rangle | i < \mu \rangle, \langle M_{ij} | i \leq j < \mu \rangle$ and $\langle \kappa_i | i + 1 < \mu \rangle$.

The first condition above is then replaced by:

$$\pi_{i,j+1} : \langle M_i, S_i \rangle \to \langle M_{i+1}, S_{i+1} \rangle$$

is the extension by the ultrafilter $U_i = \{ X | \langle X, \kappa \rangle \in S_i \}$

The other conditions remain unchanged. $\kappa_i | i+1 \leq \mu \rangle$ is called the sequence of **indices**. κ_i must always be so chosen that U_i is an ultrafilter.

Note. Since we are allowed considerable leeway in the choice of the index κ_i, the purist may question whether the word "iteration" is still appropriate. In fact, the mathematical meaning of this word has rapidly changed as the structures to which it is applied have grown more complex.

An iteration is called **normal** iff the indices are increasing — i.e. $\kappa_i < \kappa_j$ for $i < j < \mu$.

We now attempt to apply these ideas to premice. Let M be a premouse. An iteration of length μ will yield a sequence $\langle M_i | i < \mu \rangle$ of premice. In passing from M_i to M_{i+1} we apply any of the extenders E^M_ν such that $M_i | \nu = \langle J^E_\nu, E_\nu \rangle$ is active. $\nu = \nu_i$ is then the i–th index. (It would be ambiguous to regard $\kappa_i = \text{crit}(E_{\nu_i})$ as the index, since M_i might have many extenders with this critical point.) In a normal iteration we have that, whenever $i < j$,

$$J^{E_{\nu_i}}_{\nu_j} = J^{E_{\nu_j}}_{\nu_j}$$

and ν_i is a cardinal in M_j.

(In fact, $\nu_i = \lambda^+_j$, where $\lambda_i = E_{\nu_j}(\kappa_i)$ is inaccessible in M_j.) This follows easily by induction on j. It was originally envisaged that E_{ν_0} would be applied directly to M_i to get M_{i+1}. It turns out, however, that such iterations are unsuitable for many purposes. (In particular, they are unsuited to use in **comparison iteration**, which we shall describe below.) The problem is that $\kappa_i = \text{crit}(E_{\nu_i})$ could be much smaller than λ_i, where $\lambda_i = E_{\nu_j}(\kappa_i)$ is the largest cardinal in the model $J^{E_{\nu_i}}_{\nu_j}$. In particular, we might have $\kappa_i < \lambda_h$ for an $h < i$. Since λ_h is an inaccessible cardinal in M_i, it follows by acceptability that:

$$\mathcal{P}(\kappa) \cap M_i = \mathcal{P}(\kappa) \cap J^{E_{\lambda_h}}_{\nu_i} \subset M_h.$$
3.4. ITERATING PREMICE

Hence it should be possible to apply E_{ν_i} to M_h, rather than M_i. It turns out that it is most effective to apply E_{ν_i} to the smallest place possible: we apply it to $M_{T(i+1)}$, where

$$T(i + 1) =: \text{the least } h \text{ such that either } h = i$$

or $h < i$ and $\kappa_i < \lambda_h$.

This should give us

$$\pi_{h,i+1} : M_h \to M_{i+1}.$$

Here, however, we must deal with a second problem, which can arise even when $T(i + 1) = i$. We know that E_{ν_i} is an extender at κ_i on $J_{\kappa_i}^{E_{\nu_i}}$. Then

$$\mathbb{P}(\kappa_i) \cap J_{\kappa_i}^{E_{\nu_i}} = \mathbb{P}(\kappa_i) \cap J_{\kappa_i}^{E_{\nu_i}} = \mathbb{P}(\kappa_i) \cap J_{\kappa_i}^{E_{\nu_i}}$$

where $\tau_i = \kappa_i + J_{\kappa_i}^{E_{\nu_i}}$. But M_h might contain subsets of κ_i which do not lie in $J_{\kappa_i}^{E}$ (hence τ_i is not a cardinal in M_h, by acceptability). E_{ν_i} is then only a partial function on M_h and cannot be applied to M_h. The resolution of this difficulty is to apply E_{ν_i} to the largest possible segment of M_h. We set:

$$M_i^* =: M_h \upharpoonright \eta_h,$$

where $\eta_h \leq \text{On}_{M_h}$ is maximal such that

$$\tau_h \text{ is a cardinal in } M_h \upharpoonright \eta.$$

By acceptability, $\mathbb{P}(\kappa_i) \cap M_i^* = \mathbb{P}(\kappa_i) \cap J_{\kappa_i}^{E}$ and $\mathbb{P}(\kappa_i) \cap J_{\kappa_i}^{E}$ is κ_i if $\eta_h < \text{On}_{M_h}$.

We then say that M_h drops (or truncates) to M_i^*, if $M_h \neq M_i^*$. $i + 1$ is then called a drop point (or truncation point). $\pi_{h,i+1} : M_i^* \to M_{i+1}$ is then a partial map of M_h to M_{i+1}

This means that iteration is no longer a linear process. Previously π_{ij} was defined whenever $i \leq j < \mu$, μ being the length of the iteration. Now it is defined only when i is less than or equal to j in a tree T on μ. (We write $i \leq_T j$ for $i = j \lor iT_j$.) 0 is the unique minimal point of T. $T(i + 1)$ is the unique T–predecessor of $i + 1$. The π_{ij} are partial maps and we again have:

$$\pi_{ij} \cdot \pi_{hi} = \pi_{hj} \text{ for } h \leq_T i \leq_T j.$$

We will always have: $iT_j \to i < j$, but the converse may not hold. If $\mu = \omega$, these conditions completely define $T \subset \omega^2$. But how do we then extend the iteration to an iteration of length $\omega + 1$? Previously we simply took a transitivized direct limit of $\langle M_i \mid i < \omega \rangle$, $\langle \pi_{ij} \mid i \leq j < \omega \rangle$. Now we must first find a branch b in T which is cofinal in ω (i.e. $\sup b = \omega$). We also require that b have at most finitely many drop points. Pick any $i \in b$ such that $b \vDash i$ has no drop point. Then $\pi_{h,i} : M_h \to M_j$ is a total map on M_h for $i \leq_T h \leq \in b$.

Form the direct limit:

$$M_b, \langle \pi_{h,i} \mid i \leq h \in b \rangle$$
of:
\[\langle M_h | i \leq h \in b \rangle, \langle \pi_h | i \leq_T h \leq j \in b \rangle. \]

If \(M_b \) is well founded, we call \(b \) a \textit{well founded branch} and take \(M_b \) are being transitive. We can then continue the iteration by setting:
\[M_\omega =: M_b; hT_\omega \leftrightarrow: h \in b \text{ for } h < \omega. \]

\(\pi_{j_\omega} \) is then defined for \(i \leq_T j < T \omega \). If \(hT_i \), we set \(\pi_{h\omega} =: \pi_{j_\omega} \cdot \pi_{h_i} \).

The same procedure is applied at all limit points \(\lambda \). We then have:

- \(\lambda \) is a limit point of \(T \)
- \(T''\{\lambda\} \) is cofinal in \(\lambda \)
- \(T''\{\lambda\} \) contains at most finitely many truncation points.

By now we have almost given a virtual definition of what is meant by a "normal iteration of a premouse". The only point left vague is what we mean by "applying" the extender \(E_\kappa \) to \(M_i^* \). We shall, in fact, take the \(\Sigma^{(n)} \)-ultrapower:
\[\pi: M_i^* \rightarrow^{(n)} M_{i+1}, \]
where \(n \leq \omega \) is maximal such that \(\kappa_i < \rho^*_{M_i^*} \).

\subsection*{3.4.2 Normal iteration}

We are now ready to write out the formal definition of "normal iteration". We shall employ the following notational devices:

Definition 3.4.1. Let \(T \) be a tree. We set:

- \(i <_T j \leftrightarrow: cT_j \)
- \(i \leq_T j \leftrightarrow: i = j \lor iT_j \)
- \([i, j]_T =: \{ h | i \leq_T h \leq_T j \} \) (similarly for \([i, j], [i, j]_T, [i, j]_T \))
- \(T(i) =: \) The immediate \(T \)-predecessor of \(i \) (if it exists).

We can now define:
Definition 3.4.2. Let M be a premouse. By a normal iteration of M of length μ we mean:

$$\langle \langle M_i | i < \mu \rangle, \langle \nu_i | i + 1 < \mu \rangle, \langle \pi_{ij} | i \leq_T j \rangle, T \rangle$$

where.

(a) T is a tree on μ such that $iT_j \rightarrow j < j$

(b) M_i is a premouse for $i < \mu$

(c) $\nu_i < \nu_j$ if $i < j$. Moreover $M_i || \nu_i = \langle J_{\nu_i}^E, E_{\nu_i} \rangle$ with $E_{\nu_i} \neq \emptyset$. (We set: $\kappa_i =: \text{crit}(E_{\nu_i}), \tau_i =: \kappa_i \uparrow J_{\nu_i}^E, \lambda_i =: E_{\nu_i}(\kappa_i) =$ the largest cardinal in $J_{\nu_i}^E$.)

(d) Let h be least such that $h = i$ or $h < i$ and $\kappa_i < \lambda_h$. Then $h = T(i+1)$ and $J_{\tau_i+1}^{E_{\nu_i}} = J_{\tau_i+1}^{E_{\nu_i}}$.

(e) π_{ij} is a partial map of M_i to M_j. Moreover $\pi_{ij} \circ \pi_{hi} = \pi_{hj}$ for $h \leq_T i \leq_T j$.

(f) Let $h = T(i+1)$. Set: $M_i^* = M_h || \eta_i$, where η_i is maximal such that τ_i is a cardinal in $M_h || \eta_i$. Then $\pi_{h,i+1} : M_i^* \rightarrow (\eta_i)_{E_{\nu_i}}^{M_i} M_i+1$, where $n \leq \omega$ is maximal such that $\kappa_i < \rho_{M_i^*}^n$. (We call $i + 1$ a drop point or truncation point iff $M_i^* \neq M_h$)

(g) If $k \leq_T j$ and $(i,j)_T$ has no drop point, then $\pi_{ij} : M_i \rightarrow M_j$ is a total function on M_i.

(h) Let λ be a limit ordinal. Then $T''(\lambda)$ is club in λ and contains at most finitely many drop points. Moreover, if $iT\lambda$ and $(i, \lambda)_T$ is free of drops, then:

$$\langle M_\lambda, \langle \pi_{j\lambda} | i \leq_T j < T \lambda \rangle \rangle$$

is the transitivized direct limit of:

$$\langle \langle M_j | i \leq_T j < T \lambda \rangle, \langle \pi_{hj} | i \leq_T h \leq_T j < T \lambda \rangle \rangle.$$

This completes the definition.

Lemma 3.4.1. Let $\mathcal{F} = \langle \langle M_i \rangle, \langle \nu_i \rangle, \langle \pi_{i,j} \rangle, T \rangle$ be a normal iteration. Then

(a) $J_{\nu_i}^{E_{\nu_i}} = J_{\nu_i}^{E_{\nu_i}+1}$

(b) In M_{i+1}, λ_i is inaccessible and $\nu_i = \lambda_i^+$.
Proof: \(\tau_i \) is a cardinal in \(M_i^* \). Since \(\kappa_i \) is inaccessible in \(J_{\tau_i}^{E_{M_i}} \) and is the largest cardinal in \(J_{\tau_i}^{E_{M_i}} \), it follows by acceptability that:

\[\tau_i = \kappa_i^+ \text{ and } \kappa_i \text{ is inaccessible in } M_i^* \]

\(F = E_{M_i}^{\nu_i} \) is a full extender of length \(\lambda_i \) with base \(H = |J_{\tau_i}^{E_{M_i}}| \) and extension \(\langle \pi, H' \rangle \), where \(H' = |J_{\tau_i}^{E_{M_i}}| \). By acceptability we have:

\[\mathbb{P}(\kappa_i) \cap M_i^* = \mathbb{P}(\kappa_i) \cap J_{\tau_i}^{E_{M_i}}. \]

Hence \(F \) is an extender on \(M_i^* \) (and the condition (f) makes sense). But then \(\langle M_{i+1}, \pi_{i,i+1} \rangle \) is the \(\Sigma_i^{(n)} \)-liftp of \(\langle M_i^*, \pi_i \rangle \), where \(n \) is maximal such that \(\kappa_i < \rho_{M_i}^n \). Hence:

\[\pi_{i,i+1}(\tau_i) = \sup \pi^\alpha \tau_i = \nu_i \text{ and } \pi_{i,i+1}(\kappa_i) = \lambda_i \]

Hence (b) holds, since the corresponding statement is function of \(\kappa_i, \tau_i \) in \(M_i^* \).

To see that (a) holds, note that each element of \(H' \) has the form \(\pi(f)(\alpha) \), where \(\alpha < \lambda_0 \) and \(f \in H \) is a function on \(\kappa \). But then:

\[\pi(f)(\alpha) \in E_{M_i}^{\tau_i} \iff \pi(f)(\alpha) \in E_{M_{i+1}}^{\tau_i} \iff \alpha \in \pi(X) \]

where \(X = \{ \xi < \kappa_i : f(\xi) \in E_{M_i}^{\tau_i} \} \). Hence

\[E_{M_i} \cap H' = E_{M_{i+1}} \cap H^i \text{ and } J_{\nu_i}^{E_{M_i}} = J_{\nu_i}^{E_{M_{i+1}}} \]

QED(Lemma 3.4.1)

Using these facts we prove:

Lemma 3.4.2. Let \(I = \langle \langle M_i, \langle \nu_i, \langle \pi_{ij}, T \rangle \rangle \rangle \) be a normal iteration. Let \(h < i \). Then

(a) \(J_{\nu_h}^{E_{M_i}} = J_{\nu_i}^{E_{M_i}} \)

(b) \(\lambda_h \) is inaccessible in \(M_i \) and \(\nu_h = \lambda_h^+ \) in \(M_i \)

(c) Let \(h < j < \tau i \). Then \(\lambda_h \leq \text{crit}(\pi_{j,i}) < \lambda_i \).

(d) Let \(h < \tau i \). \(\pi_{h,i} \) is a total function on \(M_h \) iff \([H,i]_T\) is drop free.

The proof is by induction on \(i \). We leave the details to the reader.

Note. \(h < i \) implies \(\nu_h < \lambda_i \), since \(\nu_h < \nu_i \) is a successor cardinal in \(M_i \); hence \(\nu_h \notin [\lambda_i, \nu_i] \).
3.4. ITERATING PREMICE

Definition 3.4.3. Let $I = \langle \langle M_i \rangle, \langle \nu_i \rangle, \langle \pi_{ij} \rangle, T \rangle$ be a normal iteration.

- $lh(I)$ denotes the length of I
- If $\eta \leq lh(I)$ we set:

 $$I|\eta := \langle \langle M_i|i<\eta \rangle, \langle \nu_i|i+1<\eta \rangle, \langle \pi_{ij}|i \leq_T i<\eta \rangle, T \cap \eta^2 \rangle.$$

Definition 3.4.4. Let $I = \langle \langle M_i \rangle, \ldots, T \rangle$ be a normal iteration of limit length η. By a well founded cofinal branch in I we mean a branch b in T such that

- $\sup b = \eta$
- b has at most finitely many truncation points
- Let $i \in b$ such that $b \setminus i$ is truncation free. Then

 $$\langle M_j|j \in b\rangle, \langle \pi_{hi}|i \leq h \leq j \text{ in } b \rangle$$

has a well founded direct limit.

We leave it to the reader to prove:

Lemma 3.4.3. Let $I = \langle \langle M_i \rangle, \langle \nu_i \rangle, \langle \pi_{ij} \rangle, T \rangle$ be a normal iteration of limit length η. Let b be a well founded cofinal branch in I. I has a unique extension I' of length $\eta + 1$ such that $I'|\eta = I$ and $T^{m+1}\{\lambda\} = b$. Moreover, if $i \in b$ and $b \setminus i$ is drop free then:

$$M'_\eta, \langle \pi'_{hi}\eta|h \in b \setminus i \rangle$$

in the transitivized direct limit of

$$\langle M_h|h \in b \setminus i\rangle, \langle \pi_{h,j}|h \in b \setminus i \rangle.$$

Note. It will be easier to talk about such limits if we have a notion of direct limit which can be applied to directed systems of partial maps. This could be defined quite generally, but the following version suffices for our purposes: Let $S = (S, <)$ be a linear ordering. Let A_i be a model and let π_{ij} be a partial injection of A_i to A_j for $i \leq j$ in S. Assume that the maps commute (i.e. $\pi_{ij} \pi_{ki} = \pi_{kj}$) and that for sufficiently large $i \in S$ we have:

$$\pi_{ij}$$

is a total map on A_σ for all $j \geq \sigma$ in I.

Let S' be the set of such i. We call:

$A, \langle \pi_i|i \in S \rangle$
a direct limit of:

\[\langle h_i | i \in S \rangle, \langle \pi_{ij} | i \leq j \text{ in } S \rangle \]

iff:

\[h_i, \langle \pi_i | i \in S' \rangle \]

in a direct limit of:

\[\langle h_i | i \in S' \rangle, \langle \pi_{ij} | i \leq j \text{ in } S' \rangle \]

and \(\pi_h \) is defined by: \(\pi_h = \pi_i \pi_{hi} \) for \(h = 2 \in S_0 \).

In §3.2 we defined \(N \) to be a \(\Sigma^*-\)ultrapower of \(M \) by \(F \) with \(\Sigma^*-\)extension \(\pi \) (in symbols \(\pi : M \to \pi^*_N \)) iff \(F \) is close to \(M \) and \(\pi : M \to (\pi^*_N) \) where \(n \leq \omega \) is maximal such that \(\text{crit}(F) < \rho^*_M \). Theorem 3.2.12 said that in this case \(\pi \) is \(\Sigma^*-\)preserving. We shall now show that in a normal iteration \(E_{\nu_i}M_i \) is always close to \(M_i \). In order to utilize the full strength of this fact, we shall formulate it not only for normal iteration, but also for potential normal iteration in the following sense:

Let \(I = \langle \langle M_i \rangle, \langle \nu_i \rangle, \langle \pi_{ij} \rangle, T \rangle \) be a normal iteration of length \(i + 1 \). If we attempt to extend \(I \) to an \(I' \) of length \(i + 2 \) by appointing the next \(\nu_i \), we call this attempt a potential normal iteration. The formal definition is:

Definition 3.4.5. A potential normal iteration of length \(i + 2 \) is a structure

\[\mathcal{T}' = \langle \langle M_j | j \leq i \rangle, \langle \nu_j | j \leq i \rangle, \langle \pi_{ij} | i \leq j \leq i \rangle, T' \rangle \]

where:

- \(I = \langle \langle M_j \rangle, \langle \nu_j | j < i \rangle, \langle \pi_{ij} \rangle, T \rangle \) is a normal iteration of length \(i + 1 \), where \(T = T' \cap (i + 1)^2 \)
- \(E_{\nu_i}M_i \neq \emptyset \) and \(\nu_i > \nu_j \) for \(j < i \)
- \(hT^j j \leftrightarrow (hTj \vee (h \leq T \xi \land j = i)) \) where:

 \[\xi = T'(i + 1)^{= i} = \xi : \text{the least } \xi \text{ such that } \kappa_i < \lambda_\xi. \]

If \(I' \) is a potential iteration and \(\xi = T'(i + 1) \), we define \(M_i^* = M_i U \) is in the usual way, (but we do not yet know whether \(M_i^* \) is extendable by \(E_{\nu_i}M_i \)).

Note. (a)-(d) in the definition of normal iteration continue to hold. ((d) is trivial if \(\xi = i \). If \(\xi < i \), then \(\tau_i < \lambda_\xi \) and \(J_{E_{\nu_i}M_i}^{E_{M_i}M_i} = J_{\lambda_\xi}^{E_{\nu_i}M_i} \)). But then \(M_i^* \) is defined and \(\tau_i \in M_i^* \) is a cardinal in \(M_i^* \). Let \(n \leq \omega \) be maximal such that \(\kappa_i < \rho^*_M \). It is easily seen that, if the \(\Sigma^*_0 \) extension:

\[\pi' : M_i^* \to (\pi^*_E) E_{M_i \nu_i} M' \]
exists, we can turn I' into a normal iteration of length $i + 2$ by setting:

$$M_{i+1} = M', \ \pi_{\xi,i+1} = \pi'$$

We now prove a basic fact about normal iteration:

Theorem 3.4.4. Let I be a potential normal iteration of length $i + 2$. Let $\xi = T(i + 1)$. Then $E_{\nu_0}^{M'}$ is close to M_i^*.

Before proving this we note the obvious corollary:

Corollary 3.4.5. Let I be a normal iteration. If $h = T(i + 1)$ in I, then:

$$\pi_{h,i+1} : M_i^* \rightarrow_{E_{\nu_0}} M_i.$$

Moreover, if $j \leq T i$ and $\pi_{j,i}$ is a total function on M_j, then $\pi_{j,i}$ is $\Sigma^*-\text{preserving}$.

We shall derive Theorem 3.4.4 from an even stronger statement:

Lemma 3.4.6. Let I be a potential normal iteration of length $i + 2$. Then

$$\mathbb{P}(\tau_i) \cap \Sigma_1(M_i|\nu_i) \subset \Sigma_1(M_i^*).$$

We first show that Lemma 3.4.6 implies theorem 3.4.4. Since $F = E_{\nu_0}$ is weakly amenable, we need only show that $F_{\alpha} \in \Sigma_1(M_i^*)$ for $\alpha < \lambda_i$, where:

$$F_{\alpha} = \{ x \subset \kappa_i | x \in M_i|\nu_i \land \alpha \in F(x) \}.$$

Let $k \in M_i|\nu_i$ map τ_i onto $J^E_{\tau_i}$. Then $k \in M_i^*$, since either $i = T(i + 1)$ and $M^* \supset M_i|\nu_i$, or else $h = T(i + 1) < i$, whence follows: $k \in J^E_{\lambda_k} = J^E_{\lambda_k} \subset M_i^*$. Set:

$$\tilde{F}_{\alpha} = \{ \xi < \tau_i | k(\xi) \in F_{\alpha} \}.$$

Then $\tilde{F}_{\alpha} \subset \mathbb{P}(\tau_i)$ is $\Sigma_1(M_i^*)$ by Lemma 3.4.6. Hence $F_{\alpha} = k''\tilde{F}_{\alpha} \in \Sigma_1(M_i^*)$.

We now prove Lemma 3.4.6. Suppose not. Let I be a counterexample of length $i + 2$, where i is chosen minimally. Let $h = T(i + 1)$. Then:

1. $h < i$

Proof: Suppose not. Then $M_i^* = M_i|\mu$ where $\mu \geq \nu$. Hence $\Sigma_1(M_i|\nu_i) \subset \Sigma_1(M_i^*)$. Contradiction!
(2) $\nu_i = \text{On}_{M_i}$ and $\rho^1_{M_i} \leq \tau_i$.

Proof: Suppose not. Let $A \subset \tau_i$ be $\Sigma_1(M_i) \upharpoonright \nu_i$. Then $A \in \mathbb{P}(\tau_i) \wedge M_i \subset J^E_{\lambda_i}$, since $\lambda_h > \tau_i$ is inaccessible in $\mathbb{P}(\tau_i)$. But $J^E_{\lambda_i} = J^E_{\lambda_i} \subset M^*_i$. Contradiction!

(3) i is not a limit ordinal.

Proof: Suppose not. Then $\sup \{\text{crit}(\pi_{li})(\leq i) \} = \sup \lambda_i$, so we can pick $L \subset T$ such that $\text{crit}(\pi_{li}) > \lambda_h > \tau_i$ and π_{li} is a total function on M_i. Then $\pi_{li} : \nu_i \rightarrow \sum_{\lambda_i}$, where $M_i = \langle J^E_{\nu_i}, F \rangle$, where $F \neq \emptyset$. Hence $M_i = \langle J^E_{\nu_i}, F \rangle$ where $F \neq \emptyset$. Let $A \subset \tau_i$ be $\Sigma_1(M_i)$ such that $A \notin \Sigma_1(M^*_i)$. We can assume l be chosen large enough that $p \in \text{rng}(\pi_{li})$, where A is $\Sigma_1(M_i)$ in the parameter p. Thus $A \in \Sigma_1(M_i)$.

Clearly $\nu_j > \nu_i$ for all $j < l$, since $\nu_j \in M_i = \langle J^E_{\nu_i}, F \rangle$.

Extend $l|l + 1$ to a potential iteration I' of cf length $l + 2$ by setting $\nu_l = \nu_i$. Since $\text{crit}(\pi_{li}) > \lambda_i$, it follows easily that $\tau'_i = \tau_i$, $\lambda'_i = \lambda_i$, where τ'_i, λ'_i are defined in the usual way. But then $M^*_i = (M^*_i)^{**}$ and $A \in \Sigma_1(M^*_i)$ by the minimality of i. Contradiction! QED

(3) i is not a limit ordinal.

(4) $M^*_i = \langle J^E_{\nu_i}, E_{\nu_i} \rangle$ where $E_{\nu_i} \neq \emptyset$.

(5) $\tau_i < \kappa_j$

Proof: $\tau_i < \lambda_j$ since $\tau_i = \kappa^+_i \wedge M_i$ and $\kappa_i < \lambda_h \leq \lambda_j$, where λ_j is inaccessible in M_i. But obviously $\kappa_i, \tau_i \in \text{rng}(\pi_{li})$ by (4) where $[\kappa_j, \lambda_j] \cap \text{rng}(\pi_{li}) = \emptyset$. QED

(6) $\pi_{li} : M^*_j \rightarrow E_{\nu_j} M_i$ is a Σ_0 ultrapower.

Proof: Suppose not. Then $\kappa_j < \rho^1_{M^*_j}$. Hence $\pi_{li}^{\kappa_j}$ is $\Sigma_0^{(1)}$-preserving. Hence $\pi_{li}^{\kappa_j} \circ \rho^1_{M^*_j} \subset \rho^1_{M_i}$. Hence $\tau_i = \pi_{li}(\tau_j) < \rho^1_{M_i}$, contradicting (2). QED

(7) $\mathbb{P}(\tau_i) \cap \Sigma_1(M_i) \subset \mathbb{P}(\tau_i) \cap \Sigma_1(M^*_i)$.

Proof: Let $A \subset \tau_i$ be $\Sigma_1(M_i)$ in the parameter p. Let $p = \pi_{li}(f)(\alpha)$, where $f : \kappa_i \rightarrow M^*_i, f \in M^*_i$, and $\lambda < \lambda_j$. Then

$$A(\xi) \leftrightarrow \bigvee x A'(\zeta, x, p)$$

where A' is $\Sigma_0(M_i)$. Let \overrightarrow{A} be $\Sigma_0(M^*_i)$ by the same Σ_0 definition. Then, since π_{li} takes M^*_j cofinally to M_i by (6), we have

$$A(\zeta) \leftrightarrow \bigvee u \in M^*_i \bigvee x \in \pi_{li}(u) A'(\zeta, x, p).$$
3.4. ITERATING PREMICE

By the minimality of \(i \) we know that \((E_{\alpha j})_\alpha \in \Sigma_i(M_j^i)\) for \(\alpha < \lambda_j \). But then:

\[
A(\zeta) \leftrightarrow \bigvee u \in m_j^i \{ \gamma < \kappa_j | \mathcal{A}(\zeta, x, f(\gamma)) \in (E_{\alpha j})_\alpha \}.
\]

Hence \(A \) is \(\Sigma_i(M_j^i) \). QED (7)

Now extend \(I|\xi + 1 \) to a potential iteration \(I' \) of length \(\xi + 2 \) by setting

\[
n'_{\xi} = \pi, \quad M_j^f = M_{\xi}[\pi = (J_{E'}^f, E_{E'})].
\]

Then \(\kappa_i = \kappa'_{\xi} \) and \(\tau_i = \tau'_{\xi} \), since \(\pi_{\xi j} \mid \kappa_j = \text{id} \). Hence \(h = T(i + 1) = T'(\xi + 1) \) and \(M_i^* = (M_{\xi}^f)' \). By the minimal choice of \(i \) we conclude

\[
P(\tau_i) \cap \Sigma_i(M_j^f) \subset \Sigma_i(M_j^i).
\]

Hence \(P(\tau_i) \cap \Sigma_i(M_i) \subset \Sigma_i(M_i^i) \) by (7). Contradiction! QED (Lemma 3.4.6)

3.4.3 Padded iterations

Normal iterations are often used to "compare" two premice \(M \) and \(M' \). The comparison iteration or coiteration consists of a pair \(\langle I, I' \rangle \) of iteration \(I \) of \(M \) and \(I' \) of \(M' \). When we have reached \(M_i, M_i' \), we proceed as follows: We look for the least point of difference — i.e. the least \(\nu \) such that \(M_i||\nu \neq M_i'||\nu \). Then \(J_{E_i}^{E_i} = J_{E_i'}^{E_i'} \) and \(E_{\nu}^{M_i} \neq E_{\nu}^{M_i'} \). Then at least one of \(E_{\nu}^{M_i}, E_{\nu}^{M_i'} \) is an extender. If both are extenders, we continue on the \(I \)--side with the index \(\nu_i = \nu \). However, if, say, \(E_{\nu}^{M_i} \) is an extender and \(E_{\nu}^{M_i'} = \emptyset \), we iterate by \(\nu_i = \nu \) on the \(I \)--side and on the \(I' \)--side do nothing. We then call \(i \) an inactive point on the \(I' \)--side and set: \(M_i^{i+1} = M_i', \pi_i^{i+1} = \text{id} \) with \(i = T'(i + 1) \) in \(I \). Thus \(i \) is active on one or the other side and we have achieved: \(M_{i+1}||\nu = M_{i+1}'||\nu = \emptyset \). (This is called "iterating away the least point of difference".) At a limit \(\lambda \) we choose on either side a well founded branch and continue with that.

If all goes well, we eventually reach a point \(i \) such that \(M_i, M_i' \) or one of \(M_i = M_i' \) is a proper segment of the other.

In order to carry this out we need a slightly more flexible definition of "normal iteration", which admits inactive points. We therefore define:

Definition 3.4.6. A padded normal iteration of length \(\mu \) is a sequence:

\[
I = \langle \langle M_i|i < \mu \rangle, (\nu_i|i \in A), (\pi_{ij}|i \leq Tj), T \rangle
\]

where \(A \subset \{i|j + 1 < \mu \} \) is called the set of active points, (a) – (h) of the previous definition hold, and, in addition:
(i) If \(h < j, (h,j) \cap A = \emptyset \ldots \), then \(h T j, M_h = M_j \) and \(\pi_{hj} = \text{id} \).

All previous results go through a *mutatis mutandis*. We shall often use the term "normal iteration" so as to include padded normal iteration. We then call normal iterations in the sense of our previous definition *strict*. We can turn a padded iteration into a strict iteration simply by omitting the inactive points. Let:

\[
I = \langle (M_{h_i}), \langle \nu_{h_i} \rangle, \langle \pi_{h_i,j} \rangle, T' \rangle
\]

is strict, where \(T' = \{ \langle i,j \rangle | h_i T h_j \} \). Similarly we can expand a strict iteration to a padded iteration by inserting inactive points.

By induction on \(j \) it follows easily that:

Lemma 3.4.7. Let \(I = \langle (M_i), \langle \nu_i | i \in A \rangle, \langle \pi_{i,j} \rangle, T \rangle \) be a padded normal iteration. Let \(h < T j \). Either there is \(i \in [h,j] \) such that \(i + 1 < T j \) and \(i \in A \), or else \([h,j] \cap A = \emptyset \).

We leave the proof to the reader.

3.4.4 \(n \)-iteration

In a normal iteration we always take \(\Sigma^* \) ultrapowers. For technical reasons, however, we may sometimes want to bound the degree of preservation of our ultraproducts. In a \(0 \)-iteration for instance, we would use the ordinary \(\Sigma_0 \) ultrapower to pass from \(M_i \) to \(M_{i+1} \), as long as no \(h \leq_T i + 1 \) is a truncation point. If, on the other hand, we have reached a truncation point \(h \leq_T i + 1 \), we then revert to the full \(\Sigma^* \)-ultrapowers. More generally:

Definition 3.4.7. Let \(n \leq \omega \). By a normal \(n \)-iteration of \(M \) of length \(\mu \) we mean

\[
\langle (M_i | i < \mu), \langle \nu_i | i + 1 < \mu \rangle, \langle \pi_{i,j} | i \leq_T \rangle, T \rangle,
\]

where (a) – (e) and (g), (h) in the definition of "normal iteration" hold, and in addition:

(f) Let \(h = T(i+1) \). If \(\tau_i \) is a cardinal in \(M_h \) and \(\pi_{j,i} \) is a total map on \(M_j \) for \(j T h \), then \(\pi_{h,i+1} : M_h \rightarrow^{(m)}_{\Sigma^{\nu_i}} M_{i+1} \), where \(m \leq n \) is maximal such that \(\kappa_i < \rho^M_{\Sigma^{\nu_i}} \).

Otherwise \(\pi_{h,i+1} : M^*_h \rightarrow^{(m)}_{\Sigma^{\nu_i}} M_{i+1} \), where \(M^*_h \) is defined as before and \(m \leq \omega \) is maximal such that \(\kappa_i < \rho^M_{\Sigma^*_h} \).
3.4. ITERATING PREMICE

Note. An \(\omega\)-iteration is then the same as a normal iteration in the sense of our previous definition. We also call such iterations \(\ast\)-iterations, since we then always take the \(\Sigma^*\) ultrapowers. \(\ast\)-iterations are the ones we are interested in.

It is easily seen that the conclusions of Lemma 3.4.2 hold for normal \(n\)-iterations. Lemma 3.4.3 also holds for these iterations and Lemma 3.4.6 holds \textit{mutatis mutandis}. We leave this to the reader. More surprising is:

Theorem 3.4.8. Theorem 3.4.4 holds for normal \(n\)-iterations.

Before proving this, we again note some consequences. It follows easily that:

Corollary 3.4.9. Let \(I\) be a normal \(n\)-iteration. Let \(h = T(i + 1)\). Let \(m\) be maximal such that \(\kappa_i < \rho^M_{h_i}\). Assume either that \(m \leq n\) or that there is a \(j \leq_T i + 1\) which is a drop point. Then:

\[
\pi_{h, i+1} : M^*_i \rightarrow^*_{E_{ \nu_i}} M_{i+1}.
\]

In all other cases we have:

\[
\pi_{h, i+1} : M^*_i \rightarrow^{(n)}_{E_{ \nu_i}} M_{i+1}.
\]

But then by induction on \(i\) we get:

Corollary 3.4.10. Let \(I\) be as above. Let \(\pi_{ij}\) be a total map on \(M_i\). If there is a drop point \(j\) such that \(j Ti\), then \(\pi_{ij}\) is \(\Sigma^*\)-preserving. Otherwise it is \(\Sigma^*_0\)-preserving.

As before, we derive Lemma 3.4.8 from:

Lemma 3.4.11. Let \(I = \langle (M_i), (\nu_i), (\pi_{ij}), T \rangle\) be a potential \(n\)-iteration of length \(i + 2\). Then \(F(\tau_i) \cap \sum_i (M_i||\nu_i) \subset \sum_1 (M^*_i)\).

The derivation of Lemma 3.4.8 from Lemma 3.4.11 is exactly as before. We prove Lemma 3.4.11. Almost all steps in the proof of Lemma 3.4.6 go through as before. The only difficulty occurs in the proof of (6), where we derived that \(\pi_{\xi,i}\) is \(\Sigma^*_0(1)\)-preserving from: \(\kappa_j < \rho_{M_j}^*\). If \(n \geq 1\), this is unproblematical. Now assume \(n = 0\). If there is a drop point \(l \leq_T i\), then \(\pi_{\xi,i}\) is \(\Sigma^*\)-preserving and there is nothing to prove. Now suppose there is no such drop point.

By the definition of "\(0\)-iteration" we then have: \(\pi_{\xi,i} : M^*_j \rightarrow^0_{E_{ \nu_j}} M_i\), which was to be proven.
All other steps in the proof go through. QED (Lemma 3.4.11)

This proves Theorem 3.4.8.

The concept "padded n-iteration" is defined exactly as before. As before, every padded iteration can be converted into a strict iteration by omitting the inactive points, and every strict iteration can be expanded to a padded iteration by inserting inactive points. We leave this to the reader.

3.4.5 Copying an iteration

Suppose that I is a normal iteration of a premouse M and $\sigma : M \rightarrow \Sigma^* M'$, where M' is a premouse. We can attempt to "copy" I onto an iteration I' of M' by repeating the same steps modulo σ. We define:

Definition 3.4.8. Let $I = <\langle M_i, \langle \nu_i \rangle, \langle \pi_{ij} \rangle, T_i >$ be a strict normal iteration of M. Let $\sigma : M \rightarrow \Sigma^* M$, where M' is a premouse. We call $I' = <\langle M'_i, \langle \nu'_i \rangle, \langle \pi'_{ij} \rangle, T'_i >$ a copy of I induced by $\langle \sigma, M' \rangle$ with copying map $\langle \sigma_i | i < lh(I) \rangle$ iff the following hold:

(a) $lh(I') = lh(I)$ and $T' = T$

(b) $\sigma : M_i \rightarrow \Sigma^* M'_i$ and $\sigma_0 = \sigma$

(c) $\sigma_i \pi_{li} = \pi'_{li} \sigma_j$ for $l \leq_T i$

(d) $\sigma_i | \lambda_l = \sigma_i | \lambda_l$ for $l \leq i$

(e) $\nu'_i = \sigma_i (\nu_i)$ for $\nu_i \in M_i$. Otherwise $\nu'_i = On \cap M'_i$.

Note. This definition can easily be extended to padded normal iterations. (b) – (e) are then stipulated for active points, and for inactive points we stipulate:

(f) If i is inactive in I, it is inactive in I' and $\sigma_{i+1} = \sigma_i$.

We shall often formulate our definitions and theorems for strict iteration, leaving it to the reader to discover — mutatis mutandis — the correct version for padded iterations. In particular, the remaining theorems in this section will assume strictness.

We also define:

Definition 3.4.9. $\langle I, I', \langle \sigma_i | i < lh(I) \rangle >$ is a duplication iff I, I' are normal iterations and I' is a copy of I with copying maps $\langle \sigma_i \rangle$.
3.4. ITERATING PREMICE

Lemma 3.4.12. Let I' be a copy of I with copying maps $\langle \sigma_i \rangle$. Let $h = T(i + 1)$.

(i) If $i + 1$ is a drop point in I, then it is a drop point in I' and $M_i^* = \sigma_h(M_i^*)$.

(ii) If $i + 1$ is not a drop point in I, it is not a drop point in I'. (Hence $M_i^* = M_{h_i}, M_i'^* = M_{h_i}'$.)

(iii) Let $F = E_{\nu_i}^M, F' = E_{\nu_i'}^M$. Then:

$$\langle \sigma_h \upharpoonright M_i^*, \sigma_i \upharpoonright \lambda_i \rangle : \langle M_i^*, F \rangle \to \langle M_i'^*, F' \rangle$$

as defined in §3.2.

(iv) $\sigma_{i+1}(\pi_{h,i+1}(f)(\alpha)) = \pi_{h,i+1}^h(\sigma_h(f)(\sigma_i(\alpha)))$ for $f \in \Gamma^*(\kappa_i, M_i^*)\alpha < \lambda_i$.

(v) $\sigma_j(\nu_i) = \nu_i'$ for $i < j$.

Proof:

(i) Let $h = T(i + 1)$. Then $M_i^* = M_h||\mu$, where $\mu \in M_h$ is maximal such that τ_i is a cardinal in $M_h||\mu$. But $\tau_i' = \sigma_i(\tau_i) = \sigma_h(\tau_i)$ by (d), (e). Hence $\sigma_h(\mu) = \mu'$, where μ' is maximal such that τ_i' is a cardinal in M_{h_i}', and $\sigma_h(M_h||\mu) = M_{h_i}'||\mu'$.

(ii) If τ is a cardinal in M_h, then $\tau_i' = \tau_h(\tau)$ is a cardinal in M_{h_i}', since σ_h is Σ_1-preserving.

(iii) Clearly $\sigma_h \upharpoonright M_i^* : M_i^* \to \Sigma_1, M_i'^*$ by (i) and (ii). Now let $x \in \mathcal{P}(\kappa_i) \cap M_i^*$ and $\alpha_1, \ldots, \alpha_n < \lambda_0$. Since $\sigma_i : M_i \to M_i'$ is Σ^*-preserving we have:

$$\langle \bar{\alpha} \rangle \in F(x) \iff \langle \sigma_i(\bar{\alpha}) \rangle \in F'(\sigma_i(x)).$$

But $\sigma_i(x) = \sigma_h(x)$, since by (d) we have: $\sigma_i \upharpoonright J_{\lambda_h} = \sigma_h \upharpoonright J_{\lambda_h}$. (Hence $\sigma_h \upharpoonright M_i^*, M_i'^*$).

(iv) If $f \in M_i^*$, then by (c):

$$\sigma_{i+1} \pi_{h,i+1}(f) = \pi_{h,i+1}^h \sigma_h(f).$$

Otherwise $f(\xi) \simeq G(\xi, q)$ where $q \in M_i^*$ and G is a good $\Sigma_1^{(n)}(M_i^*)$ function for an n such that $\kappa_i < \rho_{M_i^*}^{n+1}$. But then:

$$\sigma_{i+1} \pi_{h,i+1}(f)(\xi) \simeq G'(\xi, \sigma_{i+1} \pi_{h,i+1}(q))$$

$$\simeq G'(\xi, \pi_{h,i+1}' \sigma_h(q))$$

$$\simeq \pi_{h,i+1}' \sigma_h(f)$$

where G' is $\Sigma_1^{(n)}(M_i'^*)$ by the same good definition.
(v) If $j > i + 1$, then $\nu_i < \lambda_{i+1}$ and $\sigma_j(\nu_i) = \sigma_{i+1}(\nu_i)$. But letting $h = T(i + 1)$, we have:

$$\sigma_{i+1}(\nu_i) = \sigma_{i+1} \pi_{h,i+1}(\tau_i) = \pi'_{h,i+1} \sigma_h(\tau_i),$$

where

$$\sigma_h(\tau_i) = \sigma_i(\tau_i) = \nu'_i,$$

Hence $\sigma_{i+1}(\nu_i) = \pi'_{h,i+1} (\tau'_i) = \nu'_i$.

QED (Lemma 3.4.12)

It is apparent from Lemma 3.4.12 that there is only one way to extend a copy of $I|i + 1$ to a copy of $I|i + 2$. Moreover, the copying map σ_i is unique. Similarly, if η is a limit ordinal and I' is a copy of $I|\mu$ with copying maps $\langle \sigma_i | i < \eta \rangle$, there is only one way to extend I' to a copy of $I|\eta + 1$, for then:

$$M', \langle \pi'_{i,\eta} | i T \eta \rangle$$

is the direct limit of:

$$\langle M'_i | i < \eta \rangle, \langle \pi'_i | i \leq_T j < T \eta \rangle,$$

and σ_η is defined by:

$$\sigma_\eta \pi_\eta = \pi'_\eta \sigma_i \text{ for } i < T \eta.$$

Hence, by induction on $lh(I)$ we get:

Lemma 3.4.13. Let I be a normal iteration of M. Let $\sigma : M \rightarrow \Sigma^* M'$. Then there is at most one copy I' of I induced by σ. Moreover, the copying maps σ_i are unique.

Now suppose that I is a normal iteration of length $i + 1$ and I' is a copy of I with copying maps $\langle \sigma_h | h \leq i \rangle$. Extend I to a potential iteration \tilde{I} of length $i + 2$ by appointing ν_i. Extend I' to a potential iteration \tilde{I}' by appointing:

$$\nu'_i = \begin{cases}
\sigma_i(\nu_i) & \text{if } \nu_i \in M_i \\
\text{On} \cap M'_i & \text{if } \nu_i = \text{On} \cap M_i.
\end{cases}$$

We call $\langle \tilde{I}, \tilde{I}', \langle \sigma_j | j \leq i \rangle \rangle$ a potential duplication of length $i + 2$. The formal definition is:

Definition 3.4.10. Let I, I' be potential iteration of length $i + 2$. $\langle \tilde{I}, \tilde{I}', \langle \sigma_j | j \leq i \rangle \rangle$ is a potential duplication of length $i + 2$ iff

- $\langle \tilde{I}, \tilde{I}', \langle \sigma_j | j \leq i \rangle \rangle$ is a duplication of length $i + 1$, where $\tilde{T} = \tilde{I}|i + 1, \tilde{T}' = I'|i + 1$.

3.4. ITERATING PREMICE

- \(\sigma_i(\nu_i) = \nu'_i \) if \(\nu_i \in M_i \). Otherwise \(\nu'_i = \text{On} \land M'_i \).

Note. It is then easily seen that \(T(i + 1) = T'(i + 1) \). We also know that \(E_{\nu_i}^{M_i} \) is close to \(M_i^n \) and \(E_{\nu'_i}^{M'_i} \) is close to \(M'_i \). The following theorem is an analogue of theorem 3.4.6

Lemma 3.4.14. Let \(\langle I, I', (\sigma_i) \rangle \) be a potential duplication of length \(i + 2 \). Let \(h = T(i + 1) \). Then:

\[
\langle \sigma_h | M^*_i, \sigma_i | \lambda_i \rangle : \langle M^*_i, F \rangle \rightarrow^* \langle M'^*_i, F' \rangle
\]

(as defined in §3.2) where \(F = E_{\nu_i}^{M_i}, F' = E_{\nu'_i}^{M'_i} \).

Before proving the theorem, we note some of its consequences. It gives us exact criteria for determining whether the copying process can be continued one step further.

Lemma 3.4.15. Let \(I \) be a normal iteration of \(M \) of length \(i + 2 \). Let \(\sigma : M \rightarrow M' \) induce a copy \(I' \) of \(I | 0 + 1 \) with copying maps \(\langle \sigma_j | j \leq i \rangle \). Set:

\[
\nu'_j = \begin{cases}
\sigma_i(\nu_i) & \text{if } \nu_i \in M_i \\
\text{On} \land M'_i & \text{if } \nu_i = \text{On} \land M_i
\end{cases}
\]

Then \(\sigma \) induces a copy of \(I \) iff \(M'^*_i \) is \(\Sigma^* \)-extendible by \(E_{\nu'_i}^{M'_i} \).

Proof: If \(M'^*_i \) is not extendible, then no such copy can exist. Now let \(M'^*_i \) be extendible. Let \(\pi'_i : M'^*_i \rightarrow^* E_{\nu'_i}^{M'_i} \). By theorem 3.4.14 and Lemma 3.2.23 it follows that there is a unique \(\sigma : M_{i+1} \rightarrow \Sigma^* M'_{i+1} \) such that \(\sigma \pi'_i = \pi'_i \cdot \langle \sigma_h | M^*_i \rangle \), where \(h = T(i + 1) \). Set: \(\sigma_{i+1} = : \sigma \). This gives us the copy \(I'' \) of \(I \) with copying maps \(\langle \sigma_j | j \leq 0 + 1 \rangle \).

QED (Lemma 3.4.15)

We also have:

Lemma 3.4.16. Let \(I \) be a normal iteration of \(M \) of length \(\eta + 1 \), where \(\eta \) is a limit ordinal. Let \(\sigma : M \rightarrow E_{\nu}^* M' \) induce a copy \(I' \) of \(I | \eta \). We can extend \(I' \) to a copy of \(I \) induced by \(\sigma \) iff \(\nu = T'' \{ \eta \} \) is a well founded branch in \(I' \).

The proof is left to the reader.

We also note:

Lemma 3.4.17. Let \(I \) be a normal iteration of limit length. Let \(I' \) be a copy of \(I \). If \(b \) is a cofinal well founded branch in \(I' \), then it is a cofinal well founded branch in \(I \).
The proof is left to the reader.

We now turn to the proof of theorem 3.4.14. As with theorem 3.4.6 we derive it from an even stronger lemma:

Lemma 3.4.18. Let \(\langle I, I', \langle \sigma_i \rangle \rangle \) be a potential duplication of length \(i + 2 \).
Let \(A \subset \tau_i \) be \(\Sigma_1(M_i||\nu_i) \) in a parameter \(p \). Let \(A' \subset \tau'_i \) be \(\Sigma_1(M_i||\nu_i) \) in \(\sigma_i(p) \) by the same definition. Then \(A \) is \(\Sigma_1(M^*_i) \) in a parameter \(q \) and \(A' \) is \(\Sigma_1(M'^*_i) \) in \(\sigma_h(q) \) by the same definition, where \(h = T(i + 1) \).

The derivation of theorem 3.4.14 from lemma 3.4.18 is a virtual repetition of the proof of theorem 3.4.4 from lemma 3.4.6. We leave it to the reader.

Lemma 3.4.18 is proven by a virtual repetition of the proof of lemma 3.4.6, making changes as necessary. We give a brief sketch of the proof:

Suppose not. Let \(I, I', \nu_i, \nu'_i \) be counterexamples of length \(i + 1 \), where \(i \) is chosen minimally. Let \(h = T(i + 1) = T'(i + 1) \). Then:

1. \(h < i \).
 Suppose not. Then \(M_i||\nu_i \subset M^*_i \) and \(M'_i||\nu'_i \subset M'^*_i \) as before. If \(\nu_i \in M^*_i \), then \(\sigma(M||\nu_i) = M'_i||\nu'_i \). Hence \(A \in M^*_i \) and \(\sigma_i(A) = A' \). Contradiction!

2. \(\nu_i = \text{On}_{M_i} \) and \(\rho^h_{M_i} \leq \tau_i \).
 Otherwise, as before \(A \in \mathcal{P}(\tau_i) \cap M^*_i, A' \in \mathcal{P}(\tau_i) \cap M'^*_i \) and \(\sigma_h(A) = \sigma_i(A) = A' \). Contradiction!

3. \(i \) is not a limit cardinal.
 The proof of this is a virtual repetition of the argument given in the proof of lemma 3.4.6. We leave it to the reader.
 Now let \(i = j + 1, \xi = T(i) \). Exactly as before we have:

4. \(M_j^* = \langle J^E_\nu, E_\nu \rangle, M'^*_j = \langle J'^E_\nu, E'_\nu \rangle \) where \(E_\nu, E'_\nu \neq \emptyset \).

5. \(\tau_i < \kappa_j \).

6. \(\pi_{\xi,i} : M^*_j \to E_{\nu_j} M_i \) is a \(\Sigma_0 \) ultrapower (and therefore cofinal). Similarly for \(\pi'_{\xi,i} : M'^*_j \to E'_{\nu'_j} M'_i \). By the minimality of \(\sigma \) we know that for all \(\alpha < \lambda_j \), \((E_{M^*_j})_{\alpha} \) is \(\Sigma_1(M^*_j) \) in a parameter \(r \) and \((E^{M^*_j})_{\sigma_i(\alpha)} \) is \(\Sigma_1(M'^*_j) \) in \(\sigma_i(r) \) by the same definition. Using this we can repeat the argument in the proof of Lemma 3.4.6 to get:

7. \(A \) is \(\Sigma_1(M^*_j) \) in a \(q \) and \(A' \) is \(\Sigma_1(M'^*_j) \) in \(\sigma_i(q) \) by the same definition.
Now extend \(I[\xi + 1] \) to a potential iteration \(\tilde{I} \) of length \(\xi + 2 \) by setting \(\tilde{\nu}_\xi = \nu \), where \(\nu \) is as in (4). Extend \(I'[\xi + 1] \) to \(\tilde{I}' \) by setting \(\tilde{\nu}'_\xi = \nu' \) where \(\nu' \) is as in (4). Then \(\kappa_i = \tilde{\kappa}_i, \tau_i = \tilde{\tau}_i, \kappa'_i = \tilde{\kappa}'_i, \tau'_i = \tilde{\tau}'_i \) as before. Hence \(h = \tilde{T}(\xi + 1) = \tilde{T}'(\xi + 1) \) and \(M_i^* = \tilde{M}_i^*, M_i'^* = \tilde{M}'_i^* \). By this minimality of \(i \) we conclude that \(A \) is \(\Sigma_1(M_i^*) \) as before. Contradiction! QED (Lemma 3.4.18)

3.4.6 Copying an \(n \)-iteration

Definition 3.4.11. Let \(I = \langle M_i, \langle \nu_i \rangle, \langle \pi_{ij} \rangle, T \rangle \) be a normal \(n \)-iteration \((n \leq \omega)\). Let \(\sigma : M \rightarrow \Sigma^*_M, M' \). We call:
\[
I' = \langle \langle M'_i, \langle \nu'_i \rangle, \langle \pi'_{ij} \rangle, T' \rangle \n\]
a copy (or \(n \)-copy) of \(I \) induced by \(\langle \sigma, M' \rangle \) iff \(I' \) is an \(n \)-iteration satisfying (a), (c), (d), (e) of the previous definition together with
\[
(\text{b'}) \quad \sigma_0 = \sigma \text{ and } \sigma : M_i \rightarrow \Sigma_i^*(M'_i). \]
Moreover, if some \(h \leq T \) \(i \) is a truncation point, then \(\sigma_i \) is \(\Sigma^* \)-preserving.

The notion "\(n \)-duplication" and "potential \(n \)-duplication" are defined as before. Lemma 3.4.12 goes through as before except (iv) must be reformulated as:

(iv') If no \(l \leq T \) \(i + 1 \) is a truncation point and \(\kappa_i < \rho_{M_h}^\nu \), then:
\[
\sigma_{i+1}(\pi_{h,i+1}(f))(\alpha) = \pi'_{h,i+1}(\sigma_i(f)(\sigma_0(\alpha)))
\]
for \(f \in \Gamma_i^*(\kappa_i, M_h), \alpha < \lambda_i \). In all other cases the equation holds for \(f \in \Gamma^*(\kappa_i, M_i^*), \alpha < \lambda_i \).

Lemma 3.4.13 then holds as before. Theorem 3.4.14 and lemma 3.4.15 – 3.4.17 then go through as before. By theorem 3.4.14 we also get:

Lemma 3.4.19. Let \(\langle I, I', \langle \sigma_i \rangle \rangle \) be an \(n \)-duplication. Let \(i < T j \) in \(I \) such that \(\pi_{ij} \) is total on \(M_i \).

(a) If no \(l \leq T \) \(i \) is a truncation point and \(\kappa_i < \rho_{M_i}^\nu \), then \(\pi_{ij} : M_i \rightarrow \Sigma_i^{(n)} M_j \).

(b) In all other cases \(\pi_{ij} \) is \(\Sigma^* \)-preserving.

These lemmas and theorems hold \textit{mutatis mutandis} for padded \(n \)-iterations. The details are left to the reader.
3.5 Iterability

A mouse is a premouse which is iterable. Iterability is, however, as complex a notion as that of iterating itself. We begin with normal iterability which says that any normal iteration of M constructed according to an appropriate strategy, can be continued.

3.5.1 Normal iterability

Definition 3.5.1. A premouse M has the normal uniqueness property (NUP) iff every normal iteration of M of limit length has at most one cofinal well founded branch. The simplest mice, such as $0^\#$, $0^{\#\#}$ etc. are easily seen to have this property. Unfortunately, however, there are mice which do not. If a premouse M does satisfy NUP, then normal iterability can be defined by:

Definition 3.5.2. Let M satisfy NUP, M is normally iterable iff every normal iteration of M can be continued — i.e.

- If I is a normal iteration of M of limit length, then it has a cofinal well founded branch.
- If I is a potential iteration of length $i+2$, then M^*_i is \ast-extendible by $E^M_{\nu_i}$.

If M does not satisfy NUP, we say that it is normally iterable if there exists a strategy for picking cofinal well founded branches such that any iteration executed in accordance with that strategy could be continued. We first define:

Definition 3.5.3. A normal iteration strategy is a partial function S on normal iterations of limit length such that $S(I)$, if defined, is a well founded cofinal branch in I. We call it a strategy for M if its domain is restricted to iterations of M.

Definition 3.5.4. A normal iteration $I = \langle (M_i), (\nu_i), (x_{ij}, T) \rangle$ conforms to the iteration strategy S iff, whenever, $\eta < \text{lh} I$ is a limit ordinal, then $T''\{\eta\} = S(I|\eta)$.

Definition 3.5.5. A normal iteration strategy S is α-successful for a premouse M iff every S-conforming iteration of M of length $< \alpha$ can be continued in an S-conforming way. In other words:

- If I is of limit length $< \alpha$, then $S(I)$ is defined
3.5. **ITERABILITY**

- If I is a potential normal iteration length $i + 2 < \alpha$, then M^*_i is \ast-extendible by $E^M_{\nu_\alpha}$.

Definition 3.5.6. M is **normally α-iterable** iff there exists an α-successful strategy for M.

Definition 3.5.7. M is **normally iterable** iff it is normally α-iterable for all α.

Note. It might seem more natural to take "normal iterable" as meaning that M is ∞-iterable, but that is a second order property, which we cannot express in ZFC.

Note. If M has NUP, then any two iteration strategies for M must coincide on their common domain. Hence, in this case, our initial definition of "normally iterable" is equivalent to the definition just given. It is then also equivalent to the second order statement that M is ∞-iterable.

Definition 3.5.8. M is **uniquely normally iterable** iff it is normally iterable and satisfies NUP.

Proving iterability is a central problem of inner model theory. There are large classes of premice for which it is unsolved. The success we have had to date depends strongly on NUP. Whenever we have been able to prove the iterability M, it is either because M satisfies NUP, or because we derive its iterability from that of another premouse which satisfies NUP.

Note. In the above definition we take "normal iteration" as meaning "padded normal iteration". One can, of course, define **strict iteration strategy**, **strictly α-successful** and **strictly α-iterable** in the obvious way. But in fact every strictly α-iterable premouse is α-iterable, since every strictly successful strategy S can be expanded to an α-successful S^* as follows. Let:

$$I = (\langle M_i \rangle, \langle \nu_i | i \in A \rangle, \langle \pi_{ij}, T \rangle)$$

be padded iteration of limit length η. If A is cofinal in η, let $\langle \alpha_i | i < \mu \rangle$ be the monotone enumeration of A and set:

$$I' = (\langle M_{\alpha_i} \rangle, \langle \nu_{\alpha_0} \rangle, \langle \pi_{\alpha_i, \alpha_j} \rangle, \{ (i, j) | \alpha_i T \alpha_j \}).$$

Then I' is strict and we set:

$$S^*(I) \simeq \{ i | V \bigvee j \in S(I') i T_{\alpha_j} \}.$$

If A is not cofinal in η, let $j < \eta$ such that $[j, \eta] \cap A = \emptyset$. $S^*(I)$ is then defined to be the unique cofinal well founded branch:

$$\{ i | i T_j \vee j \simeq i < \eta \}.$$
3.5.2 The comparison iteration

As mentioned earlier, we can "compare" two normally iterable premice via a pair of padded normal iterations known as the coiteration or comparison iteration. We define:

Definition 3.5.9. Let M, N be premice. M is a segment of N (in symbols: $M \triangleq N$) iff $M = N|\eta$ for an $\eta \leq \text{On}_N$.

If neither of M^0, M^1 is a segment of the other, there is a first point of difference ν_0 defined as the least ν such that $M^0||\nu \neq M^1||\nu$. Then $J_{\nu_0}^{M^0} = J_{\nu_0}^{M^1}$ and $E^{M^0}_{\nu_0} \neq E^{M^1}_{\nu_0}$. Set: $\pi^h_{0,1} : M^h \rightarrow E_{\nu_0} M^h$ if $E^{M^h}_{\nu_0} \neq \emptyset$. Otherwise set: $M^h_i = M^h$, $\pi^h_{0,1} = \text{id}$. Then $M^0||\nu_0 = M^1||\nu_0$. If M^0_1, M^1_1 have a point ν_1 of difference, then $\nu_1 > \nu_0$ and we can repeat the process to get M^h_i etc. Suppose that $\text{card}(M^h) < \Theta$ for $h = 0, 1$ where $\Theta + 1$ is regular and each M^h is $\Theta + 1$ iterable. The comparison process then continues until we have a pair of iterations of length $i + 1$, where either $i = \Theta$ or $i < \Theta$ and M^0_i, M^1_i have no point of difference. (Hence one is a segment of the other.)

Using the initial segment condition we shall show that the comparison must terminate at an $i + 1 < \Theta$. The formal definition is:

Definition 3.5.10. Let θ be a regular cardinal. Let M^0, M^1 be premice of cardinality $< \theta$ which are normally E^{1+}_{top}-iterable. Let S^n be a successful E^{1+}_{top} strategy for M^n ($n = 0, 1$). The coiteration of M^0, M^1 given by (S^n, S^1) is a pair (I^n, I^1) of padded normal iterations of common length $\mu + 1 \leq \theta + 1$ with coindices $\langle \nu_i, i < \mu \rangle$ such that:

$$I^n = \langle \langle M^0_i^n \rangle, \langle \nu_i, i \in A^n \rangle, \langle \pi^n_{i,j} \rangle, T^n \rangle$$

and:

- $M^0_0 = M^n$
- If M^0_i, M^1_i are given and $i < \theta$, then:
 $$\nu_i \triangleq \text{the first point of difference } \nu \text{ such that } M^0_i||\nu \neq M^1_i||\nu$$
- If $i = \Theta$ of ν_i does not exist, then $i = \mu$.

There is obviously at most one coiteration (I^0, I^1). To see this, suppose (I^0, I^1) to be a second one and prove: $I^n|j+1 \triangleq I(n)|j+1$ for $n = 01$ by induction on $j \leq \mu$ (we take $I^n|j = I^n$ if $\text{lh}(I^n) \leq j$). We leave this to the reader. Finally, by induction on $j \leq \mu$ we prove the existence of $(I^0|j+1, I^1|j+1)$ satisfying the above condition for $j \leq i$. This we also leave to the reader.
3.5. ITERABILITY

We now prove the Comparison Lemma:

Lemma 3.5.1. The coiteration terminates before Θ.

Proof: Suppose not. Since card(M^h) < Θ, it follows easily that:

(1) \(I^h \in H_{Θ^+} \) for \(h = 0, 1 \)

Set \(Q = H_{Θ^+} \). By a Löwenheim–Skolem argument there is \(X \prec Q \) such that card(\(X \)) < \(Θ \), \(X \cap Θ \) is transitive, and \(I^0, I^1 \in X \). Let:

(2) \(σ : \overline{Q} \rightarrow X \), where \(\overline{Q} \) is transitive.

Then \(σ : \overline{Q} \prec Q \). Let \(σ(\overline{I}^h) = I^h(\ h = 0, 1 \)\). It is easily seen that:

(3) • \(\overline{Θ} =: Θ \cap X \) is the critical point of \(σ \)
• \(σ(\overline{Θ}) = Θ \)
• \(σ|H = id \), where \(σ(\overline{H}) = H_Θ \).

But then \(\overline{Θ} \) is a limit point of the club set \(T^{h\prime}\{Θ\} \) for \(h = 0, 1 \). Hence:

(4) \(\overline{Θ} \prec_{T^h} Θ(h = 0, 1) \).

Let \(σ(\overline{T}^h) = I^h \), where:

\[
\overline{T}^h = (\overline{(M^h_i)}, (\overline{σ^h_i}), (\overline{σ^h_{ij}}), \overline{T}^h).
\]

Then:

(5) \(T^n = I^h|\overline{Θ} + 1 \).

Proof: \(T^i|\overline{Θ} = I^h|\overline{Θ} \) follows by (3). But then by (4):

\[
i\overline{T}^h|\overline{Θ} \iff iT^hΘ \iff iT^hΘ \text{ for } i < \overline{Θ}.
\]

But then \((M^h_{\overline{Θ}}), (\overline{σ^h_{ij}}|\overline{T}^h|\overline{Θ}) \) is the direct limit of:

\[
(M_i|i < Θ), (σ_{ij}|i \leq T^h < T^n \Theta).
\]

Hence \(M^h_{\overline{Θ}} = M^h_Θ, \overline{σ^h_{ij}} = σ^h_{ij} \; \text{QED (5)} \).

Hence:

(6) \(σ|M^h_{\overline{Θ}} = σ^h_{j|\overline{Θ}} \)

Proof: Let \(x \in M^h_{\overline{Θ}}, x = \overline{σ^h_{j|\overline{Θ}}} (\overline{x}) \) where \(j_{T^h} \overline{Θ} \). Then \(σ(x) = σ(\overline{σ^h_{j|\overline{Θ}}} (\overline{x})) = \overline{σ^h_{j|\overline{Θ}}} (\overline{x}) = \overline{σ^h_{j|\overline{Θ}}} (x) \). QED (6)
Let $h = 0$ or 1. There is $i \geq \overline{\Theta}$ such that $i + 1 <_{T^n} \Theta$ and $i \in A^h$.

Proof: Suppose not. By Lemma 3.4.7 we have: $|\overline{\Theta}, \Theta) \cap A^h = \emptyset$. Hence $M^0_i = M^0_{\overline{\Theta}}$ for $\overline{\Theta} \leq i \leq \Theta$. Since $\text{card}(M^h_{\overline{\Theta}}) < \Theta$, there is then an $i < \Theta$ such that $\nu_i > \text{On} \cap M^h_i$, contradicting the definition of ν_i.

QED (7)

Let i_h be the least $i \geq \overline{\Theta}$ such that $i_h + 1 <_{T^n} \Theta$ and $i_h \in A^h(h = 0, 1)$. Assume w.l.o.g. that $i_0 \leq i_1$. Set:

$$J^E_{\nu_1} = J^E_{\nu_1} = J^E_{\nu_1}.$$ Then:

$$J^E_{\nu_0} = J^E_{\nu_0} = J^E_{\nu_0}.$$ Moreover, if $i_0 < i_1$, then ν_{i_0} is a cardinal on $J^E_{\nu_1}$. Since $\overline{\Theta} <_{T^n} \nu_i <_{T^n} \Theta$, we obviously have:

$$\overline{\Theta} = T^n(i_h + 1), \overline{\Theta} = \text{crit}(\pi^h_{\overline{\Theta}}) = \text{crit}(\pi^h_{\overline{\Theta}, i_h}).$$

Setting: $F^h = : E_{\nu_0}$, we then have:

(8) $\overline{\Theta} = \text{crit}(F^h)(h = 0, 1)$

Let $\tau = : \tau_{i_0}$. Then:

(9) $\tau = \tau_{i_0}$.

Proof: $\tau = \overline{\Theta} + J^E_{\nu_0}$. But $i_0 = i_1$ or ν_{i_0} is a cardinal on $J^E_{\nu_1}$. Hence $\tau = \overline{\Theta} + J^E_{\nu_1} = \tau_{i_1}$ by acceptability.

QED (9)

Since $\overline{\Theta} = T^h(i_h + 1)$ we have:

$$J^E_{\tau} = J^E_{\tau}$$ and $\tau \leq \Theta^+$ in $M^h_{\overline{\Theta}}$.

But then:

(10) $\tau = \overline{\Theta} + M^h_{\overline{\Theta}}$ and $J^E_{\tau} = H^M_{\overline{\Theta}}$.

Proof: If not, $i_h + 1$ would be a truncation point. Hence $\Pi^h_{\overline{\Theta}}$ would not be a total function on $M^h_{\overline{\Theta}}$, contradicting (6).

QED (10)

Hence:

(11) $\mathcal{P}(\overline{\Theta}) \cap M^h_{\overline{\Theta}} = \mathcal{P}(\overline{\Theta}) \cap M^1_{\overline{\Theta}}$

But then by (6):

(12) $F^h(X) = \Pi^h_{\overline{\Theta}, i_h + 1}(X) = \sigma(X) \cap \lambda^h_{i_0}$ for $X \in \mathcal{P}(\overline{\Theta}) \cap M^h_{\overline{\Theta}}$.

Hence:
3.5. ITERABILITY

(13) $i_0 \neq i_1$.

Proof: Suppose not. Set $i = i_0 = i_1$. By (12) we have:

$$F = F^0 = F^1.$$

Hence:

$$M^0_i \| \nu_i = M^1_i \| \nu_i = \langle J^E_i, F \rangle ,$$

contradicting the definition of ν_i. QED (13)

Hence $i_0 < i_1$ and ν_{i_0} is a cardinal in $J^E_{i_0}$. By (12), however, $F^0 \in J^E_{\lambda_1}$ by the initial segment condition. But, letting $\pi = \pi^0_{i_0, i_1} \upharpoonright J^E_i$, we have:

$$\langle J^E_{\lambda_1}, \pi \rangle$$ is the extension of $J^E_{\lambda_1}$ by F^0. Hence $\pi \in J^E_{\lambda_1}$, since $J^E_{\lambda_1}$ is a ZFC model. But π maps τ cofinally to ν_{i_0}, where $\lambda_{i_0} > \tau$ is the largest cardinal in $J^E_{\nu_{i_0}}$. Hence ν_{i_0} is not a cardinal in $J^E_{\nu_{i_1}}$. Contradiction! QED (Lemma 3.5.1)

3.5.3 n–normaliterability

By an n–normal iteration strategy we mean a partial function s on normal n–iterations of limit length such that $S(I)$, if defined, is a well founded cofinal branch in I. The concepts α–successful n–normal strategy and n–normally α–iterable are then defined in the obvious way. M is called n–normally iterable iff it is n–normally α–iterable for all α. If M^0, M^1 are premice of cardinals $1 < \Theta$, where Θ is regular, and S^h is a $\Theta + 1$–successful n_h–normal iteration strategy for $M^h(h = 0, 1)$, we can define the $\langle n_0, n_1 \rangle$–coiteration of M^0, M^1 given by $\langle S^0, S^1 \rangle$ exactly as before. But then the comparison lemma holds for this coiteration by exactly the same proof as before.

3.5.4 Iteration strategy and copying

Lemma 3.5.2. Let M be normally α–iterable. Let $\sigma : M \rightarrow \Sigma^* M$. Then \overline{M} is normally α–iterable.

Proof: Let S be an α–successful strict normal iteration strategy for M. We use the copying procedure and Lemma 3.4.17 to define an α–successful strategy \overline{S} for \overline{M}. \overline{S} is defined on the set of strict iterations \overline{T} of \overline{M} having limit length such that σ induces a copy I of \overline{T} onto M with copying maps $\langle \sigma_0[i < \text{lh}(T)] \rangle$ which conforms to S. We then set: $\overline{S}(T) = S(I)$. $\overline{S}(T)$ is then a cofinal well founded branch in \overline{T} by Lemma 3.4.17. By induction on $\mu = \text{lh}(T)$ it then follows that, if T is \overline{S}–conforming, then σ induces an
 CHAPTER 3. MICE

S–conforming copy I with copying maps $(\sigma_i | i < \mu)$. For $\mu = 1$ or limit μ this is trivial. For $\mu = \eta + 1$ where η is a limit, we use the definition of $\bar{\Sigma}$. If $\mu = \eta + 1$, we use Lemma 3.4.16 By a virtual repitition of this proof:

Lemma 3.5.3. Let M be n–normally α–iterable. Let $\sigma : \bar{M} \rightarrow \Sigma_1^{[n]} M$. Then \bar{M} is n–normally α–iterable.

The details are left to the reader.

3.5.5 Full iterability

Normal iterability is too weak a property for many purposes. For instance, we do not know, in general, that a normal iterate N of a normally iterable M is itself normally iterable. We therefore introduce the notion of full iterability, which is often more useful but, unfortunately, harder to verify.

The process of taking a normal iteration of M can itself be iterated, as can the process of taking a segment of a normal iterate of M. This suggests an expande notion of iteration: Not only normal iterations are allowed, but also (finite or infinite) successions of normal iteration, where the $i + 1$ set iteration is applied to a segment of the iterate given by stage i. The formal definition is:

Definition 3.5.11. Let M be a premouse. By a full iteration I of M of length μ we mean a sequence $h_i_j_i_i_i < i$ of normal iteration:

$$I^i = si(\langle M^i_k \rangle, \langle v^i_k \rangle, \langle \pi^i_k_j \rangle, T^i)$$

inducing a sequence $M_i = M_i^{M,I}(i < \mu)$ of premice and a commutative sequence of partial maps $\pi_{k_j} = \pi_{k_j}^{(M,I)}(h \leq j < \mu)$ such that the following hold:

(a) $M_0 = M.$

(b) $M^0_i \triangleleft M_i$ for $i < \mu$.

(c) If $i + 1 < \mu$, then I^i has length $l_i + 1$ for some l_i and:

$$M_{i+1} = M^i_i, \pi_{i,i+1} = \pi^i_{0,l_i}.$$

Call $i < \mu$ a drop point in I ifff either $M^i_0 \neq M_i$ or $i + 1 < \mu$ and I^i has a truncation on its main branch.
(d) Let $\alpha < \mu$. Then the set of drop points $i < \alpha$ is finite. Moreover, $\pi_{i,\alpha}$ is a total function on M_i whenever (i, α) has no drop point. If α is a limit ordinal then:

$$M_\alpha, \langle \pi_{i,\alpha} | i < \mu \rangle$$

is the transitivized direct limit of:

$$\langle M_i | i < \alpha \rangle, \langle \pi_{ij} | i \leq j < \mu \rangle.$$

It is clear that the sequence $\langle M_i | i < \mu \rangle, \langle \pi_{ij} | i \leq j < \mu \rangle$ are uniquely determined by the pair $\langle M, I \rangle$.

Definition 3.5.12. $I = \langle I^i | i < \mu \rangle$ is a full iteration iff it is a full iteration of some M.

Note. We have not excluded the case $\mu = 0$. In this case $I = \emptyset$ is a full iteration of every premouse. We then have: $M(N, \emptyset) = N, \pi(N, \emptyset) = \id | N$.

Definition 3.5.13. Let $I = \langle I^i | i < \mu \rangle$ be a full iteration. The **total length** of I is $\Sigma_{i<\mu} \lh(I^i)$.

Definition 3.5.14. Let I be a full iteration of M. $i < \mu$ is a truncation point (or drop point) v with M, I, iff either I^σ is of length $l_i + 1$ and has a truncation on its main branch $T^{\mu \iota} \{l_i \}$, or else $M_0^i \neq M_i$.

By (d) the set of truncation points $i < \alpha$ is always finite if $\alpha < \mu$ is a limit ordinal.

Definition 3.5.15. I is a full iteration of M to M' iff I is a full iteration of M and one of the following holds:

(i) $I = \emptyset$ and $M' = M$

(ii) I has length $\mu = \eta + 1$ and I^η has length $\gamma + 1$, where $M' = M_0^\eta$.

(iii) I has limit length μ, the set of truncation points $i < \mu$ is finite, and:

$$\langle M_i | i < \mu \rangle, \langle \pi_{ij} | i \leq j < \mu \rangle$$

is as the transitive direct limit:

$$M', \langle \pi_{i} | i < \mu \rangle.$$

Definition 3.5.16. Let M, M', I be as above. The iteration map $\pi = \pi(M, I)$ from M to M' given by the pair (M, I) is defined as follows:

(i) $\pi = \id | M$ if $I = \emptyset$
(ii) If I, I^ξ are as in (ii) we set $\pi = \pi_{0, I^\eta}^\eta \circ \pi_{0, I}^{(M, I)}$

(iii) If case (iii) holds, we set: $\pi = \pi_I$.

Definition 3.5.17. Let $I = \langle I^i | i < \mu \rangle, I' = \langle I'^i | i < \mu' \rangle$ be full iterations.
the concatenation $I \cap I'$ of I, I' is the sequence $\langle \bar{I}^i | i < \mu + \mu' \rangle$ such that $\bar{I}^i = I^i$ for $i < \mu$ and $\bar{I}^{i+1} = I'^i$ for $i < \mu'$.

$I \cap I'$ is not necessarily a full iteration. However, it is easily seen that

Lemma 3.5.4. If I is a full iteration from M to M' and I_0 is a full iteration
of M_0, then

(a) $I \cap I'$ is a full iteration of M.

(b) If $I' \neq \emptyset$, then $\pi^{(M, I)} = \pi_{0, \mu}^{(M, I \cap I')}$, where $\mu = \text{lh}(I)$.

(c) If I' is an iteration of M' to M'', then $I \cap I'$ is an iteration of M to
M'' and $\pi^{(M, I \cap I')} = \pi^{(M', I')} \circ \pi^{(M, I)}$.

Definition 3.5.18. Let I be a full iteration of M. By a lengthening of I we
mean any $I \cap I'$ which is a full iteration.

(Hence we cannot lengthen $\langle I^i | i \leq \eta \rangle$ by extending its last normal iteration
I^η, but only by starting a new normal iteration.)

Note. Lemma 3.5.4 (b) then says that, if I is an iteration from M to M'
and I' is a proper lengthening of I (i.e. $\mu = \text{lh}(I) < \mu' = \text{lh}(I')$, then
$\pi^{(M, I)} = \pi_{0, \mu}^{(M', I')}$.)

We now define the concept of full iterability:

Definition 3.5.19. A full iteration strategy is a partial function on full
iterations I of length $\eta + 1$ such that I^η is of limit length. $S(I)$, if defined
is then a cofinal well founded branch in I^η (we refer such full iterations I as
critical).

Definition 3.5.20. A full iteration $I = \langle I^i | i < \mu \rangle$ conforms to the strategy S if whenever $i < \mu$ and $\gamma < \text{lh}(I^i)$ is a limit ordinal, then $T^{\eta, \mu, \gamma}$ is the branch $S(\langle I^i | i < \mu \rangle)$ given by S.

Definition 3.5.21. A strategy S is α–successful for M if whenever $I = \langle I^i | i < \mu \rangle$ is an S–conforming full iteration of M of total length $\Sigma_{i<\mu} \text{lh}(I^i) < \alpha$, then I can be extended one step further in an S–conforming way:

(a) If $\mu = i + 1$ and I^i is of limit length, then $S(I)$ exists.
3.5. ITERABILITY

(b) Let $\mu = i + 1$ and $lh(I^i) = h + 1$. Extend I^i to a potential normal iteration by appointing ν_h. This gives E_{ν_h} and M^*_i. Then M^*_h is $*$-extendible by E_{ν_h}.

(c) If μ is a limit ordinal, then there are at most finitely many truncation points below μ. Moreover:

$$(M_i^{(M,I)}|i < \mu), (\pi_{i,j}^{(M,I)}|i \leq j < \mu)$$

has a well founded limit.

Definition 3.5.22. M is fully α-iterable iff it has an α-successful full iteration strategy.

Definition 3.5.23. M is fully iterable iff it is fully α-iterable for every α.

3.5.6 The Dodd–Jensen Lemma

We now prove a theorem about normal iteration of premice which are fully iterable and have the normal unique new property.

Theorem 3.5.5. (The Dodd–Jensen Lemma)

Suppose that M has the normal uniqueness property and is fully Θ-iterable, where $\Theta > \omega$ is regular. Let:

$$I^0 = \langle (M_0^0), (\nu_0^0), (\pi_0^0), T^0 \rangle$$

be a normal iteration of M with length $\eta + 1$. Let $\sigma : M \rightarrow \Sigma^* N$ where $N \subseteq M_\eta^0$. Then:

(a) $N = M_\eta^0$.

(b) There is no truncation point on the main branch $T^{0\eta}\{\eta\}$ of I^0.

(c) $\sigma(\xi) \geq \pi_0(\xi)$ for all $\xi \in \text{On} \cap M$.

Note. Let $M' = M_0^0$, $\pi = \pi_0,_{\eta}$. Then π is the unique Σ^*-preserving map of M to M' such that $\pi(\xi) = \xi'$ such that $\xi' = \sigma(\xi)$ for some $\sigma : M \rightarrow M'$ which is Σ^*-preserving. Thus π depends only on the models M, M' and not on the iteration I^0.

We now prove the theorem. Fix a Θ-successful strategy S for M. By induction on $i < \omega$ we construct I^i, N^i, σ^i such that

- $I^i = \langle (M_i^i), (\nu_i^i), (\pi_{i,j}^i), T^i \rangle$ is a normal iteration.
CHAPTER 3. MICE

- \(N^i \triangleleft M^i \) and \(\sigma^i : M \to N^i \).
- \(\langle I^0, \ldots, I^i \rangle \) is \(S \)-conforming.
- If \(i = h + 1 \), then \(I^i \) is the copy of \(I^0 \) onto \(N^h \) by \(\sigma^h \).

Case 1 \(i = 0 \)

\(I^0 \) is given. Set: \(N^0 = N, \sigma^0 = \sigma \).

Case 2 \(i = h + 1 \)

We first construct \(I^i \). We construct \(I^i_{j+1} \) and copying maps \(\sigma^h_{\langle I^0, \ldots, I^h, I^i \rangle} : M_{\langle I^0, \ldots, I^h, I^i \rangle} \to M_{\langle I^0, \ldots, I^h, I^i \rangle}(l \leq \gamma) \) by induction on \(\gamma \), ensuring at each stage that \(\langle I^0, \ldots, I^h, I^i_{j+1} \rangle \) is \(S \)-conforming.

For \(\gamma = 0 \) set \(I^i_{|\gamma| + 1} = \langle \langle N^h \rangle, \emptyset, \langle \text{id} \rangle, \emptyset \rangle \). We set \(\sigma^h_0 = \sigma^h \). If \(\gamma = \lambda + 1 \), we follow the usual procedure.

Now let \(\gamma \) be a limit ordinal. We are given \(I^i_{|\gamma|} \) and copying maps \(\sigma^h_{\langle I^0, \ldots, I^h, I^i_{|\gamma|} \rangle} \), where \(I^i_{|\gamma|} \) is the copy of \(I^0_{|\gamma|} \) onto \(M^h_{\langle I^0, \ldots, I^h, I^i_{|\gamma|} \rangle} \) by \(\sigma^h \). Then \(I^i = \langle I^0, \ldots, I^h, I^i_{|\gamma|} \rangle \) is \(S \)-conforming. Hence \(S \) gives us a cofinal well founded branch \(b = S(I^i) \) in \(I^i_{|\gamma|} \) and we extend \(I^i_{|\gamma|} \) to \(I^i_{|\gamma| + 1} \) by setting \(T^{0^0}(\gamma) = B \). But by Lemma 3.4.17, \(b \) is a well founded cofinal branch in \(I^0_{|\gamma|} \). Hence \(b = T^{0^0}(\gamma) \) by uniqueness. But then \(\sigma^i_{\gamma+1} : M^h_{\langle I^0, \ldots, I^h, I^i_{|\gamma|} \rangle} \to M^i_{\langle I^0, \ldots, I^h, I^i_{|\gamma|} \rangle} \) can be defined as usual. This gives \(\langle I^0, \ldots, I^i \rangle \), which is \(S \)-conforming. But \(\sigma^h : M^0_{\langle I^0, \ldots, I^h \rangle} \to M^i_{\langle I^0, \ldots, I^h \rangle} \) where \(N^0 = M^0_{\langle I^0, \ldots, I^h \rangle} \). If \(N^0 = M^0_{\langle I^0, \ldots, I^h \rangle} \), set \(N^i = M^i_{\langle I^0, \ldots, I^h \rangle} \). Otherwise set: \(N^i = \sigma^h_{\langle I^0, \ldots, I^h \rangle}(N^0) \). In either case \(\sigma^h \cdot \sigma^0 : M \to N^i \), and we set: \(\sigma^i = \sigma^h \cdot \sigma^0 \). QED (Case 2)

Thus \(\langle I^i_{|i < \omega} \rangle \) is an \(S \)-conforming full iteration of \(M \). Using this we prove (a) – (c):

(a) Suppose not. Then \(N^i \neq M^i \) for \(i < \omega \). But \(M_0 = M, M_{n+1} = M_n^h \) and \(M_0^{n+1} = N^n \neq M_{n+1} \). Hence every \(n+1 < \omega \) is a truncation point in \(I = \langle I^n_{|n < \omega} \rangle \).

Contradiction!

(b) Suppose not. Let \(i+1 \) be a truncation point on the main branch \(T^{0^0}(\eta) \) of \(I^0 \). By our construction \(i+1 \) is a truncation point in \(T^{0^0}(\eta) \) for \(n < \omega \). Hence each \(n+1 \) is a truncation point in \(I \).

Contradiction!
3.5. ITERABILITY

(c) By (a), (b), $\pi_{nm} : M_n \to M_m$ is a total function on M_n for $n \leq m < \omega$. Suppose (c) to be false. Let $\sigma^0(\xi) < \pi^0_i(\xi)$. Then $\sigma^{i+1}(\xi) = \sigma^1_n(\sigma^0(\xi) < \sigma^0_i(\pi^0_i(\xi)) = \pi^0_{i+1}(\sigma^i(\xi)) = \pi_i^{(M, I)}(\sigma^i(\xi))$. Hence $\pi_{i+1,\omega}^{i+1}(\xi) < \pi_{i,\omega}^i(\xi)$ for $i < \omega$.

Contradiction! QED (Theorem 3.5.5)

Lemma 3.5.6. Let $\omega < \Theta < \alpha$ where Θ is a regular cardinal. Let S be an α–successful strategy for M. Let I be an S–conforming iteration from M to M' with total length $< \Theta$. Define an iteration strategy S' for M' by

$$S'(I') \simeq S(\bar{I}')$$

for full iteration I' of M'. Then S' is an α–successful strategy for M'.

The proof is left to the reader. Similarly, we obtain a normal iteration strategy S''_0 for M_0 by setting $S''_i(\bar{I}_i) = S_0(\bar{I}_i)_i$ where \bar{I}_i is the full iteration \bar{I}_i of length 1 such that $\bar{I}_i = I_i$.

3.5.7 Copying a full iteration

Definition 3.5.24. Let $\sigma : M \to_{\Sigma^*} M'$ where M, M' are premise. Let $I = \langle I \mid i < \mu \rangle$ be a full iteration of M. $I' = \langle I_i' \mid i < \mu \rangle$ is the copy of I onto M' by σ with copying maps $\langle \sigma_i < i < \mu \rangle$ iff

(a) I' is a full iteration of M' inducing

$$\langle M'_i \mid i < \mu \rangle, \langle \pi'_i \mid i < j < \mu \rangle$$

(b) $\sigma_i : M_i \to_{\Sigma^*} M'_i$ such that $\sigma_i \pi_i = \pi'_i \sigma_i$

(c) $\sigma_0 = \sigma$

(d) I''_i is the copy of I''_i induced by $\sigma_i \mid M_0$ with copying maps $\langle \sigma_i \mid h < \lh(I_i) \rangle$

(e) If $M_i = M'_0$, then $M_i' = M''_0$ and $\sigma^i = \sigma_0$.

(f) If $M_i = M'_0$, then $M''_0 = \sigma_i(M_0)$ and $\sigma_0 = \sigma_i \mid M_0$

(g) If $i + 1 < \mu$, then $\sigma_{i+1} = \sigma'_i$ where $\lh(I_i) = l_i$.

Clearly I' and the copying maps $\langle \sigma_i < i < \mu \rangle, \langle \sigma'_i \mid i < \mu, h < \lh(I_i) \rangle$ are unique, if they exist. (Note that if $\eta < \mu$ is a limit ordinal, then σ_η is uniquely defined by: $\sigma_\eta \pi_{i\eta} = \pi'_i \sigma_i$ for $i < \eta$.)
Lemma 3.5.7. Let $\sigma : M \rightarrow \Sigma^* M'$, where M' is fully α-iterable. Then M is fully α-iterable.

Let S' be an α-successful strategy for M'. We define a strategy S for M as follows: If $I = (I^i | i \leq \eta)$ is a full iteration of M such that I^η is of limit length, we ask whether σ induces a copy I' of I onto M'. If so we set: $S(I)' = S_0(I_0')$. If not, $S(I)$ is undefined. ($S(I)$, if defined, is a cofinal well founded branch in I^η by Lemma 3.4.17.) It follows that if I is S-conforming, then σ induces a copy I' which is S'-conforming. (We prove this by induction on I, where $I = (I^i | i < \mu)$ and for $\mu = \eta + 1$ by induction on the length of I^η.) Using Lemma 3.4.16 and 3.4.17 it then follows that I can be extended in an S'-conforming way, since I' can be extended in an S'-conforming way.

QED (Lemma 3.5.7)

3.5.8 The Neeman–Steel lemma

The usefulness of the Dodd–Jensen Lemma is limited by the fact that it applies only to premice with the normal uniqueness property. In the absence of normal uniqueness we can often make use of the Neeman-Steel Lemma which, however, applies only to countable mice.

Theorem 3.5.8. [The Neeman–Steel Lemma] Let M be a countable pre-mouse and let $\langle \xi_n | n < \omega \rangle$ be an enumeration of its elements. Assume that M is fully θ-iterable, where $\theta > \omega$ is regular. Then there is a θ-successful normal iteration strategy σ for M such that whenever $I = (\langle M_i \rangle, \langle \nu_i \rangle, \langle \pi_i \rangle, T)$ is an S-conforming normal iteration of M with length $\eta + 1 < \theta$ and $\sigma : M \rightarrow \Sigma^* M'$, where $M' \mathrel{<} M_\eta$, then:

(a) $M' = M_\eta$.

(b) There is no drop point on the main branch of I (hence $\pi_{0,\eta} : M \rightarrow \Sigma^* M'$).

(c) If $n < \omega$ and $\sigma(\xi_i) = \pi_{0,\eta}(\xi_i)$ for $i \leq n$, then $\sigma(\xi_n) \geq \pi_{0,\eta}(\xi_n)$.

Then $\pi_{0,\eta}$ is the unique $\pi : M \rightarrow \Sigma^* M'$ such that given any $\sigma : M \rightarrow \Sigma^* M'$, if $n < \omega$ and $\sigma(\xi_i) = \pi(\xi_i)$ for $i < n$, then $\sigma(\xi_n) \geq \pi(\xi_n)$. Hence π depends only on M, M' and the enumeration $\langle \xi_i | i < \omega \rangle$, rather than on the iteration I.

We shall derive Theorem 3.5.8 from a stronger statement:
Lemma 3.5.9. Let $M, \langle \xi_i | i < \omega \rangle$ be as above. There is a σ-successful full iteration strategy S for M such that whenever I is an S-conforming full iteration from M to M' and $\sigma : M \rightarrow M'$, then:

(a) No $i < \text{lh}(I)$ is a drop point in I (hence the iteration map π from M to M' is total and Σ^* preserving).

(b) If $n < \omega$ and $\sigma(\xi_i) = \pi(\xi_i)$ for $i < n$, then $\sigma(\xi_n) \geq \pi(\xi_n)$.

It is clear that this lemma implies Theorem 3.5.8: If S is as in the lemma, we obtain an S' satisfying the theorem by setting:

$$S'(I) \cong S(\langle I \rangle)$$

where I is a normal iteration of M of limit length and $\langle I \rangle = \{ \langle I, 0 \rangle \}$ is the full iteration of M of length 1 starting with I.

We derive Lemma 3.5.9 from:

Lemma 3.5.10. Let S be a successful full iteration strategy for M. There is an S-conforming iteration I_0 of M to M_0 and a map $\sigma_0 : M \rightarrow M_1$ such that whenever $I = I_0 \sim I_1$ is an S-conforming lengthening of I_0 such that I_1 is from M_0 to M_1 and $\sigma : M_0 \rightarrow M_1$, then:

(a) There is no drop point in I_1

(b) Let π be the map of M_0 to M_1 given by I_1. Then for all $n < \omega$, if $\sigma(\xi_i) = \pi(\sigma_0(\xi_i))$ for $i < n$, then $\sigma(\xi_n) \geq \pi(\sigma_0(\xi_n))$.

We first show that Lemma 3.5.10 implies Lemma 3.5.9. We define a strategy S' satisfying Lemma 3.5.9 as follows:

Let I be a critical full iteration of M of length $\eta + 1$. We ask whether I can be copied onto M_0 by σ_0. If not, then $S'(I)$ is undefined. If the copy I' exists, we ask whether $I_0' I'$ is S-conforming. If not then $S'(I)$ is undefined. If $I_0' I'$ is S-conforming, then $S(I_0' I')$ is a cofinal well founded branch b in I''. But then b is cofinal and well founded in I''. We set $S(I') = b$.

It is easily seen that of a critical iteration I is S'-conforming, then $S'(I)$ is defined. Moreover, S' is successful and satisfies Lemma 3.5.9. We leave this to the reader.

We now prove Lemma 3.5.10. We construct a full iteration $I'(i < n \leq \omega)$ of M such that
• I^i is an iteration from M to M^i.
• I^i lengthens I^h for $h \leq i < n$.

Simultaneously we construct maps $\sigma^i : M \rightarrow \Sigma^* M^i$.

We define I^i, σ^i by induction on i.

Case 1: $i = 0$. Then $I^i = \emptyset$ and $\sigma^0 = \text{id} \upharpoonright M$. Now let I^i, M^i, σ^i be given. We consider three cases:

Case 2: There exist I, σ such that:

(a) $I = I^i \cup I'$ is an S-conforming lengthening of I^i.
(b) I' is from M^i to M'.
(c) $\sigma : M \rightarrow \Sigma^* M'$
(d) I' has a drop point.

Choose such I, σ and set: $I^{i+1} = I, \sigma^{i+1} = \sigma$.

Case 3: Case 2 fails, but for some $m < \omega$ there exists I, σ satisfying (a)-(c) such that

$$\sigma(\xi_j) = \pi \sigma^i(\xi) \text{ for } j^r \leq m$$

where $\pi = \pi'$ from M^i to M' and:

$$\sigma(\xi_m) < \pi \sigma^i(\xi_j)$$

Letting m be minimal for this property, pick such I, σ and set: $I^{i+1} = I, \sigma^{i+1} = \sigma$.

Case 4: The above cases fail. Then I^{i+1}, τ^{i+1} are undefined.

If $n < m$, set: $I_0 = I^{n-1}, \sigma_0 = \sigma^{n-1}$. If $n = \omega$, set $I_0 = I^\omega = \bigcup_{i<\omega} I^i$. Then I_i is S-conforming of limit length. Hence since I_0 is S-conforming it has only finitely many drop points. Hence it is a full iteration from M to an $M_0 = M^\omega$. Set:

$$I^j = I^i \cup I^j \text{ for } i \leq j \leq \omega$$

Let $\pi_{i,j}$ be the map from M^i to M^j given by I^{ij}. Let $I^{i_0, \omega}$ be drop free. Then $\pi_{i,j} : M_i \rightarrow \Sigma^* M_j$ for $i_0 \leq i \leq j \leq \omega$. Moreover Case 2 holds at i for $i_0 \leq i \leq \omega$. In order to define $\sigma_0 : M \rightarrow M_0$, we prove:
Claim. Let $n < \omega$. Then for sufficiently large $i < \omega$ we have:

$$\sigma^j(\xi_m) = \pi_{ij}\sigma^i(\xi_m) \text{ for } i \leq j < \omega$$

Proof. Suppose not. Let m be the least counterexample. Then for sufficiently large $i < \omega$, Case 2 will hold with m being minimal. Let this hold for $i \leq i_1$. Then $\sigma^{i+1}(\xi_m) < \pi^{i+1}\sigma^i(\xi_m)$ for $i \geq i_1$. Hence:

$$\pi^{i+1}\sigma^i(\xi_m) < \pi^{i\omega}\sigma^i(\xi_m), \ (i \geq i_1)$$

and I^{ω} would be ill founded. Contradiction! QED(Claim)

But then we can set:

$$\sigma_0(\xi) = \pi^{i\omega}\sigma_1(\xi), \text{ for sufficiently large } i.$$

It is straightforward to see that I_0, σ_0 satisfy Lemma 3.5.10.

This proves Lemma 3.5.9 and with it Theorem 3.5.8.

The fact that the Neeman–Steel lemma holds only for countable mice is a less serious limitation than one might suppose. In practice, both the Dodd–Jensen lemma and the Newman–Steel lemma are used primarily to establish properties of mice which — by a Löwenheim–Skolem argument — hold generally if they hold for countable mice.

3.5.9 Smooth iterability

Definition 3.5.25. By a smooth iteration of M we mean a full iteration I of M such that $M_i = M_0^i$ for $i < \text{lh}(I)$.

The concepts "smooth iteration strategy", "i–successful smooth iteration strategy" and "smooth α–iterable" are defined accordingly. We shall eventually prove that every smoothly iterable premouse is fully iterable. The proof will depend on enhanced copying procedures.

3.5.10 n–full iterability

We said at the outset that a "mouse" will be defined to be a premouse which is iterable. But what is the right notion of iterability? full iterability feels right. An, indeed, we shall ultimately show that, if there is no inner model with a Woodin cardinal, then every normally iterable premouse is fully
iterable. However, it will take a long time to reach that point, and in the meantime we must make do with weaker forms of iterability which are easier to verify. The main problem will be this. Our procedure for verifying that a premouse M is normally iterable will not show that normal iterates of M are themselves iterable. What it will show is weaker: If, by an appropriate strategy, I is a normal iteration of M to M' of length $\eta + \delta$ and if $\rho_M^i > \lambda_i$ for $i < \eta$, then M' is n–normally iterable. For this reason we will often be forced to work with n–iteration rather than $*$–iterations, and we must employ a sharply restricted notion of "full iteration". We define:

Definition 3.5.26. Let I be an m–normal iteration of length $\eta + 1$ for some $m \leq \omega$. Let $n \leq \omega$. I is n–bounded iff $\lambda_i \leq \rho_M^i$ for all $i < \eta$.

Definition 3.5.27. I is an m to n–normal iteration iff I is an n–bounded m–normal iteration.

We shall be mainly interested in n to n iterations.

Definition 3.5.28. Let M be a premouse. Let $n \leq \omega$ by an n–full iteration I of length μ we mean a sequence $\langle I^i | i < \mu \rangle$ of n–normal iterations such that I^i is n to n normal for $i + 1 < \mu$, inducing a sequence $M_i = M_i^{(M,I)}(i < \mu)$ of premice and a commutative sequence $\pi_{ij} = \pi_{ij}^{(M,I)}$ of partial maps from M_i to $M_j(i \leq j < \mu)$ satisfying (a) – (d) of our previous definition.

Note. If $I = \langle I^i | i \leq \eta \rangle$ is an n–full iteration of length $\eta + 1$, then the final n–normal iteration I^η is not necessarily n to n, though the previous ones are. However, if I^η is not n to n, then there is no possibility of lengthening the sequence I, though I^η itself could be lengthened.

We can take over our previous definitions — in particular the definition of "n–full iteration from M to N" and "n–full iteration map" $\pi^{M,I}$.

Definition 3.5.29. $I = \langle I^i | i < \eta \rangle$ is an n to n full iteration if I is n–full and each I^i is an n to n–normal iteration.

The definition of "concatenation" is as before. It is clear that if I is an n to n–full iteration from M to M' and I' is an n–full iteration of M', then $I \triangleleft I'$ is an n–full iteration of M.

Lemma 3.5.4 holds as before, on the assumption that I is an n to n–full iteration from M to M' and I' is an n–full iteration of M. The concepts n–full iteration strategy is defined as before, as is the concept of an S–conforming n–full iteration, α–successful n–full strategy, and n–full α–iterability.

The Dodd–Jensen lemma then holds in the form:
3.5. ITERABILITY

Theorem 3.5.11. Suppose that M has the n–normal uniqueness property and is n–fully Θ–iterable, where $\Theta > \omega$ is regular. Let:

$$I = \langle (M_i), (\nu_i), (\pi_{ij}), T \rangle$$

be an n to n–normal iteration of M with length $\eta + 1$. Let $\sigma : M \rightarrow \Sigma^* N$ where $N \triangleleft M_\eta$. Then:

(a) $N = M_\eta$.

(b) There is no truncation point on the main branch $T^\nu\{\eta\}$ of I.

(c) $\sigma(\xi) \geq \pi_{0,\eta}(\xi)$ for all $\xi \in \text{On} \cap M$.

The proof is a virtual repetition of the previous proof.

Lemma 3.5.6 holds mutatis mutandis just as before. We define what it means for $\sigma : M \rightarrow \Sigma^{(n)} M'$ to induce a copy I' of I onto M' with copying maps $\langle \sigma^i \rangle$ just as before, writing $\Sigma^{(n)}$ instead of Σ^* everywhere.

Theorem 3.5.12. Let M be a countable premouse which is n–fully $\omega_1 + 1$ iterable. Let $\langle \xi_n | n < \omega \rangle$ be an enumeration of $\text{On} \cap M$. There is an $\omega_1 + 1$–successful n–full iteration strategy S for M such that whenever $I = \langle (M_i), (\nu_i), (\pi_{ij}), T \rangle$ is an S–conforming n to n–normal iteration of M of length $\eta + 1 < \omega_1$ and $\sigma : M \rightarrow \Sigma^{(n)} M'$ where $M' \triangleleft M_\eta$, then:

(a) $M' = M_\eta$.

(b) There is no truncation point on the main branch $\{i|iT_\eta\}$.

(c) If $\sigma(\xi_i) = \pi_{0,\eta}(\xi_i)$ for $i < n < \omega$, then $\sigma(\xi_n) \geq \pi_{0,\eta}(\xi_n)$.

As before, this follows from:

Lemma 3.5.13. Let $M, \langle \xi_i | i < \omega \rangle$ be as above. There is an $\omega_1 + 1$–successful n–full iteration strategy S to M such that whenever I is an S–conforming n to n–full iteration from M to M' and $\sigma : M \rightarrow \Sigma^{(n)} M'$, then:

(a) No $i < \text{lh}(I)$ is a truncation point. (Hence the map $\pi = \pi^{(M, I)}$ is a total function on M.)

(b) If $\sigma(\xi_i) = \pi(\xi_i)$ for $i < n$, then $\sigma(\xi_n) \geq \pi(\xi_n)$.

The proofs are virtually unchanged.
3.6 Verifying full iterability

3.6.1 Introduction

As we said, full iterability is a difficult property to verify. A theorem that every normally iterable mouse is fully iterable would be useful, if true, but seems unlikely. We can, however, prove the following pair of theorems:

Theorem 3.6.1. If M is smoothly α– iterable, then it is fully α– iterable.

Theorem 3.6.2. Let $\kappa > \omega$ be regular and let M be uniquely normally $\kappa + 1$ iterable. Then M is smoothly $\kappa + 1$– iterable.

The proofs of these theorems are quite complex. To prove theorem 3.6.1, we redo much of chapter 2, developing a theory of embeddings which are Σ^α–preserving modulo pseudo projecta, which may not be the real projecta, but behave similarly. The proof of theorem 3.6.2 requires us, in addition, to delve rather deeply into the combinatorics of normal iteration, using technique which, essentially, were developed by John Steel and Farmer Schlutzenberg.

This section (§3.6) is devoted to the proof of theorem 3.6.1. The following section brings the proof of theorem 3.6.2. In later chapters we shall make frequent use of both these theorems, but will seldom, if ever, refer to their proofs. Hence it would be justifiable for a first time reader of this this book to skip §3.6 and §3.7, taking the above theorems for granted and deferring their proofs until later.

3.6.2 Pseudo projecta

In order to prove theorem 3.6.1, we must redo §2.6, allowing “pseudo projecta” to play the role of the real projecta.

Definition 3.6.1. Let $M = \langle J^A, B \rangle$ be acceptable. Then $\rho = \langle \rho_i | i < \omega \rangle$ is a good sequence of pseudo projecta for M iff the following hold:

(a) ρ_i is p.r. closed if $i > 0$.

(b) $\omega \leq \rho_{i+1} \leq \rho_i \leq \rho_M^i$ for $i < \omega$.

(c) $J^A_{\rho_i}$ is cardinally absolute in M (i.e. if $\gamma \in J^A_{\rho_i}$ is a cardinal in $J^A_{\rho_i}$, then it is a cardinal in M).

Note. $\rho_0 < \rho^0_M = \text{On}_M$ is not excluded. Moreover, ρ_i itself need not be a cardinal in M.
We shall generally write "\(\rho \) is good for \(M \)" instead of "\(\rho \) is a good sequence of pseudo projecta for \(M \)."

Definition 3.6.2. Let \(\rho \) be good for \(M = J^A_\alpha \). \(H_i = H_i(M, \rho) =: |J^A_\rho| \) for \(i < \omega \).

We adopt the same language with typed variables \(v^i(i < \omega) \) as before. The formula classes \(\Sigma^{(n)}_h(h, n < \omega) \) are defined exactly as before. The satisfaction relation:

\[
M \models \varphi[x_1, \ldots, x_n] \mod \rho
\]

is defined as before except that the variables \(v^i \) now range over \(H_i = H_i(M, \rho) \) instead of \(H^i = H^i_M \). A relation \(R(x^1, \ldots, x^n) \) is \(\Sigma^{(n)}_j(M, \rho) \) (or \(\Sigma^{(n)}_j(M) \mod \rho \)) if it is \(M \)-definable \(\mod \rho \) by a \(\Sigma^{(n)}_j \) formula.

Similarly for \(\Sigma^{(n)}_j, \Sigma^*, \Sigma^* \). We then define:

Definition 3.6.3. \(\sigma : M \rightarrow_{\Sigma^{(n)}_j} M' \mod (\rho, \rho') \) iff the following hold:

(a) \(\rho \) is good for \(M \) and \(\rho' \) is good for \(M' \).

(b) \(\sigma''H_i \subseteq H'_i \) for \(i < \omega \), where \(H_i = H_i(M, \rho) \), \(H'_i = H_i(M', \rho') \).

(c) Let \(\varphi \) be \(\Sigma^{(n)}_j \), \(\varphi = \varphi(v^i_1, \ldots, v^i_p) \) where \(i_1, \ldots, i_p \leq n \). Then:

\[
M \models \varphi[\bar{x}] \mod \rho \leftrightarrow M' \models \varphi[\sigma(\bar{x})] \mod \rho'
\]

for all \(x_1, \ldots, x_p \in M \) such that \(x_i \in H_i(l = 1, \ldots, p) \).

We also define:

Definition 3.6.4. \(\sigma : M \rightarrow_{\Sigma^*} M' \mod (\rho, \rho') \) iff

\(\sigma \) is \(\Sigma_0^{(n)} \)-preserving \(\mod (\rho, \rho') \) for \(n < \omega \).

As before, this is equivalent to:

\(\sigma \) is \(\Sigma_1^{(n)} \)-preserving \(\mod (\rho, \rho') \) for \(n < \omega \).

We also write:

\(\sigma : M \rightarrow_{\Sigma_j^{(n)}} M' \mod \rho' \)

to mean

\[
\left\{ \begin{array}{l}
\sigma : M \rightarrow_{\Sigma_j^{(n)}} M' \mod (\rho, \rho'), \\
\text{where } \rho_i = \rho_i^j \text{ for } i < \omega.
\end{array} \right.
\]

(Similarly for \(\sigma : M \rightarrow_{\Sigma^*} M' \mod \rho' \).)
Lemma 3.6.3. Let $\sigma: M \rightarrow \Sigma_j^{(n)} M'$. Let ρ be good for M and define ρ' by:

$$
\rho'_i = \begin{cases}
\sigma(\rho_i) & \text{if } \rho_i < \rho_M^j \\
\rho_M^i & \text{if not.}
\end{cases}
$$

Then $\sigma: M \rightarrow \Sigma_j^{(n)} M' \mod (\rho, \rho')$.

(Hence, if σ is fully Σ^*-preserving, it is also Σ^*-preserving modulo (ρ, ρ').)

Proof: Clearly ρ' is good for M'. Now let $R(x_1^i, \ldots, x_p^i)$ be $\Sigma_j^{(n)}(M, \rho)$, where $i_1, \ldots, i_p \leq n$. By an induction on n, R is uniformly $\Sigma_j^{(n)}(M)$ in the parameter $u = \langle \rho_i : l \leq n \land \rho_l < \rho_M^l \rangle$. (We leave the detail to the reader.)

But then, if R' is $\Sigma_j^{(n)}(M', \rho')$ by the same definition, it is $\Sigma_j^{(n)}(M')$ in $\sigma(u)$ by the same definition. QED (Lemma 3.6.3)

Lemma 3.6.4. Let $\sigma: M \rightarrow \Sigma^* M'$ and let ρ, ρ' be as in lemma 3.6.3. Let $\kappa = \text{crit}(\sigma)$, where $\rho_{i+1} \leq \kappa < \rho_i$. Define ρ'' by:

$$
\rho''_j =: \rho'_j \text{ for } j \neq i, \rho''_i =: \sup \rho''_i.
$$

Then:

$$
\sigma: M \rightarrow \Sigma^* M' \mod (\rho, \rho'').
$$

Proof: ρ'' is still good for M'. By induction on n it then follows that σ is $\Sigma_1^{(n)}$-preserving modulo (ρ, ρ''). QED (Lemma 3.6.4)

One might expect that most of §2.6 will not go through with pseudo projecta in place of projecta, since (H_i, B) is not necessarily amenable when B is $\Sigma_0^{(i)}(M, \rho)$. As it turns out, however, a great many proofs in §2.6 do not use this property (in contrast to the treatment in §2.5). In particular, lemmas 2.6.3 – 2.6.16 go through without change. Similarly, the definition of a good function can be relativized to a good ρ in place of $\langle \rho^n_M | n < \omega \rangle$. We define

$$
G_n = G_n(M, \rho); G^* = G^*(M, \rho)
$$

exactly as before with ρ in place of $\langle \rho^n_M | i < \omega \rangle$. Lemma 2.6.22 — 2.6.25 then go through exactly as before. Leaving the definition of good $\Sigma_1^{(n)}$ definition unchanged, we get the following version of Lemma 2.6.27: Let F be a good $\Sigma_1^{(n)}$ function $\mod \rho$. There is a good $\Sigma_1^{(n)}$ definition which defines $F \mod \rho$.

Even some of §2.7 remains valid for pseudo projecta. In §2.7.1 we define $\Gamma^0(\tau, M)$ (τ being a cardinal in M) as the set of maps $f \in M$ such that
3.6. VERIFYING FULL ITERABILITY

\[\text{dom}(f) \in H = H^M_\tau. \] In §2.7.2 we then introduce \(\Gamma^n = \Gamma^n(\tau, M) \) for the case that \(n > 0 \) and \(\tau \leq \rho^n_M \), defining \(\Gamma^n \) to be the set of \(f \) such that:

(a) \(\text{dom}(f) \in H = H^M_\tau. \)

(b) For some \(i < n \) there is a good \(\Sigma_1^{(i)}(M) \) function \(G \) and a parameter \(p \in M \) such that:

\[
\text{dom}(f) \in H = H^M_\tau.
\]

\[
f(x) = G(x, p) \text{ for all } x \in \text{dom}(f).
\]

Lemma 2.7.10 then told us that, whenever \(\pi : M \to \Sigma_0^{(n)} M' \), there is a canonical way of assigning to each \(f \in \Gamma^n \) a definable partial map \(\pi'(f) \) on \(M' \). This continues to hold if \(\pi : M \to \Sigma_0^{(n)} M' \) mod \(\rho \). The extended version of 2.7.10 reads:

Lemma 3.6.5. Let \(\pi : M \to \Sigma_0^{(n)} M' \) mod \(\rho \). There is a unique map \(\pi' \) which assigns to each \(f \in \Gamma^n(\tau, M) \) a function \(\pi'(f) \) with the following property:

\[
(*) \quad \pi'(f) : \pi(\text{dom}(f)) \to M'. \text{ Moreover, if } f(x) = G(x, p) \text{ for all } x \in \text{dom}(f), \text{ where } G \text{ is a good } \Sigma_1^{(i)}(M) \text{ function for an } i < n \text{ and } p \in M, \text{ then }
\]

\[
\pi'(f)(x) = G'(x, \pi(p)) \text{ for } x \in \pi(\text{dom}(f)),
\]

where \(G' \) is a good \(\Sigma_1^{(i)}(M', \rho) \) function by the same good definition.

The proof is exactly as before. As before we get:

Lemma 3.6.6. Let \(u, \tau, \pi, \pi' \) be as above. Then \(\pi'(f) = \pi(f) \) for \(f \in \Gamma^0(\tau, M) \).

Thus, again, we could unambiguously write \(\pi(f) \) instead of \(\pi'(f) \) for \(f \). However, this is only unambiguous if we have previously specified the good sequence \(\rho \). \(\pi' \) depends not only on \(\pi \) but also on the good sequence \(\rho \). For this reason we shall write: \(\pi_\rho(f) \) for \(\pi'(f) \). We can omit the subscript \(\rho \) if the good sequence is clear from the context.

In §3.2 we then considered the special case that \(\tau = \kappa^+ M \) where \(\kappa \) is a cardinal in \(M \). (This is mainly of interest when there is an extender \(F \) on \(M \) at \(\kappa \).) We then set:

\[
\Gamma^n_*(\kappa, M) := \{ f \in \Gamma^n(\kappa, M) | \text{dom}(f) = \kappa \}.
\]
We also set:
\[\Gamma^*(\kappa, M) =: \Gamma^*_n(\kappa, M) \]
where \(n \leq \omega \) is maximal such that \(\kappa < \rho^*_M \).

Let us call \(p \) a defining parameter for \(f \in \Gamma^*(\kappa, M) \) iff either \(p = f \) or else:
\[f(\xi) = G(\xi, p) \text{ for all } \xi < \kappa \]
where \(G \) is a good \(\Sigma_1^{(i)}(M) \) function for an \(i < n \). By lemma 2.6.25 we can then conclude:

Fact 1 Let \(R(\bar{x}, y_1, \ldots, y_r) \) be a \(\Sigma_0^{(n)}(M) \) relation. Let \(f_i \in \Gamma^*_n(\kappa, M) \) have a defining parameter \(p_i \) for \(i = 1, \ldots, r \). Then the relation:
\[Q(\bar{x}, \bar{\xi}) \iff R(\bar{x}, f_1(\xi_1), \ldots, f_r(\xi)) \]
is \(\Sigma_0^{(n)}(M) \) in the parameters \(\kappa, p_1, \ldots, p_r \).
Moreover, if:
\[\sigma: M \to \Sigma_0^{(n)} M' \mod \rho. \]
and \(R' \) has the same \(\Sigma_0^{(n)}(M, \rho) \) definition, then the relation:
\[Q'(\bar{x}, \bar{\xi}) \iff R'(\bar{x}, \sigma_{\rho}(f_1)(\xi_1), \ldots, \sigma_{\rho}(f_r)(\xi)) \]
is \(\Sigma_1^{(n)}(M', \rho) \) in \(\kappa, \sigma(p_1), \ldots, \sigma(p_r) \) by the same definition as \(Q \).

Now let \(a_1, \ldots, a_m \in M \) and set:
\[X = \{ (\bar{\xi}) \mid R(\bar{a}, \bar{f}(\xi)) \} \]
Then \(X \in H^n_M \) and \(\langle H^n_M, Q \rangle \) is amenable.

Fact 2 Let \(R, R', Q, Q', f_1, \ldots, f_r, \sigma, M, M' \) be as in Fact 1. Let \(\bar{a}, X \) be as above. Then:
\[\sigma(X) = \{ (\bar{\xi}) \mid R(\bar{a}, \bar{f}(\xi)) \} \]

Proof (sketch)
We know:
\[\bigwedge \bar{\xi} < \kappa \langle \bar{\xi} \rangle \in X \iff Q(\bar{a}, \bar{\xi}) \]
which is \(\pi_0^{(n)}(M) \) in the parameters \(H^*_n \bar{a}, \bar{\rho} \). (We use here the fact that \(\kappa \) and the Gödel \(\nu \)-tuple function on \(\kappa \) are \(H^*_n \)-definable.) But then the corresponding \(\Pi_0^{(n)}(M', \rho) \) statement holds of \(H_n(M', \rho), \sigma(\bar{a}), \sigma(\bar{\rho}) \).
QED (Fact 2)
3.6. VERIFYING FULL ITERABILITY

Note. σ is Σ_1 preserving mod ρ, if $n > 0$. But then $\kappa' = \sigma(\kappa)$ is a cardinal in M', since it is a cardinal in $H_0 = H_0(M', \rho)$ and ρ_0 is cardinally absolute in M'.

We now recall the Q-quantifier:

$$Qz^i \varphi(z^i) =: \bigwedge u^i \bigvee v^i (v^i \supset u^i \land \varphi(v^i)).$$

By a $Q^{(i)}$ formula we mean any formula of the form $Qz^i \varphi(z^i)$, where $Q(v^i)$ is $\Sigma^{(i)}_1$. We write:

$$\sigma : M \rightarrow \Sigma^* N \mod (\rho, \rho')$$

to mean that σ is elementary mod (ρ, ρ') with respect to $Q^{(n)}$ formulae for all $n < \omega$. Clearly, if σ is Q^* preserving mod (ρ, ρ'), then it is Σ^*-preserving mod (ρ, ρ'). If $\rho = \langle \rho^i_M | i < \omega \rangle$, we write:

$$\sigma : M \rightarrow \Sigma^* N \mod \rho.$$

In the following assume:

(1) $\sigma : M \rightarrow \Sigma^* N \mod \rho'$.

We define a minimal good sequence:

$$\rho = \min \rho' = \min(\sigma, N, \rho')$$

with the following properties:

(a) $\sigma : M \rightarrow \Sigma^* N \mod \rho$.

(b) $\sup \sigma'' \rho^i_M \leq \rho_i \leq \rho^i_1$ for $i < \omega$.

(c) Let φ be $\Sigma^{(i)}_0$. Let $x \in M, z_1, \ldots, z_p \in H_i(N, \rho)$. Then:

$$N \models \varphi[z; \sigma(x)] \mod \rho \leftrightarrow N \models \varphi[z; \sigma(x)] \mod \rho'.$$

(d) $\rho = \min \rho$.

We define ρ as follows:

Definition 3.6.5. Let $\sigma : M \rightarrow \Sigma^* N \mod \rho'$. We define:

- $\rho_i(0) =: \sup \sigma'' \rho^i_M$.
- $\rho_i(n + 1) =: \sup \rho_i(n)$.
- $\rho_i(n + 1) =: \sup \rho_i(n)$.
- $\rho_i =: \sup \rho_i(n)$.
• \(\rho = \langle \rho_i | i < \omega \rangle \).

Lemma 3.6.7. \(\rho_i(n) \leq \rho_i(n + 1) \).

Proof: We show by induction on \(n \) that it holds for all \(i \leq \omega \).

Case 1 \(n = 0 \).

If \(\xi < \rho_i^M \), then \(\sigma(\xi) = F(0) \), where \(F = \) the constant function \(\sigma(\xi) \).

But then \(F \) is \(\Sigma^1_1(N, \rho') \) in \(\sigma(\xi) \). Hence \(\sigma(\xi) < \rho_i(1) \).

Case 2 \(n > 0 \).

Then \(\rho_{i+1}(n) \geq \rho_{i+1}(n - 1) \). Hence:

\[
F''(n) \geq F''(n-1)
\]

for all \(F \) which is a \(\Sigma^1_1(N, \rho') \) map to \(\rho'_i \).

The conclusion is immediate. QED (Lemma 3.6.7)

Lemma 3.6.8. \(\rho_i(n) \) is p.r. closed for \(i > 0 \).

Proof: We show by induction on \(n \) that it holds for all \(i > 0 \).

Case 1 \(n = 0 \).

\[
\sigma \upharpoonright J^A_{\rho_i} : J^A_{\rho_i^M} \rightarrow J^A_{\rho_i} \text{ cofinally, where } \rho_i^M \text{ is p.r. closed.}
\]

Case 2 \(n > 0 \). Let \(n = m + 1 \).

Then \(\rho_i(m) \) is p.r. closed. Let \(f \) be a monotone p.r. function on \(\text{On} \).

It suffices to show:

Claim \(f^\sigma \rho_i(n) \subseteq \rho_i(n) \).

Let \(\nu < \rho_i(n) \). Then \(\nu < F(\eta) \) where \(\eta < \rho_i^{(m)} \) and \(F \) is \(\Sigma^1_1(N, \rho') \) to \(\rho'_i \) in \(\sigma(x) \). But then \(f \circ F \) is \(\Sigma^1_1(N, \rho') \) to \(\rho'_i \), since \(\rho'_i \) is p.r. closed.

Hence \(f(\nu) < f \cdot F(\eta) < \rho_i(n) \). QED (Lemma 3.6.8)

Corollary 3.6.9. \(\rho_i \) is p.r. closed for \(i > 0 \).

Definition 3.6.6.

\[
H_i(n) = H_i(N, \sigma, \rho_i(n)) =: |J^{AN}_{\rho_i(n)}|
\]

\[
H_i = H_i(N, \rho) =: |J^{AN}_{\rho_i}|
\]

Lemma 3.6.10. (a) \(H_i(0) = \bigcup \sigma'' H^i_M \).
3.6. VERIFYING FULL ITERABILITY

(b) \(H_i(n + 1) = \) the union of all \(F(x) \) such that \(x \in H_{i+1}^{(n)} \) and \(F \) is \(\Sigma_1^{(i)}(n, \rho') \) to \(\rho'_i \) in parameters from \(\text{rng}(\sigma) \).

(c) \(H_i = \bigcup_n H_i(n). \)

Proof: (c) is immediate. (a) is immediate since:

\[
\sigma \upharpoonright H^i_M : H^i_M \to \Sigma_0 H_i(0) \text{ cofinally.}
\]

We prove (b). Let \(y = F(x) \), where \(F, x \) are as in (b).

Claim \(y \in H_i(n + 1). \)

Proof: We recall the function \(\langle S^A_\nu | \nu < \infty \rangle \) such that for all limit \(\alpha \):

\[
J^A_\alpha = \bigcup_{\nu < \alpha} S^A_\nu \text{ and } \langle S^A_\nu | \nu < \alpha \rangle \text{ is uniformly } \sigma_1(J^A_\alpha).
\]

Since \(\rho_{i+1}(n) \) is p.r. closed, there is a \(\Sigma_1(H_{i+1}(n)) \) map \(f \) of \(\rho_{i+1}(n) \) onto \(H_{i+1}(n) \). Set:

\[
g(x) =: \text{the least } \nu \text{ such that } x \in S_\nu.
\]

Then \(\bar{F}(\xi) \simeq gF f(\xi) \) is a \(\Sigma_1^{(i)}(N, \rho') \) map to \(\rho'_i \) in parameters from \(\text{rng}(\sigma) \).

Hence, where \(f(\eta) = x \), we have \(y \in S^A_{\bar{F}(\eta)} \subset H_i(n + 1). \)

QED (Lemma 3.6.10)

By the definition 3.6.5 and Lemma 3.6.7:

Lemma 3.6.11. Let \(\rho = \min \rho' \). Then:

- \(\sigma^\nu \rho^i_M \subset \rho_i \leq \rho'_0 \leq \rho_N^i \).
- \(\rho_i = \sup X \), where \(X \) is the set of all \(F(\nu) \) such that \(\nu < \rho_{i+1} \) and \(F \) is a \(\Sigma_1^{(i)}(N, \rho') \) map to \(\rho'_0 \) in some \(\sigma(x) \).

Similarly by Lemma 3.6.10.

Lemma 3.6.12. Let \(\rho = \min \rho' \). Then:

- \(\sigma^\nu H^{i}_M \subset H_i \subset H^i_i \subset H^i_N \).
- \(H_i = \bigcup X \) where \(S \) is the set of all \(F(x) \) such that \(z = H_{i+1} \) and \(F \) is a \(\Sigma_1^{(i)}(N, \rho') \) map to \(H^i_i \) in some \(\sigma(x) \).
We now can show:

Lemma 3.6.13. \(\rho \) is good for \(N \).

Proof: By Lemma 3.6.11 we have:
\[
\omega \leq \rho_{i+1} \leq \rho_i \leq \rho_N.
\]
Moreover, \(\rho_i \) is p.r. closed for \(i > 0 \) by Lemma 3.6.8.

It remains only to show:

Claim \(H_i \) is cardinally absolute with respect to \(N \).

Proof: We know:
\[
H_i = \bigcup X, \quad \text{where} \quad X = \text{the set of } F(z) \text{ such that } z \in H_{i+1}
\]
and \(F \) is a \(\Sigma_1(N, \rho') \) map to \(H'_i = H_i(N, \rho') \). Moreover \(H'_i \) is cardinally absolute in \(N \).

(1) Let \(\alpha \in X \). Then \(\overline{\alpha}^N \in X \) and there is \(f \in X \) such that \(f : \overline{\alpha}^N \mapsto \alpha \).

Proof: Suppose not.

Define a \(\Sigma_1(H_i) \) map by:
\[
F(\beta) \simeq \text{the } <_{SA} \text{-least pair } (\gamma, f) \text{ such that } \gamma < \beta \text{ and } f : \gamma \mapsto \beta.
\]
Then \(F''X \subset X \). Set:
\[
\alpha_0 = \alpha_i \alpha_{i+1} \simeq (F(\alpha_i))_0.
\]
By induction on \(i \) it follows that \(\alpha_i \) exists and \(\alpha_i \in X \). But then \(\alpha_{i+1} < \alpha_i \) for \(i < \omega \). Contradiction! QED (1)

Now let \(\alpha \) be a cardinal in \(H_i \) but not in \(N \). Then \(\alpha \notin X \) by (1). But \(\alpha < \beta \) for a \(\beta \in X \). Hence \(\overline{\beta}^N > \alpha \). (Otherwise, letting \(\gamma = \overline{\beta}^N < \alpha \), we have \(\gamma \in X \subset H_i \) and there is \(f \in X \subset H_i \) such that \(f : \gamma \mapsto \beta \). Hence there is \(g \in H_i \) such that \(g : \gamma \mapsto \overline{\alpha}^N \), since \(0 < \alpha < \beta \). Hence \(\alpha \) is not a cardinal in \(H_i \).) But then, letting \(\gamma = \overline{\beta}^N \), \(\alpha \) is a cardinal in \(J^A_i \) and \(\gamma \) is a cardinal in \(N \). Hence \(\alpha \) is a cardinal in \(N \) by acceptability. QED (Lemma 3.6.13)

We now verify property (c) for \(\rho = \min \rho' \).

Lemma 3.6.14. Let \(\overline{B}(\overline{w^i}) \) be \(\Sigma_0^{(i)}(M) \) in the parameter \(x \in M \). Let \(B'(\overline{w^i}) \) be \(\Sigma_0^{(i)}(N, \rho') \) in \(\sigma(x) \) and \(B(\overline{w^i}) \) be \(\Sigma_0^{(i)}(N, \rho) \) in \(\sigma(x) \) by the same definition. Then:
\[
\bigwedge \overline{z} \in H_i(B(\overline{z}) \leftrightarrow B'(\overline{z})).
\]
3.6. VERIFYING FULL ITERABILITY

Proof: By induction on i. The case $i = 0$ is trivial. Now let it hold for h where $i = h + 1$. It suffices to prove the claim for \overline{B} which is $\Sigma_1^{(h)}(M)$ in x. We then have:

$$\overline{B}(\tilde{z}) \leftrightarrow \bigvee a^h D(a^h, \tilde{z})$$

where \overline{D} is $\Sigma_0^{(h)}(M)$ in x:

$$B'(\tilde{z}) \leftrightarrow \bigvee a^h D'(a^h, \tilde{z})$$

where D' is $\Sigma_0^{(h)}(N, \rho')$ in $\sigma(x)$ by the same definition, and:

$$B(\tilde{z}) \leftrightarrow \bigvee a^h D(a^h, \tilde{z})$$

where D is $\Sigma_0^{(h)}(N, \rho)$ in $\sigma(x)$ by the same definition.

Define a map F to ρ'_h which is $\Sigma_1^{(h)}(N, \rho')$ in $\sigma(x)$ by:

$$\xi = F(\tilde{z}) \leftrightarrow (\forall u \in S_{\xi} D'(u, \tilde{z}) \cap \xi < \xi \land u \in S_{\xi}, \neg D'(u, \tilde{z}))$$

Hence for $\tilde{z} \in H_i$:

$$B'(\tilde{z}) \leftrightarrow \forall u \in H_h D'(u, \tilde{z})$$

(by the induction hypothesis).

$$\leftrightarrow \forall u \in S_{F(\tilde{z})} D'(u, \tilde{z})$$

$$\leftrightarrow \forall u \in H_h D'(u, \tilde{z})$$

$$\leftrightarrow \forall u \in H_h D(u, \tilde{z}) \leftrightarrow B(\tilde{z})$$

(by the induction hypothesis). QED (Lemma 3.6.14)

Since $\sigma : M \rightarrow_{\Sigma_1} N \mod \rho'$, we conclude that $\sigma : M \rightarrow_{\Sigma(i)} N \mod \rho$.

Since this holds for all $i < \omega$, we conclude:

Corollary 3.6.15. $\sigma : M \rightarrow_{\Sigma} N \mod \rho$.

Another immediate corollary is:

Corollary 3.6.16. $\rho = \min(N, \sigma, \rho)$.

It remains only to prove:

Lemma 3.6.17. $\sigma : M \rightarrow_{Q^*} N \mod \rho$.

Proof:
CHAPTER 3. MICE

Assume: $M \models Qu^i \varphi(u^i, x)$ where φ is $\Sigma_1^{(i)}$.

Claim $N \models Qu^i \varphi(u^i, x) \mod \rho$.

Let $v \in H_i$. Then $v \subset w = G(\overline{w})$, where $\overline{w} \in H_{i+1}$. Then $v \subset w = G(\overline{w})$, where $\overline{w} \in H_{i+1}$ and G is $\Sigma_1^{(i)}(N, \rho)$ map to H_i in parameter from $\text{rng} \sigma$. Let:

$$\varphi = \sqrt{z^i \psi(z^i, u^i, x)} \text{ where } \psi \text{ is } \Sigma_0^{(i)}.$$

Define a $\Sigma_1^{(i)}(N, \rho)$ map to H_i in $\sigma(x)$ by:

$$F(w) \simeq \text{the N–least } \langle z, u \rangle \in H^i \text{ such that } z \subset u \land \psi(z, u, \sigma(x)).$$

The $\Pi_1^{(i+1)}$–statement:

$$\bigwedge a^{i+1}(a^{i+1} \in \text{dom}(G) \rightarrow a^{i+1} \in \text{dom}(F \circ G))$$

holds in N, since the corresponding statement holds in M by our assumption. Let $\langle z, u \rangle = FG(\overline{w}) = F(w)$. Then $v \subset w \subset u$ and $\psi(z, u, \sigma(x))$. Hence:

$$N \models Qu \varphi(u, \sigma(x)) \mod \rho.$$

QED (Lemma 3.6.17)

Then $\rho = \min \rho'$ possess all the properties that we ascribed to it.

As a corollary of Lemma 3.6.17 we get:

Corollary 3.6.18. Let B be $\Sigma_1^{(i)}(N, \rho)$ in parameters from $\text{rng} \sigma$. Then $\langle H_i, B \rangle$ is amenable.

Proof: Let \overline{B} be $\Sigma_1^{(i)}(M)$ in x and B be $\Sigma_1^{(i)}(N, \rho)$ in the same definition. Since $\langle H_{i}^M, \overline{B} \rangle$ is amenable, we have:

$$Qu^i \bigvee y^i y^i = u^i \cap \overline{B} \text{ in } M.$$

But then:

$$Qu^i \bigvee y^i y^i = u^i \cap B \text{ in } N \mod \rho.$$

Let $u \in H_i$. There is then $v \supset u, v \in H_i$ such that $v \cap B \in H_i$. Hence $u \cap B = u \cap v \in H_i$. QED (Corollary 3.6.18)
3.6. VERIFYING FULL ITERABILITY

Definition 3.6.7. \(\sigma : M \rightarrow \Sigma^* N \min \rho \) iff

\[
[\sigma : M \rightarrow \Sigma^* N \mod \rho] \land [\rho = \min(N, \sigma, \rho)].
\]

(Similarly for \(\Sigma_j^{(n)}, Q_j^{(n)}, Q^* \) etc.)

In the following we shall always assume that \(M \) is acceptable, \(\kappa \in M \) is inaccessible in \(M \), and that \(\tau = \kappa^+ M \in M \).

Lemma 3.6.19. Let \(\pi : M \rightarrow \Sigma^* M' \). Let \(\kappa = \text{crit}(\pi) \), \(\lambda \leq \pi(\kappa) \), and suppose an extender \(F \) at \(\kappa, \lambda \) on \(M \) to be defined by:

\[
F(X) = \lambda \cap \pi(X) \text{ for } X \in \mathcal{P}(\kappa) \cap M.
\]

Let \(\sigma : \bar{M} \rightarrow \Sigma^* M \min \rho \), where \(\sigma(\bar{\pi}) = \kappa \). Let \(F \) be a weakly amenable extender at \(\pi, \bar{\lambda} \) on \(\bar{M} \). Assume:

\[
\langle \sigma, g \rangle : \langle \bar{M}, \bar{F} \rangle \rightarrow \langle M, F \rangle, \text{ where } g : \bar{\lambda} \rightarrow \lambda.
\]

Let \(n \leq w \) be maximal such that \(\bar{\pi} < \rho^M_n \).

Define a good sequence \(\rho^* \) for \(M' \) by:

\[
\rho^*_i = \begin{cases}
\sup \pi'' \rho_n \text{ if } i = n \\
\pi(\rho_i) \text{ if } i \neq n \text{ and } \rho_i < \rho^M_i \\
\rho^M_i \text{ if } i \neq n \text{ and } \rho_i = \rho^M_i.
\end{cases}
\]

(Hence \(\pi : M \rightarrow \Sigma^* M' \mod (\rho, \rho^*) \) by Lemma 3.6.3 and 3.6.4.) Then:

(a) \(\bar{M} \) is \(n \)-extendible by \(\bar{F} \).

(b) Let \(\bar{\pi} : \bar{M} \rightarrow \Sigma^*(\bar{M}) \bar{M}' \). There is a map \(\sigma' \) such that

\[
\sigma' : \bar{M} \rightarrow \Sigma^*(\bar{M}) M' \mod \rho^* \text{ and } \sigma' \bar{\pi} = \pi \sigma, \sigma' | \bar{\lambda} = g.
\]

Moreover, \(\sigma' \) is defined by:

\[
\sigma'((\pi \sigma)(f)(\alpha)) = ((\pi \sigma) \rho^* (f))(g(\alpha))
\]

for \(f \in \Gamma^*(\bar{\pi}, \bar{M}), \alpha < \lambda \).

Proof: We obviously have:

\[
\pi \sigma : \bar{M} \rightarrow \Sigma^* M' \mod \rho^*.
\]
It is also clear that \(n \) is maximal such that \(\kappa < \rho_n \) and also maximal such that \(\kappa' = \pi(\kappa) < \rho_n^* \).

We now prove (a). We must show that the \(\in \)-relation \(\in^* \) of \(D^*(F, \overline{M}) \) is well founded. Let \(\langle f, \alpha \rangle, \langle f', \alpha' \rangle \in \in^* \). Set:

\[
e = \{ \langle \xi, \zeta \rangle : \pi[f(\xi)] \in f'(\zeta) \}.
\]

Then:

\[
\langle f, \alpha \rangle \in^* \langle f', \alpha' \rangle \iff \langle a, \alpha' \rangle \in F
\]

\[
\iff g(\alpha), g(\alpha') \in F(\pi(e))
\]

\[
\iff g(\alpha), g(\alpha') \in \pi\sigma(e)
\]

\[
\iff (\pi\sigma)_\rho^*(f)(g(\alpha)) \in (\pi\sigma)_\rho^*(f')(g(\alpha))
\]

(The second line rises the assumption: \(\langle \sigma, g \rangle : (\overline{M}, F) \to (\overline{M}, F) \). The third uses: \(F(X) = \lambda \cap \pi(X) \). The fourth uses Fact 2, which we established earlier in the section. QED (a)

We now prove (b). Let \(\overline{R} \) be a \(\Sigma_0^{(n)}(\overline{M}', \overline{F}) \) relation and let \(R' \) be \(\Sigma_0^{(n)}(M', \rho^*) \) by the same definition. We claim that: \(\sigma' : \overline{M}' \to \Sigma_0^{(n)} M' \) where \(\sigma' \) is defined by:

\[
\sigma'(\pi(f)(\alpha)) = (\pi\sigma)_\rho^*(f)(g(\alpha))
\]

for \(f \in \Gamma^*(\overline{\mu}, \overline{M}), \alpha < \lambda \).

Let \(\overline{R} \) be a \(\Sigma_0^{(n)}(\overline{M}') \) relation and let \(R' \) be \(\Sigma_0^{(n)}(M', \rho^*) \) by the same definition. Let \(\alpha_1, \ldots, \alpha_m < \overline{\lambda} \) and \(f_1, \ldots, f_m \in \Gamma^*(\overline{\mu}, \overline{M}) \). Writing e.g. \(\overline{f}(\overline{\alpha}) \) for \(f_1(\alpha_1), \ldots, (\alpha_m) \), it suffices to show:

Claim \(\overline{R}(\pi(\overline{f})(\overline{\alpha})) \leftrightarrow R'(\pi\sigma(\overline{f}), g(\overline{\alpha})) \).

Proof: Let \(\overline{R} \) be \(\Sigma_0^{(n)}(\overline{M}) \) and \(R \) be \(\Sigma_0^{(n)}(M, \rho) \) by the same definition. Set:

\[
e = \{ \langle \xi, \zeta \rangle : \overline{R}(\overline{f}(\xi)) \}
\]

Then:

\[
\overline{R}(\pi(\overline{f})(\overline{\alpha})) \iff \langle \overline{\alpha} \rangle \in \overline{F}(e)
\]

\[
\iff g(\overline{\alpha}) \in F(\pi(e))
\]

\[
\iff g(\overline{\alpha}) \in \pi\sigma(e)
\]

\[
\iff R'(((\pi\sigma)_\rho^*(\overline{f})(g(\overline{\alpha})))
\]

QED (Lemma 3.6.19)
3.6. VERIFYING FULL ITERABILITY

We would like to prove something stronger namely that \overline{M} is \ast-extendible by \overline{F} and that:

$$\sigma' : \overline{M}' \to_{\Sigma^*} M' \mod \rho^*.$$

For this we must strengthen the condition:

$$\langle \sigma, g \rangle : \langle \overline{M}, F \rangle \to \langle M, F \rangle.$$

In §3.2 we helped ourselves in a similar situation by strengthening the relation \to to \to^*. However \to^* is too strong for our purposes and we adopt the following weakening:

Definition 3.6.8. $\langle \sigma, g \rangle : \langle \overline{M}, F \rangle \to^* \langle M, F \rangle \mod \rho$ iff the following hold:

(a) $\langle \sigma, g \rangle : \langle \overline{M}, F \rangle \to \langle M, F \rangle$

(b) $\sigma : \overline{M} \to_{\Sigma^*} M \mod \rho$

(c) Let $\bar{\alpha} < \text{lh}(\overline{F}), \alpha = g(\bar{\alpha})$. There are $\overline{G}, \overline{H}, H$ such that letting

$$\bar{\kappa} = \text{crit}(\overline{F}), \kappa = \text{crit}(F)$$

we have:

(i) $\overline{G}, \overline{H}$ are $\Sigma_i(M)$ in a $\bar{q} \in \overline{M}$ and G, H are $\Sigma_1(M, \rho)$ in $q = \sigma(\bar{q})$ by the same definition.

(ii) $\overline{G} = \overline{F_{\pi}}, \overline{H} = \overline{M} \cap (\overline{\text{P}(\pi)})$

(iii) $G \subset F_{\alpha}$

(iv) $H \subset \{ X \in \overline{\text{P}(u)} | \bigwedge \xi < \kappa(X_\xi \text{ or } \kappa \setminus X_\xi \in G) \}$

Note. Actually, only the first pseudo projectum ρ_0 is relevant in this definition. (b) says merely that ρ is good for M and that σ is a Σ_0-preserving map into M with $\sigma'' \text{On}_{\overline{M}} \leq \rho_0$. In (c) the statement “$G, H$ are $\Sigma_1(M, \rho)$ in q by the same definition” can be rephrased on: “G, H are $\Sigma_1(M|\rho_0)$ in q by the same definition”, where $M|\eta =: \langle J^A_\eta, B \cap J^A_\eta \rangle$ for $M = \langle J^A_\alpha, B \rangle$.

(Note that $M|\eta$ is not necessarily amenable.) We set:

Definition 3.6.9. $\langle \sigma, g \rangle : \langle \overline{M}, F \rangle \to^{**} \langle M, F \rangle$ iff:

$$\langle X, g \rangle : \langle \overline{M}, F \rangle \to^{**} \langle M, F \rangle \mod (\langle \rho^0_M|n < w \rangle).$$

Note. This always holds if $\rho_0 = \text{On}_M$.

Note. Let $\sigma : \langle \overline{M}, F \rangle \to^{**} \langle M, F \rangle \mod \rho$. Let $\overline{X} \in \overline{M} \cap (\overline{\text{P}(\pi)})$. If $X = \sigma(\overline{X})$, then $X \in M$ and hence $\bigwedge \xi < \kappa(X_\xi \text{ or } (\kappa \setminus X_\xi) \in G)$.
Note. Let $\sigma : (\overline{M}, F) \rightarrow^* (M, F)$. It follows easily that:

$$\sigma : (\overline{M}, F) \rightarrow^{**} (M, F).$$

Note. Suppose that $\sigma : \overline{M} \rightarrow_{\Sigma^*} M \min \rho$. Set $M|\rho_0 = \langle J^A_{\rho_0}, B \cap J^A_{\rho_0} \rangle$, where $M = \langle J^A_{\rho_0}, B \rangle$. Then $M|\rho_0$ is amenable by Corollary 3.6.18. Clearly $\tau = \kappa^{+M} \in M|\rho_0$ since $\overline{\tau} = \kappa^{+\overline{M}} \in \overline{M}$. Hence $P(\kappa) \cap M \subset M|\rho_0$. But then F is an extender at κ on $M|\rho_0$ and it makes sense to write:

$$\langle \sigma, g \rangle : \overline{M}, F \rightarrow^{**} (M|\rho_0, F).$$

But this means exactly the same thing as:

$$\langle \sigma, g \rangle : (\overline{M}, F) \rightarrow^{**} (M, F) \mod \rho.$$

We are now ready to prove:

Lemma 3.6.20. Let $\pi, \sigma, \overline{M}, M, M', M', \rho, \rho^*, \tau, \overline{\tau}, \sigma', g$ be as in lemma 3.6.19. Assume:

$$\langle \sigma, g \rangle : (\overline{M}, F) \rightarrow^{**} (M, F) \mod \rho.$$

Then \overline{M} is $*$-extendible by \overline{F} and:

$$\sigma' : \overline{M'} \rightarrow_{\Sigma^*} M' \mod \rho^*.$$

Proof: \overline{F} is then close to \overline{M}. Hence \overline{M} is $*$-extendible by \overline{F}. By induction on i we now show:

Claim $\sigma' : \overline{M'} \rightarrow_{\Sigma^1_1} M' \mod \rho^*$.

For $i < n$ this is given. Now let $i = n$. We prove a somewhat stronger claim:

Subclaim 1 Let $\overline{A} \subset \overline{\tau}$ be $\Sigma^1_1 (\overline{M'})$ in $\overline{a} \in \overline{M'}$ and $A \subset \kappa$ be $\Sigma^1_1 (M', \rho^*)$ in $a = \sigma' (\overline{a})$ by the same definition. There is $r \in \overline{M}$ such that \overline{A} is $\Sigma^1_1 (\overline{M})$ in \overline{r} and A is $\Sigma^1_1 (M, \rho)$ in $r = \sigma (\overline{r})$ by the same definition.

(As we shall see, this proves the claim for the case $i = n$.)

We now prove the subclaim. Let:

$$\overline{A}(i) \leftrightarrow \bigvee y \overline{P'} (y, i, \overline{a}),$$
$$A(i) \leftrightarrow \bigvee y P' (y, i, a)$$

where $\overline{P'}$ is $\Sigma_0 (\overline{M'})$ and P' is $\Sigma_0 (M', \rho^*)$ by the same definition.
3.6. VERIFYING FULL ITERABILITY

Let \(\overline{P} \) be \(\Sigma_0^{(n)}(\overline{M}) \) and \(P \) be \(\Sigma_0^{(n)}(M) \) by the same definition. Let \(\overline{a} = \pi(f)(\overline{a}) \) and \(a = \pi\sigma(f)(\alpha) \), where \(\alpha = g(\overline{a}) \). Let \(\overline{p} \) be a "defining parameter" for \(f \) (i.e. either \(\overline{p} = f \) or else \(f(\xi) = B(\xi, \overline{p}) \) where \(B \) is a good \(\Sigma_1^{(n)}(\overline{M}) \) function for an \(i < n \). Then \(p = \sigma(\overline{p}) \) is in the same sense a defining parameter for \(\sigma(f) \) and \(p' = \pi\sigma(\overline{p}) \) is a defining parameter for \(\pi\sigma(f) \). (The good definition of \(B \) remaining unchanged.)

Finally, let \(\overline{G}, G, \overline{H}, H \) be as given for \(\overline{\pi}, \alpha = g(\overline{\pi}) \) by the principle:

\[
\langle \sigma, q \rangle : (\overline{M}, F) \rightarrow^{**} \langle M, F \rangle \mod \rho^*.
\]

Since \((\overline{M}', \overline{\pi}) \) is the extension of \((\overline{M}, F) \), we know that: \(\pi^{*}H_{\overline{M}}^{n} \) is cofinal in \(H_{M}^{n} \).

Thus:

\[
A(i) \leftrightarrow \bigvee u \in H_{\overline{M}}^{n} \bigvee y \in \pi(u)\overline{P}'(g, i, \pi(f)(\overline{a}))
\]

\[
\leftrightarrow \bigvee u \in H_{\overline{M}}^{n} \pi \in \pi(\overline{X}(i, u))
\]

\[
\leftrightarrow \bigvee u \in H_{\overline{M}}^{n} \overline{X}(i, u) \in \overline{G},
\]

where \(\overline{X}(i, u) = \{ \xi < u|\overline{P}(y, i, f(\xi)) \} \).

Thus \(A \) is \(\Sigma_1^{(n)}(\overline{M}) \) in \(\overline{p}, \overline{q}, \overline{p} \). We now show that \(A \) is \(\Sigma_1^{(n)}(M) \) in \(p, q, \kappa \) by the same definition. Set:

\[
H_n = H_n(M, \rho), \quad H'_n = H_n(M', \rho^*).
\]

It is easily seen that the relation:

\[
Q(u, i, \xi) \longleftrightarrow (u \in H_n \wedge \bigvee y \in uP(y, i, \sigma_\rho(f)(\xi))
\]

is \(\Sigma_0^{(n)}(M, \rho) \) in \(p \) and the relation:

\[
Q'(u, i, \xi) \longleftrightarrow (u \in H'_n \wedge \bigvee y \in uP'(y, i, (\pi\sigma)_{\rho^*}(\xi))
\]

is \(\Sigma_0^{(n)}(M', \rho^*) \) in \(p' \) by the same definition. Set: \(X(u, i) = \{ \xi < u|Q(u, i, \xi) \} \). Then \(X(u, i) \in H_n \), since \(\langle H_n, Q \rangle \) is amenable by lemma 3.6.14 and hence is rud closed. Since \(\rho_n^* = \sup \sigma'' \rho_n \), we know that \(\pi'' H_n \) is cofinal in \(H'_n \). Thus:

\[
A(i) \leftrightarrow \bigvee u \in H_n \bigvee y \in \pi(u)P'(y, i, ((\pi\sigma)_{\rho^*}(f)(\alpha))
\]

\[
\leftrightarrow \bigvee u \in H_nQ(\pi(u), i, \alpha)
\]

\[
\leftrightarrow \bigvee u \in H_n \alpha \pi \in \pi(X(u, i)) \cap X
\]

\[
\leftrightarrow \bigvee u \in H_n \alpha \in F(X(u, i))
\]

\[
\leftrightarrow \bigvee u \in H_nX(u, i) \in F_{\alpha}.
\]
If $F_\alpha = G$, we would be finished, but G might be a proper subset of F_α. (Moreover, we don’t even know that F_α is M–definable in parameters.) However, we can prove:

\[(3)\quad A(i) \leftrightarrow \bigvee u \in H_n X(u, i) \in G,\]

which establishes subclaim 1. The direction (\leftarrow) is trivial by (2), since $G \subseteq F_\alpha$. We prove (\rightarrow). Assume $A(i_0)$, where $i_0 < \kappa$. We must show that $u \in H_n$ can be chosen large enough that $X(u, i_0) \in G$. We know that it can be chosen large enough that $X(u, i_0) \in F_\alpha$. Since $\rho = \min(M, \sigma, \rho)$, we also know that the set of $S(\xi)$ such that S is a partial $\Sigma^1_1(M, \rho)$ map to H_n in a parameter $s = \sigma(\pi)$ and $\xi < \rho_{n+1}$ is cofinal in H_n. (This uses Lemma 3.6.12.) Hence we can assume w.l.o.g. that $u = S(\xi_0)$ for a $\xi_0 < \rho_{n+1}$. Now set:

$$Y(v) =: \{ x(v, i) | i < u \} \text{ for } v \in H_n.$$

Then $Y(v) \in H_n$ by the rud closure of $\langle H_n, Q \rangle$. Moreover, the function Y is $\Sigma_1(\langle H_n, Q \rangle)$ and hence is a $\Sigma^1_1(M, \rho)$ function. Hence $Y \circ S$ in $\Sigma^1_1(M, \rho)$ in s. Let \overline{S} be $\Sigma^1_1(M)$ is π and \overline{Y} be $\Sigma^1_1(M)$ by the same definition. The $\Pi^{(n+1)}(M, \rho)$ statement:

$$\bigwedge \zeta < \rho_{n+1} (\zeta \in \text{dom}(Y \cdot S) \rightarrow Y \cdot S(\zeta) \in H)$$

is true, since the corresponding statement:

$$\bigwedge \zeta < \rho^{n+1}_M (\zeta \in \text{dom}(Y \cdot S) \rightarrow Y \cdot S(\zeta) \in \overline{H})$$

is true in \overline{M}. Since $u = S(\xi_0)$, it follows that: $Y(u) \in H$ and:

$$X(\kappa, i_0) \in G \cup (\kappa \setminus X(u, i_0)) \in G.$$

But $G \subseteq F_\alpha(\kappa \setminus X(u, i_0)) \in G$ is therefore impossible, since we would then have:

$$X(\kappa, i_0) \cap (\kappa \setminus X(u, i_0)) = \emptyset \in F_\alpha.$$

Hence, $X(U, i_0) \in G$. QED (Subclaim 1)

Subclaim 2 $\sigma' : \overline{M} \rightarrow \Sigma^1_1(\overline{M})$ mod ρ^*. Let Q be $\Sigma^1_1(M', \rho^*)$ and \overline{Q} be $\Sigma^1_1(\overline{M'})$ by the same definition. Set:

$$P(i, x) \leftrightarrow (i = 0 \land Q(x)), \quad \overline{P}(i, x) \leftrightarrow (i = 0 \land \overline{Q}(x)).$$

Set:

$$A(x) = \{ i | P(i, x) \}, \quad \overline{A}(x) = \{ i | \overline{P}(i, x) \}.$$
3.6. VERIFYING FULL ITERABILITY

Then \(A \) is the characteristic function of \(Q \) and \(\overline{A} \) is the characteristic function of \(\overline{Q} \). But \(A(\sigma'(x)) = \overline{A}(x) \) for \(x \in \overline{M} \) by Sublemma 1.

QED (Subclaim 2)

A slight reformulation of Subclaim 1 yields:

Subclaim 3 Let \(A \) be \(\Sigma^1_i(M', \rho^*) \) in \(\mathcal{P} \). Let \(\overline{A} \) be \(\Sigma^1_i(\overline{M'}) \) in \(\mathcal{P} \) by the same definition. Set: \(H = H^M \), \(H = H^M_\kappa \). Then \(A \cap H \) is \(\Sigma^1_i(M, \rho) \) in \(a = \sigma(\eta) \) and \(\overline{A} \cap \overline{H} \) is \(\Sigma^1_i(\overline{M}) \) in \(\overline{\eta} \) by the same definition.

Proof: \(H = J^E_\kappa \), where \(E = E^M \) and \(\overline{H} = J^{\overline{E}}_\kappa \) where \(\overline{E} = E^\overline{M} \). But \(\kappa, \pi \) are preclosed. Let \(f : \kappa \xrightarrow{\text{into}} H \) be primitive recursive in \(E \) and let \(\overline{f} : \pi \xrightarrow{\text{into}} \overline{H} \) be primitive recursive in \(\overline{E} \) by the same definition. Apply subclaim 1 to

\[B = f^{-1}u A, \overline{B} = \overline{f}^{-1}u \overline{A}. \]

Then \(B \subset \overline{\rho} \) is \(\Sigma^1_i(M, \rho) \) in \(a = \sigma(\overline{\eta}) \) and \(\overline{B} \subset \overline{\pi} \) is \(\Sigma^1_i(\overline{M}) \) in \(\overline{\eta} \). But then the same holds for \(A = f''B, \overline{A} = \overline{f''}B \).

QED (Subclaim 3)

For \(i > n \), we know: \(\rho^i_{M'} = \rho^i_M \), so we can write \(\rho^i =: \rho^i_{M'} \). By the definition of \(\rho^* \), we know: \(\rho_i = \rho_i^* \) for \(i > n \). We can also set:

\[\overline{H}^i = H^i_{M'} = H^i_{M'}, H_i = H_i(M, \rho) = H_i(M', \rho^*). \]

We now prove:

Subclaim 4 Let \(i > n \). Let \(\overline{A} \) be \(\Sigma^1_i(\overline{M'}) \) in \(\overline{\pi} \in \overline{M'} \) and let \(A \) be \(\Sigma^1_i(M', \rho^*) \) in \(a = \sigma'(\overline{\eta}) \) by the same definition. Then there are \(\overline{B}, B, \overline{\eta}, q, \eta \) such that

(a) \(\overline{B} \) is \(\Sigma^1_i(\overline{M}) \) in \(\overline{\eta} \in M \).

(b) \(B \) is \(\Sigma^1_i(M, \rho) \) in \(q = \sigma(\eta) \) by the same definition.

(c) \(\overline{A} \cap \overline{H}^i = \overline{B} \cap \overline{H}^i \).

(d) \(A \cap H_i = B \cap H_i \).

Proof: By induction on \(i \). Let it hold below \(i \). Then w.l.o.g. we can assume:

1. \(\overline{A}(x) \xrightarrow{\overline{H}^i, \overline{P} \cap \overline{H}^i} \models \varphi[x] \) for \(x \in \overline{H}^i \) where \(\varphi \) is \(\Sigma_1 \) and \(\overline{P} \) is \(\Sigma^1_{i-1}(M') \) in \(\overline{\pi} \).

2. \(A(x) \xrightarrow{H^i, P \cap H_i} \models \varphi[x] \) for \(x \in H_i \) where \(\varphi \) is the same \(\Sigma_1 \) formula and \(P \) is \(\Sigma^1_{i-1}(M', \rho^*) \) in \(a \) by the same definition.

But then there are \(\overline{Q}, Q, \overline{\eta}, q \) such that

3. \(\overline{P} \cap H^i = \overline{Q} \cap H^i \), where \(\overline{Q} \) is \(\Sigma^1_{i-1}(\overline{M}) \) in \(\overline{\eta} \in \overline{M} \).
(4) \(P \cap H_i = Q \cap H_i \), where \(\overline{Q} \) is \(\Sigma_1^{\omega-1}(M, \rho) \) in \(q = \sigma(q) \) by the same definition.

This is by subclaim 3 if \(i = n + 1 \), and otherwise by the induction hypothesis.

QED (Sublemma 4)

The claim then follows easily, since \(\sigma \) is \(\Sigma^* \)-preserving \(\mod \rho^* \).

QED (Lemma 3.6.20)

We can then go on further and set:

\[\rho' = \min(M', \sigma', \rho^*) \]

It then follows that:

\[\pi^\omega \rho_i \subseteq \rho'_i \leq \rho_i^* \text{ for } i < \omega. \]

To see that \(\pi'' \rho_i \subseteq \rho'_i \), we recall that \(\rho'_i = \sup n < \omega \rho'_i(n) \) where the sequence \(\langle \rho'_i(n) | i < \omega \rangle \) is defined from \(\rho^*, M', \sigma' \) by a canonical recursion on \(n \) (cf. Definition 3.6.5).

But since \(\rho = \min(M, \sigma, \rho) \), we have: \(\rho_i = \sup n \rho_i(n) \), where \(\langle \rho_i(n) | i < w \rangle \) is defined from \(\rho, M, \sigma \) by the same induction on \(n \). Since \(\pi' \sigma = \pi \sigma \), it follows easily by induction on \(n \) that:

\[\pi^\omega \rho_i(n) \subseteq \rho'_i(n) \text{ for } i < w. \]

The details are left to the reader.

Putting all of this together:

Theorem 3.6.21. Let \(\pi : M \rightarrow_{\Sigma^*} M' \) with critical point \(\kappa \). Let \(\lambda \leq \pi(\kappa) \) and let the extender \(F \) at \(\kappa, \lambda \) on \(M \) be defined by:

\[F(X) = \pi(X) \cap \lambda. \]

Let \(\sigma : \overline{M} \rightarrow_{\Sigma^*} M \min \rho \) with \(\sigma(\overline{\kappa}) = \kappa \). Assume:

\[\langle \sigma, g \rangle : \langle \overline{M}, \overline{F} \rangle \rightarrow^{**} \langle M, F \rangle \mod \rho \]

where \(\overline{F} \) is a weakly amenable extender at \(\pi, \overline{\lambda} \) on \(\overline{M} \). Then

(a) \(\overline{M} \) is \(\ast \)-extendable by \(\overline{F} \), giving \(\overline{\pi} : \overline{M} \rightarrow_{\overline{F}} \overline{M}' \).

(b) There are \(\sigma', \rho' \) such that

(i) \(\sigma' : \overline{M}' \rightarrow_{\Sigma^*} M' \min \rho' \)
(ii) σ' is defined by:

$$\sigma'(\pi(f)(\alpha)) = (\pi \sigma)_\rho(f)(g(\alpha))$$

for $\alpha < \lambda^-$, $f \in \Gamma^*(\pi, \bar{M})$. (Hence $\sigma' \pi = \pi \sigma$ and $\sigma' | \bar{X} = g$.)

(iii) $\pi'' \rho_i \subset \rho'_i \leq \pi(\rho_i)$ for $i < w$ (taking $\pi(\rho_i) = \text{On}_M$, if $\rho_i = \text{On}_M$).

(c) The above, in fact, holds for:

$$\rho' = \min(\rho^*) = \min(M', \sigma' \rho^*).$$

where ρ^* is defined by:

$$\rho^*_0 = \begin{cases}
\sup \rho_i & \text{if } \rho_i \leq \kappa_i \\
\pi(\rho_i) & \text{if } \kappa_i < \rho_i + 1 \text{ and } \rho_i < \rho^*_M \\
\rho^*_M & \text{if } \kappa_i < \rho_i + 1 \text{ and } \rho_i = \rho^*_M
\end{cases}$$

This is the most important result on pseudo projecta.

The argumentation used in the proof of Lemma 3.6.35, Lemma 3.6.36 and Lemma 3.6.37 actually establishes a more abstract result which is useful in other contexts:

Lemma 3.6.22. Assume that M_i, M'_i are amenable for $i < \mu$, where μ is a limit ordinal. Assume further than:

(a) $\pi_{i,j} : M_i \rightarrow \Sigma^* M_j$ ($i \leq j < \mu$), where the $\pi_{i,j}$ commute.

(b) $\pi'_{i,j} : M'_i \rightarrow \Sigma^* M'_j$ ($i \leq j < \mu$), where the $\pi'_{i,j}$ commute.

Moreover:

$$\langle M'_i : i < \mu \rangle, \langle \pi'_{i,j} : i \leq j < \mu \rangle$$

has a transitivized direct limit $M'_i, \langle \pi'_i : i \leq j < \mu \rangle$.

(c) $\sigma_i : M'_i \rightarrow \Sigma^* M'_j \min \rho^* (i \leq j < \mu)$.

(d) $\sigma_j \pi_{i,j} = \pi'_{i,j} \sigma_i$.

(e) $\pi_{i,j} \rho_n' \subset \rho_n' \leq \pi'_{i,j}(\rho^*_n)$ for $i \leq j < \mu, n < \omega$.

Then:

$$\langle M_i : i < \mu \rangle, \langle \pi_{i,j} : i \leq j < \mu \rangle$$

has a transitivized direct limit $M_i, \langle \pi_{i,j} : i < \mu \rangle$.
There is then \(\sigma : M \rightarrow M' \) defined by: \(\sigma \pi_i = \pi'_i \sigma_i (i < \mu) \). Moreover:

1. There is a unique \(\rho \) such that \(\sigma : M \rightarrow M' \) min \(\rho \) and:
 \[
 \pi'_i \rho^i_n \subseteq \rho_n \leq \pi'_n (\rho^i_n) \text{ for } i < \mu, n < \omega.
 \]

2. There is \(i < \mu \) such that \(\rho_n = \pi'_j (\rho^i_n) \) for \(i \leq j < \mu, n < \omega \).

3.6.3 Mirrors

Let \(I = (\langle M_i, \langle \nu_i, \langle \pi_{ij} \rangle, T \rangle) \) be a normal iteration of length \(\eta \). By a **mirror** of \(I \) we shall mean a sequence:

\[
I_0 = \langle \langle M_0, \langle \pi_{i0}, \langle \sigma_i \rangle, \langle \rho^i \rangle \rangle \rangle
\]

such that \(\sigma_i : M_i \rightarrow M'_i \) min \(\rho^i \) for \(i < \eta \) and the sequence:

\[
I'' = (\langle M'_i, \langle \nu'_i, \langle \pi'_{ij} \rangle, T \rangle)
\]

"mirrors" the action of \(I \), where \(\nu'_i =: \sigma_i (\nu_i) \). However, \(I'' \) will not necessarily be an iteration. If \(i + 1 \) is not a drop point in \(I \) and \(h = T(i + 1) \), we will, indeed, have:

\[
\pi'_{h,i+1} : M'_h \rightarrow M'_{i+1},
\]

but \(M'_{i+1} \) is not necessarily an ultrapower of \(M'_h \). None the less \(\kappa'_i =: \sigma_i (\kappa_i) \) will still be the critical point and we shall have:

\[
\mathbb{P}(\kappa'_i) \cap M'_h = \mathbb{P}(\kappa'_i) \cap J^{E_{\nu_i}}_{\kappa'_i}
\]

and:

\[
\alpha \in E_{\nu'_i}(X) \iff \alpha \in \pi'_{h,i+1} (X) \text{ for } X \in \mathbb{P}(\kappa'_i) \cap M'_h \text{ and } \alpha < \lambda'_i,
\]

where \(\lambda'_i =: \sigma_i (\lambda_i) \).

We shall also require a measure of agreement among the maps \(\sigma_i \). In particular, if \(h = T(i + 1) \) is as above, then:

\[
\sigma_{i+1} \pi_{h,i+1} = \pi'_{h,i+1} \sigma_h; \sigma_i | \lambda_i = \sigma_{i+1} | \lambda_i.
\]

Note. that this gives:

\[
(\sigma_h, \sigma_i | \lambda_i) : \langle M_h, E^{M_i}_{\nu_i} \rangle \rightarrow \langle M'_i, E_{\nu'_i}^{M'_i} \rangle.
\]

The formal definition is:
Definition 3.6.10. Let $I = \langle (M_i), \langle \nu_i, \langle \pi_{ij} \rangle, T \rangle \rangle$ be a normal iteration of length η. By a mirror of I we mean a sequence:

$I' = \langle (M'_i|i < \eta), \langle \pi'_{ij}|i \leq_T i \rangle, \langle \sigma_i | i < \eta \rangle, \langle \rho^j | i < \eta \rangle \rangle$

satisfying the following conditions:

(a) M'_i is a premouse and $\sigma_i : M_i \to_{\Sigma^*} M'_i \min \rho^i$.

(b) π'_{ij} is a partial structure preserving map from M'_i to M'_j. Moreover the π'_{ij} commute and $\pi'_{ii} = \text{id} | M_i$. If $\lambda < \eta$ is a limit, then $M'_\lambda = \bigcup_{i < \lambda} \text{rng}(\pi'_{i\lambda})$.

(c) $\sigma_i \pi_{ij} = \pi'_{ij} \sigma_i$ for $i \leq_T j$.

(d) $\sigma_i | \lambda_i = \sigma_j | \lambda_i$ for $i < j < \eta$.

In order to state the further clauses we need some notation. Set:

$$\nu'_i = \sigma_i(\nu_i) = \begin{cases}
\sigma_i(\nu_i) & \text{if } \nu_i \in M_i \\
\text{On} \cap M'_i & \text{if not}
\end{cases}$$

$$\kappa'_i = \sigma_i(\kappa_i), \tau'_i = \sigma_i(\tau_i), \lambda'_i = \sigma_i(\lambda_i)$$

For $h = T(i + 1)$ set:

$$M'^{\mu^*}_i = \begin{cases}
\sigma_h(M'^*_i) & \text{if } M'^*_i \in M_h \\
M'_i & \text{if not}
\end{cases}$$

Noting that $\tau'_i = \sigma_h(\tau_i)$ by (d) we can easily see that:

$$M'^{\mu^*}_i = M'_h || \mu$$,

where $\mu \leq \text{On} M'_i$ is maximal such that $\tau'_0 < \mu$ and τ'_i is a cardinal in $M'_h || \mu$.

(To see that this holds for $M'^{\mu^*}_i = M'_h$, we note that $\tau'_i = \sigma_h(\tau_i)$ is a cardinal in $M'_h || \rho^h_0$ and ρ^h_0 is cardinally absolute in M'_h.)

We now complete the definition of mirror:

(e) Let $h = T(i + 1), i + 1 \leq_T i$, and assume that there is no drop point in $(i + 1, j)_T$. Then:

(i) $\pi'_{h,i} : M'^{\mu^*}_i \to_{\Sigma^*} M'_j$.

(ii) $\kappa'_i = \text{crit}(\pi'_{h,i})$.

(iii) If $X \in \mathcal{F}(\kappa'_i) \cap J^{E_{M_i}}_{\tau'_i}$, then $X \in M'^{\mu^*}_i$ and $E'^{M'_i}_{\nu'_i}(X) = \lambda'_i \cap \pi'_{h,j}(X)$.
(iv) Set:
\[\bar{\rho}^i = \begin{cases}
\rho^h & \text{if } M''_i = M'_h \\
\min(M''_i, \rho^h | M''_i, (\rho''_{M''_i} | n < w)) & \text{if not.}
\end{cases} \]

Then:
\[\pi'_{h,j} \bar{\rho}_M \subset \rho^j \leq \pi'_{h,j}(\bar{\rho}^i_n) \text{ for } n < w \]
(where \(\pi'_{h,j}(\bar{\rho}^i_n) =: \text{On} \bar{\rho}_M \).
(Hence, if \(h \leq T \) and \([h, j]T \) has no drop point, then \(\pi''_{h,j} \rho^h \subset \rho^j \leq \pi'_{h,j}(\bar{\rho}^i_n) \).

This completes the definition.

Lemma 3.6.23. \(J^{E_{M'_1}}_{\lambda'_i} = J^{E_{M'_i+1}}_{\lambda'_i} \) for \(i + 1 < \eta_i \).

Proof: \(\lambda'_i \) is an inaccessible cardinal in \(J^{E_{M'_i}}_{\lambda'_i} \). Hence there are arbitrarily large primitive recursive closed ordinals \(\alpha < \lambda'_i \) and it suffices to show:

Claim \(J^{E_{M'_i}}_{\alpha} = J^{E_{M'_i+1}}_{\alpha} \) for primitive recursive closed \(\alpha < \lambda'_i \).

Proof: Let \(h = T(i + 1) \). Since \(x \in J^{E_{\alpha}} \) is \(J^{E_{\alpha}} \)-definable from parameters \(\beta_1, \ldots, \beta_n < \alpha \), it suffices to show:

Subclaim Let \(\beta_1, \ldots, \beta_n < \alpha \). Let \(\varphi \) be a first order formula. Then:

\[J^{E_{M'_i}}_{\alpha} \models \varphi[\bar{\beta}] \iff J^{E_{M'_i+1}}_{\alpha} \models \varphi[\bar{\beta}]. \]

Proof: Set: \(X = \{ \prec \tilde{\xi}, \zeta \succ \kappa'_i | J^{E_{M'_i}}_{\kappa'_i} \mod \varphi[\tilde{\xi}] \} \). Then \(X \in P(\kappa'_i) \cap \)
\(J^{E_{M'_i}}_{\kappa'_i} \subset M''_i \) by (e) (iii). But \(J^{E_{M'_i}}_{\kappa'_i} = J^{E_{M'_i'}}_{\kappa'_i} = J^{E_{M'_i}}_{\kappa'_i} \), by (e) (i), (ii). Then:

\[\bigwedge \tilde{\xi}, \zeta \prec \kappa'_i(\prec \tilde{\xi}, \zeta \succ X \iff J^{E_{\alpha}} \models \varphi[\tilde{\xi}] \),

which is a first order statement in \(J^{E_{M'_i}}_{\kappa'_i} \), where \(E = E_{M''_i} \). But
then the same first order statement holds in \((\pi'(J^{E_{\kappa'_i}}), \pi'(X)) \), where
\(\pi' = \pi'_{h,i+1} \). Clearly \(\pi'(J^{E_{\kappa'_i}}_{\kappa'_i}) = J^{E_{M''_i}}_{\kappa'_i} \). Thus:

\[\pi'(X) = \{ \prec \tilde{\xi}, \zeta \succ \pi(\kappa'_i) | J^{E_{M''_i}}_{\kappa'_i} \models \varphi[\tilde{\xi}] \}, \]

and we have:

\[J^{E_{M''_i}}_{\kappa'_i} \models \varphi[\bar{\beta}] \iff \prec \tilde{\beta}, \alpha \succ \pi'(X) \]

\[\iff \prec \tilde{\beta}, \alpha \succ E^{M''_i}_{\kappa'_i}(X) \text{ by (e) (iii)} \]

\[\iff J^{E_{M'_i}}_{\alpha} \models \varphi[\bar{\beta}]. \]

QED (Lemma 3.6.23)
We know that
\[\kappa_i = E^{M_i'}(\kappa_i') \leq \pi'(\kappa_i'), \]
where \(h = T(i + 1), \; \pi' = \pi_{h,i+1} \) (by (e) (iii)). Set:
\[\lambda_i = \pi'_{h,i+1}(\kappa_i') \] where \(h = T(i + 1), \; \text{for} \; i + 1 < \eta. \)

Lemma 3.6.24. Let \(i + 1 < \eta. \) Then \(\lambda_i \leq \lambda_i' = \sigma_j(\lambda_i) \) for \(i < j < \eta. \)

Proof: \(\lambda_i' \leq \lambda_i \) is trivial. But then:
\[
\begin{align*}
\sigma_{i+1}(\lambda_i) = \sigma_{i+1} \pi_{h,i+1}(\kappa_i) &= \pi'_{h,i+1} \sigma_h(\kappa_i) \\
&= \pi'_{h,i+1}(\kappa_i') = \lambda_i'.
\end{align*}
\]
Hence \(\sigma_j(\lambda_i) = \sigma_{i+1}(\lambda_i) \) for \(j > i, \) since \(\lambda_i < \lambda_{i+1}. \)

QED (Lemma 3.6.23)

Note. The main difference between a *mirror* of \(I \) and a simple *copy* of \(I \) in our earlier sense is that we can have: \(\lambda_i' < \lambda_i. \)

Corollary 3.6.25. \(\lambda_i' < \lambda_j' \) for \(i < j, \; j + 1 < \eta. \)

Proof: \(\lambda_i' \leq \lambda_i' = \sigma_j(\lambda_i) < \sigma_j(\lambda_j) = \lambda_j', \)

QED (Corollary 3.6.25)

Corollary 3.6.26. If \(h = T(i + 1), h + 1 \leq j \), then \(\kappa_i' < \lambda_i' \leq \lambda_h' \leq \kappa_j' \) (since \(\kappa_j \geq \lambda_h \)).

Lemma 3.6.27. \(J_{\lambda_i'}^{E_{\lambda_j}^M} = J_{\lambda_i}^{E_{\lambda_j}^M} \) for \(i < j < \eta. \)

Proof: By induction on \(j \)

Case 1 \(j = i \) trivial.

Case 2 \(j = l + 1. \) Then it holds at \(l. \) But \(J_{\lambda_i}^{E_{\lambda_l}^M} = J_{\lambda_l}^{E_{\lambda_j}^M} \) where \(\lambda_i' \leq \lambda_i'. \)
The conclusion is immediate.

Case 3 \(j = \mu \) is a limit ordinal.

By 3.6.26 we have: \(\kappa_i' < \kappa_j' \) for \(i + 1 \leq j + 1 \leq T \mu. \) Moreover \(\text{sup} \kappa_i' = \text{sup} \lambda_i' \) by 3.6.26, 3.6.25. Pick an \(l + 1 \leq T \mu \) such that \(\kappa_i' > \lambda_i'. \)
Then \(J_{\kappa_i'}^{E_{\lambda_i}^M} = J_{\kappa_i'}^{E_{\lambda_i}^M} \) by axiom (i), (ii) and \(J_{\lambda_i}^{E_{\lambda_j}^M} = J_{\lambda_i}^{E_{\lambda_j}^M} \) where \(\lambda_i' < \kappa_i'. \)
The conclusion is immediate.

QED (Lemma 3.6.27)

Lemma 3.6.28. \(J_{\lambda_i}^{E_{\lambda_j}^M} = J_{\lambda_i}^{E_{\lambda_j}^M} \) for \(i < j < \eta. \)
Proof: For $j = i + 1$ it is trivial. For $j > i + 1$, we have $\lambda_i^{i+1} = \sigma_{i+1}(\lambda_{i+1}) > \sigma_{i+1}(\lambda_i) = \lambda_i^*$ and $J_{\lambda_i^{i+1}}^{E^M_{i+1}} = J_{\lambda_i^*}^{E^M_{i+1}}$. The conclusion is immediate. QED (Lemma 3.6.28)

Lemma 3.6.29. λ_i^* is a limit cardinal in M'_j for all $j > i$.

Proof: $\lambda_i^* = \sigma_j(\lambda_i)$ is a cardinal in M'_j, since λ_i is a cardinal in M_j. (This uses that ρ^*_0 is cardinally absolute if $\rho^*_0 < \text{On}_{M_i'}$.) But then λ_i^* is cardinally absolute in M'_j and:

$$J_{\lambda_i^*}^{E^M_{i+1}} \models \text{there are arbitrarily large cardinals},$$

since the same is true in $J_{\lambda_i}^{E^M_{i+1}}$. QED (Lemma 3.6.29)

Lemma 3.6.30. λ_i^* is cardinally absolute in M'_j for $j \geq i$.

Proof: Let α be a cardinal in $J_{\lambda_i^*}^E = J_{\lambda_i^*}^{E^M_{i+1}} = J_{\lambda_i^*}^{E^M_{i+1}}$. Let $h = T(i+1)$ and let:

$$X = \{\xi < \kappa'_i \mid J_{\kappa'_i}^{E^M_{i+1}} \models \xi \text{ is a cardinal}\}.$$

Then: $\alpha \in E_{\nu'_i}^{M_{i+1}^j}(X) \subset \pi_{h,i+1}(X)$. Hence:

$$J_{\lambda_i^*}^{E^M_{i+1}} \models \alpha \text{ is a cardinal}.$$

But $J_{\lambda_i^*}^{E^M_{i+1}} = J_{\lambda_i^*}^{E^M_{i+1}}$ and λ_i^* is cardinally absolute in M'_j. QED (Lemma 3.6.30)

But there are arbitrarily large cardinals in the sense of $J_{\lambda_i^*}^{E^M_{i+1}}$. Hence:

Corollary 3.6.31. λ_i^* is a limit cardinal in M'_j for $i < j$.

Lemma 3.6.32. Let $h = T(i+1)$. Then $J_{\nu'_i}^{E^M_{i+1}} = J_{\lambda_i^*}^{E^M_{i+1}}$.

Proof: For $h = i$ it is trivial. Let $h < i$. Then $J_{\lambda_i^*}^{E^M_{i+1}} = J_{\lambda_i^*}^{E^M_{i+1}}$, so we need only show that $\tau'_i < \lambda_i^*$. But λ_i^* is a limit cardinal in M'_i and $\kappa'_i < \tau'_i$. Hence in M'_i we have: $\tau'_i \leq \kappa'_i < \lambda_i^*$. QED (Lemma 3.6.32)

Corollary 3.6.33. $\mathbb{P}(\kappa'_i) \cap M_i^* = \mathbb{P}(\kappa'_i) \cap J_{\nu'_i}^{E^M_{i+1}}$.

3.6. VERIFYING FULL ITERABILITY

Proof: Since \(\tau'_i > \kappa'_i \) is a cardinal in \(M_i^{**} \), we have by acceptability:

\[
\mathbb{P}(\kappa'_i) \cap M_i^{**} = \mathbb{P}(\kappa'_i) \cap J_{\kappa'_i}^{E_{\alpha_i}} = \mathbb{P}(\kappa'_i) \cap J_{\kappa'_i}^{E_{\alpha_i}} = \mathbb{P}(\kappa'_i) \cap J_{\kappa'_i}^{E_{\alpha_i}}
\]

QED(Corollary 3.6.33)

Lemma 3.6.34. Let \(h = T(i + 1), F = E_{\alpha_i}^{M_i} \), \(F' = E_{\alpha_i}^{M_i'} \). Then

\[
\langle \sigma_h \downharpoonright M_i^{**}, \sigma_i \downharpoonright \lambda_i \rangle : \langle M_i^{**}, F \rangle \longrightarrow \langle M_i^{**}, F' \rangle.
\]

Proof. Clearly \((\sigma_h \downharpoonright M_i^{**}) : M_i^{**} \longrightarrow \Sigma_0 M_i^{**} \). Moreover, \(\text{rng}(\sigma_i \downharpoonright \lambda_i) \subset \lambda_i' \). Now let \(X \subset \kappa_i, X \in M_i^{**}, \alpha_i, \ldots, \alpha_n < \lambda_i \). Then:

\[
\prec \alpha \succ \in F(X) = \pi_{h,i+1}(X)
\]

\[
\quad \longleftrightarrow \prec \sigma_{i+1}(\alpha) \succ \in \sigma_{i+1} \pi_{h,i+1}(X) = \pi_{h,i+1}(h)(X)
\]

\[
\quad \longleftrightarrow \prec \sigma_i(\alpha) \succ \in F'(\sigma_h(X)),
\]

since \(\sigma_i \downharpoonright \lambda_i = \sigma_{i+1} \downharpoonright \lambda_i \) and \(F'(\sigma_h(X)) = \lambda_i' \cap \pi_{h,i+1}(\sigma_h(X)) \).

QED(Lemma 3.6.34)

We also note:

Lemma 3.6.35. Let \(\lambda < \eta \) be a limit ordinal. Then for sufficiently large \(i < T \lambda \) we have:

\[
\rho^\lambda = \pi^i_{\lambda}(p^i_n) \text{ for } n < \omega
\]

Proof. Pick \(\xi < \lambda \) such that \([\xi, \lambda)_T \) has no drop points. For each \(n < \omega \) and each \(i, j \) such that \(\xi \leq_T i \leq_T j \leq_T \lambda \) we have:

\[
\pi^i_{i,j} \uparrow p^i_n \subset p^i_n \leq \pi^i_{i,j}(p^i_n).
\]

(1) For each \(n < \omega \) there is \(i_n \in [\xi, \lambda)_T \) such that:

\[
\pi^i_{i,j}(p^i_n) = p^i_n \text{ for } i_n \leq_T i \leq_T j < T \lambda.
\]

Proof. Suppose not. Then there exist \(i_r < \omega \) such that \(\xi < T i_r < T i_{r+1} \) and \(p^i_{r+1} \leq \pi^i_{i_{r+1}, \lambda}(p^i_{r+1}) \leq \pi^i_{i_{r+1}, \lambda}(p^i_n) \). Hence: \(\pi^i_{i_{r+1}, \lambda}(p^i_{r+1}) < \pi^i_{i_{r}, \lambda}(p^i_n) \) for \(r < \omega \). Contradiction!

QED(1)
(2) $\pi'_{i,\lambda}(\rho^i_n) = \rho^\lambda_n$ for $i_n \leq_T \lambda$.

Proof. Since $M_i, (\pi'_{i,\lambda} : i_n \leq_T i < T \lambda)$ is a direct limit, we have:

$$\pi'_{i,\lambda}(\rho^i_n) = \bigcup_{i_n \leq_T i < T\lambda} \pi''_{i,\lambda} \rho^i_n \subset \rho^\lambda_n \leq \pi'_{i,\lambda}(\rho^i_n).$$

QED(2)

(3) If $\rho^\lambda_n = \rho^n_{M,\lambda}$ then $i_n = \xi$.

Proof. If not, there is $i \in [\xi, \lambda)_T$ such that $\rho^i_n < \rho^\lambda_{M,\lambda}$. Hence $\rho^\lambda_n \leq \pi'_{i,\lambda}(\rho^i_n) < \rho^n_{M,\lambda}$. Contradiction!

QED(3)

But then the set $\{n : i_n > \xi\}$ is finite. Set: $i = \max\{i_n : i_n > \xi\}$. This has the derived property.

QED(Lemma 3.6.35)

Corollary 3.6.36. Let λ be a limit ordinal. Then

$$\pi'_{i,\lambda} : M'_i \to M'_{\lambda} \mod (\rho^i, \rho^\lambda)$$

for sufficiently large $i \leq_T \lambda$.

Proof. Let $i_0 \leq_T i < T \lambda$ such that $\pi'_{i,\lambda}(\rho^i_n) = \rho^\lambda_n$ for $i_0 \leq_T i < \lambda, n < \omega$. By Lemma 3.6.3 we need only show:

(1) $\rho^i_n < \rho^n_{M,\lambda} \to \rho^\lambda_n = \pi'_{i,\lambda}(\rho^i_n)$

(2) $\rho^i_n = \rho^n_{M,\lambda} \to \rho^\lambda_n = \rho^n_{M,\lambda}$

(1) is immediate. To prove (2) we note:

$$\rho^\lambda_n = \pi'_{i,\lambda}(\rho^i_n) = \pi_{i,\lambda}(\rho^n_{M,\lambda}) \geq \rho^n_{M,\lambda} \geq \rho^\lambda_n$$

QED Corollary 3.6.36

Definition 3.6.11. By a mirror pair of length η we mean a pair (I, I') such that I is a normal iteration of length η and I' is a mirror of I.

It is natural to ask whether, and in what circumstances, a mirror pair of length η can be extended to one of length $\eta + 1$. For limit η the answer is fairly straightforward:
Lemma 3.6.37. Let \(\langle I, I' \rangle \) be a mirror pair of limit length. Let \(b \) be a cofinal branch in \(T = T_I \). Let the sequence:

\[
\langle M'_i : i \in b \rangle, \; (\pi'_{ij} : i \leq j \in b)
\]

have a well founded direct limit. Then \(\langle I, I' \rangle \) extends uniquely to a mirror pair \(\langle \tilde{I}, \tilde{I}' \rangle \) of length \(\eta + 1 \) with \(b = \tilde{T}^\eta \{ \eta \} \) (where \(\tilde{T} = T_I \)).

Proof. Let \(M'_{\eta}, \langle \pi'_{i,\eta} : i \in b \rangle \) be the transitivized direct limit.

Note. By our convention this means that for some \(j_0 \in b \), \(b \setminus j_0 \) is drop free and:

\[
\langle M'_i : i \in b \setminus j_0 \rangle, \; (\pi'_{i,j} : j_0 \leq i \leq j \in b)
\]

in the usual sense, and we define:

\[
\pi'_{i,\eta} = \pi'_{j_0,\eta} \circ \pi'_{i,j_0} \quad \text{for } i < j_0 \text{ in } b
\]

In the same sense the sequence:

\[
\langle M_i : i \in b \rangle, \; (\pi_{i,j} : i \leq j \in b)
\]

has a transitivized limit:

\[
M, \langle M_{i,\eta} : i \in b \rangle
\]

The maps \(\pi_{i,\eta}, \pi'_{i,\eta} \) are easily seen to be \(\Sigma^* \)-preserving for \(j_0 \leq i \in b \). We extend \(T \) to \(\tilde{T} \) by setting \(\tilde{T}^\eta \{ \eta \} = b \). We define the map \(\sigma_{\eta} : M_{\eta} \to M'_{\eta} \) by: \(\sigma_{\eta} \pi_{i,\eta} = \pi'_{i,\eta} \pi_{i} \) for \(i < \eta \). We must then define a good sequence \(\hat{\rho} = \rho^\eta \) for \(M'_{\eta} \). We first imitate the proof of Lemma 3.6.35 by showing that there is \(i_0 \in b \) such that \(b \setminus i_0 \) has no drop points and for all \(j \in b \setminus i_0 \):

\[
\pi'_{i,j}(\rho^i_{n}) = \rho^i_{n} \quad \text{for } n < \omega
\]

Thus, setting: \(\hat{\rho}_n =: \pi'_{i_0,\eta}(\rho^i_{n}) \), we have:

\[
\hat{\rho}_n = \pi'_{j,n}(\rho^i_{n}) \quad \text{for } n < \omega, i_0 \leq T \; j \in b
\]

It is easily shown that \(\hat{\rho} = (\hat{\rho}_n : n < \omega) \) is a good sequence for \(M'_{\eta} \). Repeating the proof of Lemma 3.6.36 we then have:

(1) \(\pi'_{j,\eta} : M'_j \to \Sigma^* \; M'_{\eta} \mod (\rho^i, \hat{\rho}) \) for \(i_0 \leq T \; j \leq T \; \eta \).

Using this we show:

Claim 1. \(\sigma_{\eta} : M_{\eta} \to \Sigma^* \; M'_{\eta} \mod \hat{\rho} \).
Proof. Let \(x_1, \ldots, x_n \in M_\eta \). Then \(\bar{x} = \pi_{i_0}(\bar{z}) \) for an \(i \in [i_0, \eta) \). Hence for any \(\Sigma^0 \) formula:

\[
\begin{align*}
M_\eta \models \varphi[\bar{x}] &\iff M_i \models \varphi[\bar{z}] \\
&\iff M'_i \models \varphi[\sigma_i(\bar{z})] \mod \rho^i \\
&\iff M''_i \models \varphi[\pi'_{i_0,\eta}\sigma_i(\bar{z})] \mod \hat{\rho}
\end{align*}
\]

where \(\pi'_{i_0,\eta}\sigma_i(\bar{z}) = \sigma_\eta \pi_{i_0,\eta}(\bar{z}) = \sigma_\eta(\bar{x}) \).

QED(Claim 1)

We must also show:

Claim 2. \(\sigma_\eta : M_\eta \rightarrow \Sigma^* M'_\eta \min \hat{\rho} \).

Proof. We must show:

\[\hat{\rho} = \min(M_\eta, \sigma_\eta, \hat{\rho}) \]

Let \(\hat{\rho}(n) : l < \omega \) be defined by induction on \(n < \omega \) as in Definition 3.6.5. We must show: \(\hat{\rho} = \bigcup_{n<\omega} \hat{\rho}_l(n) \). Let \(\xi < \hat{\rho}_i \). Then \(\xi = \pi'_{i_0,\eta}(\xi) \) where \(i_0 \leq T < T_\eta \) and \(\bar{i} < \rho_i^l \). But \(\rho_i^l = \bigcup_{n<\omega} \rho_i^l(n) \). Thus \(\xi < \rho_i^l(n) \) for some \(n \).

Using (1) and Definition 3.6.5, we easily get:

\[\pi'_{i_0,\eta} \hat{\rho}_l(n) \subseteq \hat{\rho}_l(n) \] by induction on \(n \)

But then \(\xi = \pi'_{i_0,\eta}(\xi) \in \hat{\rho}_i(n) \).

QED(Claim 2)

Using these facts it is easy to see that the extension \((\hat{I}, \hat{I}') \) we have defined satisfies the axiom (a)-(e) and is, therefore a mirror pair of length \(\eta + 1 \).

(We leave the detail to the reader). The uniqueness of the maps \(\pi_{i_0,\eta}, \pi'_{i_0,\eta}, \sigma_\eta \) is immediate from our construction. Finally, we must show that \(\hat{\rho} = \rho_0^l \) is unique. This is because \(\hat{\rho}_n = \pi'_{0_0,\lambda}(\rho^l_0) \) where \(\pi'_{0_0,\lambda} \) is unique.

QED(Lemma 3.6.37)

We now ask how we can extend a mirror pair of length \(\eta + 1 \) to one of length \(\eta + 2 \). This will turn out to be more complex.

If \(I = (\langle M_i \rangle, \langle \nu_i \rangle, \langle \pi_{ij} \rangle, T) \) is a normal iteration of length \(\eta + 1 \), we can turn it into a potential iteration of length \(\eta + 2 \) simply by appointing a \(\nu_\eta \) such that \(E_{\nu_\eta} \neq \emptyset \) and \(\nu_i > \nu_\eta \) for \(i < \eta \). This then determines \(h = T(\eta + 1) \) and \(M'_\eta \). (The notion of potential iteration was introduced in §3.4, where we gave a more formal definition). If \((I, I') \) is a mirror pair of length \(\eta + 1 \), we can then form a potential mirror pair of length \(\eta + 2 \) by appointing \(\nu'_\eta =: \sigma_\eta(\nu_\eta) \).
3.6. VERIFYING FULL ITERABILITY

This determines M^*_η. Our main lemma on “1-step extension” of mirror pair reads:

Lemma 3.6.38. Let $\langle I, I' \rangle$ be a mirror pair of length $\eta + 1$. Form a potential pair of length $\eta + 2$ by appointing ν_η and $\nu'_\eta = \sigma_\eta(\nu_\eta)$. Let:

$$\pi' : M'^*_{\eta} \rightarrow_{\Sigma'} M' \text{ such that } \kappa'_\eta = \crit(\pi')$$

and

$$E^M_{\nu_\eta}(X) = \lambda'_\eta \cap \pi'(X) \text{ for } X \in \mathbb{P}(\kappa'_\eta) \cap J_{\nu_\eta}^M$$

Our potential pair then extends to a full mirror pair with:

$$M' = M'_{\eta+1}, \pi' = \pi'_{h,\eta+1} \text{ where } h = T(\eta + 1)$$

In order to prove this, we must first form a \ast-ultrapower:

$$\pi : M^*_{\eta} \rightarrow_{\ast} M \text{ where } F = E^M_{\nu_\eta}$$

We must then define σ, ρ such that:

$$\pi'_n \hat{\rho}_n \subseteq \rho_n \leq \pi'_n(\hat{\rho}_n) \text{ for } n < \omega$$

where $\hat{\rho}$ is defined as in axiom (e)(iv). If we then set:

$$M_{\eta+1} =: M, M'_{\eta+1} =: M', \pi_{h,\eta+1} =: \pi, \pi'_{h,\eta+1} =: \pi', \sigma_{\eta+1} = \sigma, \rho_{\eta+1} = \rho$$

we will have defined the desired extension. (We leave it to the reader to verify the axioms (a)-(e)). By the proof of Lemma 3.6.34 we have:

$$\langle \sigma_h | M^*_{\eta}, \sigma_\eta | \lambda_\eta \rangle : \langle M^*_\xi, F' \rangle \rightarrow \langle M^*_\xi, F' \rangle$$

where $F = E^M_{\nu_\eta}$, $F' = E^M_{\nu'_\eta}$.

Lemma 3.6.19 then points us in the right direction. In order to get the full result, however, we must use Theorem 3.6.21 together with:

Lemma 3.6.39. Let $\langle I, I' \rangle, \nu_\eta, \nu'_\eta, \pi'$ be as in Lemma 3.6.38. Set: $\xi = T(\eta + 1)$, $F = E^M_{\nu_\eta}$, $F' = E^M_{\nu'_\eta}$. Set:

$$\hat{\rho} = \begin{cases}
\rho^\xi & \text{if } M^*_\eta = M' \\
\min(M^*_\eta, \sigma_h | M^*_\eta, \langle \rho^n_{M^*_\eta} : n < \omega \rangle) & \text{if not}
\end{cases}$$

Then:

$$\sigma_h | M^*_h, \sigma_\eta | \lambda_\eta : \langle M^*_\eta, F' \rangle \rightarrow^* \langle M^*_\eta, F' \rangle \mod \hat{\rho}$$
We leave it to the reader to see that Theorem 3.6.21 and Lemma 3.6.39 give the desired result.

Note. It is clear that $h, \pi^\prime, \nu, \nu^\prime$, and $\rho^{\eta+1}$ are uniquely determined by the choice of $\nu_\eta, \nu^\prime_\eta, \pi^\prime$. If we wished, we could use clause (c) of Theorem 3.6.21 to make $\rho^{\eta+1}$ unique.

We are actually in familiar territory here. The notion of mirror is clearly analogous to that of *copy* developed in §3.4.2. The analogue of mirror pair was there called a *duplication*. The role of Lemma 3.4.14 is now played by Lemma 3.6.38 and that of Theorem 3.4.14 by Lemma 3.6.39, which verifies the weaker principle $!_{\eta}x \rightarrow !_{\eta}M$ in place of $!_{\eta}x \rightarrow !_{\eta}M$ (which was, in turn, patterned on the proof of Theorem 3.4.3), which said that, if I is a potential normal iteration of length $\eta + 2$, then $E_{\eta}^{M_\eta}$ is close to M^*_η).

We now turn to the proof of lemma 3.6.39. Just as in §3.4.2 we derive it from a stronger lemma. In order to formulate this properly we define:

Definition 3.6.12. Let M be acceptable. Let $\kappa \in M$ be inaccessible in M such that $\mathbb{P}(\kappa) \cap M \in M$. $A \subset \mathbb{P}(\kappa) \cap M$ is strongly $\Sigma_1(M)$ in the parameter p iff there is $B \subset M$ such that B is $\Sigma_0(M)$ and:

- $x \in A \iff \exists z B(z, x, p)$
- If $u \in M$ such that $u \subset \mathbb{P}(\kappa)$ and $\mathbb{P}^M \leq \kappa$, then:

 $$\exists v \in M \bigwedge X \in u \exists z \in v (B(z, X, p) \lor B(z, \kappa \setminus X, p))$$

We shall derive:

Lemma 3.6.40. Let $(I, I^\prime), \eta, \xi, \nu, \nu^\prime, \pi^\prime$ be as in Lemma 3.6.39. Let $A \subset \mathbb{P}(\kappa_\eta)$ be strongly $\Sigma_1(M_\eta | \nu_\eta)$ in p. Let $A^\prime \subset \mathbb{P}(\kappa^\prime_\eta)$ be $\Sigma_1(M^\prime_\eta | \nu^\prime_\eta)$ in $p^\prime = \sigma_0(p)$ by the same definition. Then there is $q \in M^*_\eta$ such that

- A is strongly $\Sigma_1(M^*_\eta)$ in q.
- Let A^\prime be $\Sigma_1(M^*_\eta)$ in $q^\prime = \sigma_\xi (q)$ by the same definition. Then $A^\prime \subset A'$.

Before proving this, we show that it implies Lemma 3.6.39:

Lemma 3.6.41. Assume Lemma 3.6.40. Let ρ^* be good for $M^*\eta$ and let:

$$\sigma_\xi | M^*_\eta : M^*_\eta \rightarrow_{\Sigma_1} M^*_\eta \mod \rho^*.$$

Then:

$$\langle \sigma_\xi | M^*_\eta, \sigma_\eta | \lambda_\eta \rangle : \langle M^*_\eta, F \rangle \rightarrow^{**} \langle M^*_\eta, F' \rangle \mod \rho^*.$$
3.6. VERIFYING FULL ITERABILITY

Proof. Let $\alpha < \lambda_\eta, \alpha' = \sigma_\eta(\alpha)$. Then F_α is $\Sigma_1(J^{E_{M_\eta}}_{\nu_\eta})$ in α, since:

$$X \in F_\alpha \leftrightarrow \bigvee Y(Y = F(X) \wedge \alpha \in Y)$$

We know, however, that if $u \in J^{E_{M_\eta}}_{\nu_\eta}, u \subseteq \mathbb{P}(\kappa)$, and $\overline{\nu} \leq \kappa$ in $J^{E_{M_\eta}}_{\nu_\eta}$, then:

$$\bigvee v \in J^{E_{M_\eta}}_{\nu_\eta} \wedge X \in u \bigvee Y \in v(Y = F(X) \wedge (\alpha \in Y \lor \alpha \in (\kappa \setminus Y)))$$

Hence F_α is strongly $\Sigma_1(J^{E_{M_\eta}}_{\nu_\eta})$ in α. Obviously F'_α is $\Sigma_1(J^{E_{M_\eta}}_{\nu_\eta})$ in $\alpha' = \sigma_\eta(\alpha)$ by the same definition. Hence $G = F_\alpha$ is strongly $\Sigma_1(M'_{\eta})$ in a parameter q. Moreover, if G' in $\Sigma_1(M'_{\eta})$ in $\sigma_{\xi}(q)$ by the same definition, then $G' \subseteq F'_\alpha$. Now let G be $\Sigma_1(M'_{\eta}, \rho^*)$ in $\sigma_{\xi}(q)$ by the same definition. Then $G \subseteq G' \subseteq F'_\alpha$. Now let:

$$X \in G \leftrightarrow \bigvee zB(z, X, q)$$

be the strongly $\Sigma_1(M'_{\eta})$-definition of G in q. Then:

$$X \in G \leftrightarrow \bigvee zB(z, X, q')$$

where $q' = \sigma_{\xi}(q)$ and B is $\Sigma_0(M^*_\eta, \rho^*)$ by the same definition. (In other words, B is $\Sigma_0(M^*_\eta, \rho^*)$ by the same definition). Now let \overline{H} be the set of $f \in M^*_\eta \cap \kappa \mathbb{P}(\kappa)$ such that

$$\bigvee z \bigwedge i < \kappa(\overline{B}(z, f(i), q) \lor \overline{B}(z, \kappa \setminus f(i), q))$$

Then $\overline{H} = M^*_\eta \cap \kappa \mathbb{P}(\kappa)$ by the strongness of our definition. But if H has the same $\Sigma_1(M^*_\eta, \rho^*)$ definition in q', then we obviously have:

$$f \in H \longrightarrow \bigwedge i < \kappa'(f(i) \in G \lor \kappa \setminus f(i) \in G)$$

QED(Lemma 3.6.41)

(In the application we, of course, take $\rho^* = \hat{\rho}$, where $\hat{\rho}$ is defined as in Lemma 3.6.39).

We now turn to the proof of Lemma 3.6.40. Suppose not. Let η be the least counterexample. We again have fixed ν_η and $\nu'_\eta = \sigma_{\eta}(\nu_\eta)$, which gives us $\kappa_\eta, \kappa'_\eta, \tau_\eta, \tau'_\eta, \lambda_\eta, \lambda'_\eta, \xi = T(\eta + 1), M^*_\eta, M'^*_\eta$ and ρ^*.

(1) $\xi < \eta$.

Proof. Suppose not. Let $A \subseteq \mathbb{P}(\kappa)$ be strongly $\Sigma_1(M_\eta \vert \nu_\eta)$ in p and let $A' \subseteq \mathbb{P}(\kappa'_\eta)$ be $\Sigma_1(M_{\eta'} \vert \nu'_{\eta'})$ in $p' = \sigma_{\eta}(p)$ by the same definition.
Clearly τ_η is a cardinal in $M_\eta||\nu_1$, so $M^*_\eta = M_\eta||\mu$ for a $\mu \geq \nu_\eta$. Similarly $M''^*_\eta = M'_{\eta}||\mu'$ where:

$$\mu' = \begin{cases}
\sigma_\eta(\mu) & \text{if } \mu \in M_\eta \\
\text{ON} \cap M_\eta & \text{if not}
\end{cases}$$

Now suppose $\nu_\eta \in M^*_\eta$ (i.e. $\mu > \nu_\eta$). Then $A \in M^*_\eta$ and $A' \in M'_{\eta}$ where $\sigma_\eta(A) = A'$. Then A is trivially strongly $\Sigma_1(M^*_\eta)$ in the parameter A and A' is $\Sigma_1(M^*_\eta)$ in $A' = \sigma_\eta(A)$ by the same definition, where $A' \subset A'$. Contradiction!

Now let $M^*_0 = M_\eta||\nu_\eta$. Then $M''_0 = M'_0||\nu'_0$ and A' is $\Sigma_1(M''_0)$ definable in $p' = \sigma_{\eta'}(p)$ by the same definition. But A is strongly $\Sigma_1(M^*_\eta)$ in p, since $M^*_0 = M_\eta||\nu_\eta$. Contradiction!

QED(1)

(2) $\nu_\eta = \text{ON} \cap M_\eta$.

Proof. Suppose not. Then $\lambda_\xi > \tau_\eta$ is inaccessible in M_η. Hence $A \in J^{E_{M_\eta}}_{\lambda_\xi} = J^{E_{M_\eta}}_{\lambda_\xi} \subset M^*_\eta$. Similarly $A' \in J^{E_{M_\eta}}_{\lambda_\xi} = J^{E_{M_\eta}}_{\lambda_\xi} \subset M'_{\eta}|\rho_0^0$.

Then A is strongly $\Sigma_1(M^*_\eta)$ in $A' = \sigma_\xi(A)$ by the same definition. Contradiction!

QED(2)

(3) $\tau_\eta \geq \rho^1_{M_\eta}$.

Proof. Suppose not. Then $\tau_\eta < \rho^1_{M_\eta}$. Hence $A \in J^{E_{M_\eta}}_{\tau_\eta}$ since $A \subset J^{E_{M_\eta}}_{\tau_\eta}$. Hence $A \in J^{E_{M_\eta}}_{\lambda_\xi} = J^{E_{M_\eta}}_{\lambda_\xi} \subset M^*_\eta$. Hence A is strongly $\Sigma_1(M^*_\eta)$ in the parameter A. Now let A'' be $\Sigma_1(M''_\eta)$ in $p'' = \sigma_\eta(p)$ by the same definition. Then $A'' \subset A'$. But since

$$\sigma_\eta : M_\eta \longrightarrow \Sigma^*_{M'_\eta} \min (\rho''),$$

we have: $A'' = \sigma_\eta(A')$. But λ''_ξ is inaccessible in M''_η; hence $A'' \in J^{E_{M_\eta}}_{\lambda''_\xi} = J^{E_{M_\eta}}_{\lambda''_\xi} \subset M''_\eta$. Hence $A'' = \sigma_\xi(A)$ is $\Sigma_1(M''_\eta)$ in $A'' = \sigma_\xi(A)$ by the same definition. Contradiction!

QED(3)

(4) η is not a limit ordinal.

Proof. Suppose not. Pick $\bar{\eta} \prec \eta$ such that $\bar{\eta} = \mu + 1$. $\pi_{\bar{\eta}}$ is total on $M_{\bar{\eta}}, \kappa = \text{crit}(\pi_{\bar{\eta}}, \eta) > \lambda_\eta$ and $p \in \text{rng}(\pi_{\bar{\eta}})$. Then $\pi'_{\bar{\eta}}$ is total in $M'_{\bar{\eta}}, \kappa' = \text{crit}(\pi'_{\bar{\eta}}, \eta) > \lambda'_\eta$ and $p' \in \text{rng}(\pi'_{\bar{\eta}})$. where $p' = \sigma_\eta(p)$. Set $\overline{p} = \pi_{\bar{\eta}}^{-1}(p), \overline{p'} = \pi_{\bar{\eta}}^{-1}(p')$. Then $\sigma_\eta(\overline{p}) = p$. Then $M_{\bar{\eta}} =$
3.6. VERIFYING FULL ITERABILITY

\[\langle J^E_{\varphi \eta}, F \rangle, M'_{\varphi} \rightarrow \langle J^E_{\varphi \eta}, F \rangle \]. Extend the mirror \(\langle I \eta + 1, I' \eta + 1 \rangle \) to a potential mirror \(\langle \overline{T}, \overline{T}' \rangle \) of length \(\eta + 2 \), by setting: \(\overline{\nu_\varphi} = \overline{\nu}, \overline{\nu_\varphi} = \overline{\nu}' \).

Then \(\overline{M}_{\varphi} = M_\eta, \overline{M}'_{\varphi} = M_{\eta}' \), \(\xi = \overline{T}(\eta + 1) = T(\eta + 1) \) and \(\sigma_{\xi} [M'_{\varphi} : \overline{M}'_{\varphi} \rightarrow \Sigma, \overline{M}'_{\varphi} \min \rho^* \). It is easily seen that \(A \) is \(\Sigma_1(M_\eta) \) in \(\overline{\varphi}' \) by the same definition. By the minimality of \(\eta \) we conclude that there is \(q \in M_\eta = \overline{M}_{\varphi} \) such that \(A \) is strongly \(\Sigma_1(M_{\eta}') \) in \(q \) and \(A \) is \(\Sigma_1(M_{\eta}') \) in \(q' = \sigma_{\xi}(q) \) by the same definition. Contradiction!

QED(4)

Now let \(\eta = \mu + 1 \). Let \(\zeta = T(\mu + 1) \). Then \(\pi_{\zeta, \eta} : M_{\eta}' \rightarrow \Sigma, M_{\eta} \) and \(\kappa_{\mu} = \text{crit}(\pi_{\zeta, \eta}) \). Hence \(M_{\eta}' \) has the form \(\overline{M} = \langle J^E_{\varphi}, F \rangle \) where \(\overline{F} \neq \varnothing \).

Set: \(\overline{\pi} = \text{crit}(\overline{F}), \overline{\tau} = \tau(\overline{F}) \) = \(\pi^+ \overline{M}, \overline{\lambda} = \lambda(\overline{F}) = : \overline{\tau}(\overline{\pi}). \) Similarly \(M_{\eta}' \)

has the form \(\overline{M}' = \langle J^E_{\varphi}, F' \rangle \) and we define \(\overline{\tau}', \overline{\pi}', \overline{\lambda}' \) accordingly.

Set: \(\overline{\pi} = \pi_{\zeta, \eta}, \overline{\tau}' = \pi_{\zeta, \eta}' \)

5. \(\kappa_{\mu} > \overline{\pi}, \)

since otherwise \(\kappa_{\eta} = \pi(\overline{\pi}) \geq \pi(\kappa_{\mu}) = \lambda_{\mu} \geq \lambda_{\xi} > \kappa_{\eta}. \) Contradiction!

QED(5)

But then \(\kappa_{\mu} > \overline{\tau} \) and hence \(\overline{\tau} = \tau_{\eta}, \overline{\pi} = \kappa_{\eta}. \) Similarly \(\kappa_{\mu}' > \overline{\tau}' \) and \(\overline{\tau}' = \tau_{\eta}', \overline{\tau}' = \kappa_{\eta}'. \)

But then:

6. \(\kappa_{\mu} > \rho_{\overline{M}}^1, \)

since otherwise \(\rho_{\overline{M}}^1(M_{\eta}) \geq \pi(\kappa_{\mu}) = \lambda_{\mu} > \tau_{\eta}. \) Contradiction! by (3).

QED(6)

Hence, since \(\overline{\pi} : \overline{M} \rightarrow \overline{M}^*_{E_{\mu}, \eta}, M_{\eta}, \) we have:

7. \(\overline{\pi} : \overline{M} \rightarrow \overline{M}^*_{E_{\mu}, \eta} : M_{\eta} \) is a \(\Sigma_0 \) ultraproduct and \(\rho_{\overline{M}}^1 = \rho_{\overline{M}}^1_{M_{\eta}}. \)

Recall that \(A \) is strongly \(\Sigma_1(M_{\eta}) \) in \(p \) and \(A' \) is \(\Sigma_1(M_{\eta}') \) in \(p' = \sigma_{\eta}(p) \) by the same definition. By (7) we know:

8. \(p = \pi(f)(\alpha) \) where \(\alpha < \lambda_{\mu}, f \in \overline{M} \) and \(f : \kappa_{\mu} \rightarrow \overline{M}. \) Hence

9. \(p' = \pi'(f')(\alpha') \) where \(f' = \sigma_f(f), \alpha' = \sigma_{\mu}(\alpha). \)

Proof. \(p' = \sigma_{\eta}(\pi(f)(\alpha)) = (\sigma_{\eta}(\pi(f))(\sigma_{\eta}(\alpha)) = (\pi'(\sigma_{\xi}(f))(\sigma_{\mu}(\alpha)) \).

QED(9)

Note. \(\sigma_{\mu} \upharpoonright \lambda_{\mu} = \sigma_{\eta} \upharpoonright \lambda_{\mu} \) since \(\mu < \eta. \)

Let \(A \) be strongly \(\Sigma_1(M_{\eta}) \) in \(p \) as witnessed by \(\bigvee zB(z, X, p) \), where \(B \) is \(\Sigma_0(M_{\eta}) \). Set:

\[B_0(u, X, p) \leftrightarrow: \bigvee z \in uB(z, X, p). \]
Then A is strongly $\Sigma_1(M_\eta)$ in p as witnessed by $\bigvee u B_0(u, X, p)$. Note that for all u, u':

$$\text{(10)} \quad (B_0(u, X, p) \land u \subseteq u') \rightarrow B_0(u', X, p).$$

Let B_1 be $\Sigma_0(\overline{M})$ by the same definition as B_0 over M_η. Set $\overline{F} =$: $E_{\nu_\mu}^{M_\mu}, \overline{F}' = E_{\nu_\mu}'^{M_\mu}$. By the cofinality of the map $\overline{p}: \overline{M} \rightarrow M_\eta$ and (10) we have:

$$\text{(11)} \quad A X \leftrightarrow \bigvee u \in \overline{M} B_0(\pi(u), X, p) \leftrightarrow \bigvee u \in \overline{M} \{\gamma < \kappa_\mu : B_1(u, X, f(\gamma))\} \in \overline{F}_\alpha.$$

But \overline{F}_α is strongly $\Sigma_1(M_\mu||\nu_\mu)$ in α and \overline{F}_α' is $\Sigma_1(M_\mu'||\nu_\mu')$ in α' by the same definition.

Hence by the minimality of η we conclude:

$$\text{(12)} \quad \text{There is } q \in \overline{M} \text{ such that the following hold:}$$

(a) $G = \overline{F}_\alpha$ is strongly $\Sigma_1(\overline{M})$ in q.

(b) Let G' be $\Sigma_1(\overline{M}')$ in $q' = \sigma_\gamma(q)$ by the same definition. Then $G' \subset \overline{F}_\alpha'$, where $\alpha' = \sigma_\mu(\alpha)$.

Let: $\bigvee z G_0(z, X, q)$ witness the fact that G is strongly $\Sigma_1(\overline{M})$ in q. Then:

$$\text{(13)} \quad A X \leftrightarrow \bigvee u \in \overline{M} B_0(\pi(u), X, \pi(f)(\alpha)) \leftrightarrow \bigvee u \in \overline{M} \{\gamma < \kappa_\mu : B_1(u, X, f(\gamma))\} \in G \leftrightarrow \bigvee v \in \overline{M} \bigvee u \in v \bigvee v \in u \bigvee z \in v \quad (Y = \{\gamma < \kappa_\mu : B_1(u, X, f(\gamma))\} \wedge G_0(z, Y, q))$$

This has the form:

$$\text{(14)} \quad A X \leftrightarrow \bigvee v B_2(v, X, r),$$

where $r = \langle q, f \rangle$ and B_2 is $\Sigma_0(\overline{M})$.

For this B_2 we claim:

Let $w \subset F(\pi) \cap \overline{M} \setminus \overline{w} < \pi$ in \overline{M}.

Claim. There is $v \in \overline{M}$ such that

$$\bigwedge X \in w(B_2(v, X, r) \wedge B_2(v, \overline{w} \setminus X, r)).$$
For the sake of simplicity we can assume without lose of generality that \(X \in w \leftrightarrow (\pi \setminus M) \in \omega \). Fix \(u \in M \) such that

\[
\bigwedge X \in w(B_0(\pi(u), X, p) \wedge B_0(\pi(u), (\pi \setminus X), p))
\]

For \(X \in w \) set:

\[
\theta(X) =: \{ \gamma < \kappa_\mu : B_1(u, X, f(\gamma)) \}
\]

Then:

\[
\bigwedge x \in w(\theta(X) \subseteq G \lor \theta(\pi \setminus X) \subseteq G)
\]

By rudimentary closure, \(\langle \theta(X) : X \in w \rangle \in M \). Hence \(\theta^w \in M \) and \(\text{card}(\theta^w) \leq \pi < \kappa_\mu \) in \(M \). Thus there is \(z \in M \) such that:

\[
\bigwedge X \in w(G_0(z, \theta(X), q) \lor G_0(z, \kappa_\mu \setminus \theta(X), q))
\]

Claim. \(\bigwedge X \in w(G_0(z, \theta(X), q) \lor G_0(z, \kappa_\mu(N \setminus \pi, X), q)) \).

Proof. Suppose not. Then there is \(X \in w \) such that:

\[
\kappa_\mu \setminus \theta(X), \kappa_\mu \setminus \theta(N \setminus \pi, X) \subseteq G = F_\alpha.
\]

Hence \(\neg B_0(\pi(u), X, p) \) and \(\neg B_0(\pi(u), \pi \setminus X, p) \). Contradiction!

QED(claim)

Pick \(V \in M \) such that \(u \in v, z \in v \) and \(\theta^v \subseteq v \). Then:

\[
\bigwedge X \in w(B_2(v, X, r) \lor B_2(v, \pi \setminus X, r))
\]

QED(14)

(15) Let \(A'' \) be \(\Sigma(M) \) in \(r' = \sigma(\zeta)(r) \) by the same definition. Then \(A'' \subseteq A' \).

Proof. Let \(B'_0 \) be \(\Sigma_0(M') \) by the same definition as \(B_0 \) over \(M \). Let \(B'_1 \) be \(\Sigma_0(M) \) by the same definition. \(A''X \) says that there is \(u \in M \) with:

\[
\{ \gamma < \kappa'_\mu : B'_1(u, X, f'(\gamma)) \} \subseteq G'
\]

where \(f' = \sigma(\zeta)(f) \). But \(G' \subseteq F_\alpha' \). Hence \(B'_0(\pi(u), X, \pi'(f')(\alpha')) \), where \(p' = \pi'(f')(\alpha') \). Hence \(A'X \).

QED(15)

Now extend \(\langle I|\zeta + 1, I'(\zeta + 1) \rangle \) to a potential mirror pair \(\langle \hat{I}, \hat{I}' \rangle \) of length \(\zeta + 2 \) by setting: \(\nu_\zeta = \bar{\nu}, \nu'_\zeta = \bar{\nu}' \). Since \(\overline{\pi} = \kappa_\eta, \overline{\pi} = \tau_\eta \), we have:

\[
\xi = \hat{T}(\zeta + 1), \hat{M}_\zeta = M_\eta, \hat{M}_\zeta^* = M_\eta^*
\]

But \(\xi \leq \mu < \eta \). By the minimality of \(\eta \) and by (14), (15), we conclude that there is a parameter \(s \in M_\eta^* \) such that:
• A is strongly $\Sigma_1(M^*_n)$ in s.
• If A''' has the same $\Sigma_1(M^*_n)$ definition in $s'(\sigma(s))$, then $A''' \subset A''$ (hence $A''' \subset A'$).

This contradicts the fact that η was a counterexample.

QED (Lemma 3.6.40)

The argumentation used in the proof of Lemma 3.6.35, Lemma 3.6.36 and Lemma 3.6.37 actually establishes a more abstract result which is useful in other contexts:

Lemma 3.6.42. Assume that M_i, M'_i are amenable for $i < \mu$, where μ is a limit ordinal. Assume further that:

(a) $\pi_{i,j} : M_i \rightarrow \Sigma^* M_j$ (i.e. $j < \mu$), where the $\pi_{i,j}$ commute.
(b) $\pi'_{i,j} : M'_i \rightarrow \Sigma^* M'_j$ (i.e. $j < \mu$), where the $\pi'_{i,j}$ commute. Moreover:

$$\langle M'_i : i < \mu \rangle, \langle \pi'_{i,j} : i \leq j < \mu \rangle$$

has a transitivized direct limit M', $\langle \pi'_i : i < \mu \rangle$.
(c) $\sigma_i : M'_i \rightarrow \Sigma^* M'_j \min \rho$ (i.e. $j < \mu$).
(d) $\pi'_{i,j} \sigma_n \subset \rho_n \leq \pi'_{i,j}(\rho_n)$ for $i \leq j < \mu, n < \omega$. Then

$$\langle M_i : i < \mu \rangle, \langle \pi_{i,j} : i \leq j < \mu \rangle$$

has a transitivized direct limit M, $\langle \sigma_i : i < \mu \rangle$. There is then $\sigma : M \rightarrow M'$ defined by: $\sigma \pi_i = \pi' \sigma_i (i < \mu)$. Moreover:

1. There is a unique ρ such that $\sigma : M \rightarrow \Sigma^* M \min \rho$ and:

$$\pi'_{i,j} \rho_n \subset \rho_n \leq \pi'_{i,j}(\rho_n) \text{ for } i < \mu, n < \omega.$$
(2) There is $i < \mu$ such that $\rho_n = \pi'_j(\rho_n)$ for $i \leq j < \mu, n < \omega$.

3.6.4 The conclusion

In this section we show that every smoothly iterable premouse is fully iterable. We first define some auxiliary concepts:
3.6. VERIFYING FULL ITERABILITY

Definition 3.6.13. Let \(\langle I, I' \rangle \) be a mirror pair of length \(\eta \) with:

\[
I = \langle \langle M_i, \langle \nu_i \rangle, \langle \pi_{i,j} \rangle, T \rangle \rangle \quad \text{and} \quad I' = \langle \langle M'_i, \langle \nu'_i \rangle, \langle \pi'_{i,j} \rangle, T \rangle \rangle
\]

Let \(N \) be a premouse such that \(M'_0 = N||\mu \) for some \(\mu \leq \text{ON}_N \). As usual set: \(\nu'_i = \sigma_i(\nu_i) \). Let:

\[
I'' = \langle \langle N_i, \langle \nu''_i \rangle, \langle \pi''_{i,j} \rangle, T \rangle \rangle
\]

be an iteration on \(N \) of length \(\eta \). (\(T \) being the same as in \(I \)). Set:

\[
\mu_i = \begin{cases}
\pi''_{0,j}(\mu) & \text{if } \mu \in \text{dom}() \\
\text{ON}_N & \text{if not.}
\end{cases}
\]

We say that the mirror pair \(\langle I, I' \rangle \) is backed by \(I'' \) (or \(M \)-backed by \(I'' \)) iff:

\[
M'_i = N_i||\mu_i, \nu'_i = \nu''_i, \pi'_{i,j} = \pi''_{i,j} \mid M'_i \text{ for } i \leq T, j < \eta.
\]

Now suppose that \(\langle I, I' \rangle \) is a mirror pair of length \(\eta + 1 \) backed by \(I'' \). Extend \(I \) to a potential iteration \(I^+ \) of length \(\eta + 2 \) by appointing \(\nu_\eta \) such that \(E_{\nu_\eta} \neq \emptyset \) and \(\nu_\eta > \nu_i \) for \(i < \eta \). This determines \(\zeta = T(\eta + 1) \) and \(M^*_\eta \). If we then set: \(\nu'_\eta = \sigma_\eta(\nu_\eta) \), we have determined \(M^*_\eta \) and turned \(\langle I, I' \rangle \) into a potential mirror pair \(\langle I'^+, I'^+ \rangle \). But \(\nu'_\eta \) also extends \(I'' \) to a potential iteration \(I''^+ \) of length \(\eta + 2 \), determining \(N^*_\eta \). We then say that \(I'^+ \) potentially backs \(\langle I^+, I'^+ \rangle \).

Note that if \(M^*_\eta \in M_\xi \), then:

\[
M'^*_\eta = \sigma_\xi(M^*_\eta) = N^*_\eta.
\]

If, however, \(M^*_\eta = M_\eta \), then we have \(M'^*_\eta = M'_\zeta \), but if is still possible that \(M^*_\eta \in N^*_\eta \) and even that \(N^*_\eta \in N_\xi \). This can happen if \(M'_\xi = N_\xi||\mu_\xi \) and \(\mu_\xi \in N_\xi \). There might then be \(\gamma > \mu_\xi \) such that \(\tau'_\eta \) is a cardinal in \(N_\xi||\gamma \). Hence \(M'^*_\eta = M'_\xi \in N'_\xi||\gamma \subset N^*_\eta \). But if the largest such \(\gamma \) is an element of \(N_\xi \), we then have \(N^*_\eta \in N_\xi \).

Note. If \(I^+, I'^+, I''^+ \) are as above, we certainly have: \(E_{\nu'_\eta}^{M'_\eta} = E_{\nu'_\eta}^{N^*_\eta} \).

Using Lemma 3.6.38 we can then prove:

Lemma 3.6.43. Let \(I^+, I'^+, I''^+ \) be as above. Suppose that \(N^*_\eta \) is \(* \)-extendible by \(F' = E_{\nu'_\eta}^{N^*_\eta} \). Then \(\langle I^+, I'^+ \rangle \) extends to an actual mirror pair \(\langle \hat{I}, \hat{I}' \rangle \) with \(\hat{\nu}_\eta = \nu_\eta \) and \(I''^+ \) extends to an iteration \(\hat{I}'' \) which backs \(\langle \hat{I}, \hat{I}' \rangle \).
Proof. Set $\pi'' : N''_0 \rightarrow \ast_{F'} N'$. Then $\check{I}'' \check{I}''$ extends uniquely to \check{I}'' with: $N_{\eta+1} = N', \pi''_{\xi,\eta+1} = \pi''$.

Set: $\pi' = \pi''|_{M''_0^\ast}$. Then:

$$\pi' : M''_0^\ast \rightarrow \Sigma^* M'$$

where:

$$M' = \begin{cases}
\pi''(M''_0^\ast) & \text{if } M''_0^\ast \in N''_0^\ast \\
M' & \text{if not}
\end{cases}$$

Then $\text{crit}(\pi') = \kappa''$ and $F' = E_{\nu''_{\eta''}} M''_0^\ast$. Hence by Lemma 3.6.38, $\langle I, I' \rangle$ extends to a mirror $\langle \check{I}, \check{I}' \rangle$ of length $\eta + 2$ with: $M' = M''_{\eta+2}$. Obviously, \check{I}'' backs $\langle \check{I}, \check{I}' \rangle$.

QED (Lemma 3.6.43)

Note. If $M''_0^\ast \in N''_0^\ast$, then $\langle \pi', M' \rangle$ is not necessarily an ultraproduct of $\langle M''_0^\ast, F'' \rangle$.

Using Lemma 3.6.37 we also get:

Lemma 3.6.44. Let $\langle I, I' \rangle$ be a mirror pair of limit length η which is backed by I''. Let b be a well founded cofinal branch in I''. Then $\langle I, I' \rangle$ extend uniquely to $\langle \check{I}, \check{I}' \rangle$ of length $\eta + 1$ such that $b = \check{T}''\{\eta\}$. Moreover I'' extends uniquely to \check{I}'' which backs $\langle \check{I}, \check{I}' \rangle$.

The proof is straightforward and is left to the reader.

But by the same lemmata we get:

Lemma 3.6.45. Suppose that N is normally iterable. Let $M = N\upharpoonright \eta$. Then M is normally α-iterable.

Proof. Fix a successful iteration strategy S for N. We must define a strategy S^\ast for M. Let:

$$I = \langle \langle M_0 \rangle, \langle \nu_0 \rangle, \langle \pi_{ij} \rangle, T \rangle$$

be an iteration of M of length η. We first note:

Claim. There is at most one pair $\langle I', I'' \rangle$ such that $\langle I, I' \rangle$ is a mirror pair backed by I'' and I'' is S-conforming.

Proof. By induction on $\text{lh}(I)$. We leave this to the reader.
We now define an iteration strategy S^* for M. Let I be a normal iteration of M of limit length η. If there is no pair (I', I'') satisfying the above claim, then $S^*(I)$ is undefined. If not, we set:

$$S^*(I) =: S(I'')$$

$b = S^*(I)$ is then a cofinal well founded branch is I. (Clearly, if we extend each of I, I', I'' by the branch b, we obtain $\langle I, I', I'' \rangle$ satisfying the Claim). It is then obvious that if I is of length $\eta + 1$ and we pick $\nu _i (i < \eta)$ such that $E_{\nu _i}^{M_0} \neq \emptyset$, then I extends to an S^*-conforming iteration of length $\eta + 1$. Hence S^* is successful.

QED (Lemma 3.6.45)

This is fairly weak result which could have been obtained more cheaply. We now show, however, that our methods establish Theorem 3.6.1. We begin by defining the notion of a full mirror I' of a full iteration I.

Definition 3.6.14. Let $I = \langle I^i : i < \mu \rangle$ be a full iteration of M, inducing $M_i, \pi_{ij} (i \leq j < \mu)$. Let:

$$I^i = \langle \langle M^i_k, \nu^i_k, \pi^i_{kj}, T^i \rangle \rangle$$

By a full mirror of I we mean $I' = \langle I'^i : i < \mu \rangle$ such that

$$I'^i = \langle \langle M'^i_k, \pi'^i_{ij}, \pi'^i_{ij}, \rho'^i \rangle \rangle$$

is a mirror of I^i for $i < \mu$, and I' induces $\langle M'^i : i < \mu \rangle, \langle \pi'^i : i \leq j < \mu \rangle, \langle \pi_i : i < \mu \rangle, \langle \rho^i : i < \mu \rangle$ such that:

(a) $\sigma_i : M_i \rightarrow_{\Sigma^*} M'_i \min \rho^i$

(b) π'^i_{ij} is a partial structure preserving map from M'_i to M'_j. Moreover, they commute and $\pi'^i_{ij} = \text{id} \upharpoonright M'_i$. If $\alpha < \mu$ is a limit ordinal, then $M'_\alpha = \bigcup_{\alpha' < \alpha} \text{rg}(\pi'^i_{i, \alpha'})$.

(c) $\sigma_j \pi_{ij} = \pi'^i_{ij} \sigma_i$ for $i \leq j < \mu$.

(d) If $i \leq j < \mu$ and $[i, j]$ has no drop point in I, then:

$$\pi'^i_{ij} : M'_i \rightarrow_{\Sigma^*} M'_j \text{ and } \pi'^i_{ij} \upharpoonright \rho^i \subset \rho^i \leq \pi'^i_{ij} (\rho^i)$$

(e) $M'_0 = M_0 = M; \sigma_0 = \text{id} \upharpoonright M$, and $\rho^0 = \langle \rho^0_M : n < \omega \rangle$

(f) $M'_{i+1} = M'_i l_i$ where I^i has length $l_i + 1$. Moreover, $\sigma_{i+1} = \sigma_{i}^i$ and $\rho^{i+1} = \rho^{i,l_i} \text{ and } \pi_{i,i+1} = \pi_{i,l_i}^i$.

3.6. **VERIFYING FULL ITERABILITY** 277
We leave it to a reader to see that if \(\langle M_i : i < \mu \rangle, \langle \pi_{ij}^i : i \leq j < \mu \rangle, \langle \sigma_i : i < \mu \rangle \) are uniquely characterized by (a)-(f), given the triple \(\langle M, I, I' \rangle \). In particular if \(\alpha < \mu \) is a limit ordinal, then:

\[
M'_{\alpha}, \langle \pi_{\alpha i}^i : i < \alpha \rangle
\]

is the transitivized direct limit of

\[
\langle M'_i : i < \alpha \rangle, \langle \pi_{ij}^i : i \leq j < \alpha \rangle.
\]

(This makes sense by (d), since \(I \) has only finitely drop points \(i < \alpha \). \(\sigma_\alpha \) is then defined by: \(\sigma_\alpha \pi_{\alpha i} = \pi_{\alpha i}^i \sigma_i \). By the method of §3.6.2 it follows that there is only one \(\rho_\alpha^i \) satisfying our conditions and that, in fact, for sufficiently large \(i < \alpha \) we have:

\[
\rho_\alpha^i = \pi_{\alpha i}^i (\rho_\alpha^i) \quad \text{for } i < \omega.
\]

\(\langle I, I' \rangle \) is then called a full mirror pair.

We leave to the reader to verify:

Lemma 3.6.46. Let \(\langle I, I' \rangle \) be a full mirror pair of limit length \(\mu \). Suppose further, that, if \([i_0, \mu) \) has no drop point, then:

\[
\langle M'_i : i_0 \leq i < \mu \rangle, \langle \pi_{ij}^i : i_0 \leq i \leq j < \mu \rangle
\]

has a well founded limit. Then \(\langle I, I' \rangle \) extends uniquely to a mirror pair of length \(\mu + 1 \).

We recall that a full iteration \(I = \langle I^i : i < \mu \rangle \) is called smooth iff \(M_i = M_0^i \) for all \(i < \mu \). We define:

Definition 3.6.15. Let \(I = \langle I^i : i < \mu \rangle \) be a full iteration of \(M \). Let \(\langle I, I' \rangle \) be a full mirror pair. Let:

\[
I'' = \langle I''^i : i < \mu \rangle
\]

be a smooth iteration of \(M \) inducing

\[
\langle M''_i : i < \mu \rangle, \langle \pi''_{0ij} : i \leq j < \mu \rangle
\]

such that \(M''_0 < M''_i < M''_0^i \) and \(I''^i \) backs \(\langle I^i, I^i' \rangle \) for \(i < \mu \).

We then say that \(I'' \) backs \(\langle M, I, I' \rangle \).

It is obvious that, if \(I'' \) backs \(\langle M, I, I' \rangle \) then \(I'' \) is uniquely determined by \(\langle M, I, I' \rangle \). Building on the last lemma we get:
Lemma 3.6.47. Let \(\langle I, I' \rangle \) be a full mirror pair of limit length \(\mu \). Let \(I'' \) be a smooth iteration of \(M \) of length \(\mu + 1 \), such that \(I'' \mid \mu \) backs \(\langle M, I, I' \rangle \). Then \(\langle I, I' \rangle \) extends uniquely to a pair of length \(\mu + 1 \) which is backed by \(I'' \).

Proof. (Sketch). The extension is easily defined using Lemma 3.6.46 if we can show:

Claim. \(I \) has finitely many drop points.

We first note that if \(I^i \) has a truncation on the main branch, then so do \(I'^i \) and \(I''^i \). Hence there are only finitely many such \(I^i \). Now suppose that \(M^1_i \neq M_i \) for infinitely many \(i \). Let \(\langle i_n : n < \omega \rangle \) be a monotone sequence of such \(i \) such that \([i_n, i_{n+1}) \) has no drop. Then, letting \(M'_i = M''^i \mid \mu_n \) for \(n < \omega \), we have: \(\mu_{n+1} < \pi''_{i_n, i_{n+1}}(\mu_n) \).

Hence \(\pi''_{i_n, i_{n+1}}(\mu_n) < \pi''_{i_n, i}(\mu_n) \). Contradiction!

QED (Lemma 3.6.47)

Now let \(S \) be a successful smooth iteration strategy for \(M \). (Thus \(S \) is defined only on smooth iterations \(I = \langle I : i \leq \eta \rangle \) such that \(I^0 \) is a normal iteration of limit length. \(S(I) \), if defined, is then a well founded cofinal branch \(b \) in \(I^0 \). We call \(S \) successful for \(M \) iff every \(S \)-conforming smooth iteration \(I \) of \(M \) can be extended in an \(M \)-conforming manner. (This is defined precisely in §3.5.2.).

Claim. Let \(I \) be a full iteration of \(M \). There is at most one pair \(\langle I', I'' \rangle \) such that \(\langle I, I' \rangle \) is a full mirror pair, \(I'' \) backs \(\langle I, I' \rangle \) and is \(S \)-conforming.

Proof. By induction on \(\text{lh}(I) \) and for \(\text{lh}(I) = i + 1 \) by induction on \(\text{lh}(I') \). The details are left to the reader.

We now define a full iteration of length \(i + 1 \) where \(I^i \) is of limit length. If there exist \(\langle I', I'' \rangle \) as in the above claim, we set \(S^*(I) = S(I'') \). If not, then \(S^*(I) \) is undefined. It follows as before that an \(S^* \)-conforming full iteration of \(M \) can be properly extended in any permissible way to an \(S^* \)-conforming iteration. More precisely:

- If \(I \) is of length \(i + 1 \) and \(I^i \) is of limit length, then \(S^*(I) \) exists.
- If \(I \) is of length \(i + 1 \) and \(I^i \) is of successor length \(j + 1 \) and \(\nu > \nu^i_h \) for \(h < j \), where \(E^M_\nu \neq \emptyset \), then \(I \) extends to and \(S^* \)-conforming \(\hat{I} \), \(\hat{I}_i \) extends \(I \) and \(\nu_j = \nu \) in \(\hat{I} \).
- If \(I, i, j \) are as before and \(\hat{M} \triangleleft M^j_0 \), then \(I \) extends to an \(S^* \)-conforming \(\hat{I} \) of length \(i + 1 \) such that \(\hat{M} = M^i_0 + 1 \).
• If I is of limit length μ, then it extends uniquely to an S^*-conforming iteration of length $\mu + 1$.

QED(Theorem 3.6.1)

3.7 Smooth Iterability

In this section we prove Theorem 3.7.29. This will require a deep excursion into the combinatorics of normal iteration, using methods which were mainly developed by John Steel and Farmer Schluzenberg. We first answer a somewhat easier question: Let M be uniquely normally iterable and let M' be a normal iterate of M. Is M' normally iterable? Our basis tool in dealing with this is the reiteration! Given a normal iteration I' from M' to M'', we "reiterate" I, gradually turning it into a normal iteration I^* to an M^*. The process of reiteration mimics the iteration I'. This results in an embedding σ from M'' to M^*, thus showing that M'' is well-founded. However, σ is not necessarily Σ^*-preserving modulo pseudoprojecta. This means that, in order to finish the argument, we must draw on the theory of projecta developed in §3.6. The above result is proven in §3.7.3. The path from this result to Lemma 3.7.29 is still arduous, however. It is mainly due to Schluzenberg and employs his original and surprising notion of "inflation". In order to complete the argument (in §3.7.6) we again need recourse to pseudo projecta. The remaining subsections (§3.7.1, §3.7.2, §3.7.4, §3.7.5) can be read with no knowledge of pseudo projecta, and are of some interest in their own right.

We begin by describing a class of open actions on normal iteration called insertions. An insertion embeds or "inserts" a normal iteration into another one.

3.7.1 Insertions

Let I be a normal iteration of M of length η. Let I' be a normal iteration of the same M having length η'. An insertion of I into I' is a monotone function $e : \eta \to \eta'$ such that $E^M_{\epsilon_i}$ plays the same role in M_i as $E^M_{\epsilon'(i)}$ in $M'_{\epsilon'(i)}$. (This is far from exact, of course, but we will shortly give a proper definition).

In one form or other, insertions have long played a role in set theory. They are implicit in the observation that iterating a single normal measure produces a sequence of indiscernibles. This situation typically arises when we have a
3.7. SMOOTH ITERABILITY

transitive ZFC^- model M and a $\kappa \in M$ which is measurable in M with a normal ultrafilter $U \in M$. Assume that we can iterate M by U, getting:

$$M_i, u_i, U_i, \pi_{i,j} : M_i \prec M_j \ (i \leq j < \infty),$$

where the maps $\pi_{i,j}$ are commutative and continuous at limits, $\kappa_i = \pi_0(\kappa), U_i = \pi_0(U)$ and:

$$\pi_{i,i+1} : M_i \rightarrow_U M_{i+1}$$

Now let $e : \eta \rightarrow \infty$ be any monotone function on an ordinal η. e is then an insertion, inducing a sequence $\langle \sigma_i : i < \eta \rangle$ of insertion maps such that $\sigma_i : M_i \prec M_{e(i)}$. To define these maps we first introduce an auxiliary function \hat{e} defined by:

$$\hat{e}(i) = \inf \{e(h) : h < i\}$$

Thus \hat{e} is a normal function and $\hat{e}(0) = 0$.

By induction on $i < \eta$ we then define maps $\tilde{\sigma}_i, \sigma_i$ as follows: We verify inductively that:

$$\tilde{\sigma}_i : M_i \prec M_{\hat{e}(i)} \text{ and } \tilde{\sigma}_i \pi_{h,i} = \pi_{\hat{e}(h),\hat{e}(i)} \tilde{\sigma}_h$$

Since $\hat{e}(0) = 0$, we set: $\tilde{\sigma}_0 = \text{id} | M$. If σ_i is given, we know that $\hat{e}(i) \leq e(i)$ and hence define: $\tilde{\sigma}_i = \pi_{\hat{e}(i),e(i)} \tilde{\sigma}_i$. Now let $i+1 < \eta$. Then $\hat{e}(i+1) = e(i)+1$. We know that each element of M_{i+1} has the form $\pi_{i,i+1}(f)(\kappa_i)$. Hence we can define $\tilde{\sigma}_{i+1}$ by:

$$\tilde{\sigma}_{i+1}(\pi_{i,i+1}(f)(\kappa_i)) = \pi_{\hat{e}(i+1),\hat{e}(i)}(\sigma_i(f))(\sigma_i(\kappa_i)).$$

Finally, if $\lambda < \eta$ is a limit, then $\hat{e}(\lambda) = \text{lub}\{e(i) : i < \lambda\}$, and we can define $\tilde{\sigma}_{\lambda}$ by:

$$\tilde{\sigma}_{\lambda} \pi_{h,\lambda} = \pi_{\hat{e}(h),\hat{e}(\lambda)} \tilde{\sigma}_h \text{ for } h < \lambda$$

This completes the construction. The fact that $\langle u_h : h < i \rangle$ is a sequence of indiscernibles for M_i is proven by using insertions defined on finite η.

This was a simple example, but insertions continue to play a role in the far more complex theory of mouse iterations. We define the appropriate notion of insertion as follows:

Let:

$$I = \langle (M_i), \langle \nu_i \rangle, \langle \pi_{ij} \rangle, T \rangle$$

be a normal iteration of M of length η. Let

$$I' = \langle (M'_i), \langle \nu'_i \rangle, \langle \pi'_{ij} \rangle, T' \rangle$$

be a normal iteration of the same M of length η'. Suppose that

$$e : \eta \rightarrow \eta'$$
is monotone. Define an auxiliary function \hat{e} by:

$$\hat{e}(i) = \text{lub}\{e(h) : h < i\} \text{ for } i < \eta$$

Then \hat{e} is a normal function and $\hat{e}(0) = 0$. We call e an *insertion* of I into I' iff there is a sequence $\langle \hat{\sigma}_i : i < \eta \rangle$ of insertion maps with the following properties:

(a) $\hat{\sigma}_i : M_i \rightarrow \Sigma^* M_{\hat{e}(i)}, \hat{\sigma}_0 = \text{id}$.

(b) $i \leq_T j \iff \hat{e}(i) \leq_{T'} \hat{e}(j)$. Moreover:

$$\hat{\sigma}_j \pi_{ij} = \pi'_{\hat{e}(i), \hat{e}(j)} \circ \hat{\sigma}_i, \text{ for } i \leq_T j.$$

(c) $\hat{e}(i) \leq_{T'} e(j)$ for $i < \eta'$.

Before continuing the definition, we introduce some notation. Set:

$$\pi = \pi'_{\hat{e}(i), e(i)}, \sigma_i = \pi_i \hat{\sigma}_i \text{ for } i < \eta$$

We further require

(d) $\sigma_i(\nu_i) = \nu'_{e(i)}$. More precisely, one of the following holds:

- $\nu_i \in M_i \land \hat{\sigma}_i(\nu_i) \in \text{dom}(\pi_i) \land \nu'_{e(i)} = \sigma_i(\nu_i)$
- $\nu_i \in M_i \land \text{dom}(\pi_i) = M'_{\hat{e}(i)} \land \nu'_{e(i)} = \text{ON} \cap M'_{e(i)}$

(e) $\hat{\sigma}_i \upharpoonright \lambda_l = \sigma_i$ for $l < i < \eta$.

This completes the definition.

Note. The insertion maps $\hat{\sigma}_i, \sigma_i$ are uniquely determined by e, but we have yet to prove this fact.

Note. The map $\hat{\sigma}_i$ is total on M_i, but σ_i could be partial.

Note. e, \hat{e} are order preserving, and \hat{e} takes $<_T$ to $<_T'$. On the other hand, $i <_T j$ does not imply $e_i <_T e_j$, although we have:

$$i <_T j \rightarrow \hat{e}_i <_T e_j \text{ and } e_i <_T e_j \rightarrow i <_T j.$$

Definition 3.7.1. The *identical insertion* is $\text{id} \upharpoonright \eta$, with $\hat{\sigma}_i = \sigma_i = \text{id} \upharpoonright M_i$ for $i < \eta$.

We shall sometimes write e_i, \hat{e}_i for $e(i), \hat{e}(i)$.
Note. We use here the familiar abbreviation:

\[\kappa_i = \text{crit}(E_{\kappa_i}^M), \lambda_i = E_{\nu_i}^M(\kappa_i), \tau_i = \kappa_i + J_{\kappa_i}^E \]

for \(i < \eta \). Similarly \(\kappa'_i, \lambda'_i, \tau'_i \) for \(i < \eta'_i \).

Note. By (e) it follows that for \(d < i \): \(\sigma_i | J_{\lambda_i}^E = \sigma_i | J_{\lambda_i}^E' \) since \(J_{\lambda_i}^E = J_{\lambda_i}^E' \) and \(J_{\lambda_i}^E' = J_{\lambda_i}^E \) where \(\lambda = \sup \sigma_i^+ \lambda_i \), since \(e_i < \hat{e}_i \) and \(\lambda_i < \lambda_i' \).

Lemma 3.7.1. The following hold:

1. \(\sigma_i | \lambda_h = \sigma_h | \lambda_h \) for \(h \leq i \leq \eta \). (Hence \(\sigma_i | J_{\lambda_i}^E = \sigma_h | J_{\lambda_h}^E \).

 Proof.

 \[\text{crit}(\pi_i) \geq \lambda'_{\kappa_i} = \sigma_h(\lambda_h) \subset \sigma_h | \lambda_h \]

 Hence \(\sigma_h | \lambda_h = \pi_i \hat{\sigma}_i | \lambda_h = \pi_i \sigma_h | \lambda_h = \sigma_h | \lambda_h \). QED(1)

2. Let \(\xi = T(i + 1) \). Then \(\kappa'_i < \lambda'_\xi \).

 Proof. \(\kappa'_i = \sigma_i(\kappa_i) = \sigma_\xi(\kappa_i) < \sigma_\xi(\lambda_\xi) = \lambda'_\xi \). QED(2)

3. Let \(\xi = T(i + 1), \xi' = T'(e_i + 1) \). Then \(\hat{e}_\xi \leq T' \xi' \leq \epsilon_\xi \).

 Proof. \(\xi' \leq \epsilon_\xi \) by (2). But \(\hat{e}_\xi < T' \hat{e}_{i+1} = e_i + 1 \). Hence \(\hat{e}_\xi \leq T' \xi' \). QED(3)

The full determination of \(T'(e_i + 1) \) is as follows:

4. Let \(\xi = T(i + 1) \). Let \(j \) be the least such that

 \[\hat{e}_\xi \leq T' j \leq T' e_\xi \text{ and } \pi'_{j, \epsilon_\xi} \kappa'_{e_i} = \text{id} \]

 Then \(j = T'(e_i + 1) \).

 Proof.

 Claim. \(\kappa'_i < \lambda'_j \).

 Suppose not. Then \(j < e_\xi \). Set: \(\kappa = \text{crit}(\pi'_{j, \epsilon_\xi}) \). Then \(\kappa'_i < \kappa \), since otherwise:

 \[\pi'_{j, \epsilon_\xi}(\kappa'_i) \geq \pi'_{j, \epsilon_\xi}(\kappa) > \kappa \geq \kappa'_i \]

 But \(\kappa < \lambda'_j \). Contradiction!

 Claim. \(\kappa'_i \geq \lambda_h \) for \(h < j \).

 If \(j = \hat{e}_\xi \), then \(j = T(e_i + 1) \) by (3) and Claim 1. The conclusion is then obvious. Now let \(j > \hat{e}_\xi \). Then \(j = \text{lub} A \), where:

 \[A = \{ h : \hat{e}_\xi < T' h + 1 \leq T' j \} \]

 Hence it suffices to show:
CHAPTER 3. MICE

Claim. $\kappa'_{e_i} \geq \lambda'_{h}$ for $h \in A$.

Suppose not. Let $h \in A$ be the least counterexample. Let $\tau = T'(h+1)$. Then $\hat{e}_\xi \leq T' \tau$. Hence

$$\text{rng}(\pi'_{e_i,h+1}) \subset \text{rng}(\pi'_{\tau,h+1})$$

But:

$$\kappa'_{e_i} \in \text{rng}(\sigma_i) \subset \text{rng}(\pi'_{h+1,e_i})$$

where $\kappa'_{e_i} \leq \lambda'_{h} \leq \text{crit}(\pi'_{h+1,e_i})$. Hence $\kappa'_{e_i} < \text{crit}(\pi'_{h+1,e_i})$. Thus

$$\kappa'_{e_i} \in \text{rng}(\pi'_{\hat{e}_i,h+1}) \subset \text{rng}(\pi'_{\tau,h+1}).$$

But then $\kappa'_{e_i} \notin [\kappa'_{h}, \lambda'_{h})$, since:

$$\text{rng}(\pi'_{\tau,h+1}) \cap [\kappa'_{h}, \lambda'_{h}) = \emptyset$$

Since $\kappa'_{e_i} \leq \lambda'_{h}$, we conclude that $\kappa'_{e_i} < \kappa'_{h}$. Hence $\pi'_{\tau,\hat{e}_i} | (\kappa'_{e_i} + 1) = \text{id}$. This is a contradiction, since $\tau < j$.

QED(4)

Definition 3.7.2. Let $\xi = T(i + 1)$. We set:

$$e^*_i = T'(e_i + 1), \pi^*_i = \pi'_{e_i, e^*_i}, \sigma^*_i = \pi^*_i \hat{\sigma}_\xi$$

The following are then obvious:

(5) $M'^{\mu}_{e_i} = M'^{\mu}_{e^*_i} | | \mu$, where μ is maximal such that τ'_{e_i} is a cardinal in $M'^{\mu}_{e^*_i}$.

(6) $\sigma^*_i | M'^*_{i} : M'^*_{i} \longrightarrow_{\Sigma^*} M'^*_{e^*_i}$.

Note. If $M'^*_{i} = M', \tau_i$ is a cardinal in M'_ξ. Hence $\hat{\sigma}_\xi (\tau_i)$ is a cardinal in $M'_{e^*_i}$ and $\tau'_{e_i} = \pi^*_i \hat{\sigma}_\xi (\tau_i)$ is a cardinal in $M'^{\mu}_{e^*_i} = M'^{\mu}_{e^*_i}$. If $M'^*_{i} \in M', \xi \in M'_{\xi}$ and $\pi^*_i | \hat{\sigma}_\xi (M'^*_{i}) : \hat{\sigma}_\xi (M'^*_{i}) \longrightarrow_{\Sigma^*} M'^{\mu}_{e^*_i}$.

(However, we cannot conclude that $M'^{\mu}_{e^*_i} \in M'^*_{i}$). Hence:

(7) Let $\xi = T(i + 1)$. $\pi_{\xi,i+1}$ is a total function on M'_ξ iff $\pi'_{e^*_i, e^*_i+1}$ is total on M'_ξ.

Hence, there is a drop point in $(\alpha, \beta)_T$ iff there is a drop point in $(\hat{e}_\alpha, e_{\beta})_{T'}$.

(8) $\hat{\sigma}_{i+1} \pi_{\xi,i+1} = \pi'_{e^*_i, e^*_i+1} \sigma^*_i$, where $\xi = T(i + 1)$.

Proof. $\hat{\sigma}_{i+1} \pi_{\xi,i+1} = \pi'_{e_i, e_i+1} \hat{\sigma}_\xi = \pi'_{e^*_i, e^*_i+1} \pi^*_i \hat{\sigma}_\xi = \pi^*_{e^*_i, e^*_i+1} \sigma^*_i$. QED(8)
3.7. SMOOTH ITERABILITY

(9) \(\tilde{\sigma}(X) = \sigma^*_i(X) \) for \(X \in \mathbb{P}(\kappa_i) \cap M^*_i \).

Proof. \(\sigma_i(X) = \sigma_\xi(X) \) where \(\xi = T(i + 1) \), since \(X \in J^{\mathbb{P}^M_\kappa} \) and
\(\sigma_i \upharpoonright \lambda_\xi = \sigma_\xi \upharpoonright \lambda_\xi \) by (1). But \(\sigma_\xi(X) = \pi^\prime_{e_\xi, e_\xi} \tilde{\sigma}_\xi(X) = \pi^\prime_{e_\xi, e_\xi} \sigma^*_i(X) \), since
\(\pi^\prime_{e_\xi, e_\xi} \upharpoonright \kappa_{e_\xi} + 1 = \text{id} \).

QED(9)

Using notation from §3.2, then we have:

(10) \(\langle \sigma^*_i \upharpoonright M^*_i, \sigma_i \upharpoonright \lambda_i \rangle : \langle M^*_i, F \rangle \longrightarrow \langle M'^*_i, F' \rangle \) where \(F = E^M_i, i = E^M_i \).

Proof. \(\alpha \in F(X) \iff \sigma_i(\alpha) \in \sigma_i(F(X)) = F'(\sigma^*_i(X)) \) by (6) and (10).

QED(10)

But we are now, at last, in a position to prove:

(11) The sequence \(\langle \tilde{\sigma}_i : i < \eta \rangle \) of insertion maps is uniquely determined by \(e \). (Hence so is \(\langle \sigma_i : i < \eta \rangle \), since \(\sigma_i = \pi^\prime_{e_i, e_i} \circ \tilde{\sigma}_i \).

Proof. Suppose not. Let \(\langle \tilde{\sigma}'_i : i < \eta \rangle \) be a second such sequence. By induction on \(i \) we prove that \(\tilde{\sigma}_i = \sigma'_i \). For \(i = 0 \) this is immediate. Now let \(\tilde{\sigma}_i = \sigma'_i \). We must show that \(\tilde{\sigma}_{i+1} \) is unique. Let \(n \leq \omega \) be maximal such that \(\kappa_i < \rho^*_n \). By Lemma 3.2.19 of §3.2, we know that there is at most one \(\sigma \) such that

\[
\sigma : M_i \longrightarrow \tau^\prime_{(n)} M'_i, i = \pi^\prime_{e_i, e_i} \sigma^*_i, \sigma \upharpoonright \lambda_i = \sigma_i \upharpoonright \lambda_i
\]

Hence \(\tilde{\sigma}_{i+1} = \sigma'_{i+1} = \sigma \) by (8).

Now let \(\mu < \eta \) be a limit ordinal. Then \(\tilde{\sigma}_\mu = \sigma^*_\mu \) is the unique \(\sigma : M_\mu \longrightarrow M'^*_\mu \) defined by: \(\sigma \pi_{i, \mu} = \pi^\prime_{e_i, e_\mu} \tilde{\sigma}_i \) for \(i < T' \).

QED(11)

We also note:

(12) Let \(\xi = T(i + 1) \). Then \(\pi^\prime_{e_\xi, e_\xi} \upharpoonright (\tau^\prime_{e_{i+1}}) = \text{id} \).

Proof. If \(e_\xi = e_\xi \), this is immediate. Now let \(e_\xi < e_\xi \). Set \(\pi^\prime = \pi^\prime_{e_\xi, e_\xi} \).

Then \(e_\xi < \hat{\kappa} = \text{crit}(\pi^\prime) \) where \(\hat{\kappa} \) is indiscernible in \(M'_e \). Hence \(\tau^\prime_{e_{i+1}} < (\hat{\kappa}^\prime)^{M^*_e} \).

(13) \(\tilde{\sigma}_{i+1} (\nu_i) = \nu'_i \).

Proof. Let \(\xi = T(i + 1) \). Then:
\[\dot{\sigma}_{i+1}(\nu_i) = \dot{\sigma}_{i+1} \pi_{i+1}(\tau_i) = \pi'_{\epsilon_i', e_i+1} \sigma^*(\tau_i)
\]
\[= \pi'_{\epsilon_i', e_i+1} \sigma^*(\tau_{\epsilon_i}) = \nu'_{e_i} \]

since \(\tau'_{\epsilon_i} = \sigma_i(\tau_i) = \sigma_i^*(\tau_i)\). QED(13)

Hence:

(14) \(j \geq i + 1 \rightarrow \sigma_j(\nu_i) \geq \nu'_{e_i}\).

Proof. By (13) it holds for \(j = i + 1\). Now let \(j > i + 1\). Then \(\kappa_i < \lambda_{i+1}\) and

\[\dot{\sigma}_j(\nu_j) = \sigma_{i+1}(\nu_i) \geq \sigma_i(\nu_i) = \nu'_{e_i}.\]

QED(14)

We also note:

(15) \(e_i <_T e_j \rightarrow i \leq_T j\).

Proof. Since \(e_i < \dot{e}_j\) and \(\dot{e}_j \leq_T e_j\), we conclude:

\[\dot{e}_i \leq_T e_i <_T \dot{e}_j \leq_T e_j; \text{ hence } i <_T j.\]

QED(15)

Extending insertion

Given an insertion \(e\) of \(I\) into \(I'\), when can we turn it into an \(e'\) which inserts an extension \(\bar{I}\) of \(I\) into an extension \(\bar{I}'\) of \(I'\)? Some things are obvious:

(16) If \(e\) inserts \(I\) into \(I'\) and \(I''\) extends \(I'\), then \(e\) inserts \(I\) into \(I''\).

(17) If \(e\) inserts \(I\) of length \(\nu + 1\) into \(I'\) and \(e(\nu) \leq_T j\) in \(I'\), there is a unique \(e'\) inserting \(I\) into \(I'\) such that \(e' \upharpoonright \nu + 1 = e \upharpoonright \nu + 1\) and \(e'(\nu) = j\).

(18) Let \(I\) be of limit length \(\nu\) and let \(e\) insert \(I\) into \(I'\) of length \(\nu' = \text{lub } e\uparrow\nu\).
Suppose that \(b'\) is a cofinal well founded branch in \(I'\) and \(b = e^{-1}b'\) is cofinal in \(I\). Extend \(I'\) into \(\bar{I}\) of length \(\eta + 1\) by setting \(T''\{\eta\} = b\). Extend \(I'\) to \(\bar{I}'\) of length \(\eta' + 1\) by: \(T''\{\eta\} = b'\). Then \(e\) extends uniquely to an insertion \(\bar{e}\) of \(I\) into \(I'\) with \(\bar{e}(\eta) = \eta'\).

The proof is left to the reader.

These facts are obvious. The following lemma seems equally obvious, but its proof is rather arduous:
3.7. SMOOTH ITERABILITY

Lemma 3.7.2. Let \(e \) insert \(I \) into \(I^\prime \) where \(I \) is of length \(\nu + 1 \) and \(I^\prime \) is of length \(\eta^\prime + 1 \), where \(\eta^\prime = e(\eta) \). Extend \(I \) to a potential iteration of length \(\eta + 2 \) by appointing \(\nu_\eta \) such that \(\nu_\eta > \nu_i \) for \(i < \eta \). Suppose \(\sigma_\eta(\nu_\eta) > \nu_j^\prime \) for all \(j < \eta^\prime \). Then we can extend \(I^\prime \) to a potential iteration of length \(\eta^\prime + 2 \) by appointing: \(\nu'_\eta = \sigma_\eta(\nu_\eta) \). This determines \(\xi = T(\eta + 1) \), \(e'_\eta = T'(\eta^\prime + 1) \) and \(M^*_i, M^*_{e_i} \). If \(M^*_{e_i} \) is \(* \)-extendible by \(F = E^M_{\eta^\prime} \), then \(e \) extends uniquely to an \(\tilde{e} \) inserting \(\tilde{I} \) into \(\tilde{I}^\prime \), where \(\tilde{I}^\prime \) is an actual extension of \(I \) by \(\nu_\eta \) and \(\tilde{I}^\prime \) is an actual extension of \(I^\prime \) by \(\nu'_\eta \).

Using Lemma 3.2.23 of §3.2 we can derive Lemma 3.7.2 from:

Lemma 3.7.3. Let \(e, I, I^\prime, \nu_\eta, \nu_{e_\eta}, M^*_\eta, M^*_{e_\eta}, F, F^\prime \) be as above. Then

\[
\langle \sigma^*_{\eta}, \sigma_{\eta} \mid \lambda_{\eta} \rangle : \langle M^*_{\eta}, F \rangle \longrightarrow^* \langle M^*_{e_\eta}, F^\prime \rangle
\]

We first show that Lemma 3.7.3 implies Lemma 3.7.2. Since \(M^*_{e_\eta} \) is \(* \)-extendible by \(F^\prime \) we can extend \(I^\prime \) by setting:

\[
\hat{\pi}_{e_\eta, \nu_\eta + 1}^* : M^*_{\sigma_{\eta}} \longrightarrow^* F^\prime M^*_{e_\eta + 1}
\]

It follows that \(F \) is close to \(M^*_{e_\eta} \); hence we can set:

\[
\hat{\pi}_{\xi, \eta + 1}^* : M^*_{\eta} \longrightarrow^* M^*_{\eta + 1}
\]

But by Lemma 3.2.23 there is a unique

\[
\sigma : M_{\eta + 1} \longrightarrow^* M^*_{e_\eta + 1}
\]

such that \(\sigma \pi_{\xi, \eta + 1} = \pi_{e^*_\eta, \nu_{e_\eta + 1}} \sigma_{\eta} \) and \(\sigma \mid \lambda_{\eta} = \sigma_{\eta} \mid \lambda_{\eta} \). Extend \(e \) to \(\tilde{e} \) by:

\[
\tilde{e}(\eta + 1) = e_\eta + 1.
\]

The \(\tilde{e} \) satisfies the insertion axioms with \(\sigma_{\eta + 1} = \sigma \).

QED(Lemma 3.7.2)

We derive Lemma 3.7.3 from an even stronger lemma:

Lemma 3.7.4. Let \(I, I^\prime \) be as above. Let \(A \subset I_{\eta} \) be \(\Sigma_1(M_{\eta} \mid \nu_{\eta}) \) in a parameter \(p \) and let \(A^\prime \subset I_{\eta^\prime}^\prime \) be \(\Sigma_1(M_{e_{\eta}} \mid \nu_{e_{\eta}}^\prime) \) in \(p^\prime = \sigma_{\eta}(p) \) by the same definition. Then \(A \) is \(\Sigma_1(M^*_{\eta}) \) in a parameter \(q \) and \(A^\prime \) is \(\Sigma_1(M^*_{e_{\eta}}) \) in \(q^\prime = \sigma_{\eta}^*(q) \) by the same definition.

We first show that this implies Lemma 3.7.3. Repeating the proof of Lemma 3.7.1(7), we have:

\[
\langle \sigma_{\eta} \mid M^*_{\eta}, \tilde{\sigma}_{\eta} \mid \lambda_{\eta} \rangle : \langle M^*_{\eta}, F \rangle \longrightarrow \langle M^*_{e_{\eta}}, F^\prime \rangle
\]
where $F = E_{v_\eta}^{M_\eta}$, $F' = E_{v'_{\eta}}^{M'_{\eta}}$.

We can code F_α by an $\tilde{F} \subset \tau_\eta$ such that F_α is rudimentary in \tilde{F} and \tilde{F} is $\Sigma_1(M_\eta||\nu_\eta)$ in α, τ_η. Coding F'_α, the same way by \tilde{F}', we find that \tilde{F}' is $\Sigma_1(M_{\eta'}||\nu'_{\eta})$ in α', τ'_{η}. Hence by Lemma 3.7.4, $\tilde{F}' = \Sigma_1(M'_{\eta'})$ in q and $\tilde{F}' = \Sigma_1(M'_{\eta})$ in $q' = \sigma_{\eta'}(q)$ by the same definition. Hence F_α is $\Sigma_1(M_{\eta})$ in q and F'_α is $\Sigma_1(M'_{\eta})$ in $q' = \sigma_{\eta'}(q)$ by the same definition.

QED(Lemma 3.7.3)

Note. We are in virtually the same situation as in §3.2, where we needed to prove the extendability of the triples we called *duplications*. Lemma 3.7.2 corresponds to the earlier Lemma 3.4.15 and Lemma 3.7.4 corresponds to Lemma 3.4.18.

We now turn to the proof of Lemma 3.7.4. Its proof will be patterned on that of Lemma 3.4.18, which, in turns, we patterned on the proof of Lemma 3.4.4.

Our proof will be rather fuller than that of Lemma 3.4.18, however, since we will face some new challengers.

Suppose Lemma 3.7.4 to be false. Let I, I' be a counterexample with $\eta = \text{lh}(I)$ chosen minimally. We derive a contradiction.

(1) $\rho_{M_\eta||\nu_\eta} \leq \tau_\eta$

Proof. Suppose not. Set $\rho = \rho_{M_\eta||\nu_\eta}$, $\rho' = \rho_{M_{\eta'}||\nu'_{\eta'}}$. Then $A \in J_{\rho}^{E_{M_\eta}}, A' \in J_{\rho'}^{E_{M'_{\eta'}}}$.

Moreover, "$x = A^\omega$ is $\Sigma_0^{(1)}(M'_\eta||\nu')$ in p, τ_η and "$x = A^\omega$ is $\Sigma_0^{(1)}(M_\eta||\nu_\eta)$ in p', τ'_{η}" by the same definition. Hence $\sigma_\eta(A) = A'$. Since $A \in J_{\rho_{M_\eta}}^{E_{M_\eta}}$

$\sigma_\eta \upharpoonright \lambda_\xi = \sigma_\xi \upharpoonright \lambda_\xi$ and $M_\xi||\lambda_\xi = M_{\xi'}||\lambda_{\xi'}$, we have: $\sigma_\xi(A) = \sigma_\eta(A')$.

But $\sigma_\eta(A) = \pi_{e'_{\eta}, e_{\eta}} \sigma_\eta(A')$ where $\pi_{e'_{\eta}, e_{\eta}} \upharpoonright \tau'_{\eta} + 1 = \text{id}$ by (10). Hence $\sigma_\eta(A') = A'$. Hence A is $\Sigma_1(M_{\eta'}^*)$ in the parameter A, and A' is $\Sigma_1(M_{\eta}^*)$ in the parameter $A' = \sigma_{\eta'}(A)$ by the same definition. Contradiction! since η was a counterexample.

(2) $\xi > \eta$.

Proof. Suppose not. Then A is $\Sigma_1(M_\eta||\nu_\eta)$ in p and A' is $\Sigma_1(M_{\eta'}||\nu'_{\eta'})$ in $p' = \sigma_\eta(p)$ by the same definition. But $\sigma_\eta = \pi_{e_{\eta}, e_{\eta}} \sigma_{\eta_{\eta}}$, since $\xi = \eta$ and:

$$\pi_{e'_{\eta}, e_{\eta}} \upharpoonright \tau'_{e_{\eta} + 1} = \text{id}$$
3.7. SMOOTH ITERABILITY

Hence A' is $\Sigma_1(M_{e_0}^*||\nu^*)$ in $\sigma^*_\eta(p)$ by the same definition, where $\nu^* = \sigma^*_\eta(\nu_\eta)$. But $M_\eta||\nu_\eta = M^*_\eta$ since $\rho^1_{M_{e_0}^*||\nu^*} \leq \tau_{e_0}$. But $\rho^1_{M_{e_0}^*||\nu^*} \leq \tau'_{e_0}$, since $\sigma^*_\eta \upharpoonright M^*_\eta$ takes M^*_η in a Σ^* way to $M_{e_0}^*||\nu^* \wedge x^1 \neq \tau_\eta$ hold in M^*_η.

But then $M_{e_0}^* = M_{e_0}^*||\nu^*$. Hence A is $\Sigma_1(M_{e_0}^*)$ in p and A' is $\Sigma_1(M_{e_0}^*)$ in $\sigma^*_\eta(p)$ by the same definition. Contradiction! QED(2)

Since $\xi > \eta$ and $\tau'_{e_0} = \sigma^*_\xi(\tau_{e_0})$, we have:

$$\tau'_{e_0} = \sigma^*_\xi(\tau_{e_0}) = \pi_\eta \sigma^*_\xi(\tau_\eta) = \pi_\eta \sigma^*_\xi(\tau_{e_0})$$

Hence $\text{crit}(\pi_\eta) > \tau'_{e_0}$ if $\hat{e}_{\eta} \neq e_{\eta'}$. Hence A' is $\Sigma_1(M_{e_0}||\nu_\eta)$ in p and A' is $\Sigma_1(M_{e_0}^*||\nu_\eta)$ in $\sigma^*_\eta(p)$ by the same definition. But then we can set $I'' = I'|e_\eta + 1$ and define e' inserting I into I'' by:

$$e_h = \begin{cases} e_h & \text{ if } h < \eta \\
\hat{e}_\eta & \text{ if } h = \eta \end{cases}$$

(e', η, I, I'') is obviously still a counterexample to Lemma 3.7.2. Thus we may henceforth assume:

1. $e_\eta = \hat{e}_\eta$
2. $\nu_\eta = \text{ON}_{M_\eta}$.

Proof. $\tau_\eta < \lambda_\xi$, where λ_ξ is inaccessible in M_η. Hence, if $\nu_\eta \in M_\eta$, we would have: $\rho^1_{M_{e_0}^*||\nu^*} \geq \lambda_\xi > \tau_\eta$, contradicting (1). QED(4)

5. η is not a limit ordinal.

Proof. Suppose not. Let A, A', p, p' be as above. By (2), $\xi < \eta$ where $\xi = T(\eta + 1)$. By (4) $M_\eta = M_\eta||\nu_\eta$ is an active premouse. But $\sigma^*_\eta : M_\eta \rightarrow \Sigma^* M_{e_0}^*$ and $\sigma^*_\eta(\nu_\eta) = \nu_{e_0}^*$. Pick $l < T \eta$ such that:

- $\text{crit}(\pi_{l,\eta}) > \lambda_\xi$,
- $\pi_{l,\eta}$ is a total map on M_l,
- $p \in \text{rng}(\pi_{l,\eta})$.

Set $\bar{p} = \pi_{l,\eta}^{-1}(p)$. Then A is $\Sigma_1(M_l)$ in \bar{p} and A is $\Sigma_1(M_\eta)$ in p by the same definition. Define a potential iteration \tilde{I} of length $l + 2$ extending $I|l + 1$ by appointing: $\tilde{\eta}_l =: \pi_{l,\eta}^{-1}(\nu_\eta)$. Then $\tilde{M}_l = M_l||\tilde{\eta}_l$.

Since $\pi_{l,\eta}(\kappa_\eta) = \kappa_\eta$ it follows that $\tilde{\kappa}_l = \kappa_\eta$ and $\tilde{M}_l^* = M^*_\eta$. Define $\tilde{e} : l + 1 \rightarrow \eta'$ by: $\tilde{e} : l + 1 = e | l + 1, \tilde{e}_{l+1} = e_{\eta} + 1$ (hence $\tilde{e}_l = e_\eta$).

Then \tilde{e} inserts \tilde{I} into I', giving the insertion maps:

$$\tilde{\sigma}_i = \sigma_i \text{ for } i < l, \tilde{\sigma}_l = \sigma_{\eta}\pi_{l,\eta}$$

Then $\tilde{\kappa}_l = \kappa_\eta$. It follows easily that $\tilde{M}_l^* = M^*_\eta$ and $\tilde{\sigma}_l^* = \sigma^*_\eta$. But $l < \eta$, so by the minimality of η there is a q such that A is $\Sigma_1(M^*_\eta)$ in
\(q \) and \(A' \) is \(\Sigma_1(M_{e_\eta}^*) \) in \(\sigma_\eta^*(q) \) by the same definition. Contradiction! QED(5)

Now let \(\eta = j + 1, h = T(\eta) \). Then \(e_\eta = \hat{e}_\eta = e_j + 1 \). We know

\[
\pi_{h,\eta} | M^*_j : M^*_j \rightarrow \Sigma^* \quad \text{where} \quad M_\eta = \langle J_{\nu_\eta}^E, E_{\nu_\eta} \rangle
\]

Hence \(M^*_j \) has the form:

(6) \(M^*_j = \langle J_\nu^E, E_\nu \rangle \) where \(E_\nu \neq \emptyset \).

(7) \(\tau_\eta < \kappa_j \).

Proof. \(\xi \leq j \) since \(\xi < \eta = j + 1 \). Hence \(\tau_\eta < \lambda_\eta \leq \lambda_j \). But \(\tau_\eta \in \text{rng}(\pi_{h,\eta}) \), where:

\[
[k_j, \lambda_j] \cap \text{rng}(\pi_{h,\eta}) = \emptyset
\]

QED(7)

(8) \(\rho_{M^*_j}^1 < \tau_\eta \).

Proof. Suppose not. Then \(\tau_\eta = \pi_{h,\eta}(\tau_\eta) < \pi^u_{h,\eta}\rho_{M^*_j}^1 \subseteq \rho_{M^*_j}^1 \), contradicting (1).

QED(8)

Thus:

(9) \(\pi_{h,\eta} : M^*_j \rightarrow M_\eta \) is a \(\Sigma_0 \) ultrapower.

(10) \(\sigma^*_j(\tau_\eta) = \tau_{e_\eta} \).

Proof. \(\tau_\eta < \kappa_j < \lambda_h \) by (7). Hence:

\[
\tau_{e_\eta} = \hat{\sigma}_\eta(\tau_\eta) = \sigma_h(\tau_\eta) = \pi_{e_j, e_h}^\eta \sigma^*_j(\tau_\eta) = \sigma^*_j(\tau_{e_\eta}^j),
\]

since \(\sigma^*_j(\tau_\eta) < \sigma^*_j(\kappa_j) = \kappa_{e_j} \) and \(\pi_{e_j, e_h}^\eta \mid \kappa_{e_j} = \text{id} \).

QED(10)

(11) \(\rho_{M^*_j}^1 = \tau_{e_\eta} \).

Proof. \(\bigwedge x^1(x^1 \neq \tau_\eta) \) holds in \(M^*_j \) by (8). But:

\[
\sigma^*_j | M^*_j : M_j \rightarrow \Sigma^* \quad M^*_i
\]

Hence \(\bigwedge x^1(x^1 \neq \sigma^*_j(\tau_\eta)) \) holds in \(M^*_i \), where \(\sigma^*_j(\tau_\eta) = \tau_{e_j} \).

QED(11)

But then:

(12) \(\pi_{e_j, e_\eta}^\eta : M^*_e \rightarrow E_{e_\eta} \) is a \(\Sigma_0 \)-ultrapower.

We can now prove:
3.7. SMOOTH ITERABILITY

(13) A is $\Sigma_1(M^*_j)$ in r and A' is $\Sigma_1(M'^*_{e_j})$ in $r' = \sigma^*_j(r)$ by the same definition.

Proof. Let $p = \pi_{h,\eta}(f)(\alpha)$, where $f \in M^*_j$, $\alpha < \lambda_i$. Then $p' = \pi'_{e_j,\epsilon_{\eta}}(f')(\alpha')$, where: $f' = \sigma^*_j(f), \alpha' = \tilde{\sigma}_j(\alpha)$. Let $F =: E^M_{\nu_j}, F' = E^M_{\nu_{e_j}} : F_{a}$ can of course be coded by an $\tilde{F} \subset \tau_j$ which is $\Sigma_1 < (M_j||\nu_j)$ in α, τ_j and F^0_j is coded by an $\tilde{F'} \subset \tau'_{e_j}$ which is $\Sigma_1(M'_{e_j})$ in α', τ'_{e_j} by the same definition. By the minimality of η we can conclude: F_{a} is $\Sigma_1(M^*_j)$ in a parameter a and $F'_{a'}$ is $\Sigma_1(M'^*_{e_j})$ in the parameter $a' = \sigma^*_j(a)$ by the same definition. Now suppose:

$$A(\mu) \leftrightarrow \bigvee yB(\mu, y, p)$$

$$A'(\mu) \leftrightarrow \bigvee y B'(\mu, y, p')$$

where B is $\Sigma_0(M^*_j)$ and B' is $\Sigma_0(M'^*_{e_j})$ by the same definition. Let B^* be $\Sigma_0(M^*_j)$ and B'^* be $\Sigma_0(M'^*_{e_j})$ by the same definition. Since the map $\pi = \pi_{h,\eta}$ takes M^*_j cofinally to M_{η}, we have:

$$A(\mu) \leftrightarrow \bigvee u \in M^*_j \bigvee y \in \pi(u)B(\xi, y, \pi(f)(\alpha))$$

$$\leftrightarrow \bigvee u \in M^*_j \{ \gamma < \kappa_j : \bigvee y \in uB^*(\xi, y, f(\gamma)) \} \in F_{a}$$

Hence A is $\Sigma_1(M^*_j)$ in $r = (a, f)$. By the same argument, however, A' is $\Sigma_1(M'^*_{e_j})$ in $r' = (a', f')$ by the same definition. QED(13)

Now extend $I|h + 1$ to a potential iteration I^+ of length $h + 2$ by appointing: $\nu^+_h = \pi^{-1}_{h,\eta}(\nu_{\eta})$. (Hence $M^*_j = M^h||\nu^+_h$). Set: $h' = e^*_j$. Extend $I|h + 1$ to I'^+ of length $h' + 2$ by appointing: $\nu'^{+}_{h'} = \pi'_{h',\epsilon_{\eta}}(\nu'_{\eta})$. (Hence $M'^*_{e_j} = M'^{h,||\nu'^{+}_{h'}}$). Obviously, $\sigma^*(\nu'^{+}_h) = \nu'^{+}_{h'}$. Now extend $e|h$ to $e^+ : h + 1 \rightarrow h' + 1$ by:

$$e^+_i = \begin{cases}
 e_i & \text{if } i < h \\
 e^{*}_j & \text{if } i = h
\end{cases}$$

Then e^+ is easily seen to insert I^+ into I'^+, giving the insertion maps:

$$\sigma^+_i = \begin{cases}
 \sigma_i & \text{for } i < h \\
 \sigma^*_j = \pi'_{e_j,\epsilon_{\eta}} \circ \tilde{\sigma}_j & \text{for } i = h
\end{cases}$$

Then $\sigma^+_h(\nu'^+_h) = \nu'^{+}_{h'}$. We note that $\tau^+_h = \tau_{\eta}, \tau^+_h = \tau'_{e_j}$. It follows easily that $(M'^*_h)^* = M'^*_h, (M'^{h'}_{e_j}) = M'^{h',e_j}$ and $\sigma^+_h = \sigma^{*}_{e_j}$. By the minimality of η we conclude that A is $\Sigma_1(M^*_h)$ and $(\sigma^+_h)^* = \sigma^{*}_{\eta}$. By the minimality of η we conclude that A is $\Sigma_1(M^*_\eta)$ in a q and A' is $\Sigma_1(M'^*_{e_j})$ in $\sigma^{*}_{\eta}(q)$ by the same definition. Contradiction! QED(Lemma 3.7.4)
Chapter 3. MICE

Composing insertions

Lemma 3.7.5. Let \(e \) insert \(I \) into \(I' \), with insertion maps \(\hat{\sigma}^e_i, \sigma^e_i \). Let \(f \) insert \(I' \) into \(I'' \) with insertion maps \(\hat{\sigma}^f_i, \sigma^f_i \). Then

(i) \(fe \) inserts \(I \) into \(I'' \)
(ii) \(\hat{f} \circ e = \hat{f} \circ \hat{e} \).
(iii) \(\sigma_i^{fe} = \sigma_i^e \circ \sigma_i^f \)
(iv) \(\hat{\sigma}_i^{fe} = \hat{\sigma}_i^f \circ \hat{\sigma}_i^e \).

Proof. We show that \(f \circ e \) satisfies the insertion axioms (a)-(e) with \(\hat{\sigma}_i^{fe} = \hat{\sigma}_i^f \circ \hat{\sigma}_i^e \). In the process we shall also verify (ii), (iii). We first note:

\[
\hat{f}e(i) = \text{lub } fei = \text{lub } fei \circ e_i = \hat{f} \circ \hat{e}i
\]

Axioms (a), (b), (c) then follow trivially. By definition we then have:

\[
\sigma_i^{fe} = \pi''_{fe(i), fe(i)} \circ \hat{\sigma}_i^{fe} = \pi''_{fe(i), fe(i)} \circ \pi''_{fe(i), fe(i)} \circ \hat{\sigma}_i^f \circ \hat{\sigma}_i^e
\]

Axioms (d), (e) then follow easily. QED (Lemma 3.7.5)

We now consider “towers” of insertions. Let \(I^\xi \) be an iterate of \(M \) for \(\xi < \Gamma \), where \(e^{\xi, \mu} \) inserts \(I^\xi \) into \(I^\mu \) for \(\xi \leq \mu < \Gamma \). (We take \(e^{\xi, \xi} \) as the identical insertion).

Definition 3.7.3. We call:

\[
\{(I^\xi : \xi < \Gamma), (e^{\xi, \mu} : \xi < \mu < \Gamma)\}
\]

a commutative insertion system iff \(e^{\xi, \mu} \circ e^{\xi, \zeta} = e^{\xi, \mu} \) for \(\xi \leq \zeta \leq \mu < \Gamma \).
Now suppose that Γ is a limit ordinal. Is there a reasonable frame in which we could form the limit of the above system? We define:

Definition 3.7.4. $I, \langle e^\xi : \xi < \Gamma \rangle$ is a good limit of the above system iff:

- I is an iterate of M and e^ξ inserts I^ξ into I.
- $e^\mu \circ e^{\xi, \mu} = e^\xi$ for $\xi \leq \mu < \Gamma$.
- If $i < \text{lh}(I)$, then $i = \check{e}^\xi(h)$ for some $\xi < \Gamma$, $h < \text{lh}(I^\xi)$.

Note. Let $\eta_i = \text{ht}(I^i)$ for $i < \Gamma$. It is a necessary but not sufficient condition for the existence of a good limit that:

$$\langle \eta_i : i < \Gamma \rangle, \langle e^{ij} : i \leq j < \Gamma \rangle$$

have a well founded limit.

If η, $\langle \check{e}^i : i < \Gamma \rangle$ is the transitivity direct limit of the above system, then any good limit must have the form $\langle I, \langle e^i : i < \Gamma \rangle \rangle$.

Fact. Let $\eta, \langle e^i : i < \Gamma \rangle$ be as above. Let $\xi < \eta$ and let $\check{e}^i(\xi) = \xi$ for an $i < \Gamma$. For $i \leq j < \Gamma$ set:

$$\xi_j = : \check{e}^{i,j}(\xi) = (\check{e}^j)^{-1}(\xi)$$

Then $e^j(\xi_j) = e^j(\xi_i) = \xi$ for sufficiently large $j < \Gamma$.

Proof. Suppose not. Then there is a monotone sequence $\langle j_n : n < \omega \rangle$ in $[i, \Gamma)$ such that $e^{j_n,j_{n+1}}(\xi_{j_n}) > \xi_{j_{n+1}}$.

Hence $e^{j_n+1}(\xi_{j_{n+1}}) < e^{j_n}(\xi_{j_n})$ for $n < \omega$. Contradiction! QED

We then get:

Lemma 3.7.6. Let $\langle I^\xi, \langle e^\xi, \mu \rangle \rangle$ be a commutative system of insertions of limit length θ. Then there is at most one good limit $I, \langle e^\xi \rangle$. Moreover, if $i < \text{lh}(I)$, then $M_i = \bigcup\{\text{rng}(\check{\sigma}^\xi_h) : e^\xi(h) = i\}$.

Proof. Let $\langle I'(e^{\xi'}) \rangle, \langle I'(e^{\xi'}) \rangle$ be two distinct good limits. We derive a contradiction. Set $\eta_\xi = \text{lh}(I^\xi)$ for $\xi < \Gamma$. Then $\langle \eta_\xi, \langle \check{e}^\xi, \mu \rangle \rangle$ has a transitive direct limit $\eta, \langle f^\xi \rangle$. Moreover $\eta_\xi = \text{lh}(I)$ and $e^\xi = e^\xi = f^\xi$ for $\xi < \Gamma$. Hence $e^\xi = \check{e}^\xi = \text{lub}\{f^h : h < \xi\}$ for $\xi < \Gamma$. By induction on $i < \xi$ we prove:

(a) $M_i = M'_i$

(b) $\sigma^\xi_h = \sigma^\xi_h$ for $e^\xi(h) = i$.

CHAPTER 3. MICE

(c) \(M_i = \bigcup \{ \text{rng} \sigma^\xi_n : e^\xi(h) = i \} \).

For \(i = 0 \) this is trivial. Now let \(i = j + 1 \). Then:

\[
\nu_j = \nu'_j = \sigma^\xi_h(\nu^\xi_n) \text{ whenever } e^\xi(h) = j
\]

This fixes \(\mu =: T(j + 1) = T'(j + 1) \). But then we have: \(M_j = M_j' \). Thus \(M_i = M_i' \) and \(\pi_{\mu+i} = \pi'_{\mu+i} \) are determined by:

\[
\pi_{\mu+i} : M_i^* \longrightarrow F M_i, \text{ where } F = E^M_j = E^M'_j
\]

We must still show:

Claim. If \(x \in M_i \), then \(x = \sigma^\xi_i(x) \) for a \(\xi < \theta \) such that \(e^\xi(l) = i \).

Proof. Let \(n \leq \omega \) be maximal such that \(\kappa_i < \rho^\theta_{M_i} \). Then \(x = \pi_{\xi+i}(f)(\alpha) \) for an \(f \in \Gamma^n(\kappa_j, M_j^*) \). Let either \(f = p \in M_i^* \) or else \(f(\xi) \equiv G(\xi, p) \) where \(p \in M_i^* \) and \(G \) is a good \(\Sigma^m_1(M_i^*) \) function for a \(m < n \). Pick \(\xi < \theta \) such that there are \(\mu_\xi, j_\xi, i_\xi \) with:

\[
e^{\xi}(.mu, e^{\xi}(i_\xi) = i, e^{\xi}(i_\xi) = \delta
\]

Assume furthermore that \(\sigma_p(\tilde{p}) = p \) and \(\sigma^\xi_j (\tilde{a}) = \alpha \). Since \(\sigma_{j_\xi}(\nu^\xi_{j_\xi}) = \nu_j \), it follows easily that \(\mu_\xi = T^\xi(i_\xi) \) and:

\[
\sigma^\xi_{j_\xi} : M_i^{\xi*} \longrightarrow \Sigma^* M_i^*
\]

Let \(\tilde{f} \) be defined from \(\tilde{p} \) over \(M_i^{\xi*} \) as \(f \) was defined from \(p \) over \(M_i \). Let \(\tilde{x} = \pi_{\mu_\xi}(\tilde{f})(\tilde{a}) \). Then \(\sigma_{i_\xi}(\tilde{x}) = x \) by Lemma 3.7.1(5). QED(Claim)

Now let \(\lambda < \theta \) be a limit ordinal. We first prove:

Claim. \(i <_T \lambda \) iff whenever \(e(i_\xi) = i \) and \(e^\xi(\lambda_\xi) = \lambda \), then \(i_\xi <_T \lambda_\xi \).

Proof. \((\longrightarrow)\) is immediate by Lemma 3.7.1(10). We prove \((\longleftarrow)\). Suppose not. Let \(A \) be the set of \(\xi < \theta \) such that there are \(i_\xi, \lambda_\xi \) with \(e^\xi(i_\xi) = i \), \(e^\xi(\lambda_\xi) = \lambda \). Then \(i \not<_T \lambda \) but \(i_\xi <_T \lambda_\xi \) for \(\xi \in A \). Then:

\[
e^\xi(i_\xi) <_T e^\xi(\lambda_\xi) \leq_T e^\xi(\lambda_\xi) = \lambda.
\]

Set: \(j = \sup \{ e^\xi(i_\xi) : \xi \in A \} \). Then \(j <_T \lambda \) by the fact that \(T^{\alpha}(\lambda) \) is club in \(\lambda \). Hence \(j < i \). Let \(\xi \in A \) such that \(e^\xi(j_\xi) = j \). Then \(j_\xi < i_\xi \), since \(e^\xi \) is order preserving. Hence:

\[
j = e^\xi(j_\xi) < e^\xi(i_\xi) \leq j.
\]
3.7. SMOOTH ITERABILITY

Contradiction! QED(Claim)

But then $T^\omega \{ \lambda \} = T^\omega \{ \lambda \}$. Hence $M_\lambda = M'_\lambda$, $\pi_{i,\lambda} = \pi'_{i,\lambda}$ are given as the transitivized limit of:

$$\langle M_i : i < T \lambda \rangle, \langle \pi_{i,j} : i \leq T j < \lambda \rangle.$$

Finally, we show that each $x \in M_\lambda$ has the form $\sigma^\xi_{\lambda \xi}(\bar{x})$ for an $\xi \in \Lambda$. We know that $x = \pi_{i,\lambda}(x')$ for an $i < T \lambda$. Pick $\xi < \theta$ such that $e^{\xi}(i(\xi)) = i$, $e^{\xi}(\lambda(\xi)) = \lambda$ and $x' = \sigma^\xi_{\lambda}(\bar{x}')$. Set: $\bar{x} = \pi^\xi_{i(\xi)}(\bar{x}')$. Then $\sigma^\xi_{\lambda}(\bar{x}) = x$ by Lemma 3.7.1(10).

QED(Lemma 3.7.6)

In the following let $\mathbb{C} = \langle \langle I^\xi \rangle, \langle e^{\xi,\mu} \rangle \rangle$ be a commutative insertion system of limit length θ. Let $\eta_\xi = \text{length}(I^\xi)$ for $\xi < \theta$. Suppose that

$$\langle \eta_\xi : \xi < \theta \rangle, \langle e^{\xi,\mu} : \xi \leq \mu < \theta \rangle$$

has the transitivized direct limit:

$$\eta, \langle e^{\xi} : \xi < \theta \rangle$$

(Thus if \mathbb{C} had a good limit, it would have the form $\langle I, \langle e^{\xi} : \xi < \theta \rangle \rangle$). Let \mathbb{C}, η, etc. be as above. Let $i < \eta$. Let I be a normal iteration of M of length $i + 1$. I is a good limit of \mathbb{C} at i iff whenever $\gamma < \theta$ and $e^\gamma(h) = i$, then $e^\gamma \upharpoonright h + 1$ inserts $I^\gamma \upharpoonright h + 1$ into I.

Note. By Lemma 3.7.6 it follows that there is at most one good limit of \mathbb{C} at i. Moreover, if I is a good limit of \mathbb{C} at i and $h < i$, thus $I \upharpoonright h + 1$ is the good limit of \mathbb{C} at h. Thus we can unambiguously denote the good limit of \mathbb{C} at i, if it extends, by: $I \upharpoonright i + 1$. By uniqueness we then have:

$$(I \upharpoonright i + 1) \upharpoonright h + 1 = I \upharpoonright h + 1 \text{ for } h < i$$

It is clear that I is the unique good limit of \mathbb{C} if $I \upharpoonright i + 1$ exists for all $i < \eta$, and $I = \bigcup_{i < \eta} I \upharpoonright i + 1$. We also note that $I \upharpoonright 1 = \langle \langle M \rangle, \emptyset, \langle \text{id} \rangle, \emptyset \rangle$ is trivially the good limit at 0.

Recall that we call a premouse M uniquely iterable iff it is normally iterable and has the unique branch property -i.e. whenever I is a normal iteration of M of limit length, then it has at most one cofinal well founded branch. (Similarly for uniquely α-iterable). In the later subsection of §3.7 we shall always assume unique iterability of M and make use of the following two lemmas:
Lemma 3.7.7. Let C, η be as above and let M be uniquely η-iterable. Let $i + 1 < \eta$. If $I|i + 1$ exists, then so does $I|i + 2$.

Proof. Let $I = I|i + 1$. Pick $\mu < \theta$ such that $e^\mu(i_\mu) = i$ and $e^\mu(i_\mu + 1) = i + 1$. Set: $\nu_i = \sigma^\mu_{i_\mu} (\nu^\mu_{i_\mu})$. For $\mu \leq \delta < \theta$, we have $\nu_\delta = \sigma^\delta_{i_\delta} (\nu^\delta_{i_\delta})$ and $\nu^\delta_{i_\delta} \geq \nu^\delta_{j_\delta}$ for $j < i_\delta$.

It follows easily that $\nu_i > \nu_j$ in I whenever $j < i$. Thus ν_i determines a potential extension of $I|i + 1$, giving: $\xi = T'(i + 1), M'_i$. Let $F = E_{\nu_i}^{M'_i}$ in I.

Set:

$$\pi'_{0,i+1} : M'_1^{\iota} \longrightarrow F_{i+1}$$

This gives us an iteration I' of length $i + 2$ extending I, it follows by Lemma 3.7.2 that $e^\mu|i_\mu + 2$ inserts $I^\mu|i_\mu + 2$ into I'. But this holds for sufficiently large $\mu < \theta$. Now let $m < \theta$ with $e^m = i + 1$. Let $\mu \geq m$ be as above. Then $e^{\mu,m}(n) = i_\mu + 1$, and $e^{\mu,m} \upharpoonright n + 1$ inserts $I^n|n + 1$ into $I^\mu|n + 2$. Hence $e^m = e^m \circ e^{\mu,m}$ inserts $I^n|n + 1$ into I'.

QED (Lemma 3.7.7)

Now let $\delta < \eta$ be a limit ordinal and let $I|i + 1$ be defined for all $i < \delta$. If $I|\delta + 1$ defined? Now necessarily. Set: $I = \bigcup_{i < \delta} I|i + 1$. Then I is a normal iteration of length δ. Hence it has a unique cofinal well founded branch b.

We can then extend I to I' of length $\delta + 1$, taking $T' \cup \{\delta\} = b$. However I' will only be a good limit of C at δ if a certain condition on b is fulfilled:

Lemma 3.7.8. Let C, I, b, I', etc. be as above. Assume:

(*) Let $\gamma < \theta$ with $e^\gamma(\delta) = \delta$. Then either $e^\gamma(\delta) \in b$ or $e^\gamma(\delta) = \delta$ and $e^\gamma(i) \in b$ for $i < T, \delta$.

Then I' is a good limit of C at δ.

Proof. Let $\gamma < \theta, e^\gamma(\delta) = \delta$. We show that $e^\gamma|\delta + 1$ inserts $I^\gamma|\delta + 1$ into I'.

Case 1: $e^\gamma(\delta) \in b$.

Let $\xi = e^\gamma(\delta)$. Then $\xi \subseteq T' \delta$. It is easily verified that $e^\gamma|\delta + 1$ inserts $I^\gamma|\delta + 1$ into I' with $\hat{\sigma} = \delta^2_{\delta}, \sigma = \sigma^2_{\delta}$ defined as follows:

By the above Fact there is $\gamma' > \gamma$ such that $e^{\gamma'}(\delta') = \xi$, where $\delta' = e^\gamma(\delta)$. Thus $e^{\gamma'}|\delta' + 1$ inserts $I^{\gamma'}|\delta' + 1$ into $I|\xi + 1$. Set:

$$\hat{\sigma} := e^{\gamma'}_{\delta'} \circ \sigma^{\gamma'}_{\delta'}, \sigma =: \pi'_{\xi, \delta} \circ \hat{\sigma}$$
3.7. SMOOTH ITERABILITY

Case 2: $e^\gamma(\delta) = \delta$.

Then e^γ takes δ cofinally to δ. Thus $e^\gamma \upharpoonright \delta + 1$ inserts $I^\gamma \upharpoonright \delta + 1$ into $I \upharpoonright \delta + 1$, where $\sigma = \sigma^2_\delta \upharpoonright \delta$ is defined by:

$$\sigma_{\pi_\gamma} = \pi_{e^\gamma(i), \delta} \circ \delta^\gamma$$

The verification is again straightforward.

QED(Lemma 3.7.8)

Building on what we have just proven, we show that we can disperse with the iterability assumption if the length of the commutative system has cofinality greater than ω.

Lemma 3.7.9. Let C be a commutative insertion system of length θ. If $\text{cf}(\theta) > \omega$, then C has a good limit.

Proof.

Claim. $\langle \eta_i : i < \theta \rangle, \langle e^\xi : \xi \leq \mu < \theta \rangle$ has a transitivized direct limit:

$$\eta_i, \langle e^\xi : \xi < \theta \rangle$$

Proof. Suppose not. Let $\langle u, <^* \rangle, \langle e^\xi : \xi < \theta \rangle$ be a direct limit, where $<^*$ is a linear ordering of u. Then there are $x_n (n < \omega)$ such that $x_{n+1} <^* x_n$ for $n < \omega$. Since $\text{cf}(\theta) > \omega$, there must be $\gamma < \theta$ such that $x_n \in \text{rng}(e^\gamma)$ for $n < \omega$. Let $\xi^\gamma(\alpha_n) = x_n (n < \omega)$. Then $\alpha_{n+1} < \alpha_n$ in η_δ for $n < \omega$. Contradiction!

QED(Claim)

We now prove by induction on $i < \eta$ that C has a good limit $I|\eta$ at i.

Case 1. $i = 0$. The 1-step iteration of M: $\langle (M), \emptyset, (\text{id}), \emptyset \rangle$ is the good limit at 0 (with $e_0^0 = e_0^0 = \text{id} \mid \{0\}$).

Case 2. $i = \eta + 1$.

Let $\nu_i, \xi = T^\xi(i + 1), M_\nu^*, F = E_i^{\nu_i}$ be as in the proof of Lemma 3.7.7. The proof of Lemma 3.7.7 goes through exactly as before if we can show:

Claim. M_ν^* is extendible by F.

Proof. Suppose not. Then there are $f_n \in \Gamma^*(\kappa_i, M_\nu^*), \alpha_n \in \lambda_i (n < \omega)$ such that
{⟨μ, τ⟩ : fn+1(μ) ∈ fn(τ)} ∈ F(αn+1, αn) for n < ω

Let pn ∈ M∗ i such that either pn = fn or fn is defined by: fn(β) ≡ G(pn, β), where G is good over M∗ i. Since cf(θ) > ω, we can pick γ < θ such that

- eγ(iγ) = i, eγ(ξγ) = ξ
- σξγ(pn) = pn (n < ω)
- σξγ(αn) = αn (n < ω)
- [eγ(ξγ), eγ(ξγ)]T has no drop point in I. (Hence σξγ,Mξγ,→Σ∗ Mξγ, since σξγ = πξγ,δξγ).

We note that ξγ = Tγ(iγ + 1). (Suppose not. Let t = Tγ(iγ + 1). Then ξ ∈ [eγ(t), eγ(t)] by Lemma 3.7.1 (3). But thus t < ξ and ξ < t are both impossible. Contradiction!) It follows that:

σξγ,iγ,M∗ i γ →Σ∗ M∗ i

If Tn is defined from pn as fn was defined from pn, we then have:

{⟨μ, τ⟩ : Tn+1(μ) ∈ Tn(τ)} ∈ F(πn+1, πn)

where F = EγM∗ n. But:

πξγ,iγ,T : M∗ i γ →Σ∗ T M∗ γ+1

Hence M∗ γ+1 would be ill founded. Contradiction!

QED(Case 2)

Case 3: i = μ is a limit ordinal.

Let b′ be the set of j < μ such that for some γ < θ and pγ < ηγ we have eγ(p) = μ and j = eγ(i) for an i ⩽ Tγ pγ. Let b be the closure of b′ under limit points below μ. Then b is a cofinal branch in I. Moreover, b satisfies (*).

τn is not a cardinal in Lemma 3.7.8. Hence we can simply repeat the proof of Lemma 3.7.8 if we can show:

Claim. b is a well founded branch in I.
3.7. SMOOTH ITERABILITY

Proof. We must first show:

Subclaim. b has at most finitely many drop points.

Proof. Suppose not. Let $\langle i_n : n < \omega \rangle$ be monotone such that $i_n + 1$ is a drop point in b. Since $i_n + 1$ is not a limit point in b, we have $i_n + 1 \in b'$. Hence for each n there is a $\gamma < \theta$ and a \overrightarrow{p} such that $e^\gamma(\overrightarrow{p}) = \mu$, $e^\gamma(h_n + 1) = i_n + 1$, $h_n + 1 < T^n \overrightarrow{p}$. If γ has this property, so will every larger $\gamma' < \theta$. Since $\text{cf}(\theta) > \omega$, we know that sufficiently large $\gamma < \theta$ will have the property for all n. We can also suppose without lose of generality that $e^\gamma(t_n) = t_n$ where $t_n = T(i_n + 1)$ in I. Just as in Case 2 we then have $I_n = T^n(h_n + 1)$. As in Case 2 we can assume γ chosen big enough that $|\overrightarrow{\text{e}}^\gamma(t_n), e^\gamma(t_n))_T$ has no drop point in I. (Hence the map σ^γ_n is Σ^γ-preserving). Then t_n is not a cardinal in M_{t_n} and $\tau_n = \sigma^\gamma_{h_n}(\tau_{h_n}) = \sigma^\gamma_{h_n}(\tau_{h_n})$. Hence τ_{h_n} is not a cardinal in $M^\gamma_{h_n}$. Hence $h_n + 1$ is a drop point in I. Hence $\overrightarrow{\text{e}}^\gamma \{\overrightarrow{p}\}$ has infinitely many drop points. Contradiction!

QED(Subclaim)

We now prove the claim. Suppose not. Let $b'' =: b' \setminus \beta$, where $\beta < \bar{\mu}$ is big enough that no $i \in b''$ is a drop point. Then there is a monotone sequence $\langle i_n : n < \omega \rangle$ such that $i_n \in b''$, $x_n \in M_{i_n}$ and

$$x_{n+1} \in \pi_{i_n,i_{n+1}}(x_n) \text{ for } n < \omega$$

Pick $\gamma < \theta$ big enough that $e^\gamma(\bar{\mu}) = \mu$ and $e^\gamma(h_n) = i_n$, where $h_n < T^n \bar{\mu}$. We can also pick it big enough that $x_n = \delta_{i_n}(\overline{x}_n)$ for $n < \omega$. Hence

$$\overline{x}_{n+1} \in \pi^\gamma_{h_n,h_{n+1}}(\overline{x}_n) \text{ for } n < \omega$$

Hence $M^\gamma_{\overline{\mu}}$ is ill founded. Contradiction!

QED(Lemma 3.7.9)

3.7.2 Reiterations

From now on assume that M is a uniquely normally iterable mouse (i.e. every normal iteration of limit length has exactly one cofinal well founded branch). (Our results will go through mutatis mutandis if we assume unique normal α-iterability for a regular cardinal $\alpha > \omega$).
Interpolating extenders

Let $I = \langle \langle M_i \rangle, \langle \nu_i \rangle, \langle \pi_i \rangle, T \rangle$ be a normal iteration of M of length $\eta + 1$. A “reiteration” of I occurs when we “interpolate” new extender which were not on the sequence $\langle \nu_i : i < \eta \rangle$. This rounds very vague, or course, but we can make it more explicit by considering the case of a single extender $F = E^{|M_i|}_\nu$ which we had neglected to place on the sequence. Set: $\tau = \tau^{|M_i|}_\nu, \kappa = \text{crit}(F), \lambda = \lambda(F) =: F(u)$. For the moment let us assume that τ is a cardinal in M_η. The interpolation gives rise to a new iteration I'. I' coincides with I up to the point at which F should have been applied. At that point we apply F and thereafter simply copy what we did in I. The point s at which F should have been applied in defined as follows:

$$s = \text{the least point such that } s = \eta \text{ or } r < \eta \text{ and } \nu < \nu_s$$

We want $I|s+1 = I'|s+1$, but at stage s we apply F instead of $E^{|M_s|}_\nu$. Thus we set: $\nu_s = \nu$. This determines $t = T'(s + 1)$ and M'^s. We then form:

$$\pi'_{t,s+1} : M'^s \rightarrow M'_{s+1}$$

There is then an obvious insertion f of $I|t + 1$ into $I'|s + 2$ defined by:

$$f|t = \text{id}, \ f(t) = s + 1$$

f induces the new insertion embeddings:

$$\tilde{\sigma}_t = \text{id}|M_t, \ \pi_t = \pi'_{t,s+1}, \ \sigma_t = \pi_t \tilde{\sigma}_t$$

If $t = \eta$ (hence $s = \eta$), then $I' = I'|s + 2$ is fully defined. Now let $t < \eta$.

Then $M'^t = M_t||\mu$, where $\mu \leq \text{ON}_{M_t}$ is maximal with: τ is a cardinal in $M_t||\mu$. But then $\tau < J^{E^{|M_t|}}_{\nu_t} \subset J^{E^{|M_\eta|}}_{\nu_t}$, so τ is a cardinal in $J^{E^{|M_\eta|}}_{\nu_t}$. Hence $\mu \geq \nu_t$ and $\sigma_t(\nu_t)$ is defined. Set: $\nu'_{s+1} = \sigma_t(\nu_t)$. This defines a potential extension of $I|s + 2$, since

$$\nu'_s = \pi_t(\tau) < \pi_t(\nu_t) = \nu'_{s+1}$$

where $\pi_t = \pi'_{t,s+1}$.

Now define e on η by:

$$e|t = \text{id}, \ e(t + i) = s + 1 + i \text{ for } t + i \leq \eta$$

Then $e|t + 1 = f$. It is easily seen that $\hat{e}(t) = t$ and $e(t) = s + 1$. But for $i \neq t$ we have $\hat{e}(i) = e(i)$. But for $i \neq t$ we have $\hat{e}(i) = e(i)$. We prove:
3.7. SMOOTH ITERABILITY

Claim. \(e \) inserts \(I \) into a unique \(I' \) of length \(e(\eta) + 1 \).

To show this we prove the following subclaim by induction on \(i \):

Subclaim. If \(t + 1 + i \leq \eta \), then \(e \upharpoonright (t + 1 + i + 1) \) inserts \(I' = I'((t + 1 + i + 1) \) into a unique \(I'' = I'((s + 2 + i + 1) \) of length \(s + 2 + i + 1 \).

Proof. Case 1: \(i = 0 \).

We have seen that \(\sigma_i(\nu_t) \) exists and that \(\sigma_i(\nu_t) > \nu'_i \). Hence we can appoint \(\nu'_{t+1} = \sigma_i(\nu_t) \), which determines \(\xi = \tau'(s+2) \) and \(M^s_{s+1} \). \(M^s_{s+1} \) is \(* \)-extendible by \(F = E_{\nu'_{t+1}} \) by the fact that \(M \) is uniquely iterable. By Lemma 3.7.2 we conclude that \(e|t+2 \) inserts \(I|t+2 \) into a unique \(I'|s+3 \) extending \(I'|s+2 \).

QED(Case 1)

Case 2: \(i = j + 1 \).

Then \(I'|s + 2 + i \) is given. Set: \(h = t + 1 + j \). Then \(e(h) = \dot{e}(h) = s + 2 + j \). We are given: \(\sigma_h(\nu_h) = \dot{\sigma}_h(\nu_h) \). Set \(\nu'_{e(h)} =: \sigma_h(\nu_h) \). This determines a potential extension of \(I'|e(h) + 1 \), since:

\[
\nu'_{e(h)} > \sigma_h(\nu_h) \geq \nu'_{e(l)} \text{ for } t \leq l < h
\]

But \(M^s_{s+1} \) is \(* \)-extendible by \(E_{\nu'_{e(h)}} \) by unique iterability. Hence by Lemma 3.7.2, \(e|h + 2 \) inserts \(I|h + 2 \) into a unique \(I'|e(h) + 2 \) extends \(I'|e(h) + 1 \) by Lemma 3.7.2.

QED(Case 2)

Case 3: \(i = \lambda \) is a limit ordinal.

We first observe that the componentwise union \(I' = \bigcup_{i<\lambda} I'|e(i) \) is the unique iteration of length \(e(\lambda) \) into which \(e|\lambda \) inserts \(I|\lambda \). Now let \(b' \) be the unique cofinal well founded branch in \(I'|e(\lambda) \). Then \(b = \{ i : e(i) \in b' \} \) is the unique cofinal well founded branch in \(I|\lambda \). Hence \(b = T^*\{\lambda\} \). By Lemma 3.7.1 (18), \(e|\lambda + 1 \) inserts \(I|\lambda + 1 \) into a unique \(I'|e(\lambda) + 1 \) extending \(I'|e(\lambda) \).

QED(Case 3)

QED(Claim)

We must still consider the case that \(\tau \) is not a cardinal in \(M_\eta \). If \(t < \eta \), then \(\tau \) is not a cardinal in \(J^{E_{M_\eta}} \), since \(J_{M_\eta} = J_{M_\eta}^{E_{M_\eta}} \) and \(\lambda_1 \) is a cardinal in \(M_\eta \). \(M^*_{s+1} \) thus has the form: \(M_{t||\mu} = M_{\eta||\mu} \). (Hence we truncate to the same place
that we would if we applied \(F \) directly to \(M_\eta \). Clearly \(\mu < \lambda_t < \nu_t \) if \(t < \eta \).
Hence the "copying" process we performed in the previous case is impossible.
(Note, too, that \(t = s \), since if \(t < s \), then \(\lambda_t \) would be inaccessible in \(J_{\nu_t}^{E_M} \) and \(\tau < \lambda_t \) would be a cardinal in \(J_{\lambda_t}^{E_M} = J_{\lambda_t}^{E_M} \).
Contradiction!).
We set:
\[
I' = I | t + 1
\]
We can extend \(I^* \) to \(I' \) by setting \(\nu'_t = \nu \). Set \(e(t) = s + 1 = t + 1 \). Then \(e \) inserts \(I^* \) into \(I' \).

The \(I' \) which we have described above is called a simple reiteration of \(I \).
If \(I' \) is obtained by a chain of simple reiterations, we also call it a simple reiteration. However, we must still show that an infinite chain of simple reiterations has a well founded limit. This will require considerable effort.
Before doing that we develop the notion of normal reiteration, which is easier to deal with.

Now let \(\langle I^i : i < \omega \rangle \) be a chain of simple reiterations with
\[
I^0 = \langle \langle M^i_h \rangle, \langle \nu^i_h \rangle, \langle \pi^i_h \rangle, T^i \rangle \text{ of length } \eta_i.
\]
Let \(I^{i+1} \) be obtained from \(I^i \) by interpolating \(F_i = E_{\nu_t}^{M_t} \) into \(I^i \), giving rise to the insertion \(e^i \) of \(I^* \) into \(I^{i+1} \). For an effort to tame the complexity of these structures, we could impose the normality condition: \(\nu_i < \nu_j \) for \(i < j < \omega \). It turns out that we can impose a far more powerful normality condition by requiring that \(F_i \) be interpolated in the earliest possible \(I^h \) with \(h \leq i \), rather than necessarily into \(I_i \) itself. This gives the concept of normal reiteration, which is clearly analogous to that of normal iteration. First, however, we must redo our definitions in order to make this notion precise.
To say that \(I^h \) is a possible candidate for interpolation of \(F_i \) means simply that \(h \leq i \) and \(I^h | t + 1 = I^i | t + 1 \), where \(t \) is defined from \(\nu_t \) as before. By our construction we will have: \(I^i | t + 1 = I^i | j + 1 \) for \(h \leq j \leq i \).

We now give a precise definition of the operation we perform when we apply \(F_i \) to \(I^h \).

Definition 3.7.5. Let \(I = \langle \langle M^i_h \rangle, \langle \nu^i_h \rangle, \langle \pi^i_h \rangle, T \rangle \) be a normal iteration of \(M \) of length \(\eta \). Let
\[
I' = \langle \langle M^{i'}_h \rangle, \langle \nu^{i'}_h \rangle, \langle \pi^{i'}_h \rangle, T' \rangle
\]
be a normal iteration of \(M \) of length \(\eta' \). Let \(F = E_{\nu}^{M^\eta} \neq \emptyset \). Set:
\[
\kappa =: \text{crit}(f), \lambda = \lambda(F) =: F(\kappa), \tau = \kappa^{E_{\nu}^{M^\eta}}.
\]
Let \(s \) be least such that \(s = \eta' \) or \(t < s \) and \(\kappa < \lambda_t \).
Assume that $I|t + 1 = I'|t + 1$ and $\nu'_t \leq \nu_t$. We define an operation:

$$W(I, I', \nu) = (I', I''', e)$$

by cases as follows:

Case 1: $t = \eta$ and τ is a cardinal in M_η.

Extend I to I''' by appointing $\nu''_\eta = \nu$. Then $\pi''_{\eta, \eta+1}: M \rightarrow M_{\eta+1}$. e is then the insertion of I into I''' defined by $e|\eta = \text{id}, e(\eta) = \eta + 1$. (Hence $\pi_\eta = \pi'_{\eta, \eta+1}$ and $\sigma_\eta = \text{id}|M_\eta, \tilde{\sigma}_\eta = \tilde{\pi}_\eta e$. We set: $I'' = I$.

Case 2: $t < \eta$ and τ is a cardinal in M_η. We set $I'''|s + 1 = I'|s + 1$. We then appoint $\nu''_s = \nu$. Thus $t = T''(s + 1)$ and $M''_t = M_t|\mu$, where $\mu \leq \text{ON}_{M_t}$ is maximal such that τ is a cardinal in $M_t|\mu$. But τ is a cardinal in $J^{E_{M_t}}_{\nu} = J^{E_{M_t}}_{\nu_t}$. Hence $\mu \geq \nu_t$. Let f be the insertion of $I|t + 1$ into $I'''|s + 2$ defined by

$$f|t = \text{id}, f(t) = s + 1.$$

Then:

$$\tilde{\sigma}_t = \text{id}|M_t, \pi_t = \pi_{t, s+1}, \sigma_t = \pi_t \circ \sigma_t$$

(Hence $\sigma_t(\mu_t) > \nu''_s$ as before).

Now define e on $\eta + 2$ by

$$e|t = \text{id}, e(t + i) = s + 1 + i.$$

Set $\eta'' = e(\eta)$. I'' is then the unique iteration of length $\eta'' + 1$ extending $I'|s + 2$ such that e inserts I into I''. We set: $I'' = I$.

The existence and uniqueness proofs are exactly as before.

Case 3: τ is not a cardinal in M_η. If $t < \eta$, then τ is not a cardinal in $J^{E_{M_t}}_{\nu_t}$. Hence $M''_t = M_t|\mu$, where $\mu < \nu_t$. Set: $I'' = I|t + 1$. Set: $\nu''_s = \nu$. This gives:

$$\pi''_{t, s+1}: M''_t \rightarrow M''_{s+1}$$

which defines $I'' = I''|s + 2$. e is thus the insertion of I'' into I''' defined by:

$$e|t = \text{id}, e(t) = s + 1.$$

Note that $e|t + 1 = \text{id}$ (hence $\tilde{e}|t + 1 = \text{id}$ in all three cases.)

This completes the definition. We are now in a position to define the notion of normal reiteration. First, however, we prove a particularly useful lemma:

Lemma 3.7.10. If $j \in (t, s]$ and $s < \mu$, then $j \notin I'''$. \mu.
Proof. We proceed by induction on μ.

Case 1: $\mu = s + 1$. Then $t = T''(\mu)$ and $j \not<_{T''} t$, since $t < j$. Hence $j \not<_{T''} \mu$.

Case 2: $\mu > s + 1$ is a successor. Let $\mu = \gamma + 1$. Then $\gamma \geq s + 1$ an $e(\gamma) = \gamma$, where $\gamma \geq t$.

Case 2.1: $\gamma < t$. Then $t < j$ and $j \not<_{T''} \gamma + 1 = T''(\gamma + 1) = T'(\gamma + 1) \leq t$. Hence $j \not<_{T''} \gamma + 1 = \mu$.

Case 2.2: $\gamma \geq t$.

Case 3: μ is a limit ordinal.

Pick $i <_{T''} \mu$ such that $i > s$. Then $j \not<_{T''} i$ by the induction hypothesis. Hence $j \not<_{T''} \mu$.

QED (Lemma 3.7.10)

As we have seen, if e is an insertion of I to I' and $h = T(i + 1)$, then the determination of $e'(i) = T'(e(i) + 1)$ is important. In the case of the e defined above, this determination is as follows:

Lemma 3.7.11. Let $h = T^*(i + 1)$. If $h = T^*(i + 1)$. If $\kappa_i < \kappa$, then $\dot{e}(h) = h = T''(e(i) + 1)$. If $\kappa \leq \kappa_i$. Then $e(h) = T''(e(i) + 1)$, where $e(h) > s$.

The proof is left to the reader. (Note that $\dot{e}(i) = e(i)$ except for $i = t$.)

We now turn to the definition of a normal reiteration.

$R = \langle \{ I^i : i < \eta \}, \langle \nu_i : i + 1 < \eta \rangle, \langle e^i : i \leq_T j \rangle, T \rangle$ is a normal reiteration on M iff the following hold:

(a) $\eta \geq 1$ and each $I^i = \langle \langle M^1_i \rangle, \langle \nu^1_i \rangle, \langle \pi^1_i \rangle, \tau^i \rangle$ is a normal iteration of M of length $\eta_i + 1$.

(b) T is a tree on η such that $iTj \rightarrow i < j$.

(c) $F_i = G_{E_{\eta_i}}^M \neq \emptyset$. Moreover, $\nu_i < \nu_j$ for $i < j$.

Set: $k_i = \text{crit}(F_i), \lambda_i = \lambda(F_i) = F_i(\kappa_i), \tau_i = \tau(F_i) = \kappa_i^{+J E_{\eta_i}}$, where $E = E_{\eta_i}^M$.

3.7. SMOOTH ITERABILITY

(d) \(e^{i,j} \) inserts a segment \(I^i|_{\mu} \) into \(I^j \). Moreover, \(e^{h,i} = e^{i,j} \circ e^{h,i} \) for \(h \leq_T \ i \leq_T j \). \(e^{ii} \) is the identical insertion on \(I^i \).

(e) Set: \(s = s_i =: \) the least \(s \) such that \(s = \eta_i \) or \(s < \eta_i \) and \(\nu_i < \nu^i_j \). Then:
\[
I^i|s + 1 = I^j|s + 1 \quad \text{and} \quad \nu^i_s = \nu^j_s \quad \text{for} \quad i < j < \eta.
\]

(f) Let \(i+1 < \eta \). Let \(h \) be least such that \(h = i \) or \(h < i \) and \(\kappa_i < \lambda_h \). Then \(h \) is the immediate predecessor of \(i+1 \) in \(T \). (In symbols: \(h = T(i+1) \)).

Before continuing with the definition, we note some consequences:

Set \(t = t_i = \) the least \(t \) such that \(t = s_i \) or \(t < s_i \) and \(i < t \).

Then:

1. \(I^h|t + 1 = I^i|t + 1 \) and \(\nu^h_t \geq \nu^i_t \).

 Proof. If \(h = i \) this is trivial. Now let \(h < i \). Then \(\kappa < \lambda_h = \lambda^i_{s_h} \) by (e). Hence \(t \leq s_h \). Hence \(I^h|t + 1 = I^i|t + 1 \). If \(t = s_h \), then \(\nu^h_t = \nu^i_{t+1} < \nu^i_t \). If \(t < s_h \), then \(\nu^h_t = \nu^i_t \).

2. \(h \) is least such that \(I^i|t = I^h|t \).

 Proof. Let \(l < h \). Then \(\lambda_l = \lambda^i_{s_l} = \lambda^i_{s_l} < \kappa < \lambda^i_{s_l} \). Hence \(s_l < t \).

 But \(\nu^h_{s_l} = \nu^i_{s_l} < \nu^i_{s_l} \) by (e). Hence \(I^i|t \neq I^h|t \).

QED (2)

By (1), the conditions for forming \(W(I^h, I^i, \nu_i) \) are given. Our next axiom reads:

(g) \(e^{h,i+1} \) inserts \(I^i \) into \(I^{i+1} \), where \(\langle I^i, I^{i+1}, e^{h,i+1} \rangle = W(I^h, I^i, \nu_i) \).

We define:

Definition 3.7.6. \(i + 1 \) is a drop point (or truncation point) in \(R \) iff \(\tau_i \) is not a cardinal in \(M^h_{\eta_i} \) where \(h = T(i + 1) \). (This is the only case in which \(I^i \neq I^h \) is possible).

Our final axioms read:

(h) If \(\lambda < \eta \) is a limit ordinal, then \(T^\omega \{ \lambda \} \) is club in \(\lambda \). Moreover, \(T^\omega \{ \lambda \} \) contain at most finitely many drop points.

(i) If \(\lambda \) is as above and \((h, \lambda)_T \) has no drop points, then \(e^{i,\lambda} \) inserts \(I^h \) into \(I^\lambda \) and:

\[
I^\lambda, \langle e^{i,\lambda} : h \leq_T i \leq_T \lambda \rangle
\]

is the good limit of:

\[
\langle I^i : h \leq_T i <_T \lambda \rangle, \langle e^{i,j} : h \leq_T i \leq_T j < \lambda \rangle
\]
Note. As usual, we will then refer to \(\langle I^i \rangle, \langle e^{i,\lambda} : i < T \lambda \rangle \) as the direct limit of:
\[
I^i : i \leq T \lambda, \langle e^{i,j} : i \leq T \lambda \rangle,
\]
since the missing points are supplied by: \(e^{l,\lambda} = e^{h,\lambda} \circ e^{l,h} \) for \(l \leq h \).

Definition 3.7.7. If \(R = \langle \langle I^i \rangle, \langle \nu_i \rangle, \langle e^{i,j} \rangle, T \rangle \) is a reiteration of length \(\eta \) and \(0 < \mu \leq \eta \), we let \(R|\mu \) denote:
\[
\langle \langle I^i : i < \mu \rangle, \langle \nu_i : i + 1 < \mu \rangle, \langle e^{i,j} : i \leq T \lambda \rangle, T \cap \mu^2 \rangle
\]

Lemma 3.7.12. If \(R \) is a reiteration and \(0 < i \leq \text{lh}(R) \). Then \(R|i \) is a reiteration.

Lemma 3.7.13. Let \(R = \langle \langle I^i \rangle, \langle \nu_i \rangle, \langle e^{i,j} \rangle, T \rangle \) be a reiteration of length \(\gamma + 1 \), where \(I^i \) have length \(\eta_i + 1 \) for \(i \leq \gamma \). Let \(E^M_{\nu_i} \neq \emptyset \), where \(\nu > \nu_i \) for \(i < \gamma \). Then there is a unique extension of \(B \) to a reiteration \(R' \) of length \(\gamma + 2 \) such that \(R'|\gamma + 1 = R \) and \(\nu'_\gamma = \nu \).

Proof. Let \(i = T'(\gamma + 1) \). Then \(W(I^i, I^\gamma, \nu) \) is defined.

A much deeper result is:

Lemma 3.7.14. Let \(R \) be a reiteration of limit length \(\eta \). There is a unique extension \(R' \) such that \(R'|\eta \) such that \(R'|\eta = R \) and \(\text{lh}(R') = \eta + 1 \).

The proof of this theorem will be the main task of this subsection. It will require a long train of lemmas.

For now on let:
\[
R = \langle \langle I^\xi \rangle, \langle \nu_\xi \rangle, \langle e^{\xi} \rangle, T \rangle
\]
be a reiteration of limit length \(\eta \). Let:
\[
I^\xi = \langle \langle M^\xi \rangle, \langle \nu^\xi \rangle, \langle \pi^\xi \rangle, T^\xi \rangle
\]
be of length \(\eta_\xi + 1 \) for \(\xi < \eta \).

Lemma 3.7.15. Let \(\xi < \mu < \eta \). Then:

(a) \(s_\xi < s_\mu \)

(b) \(\nu_\xi = \nu_\mu^\xi \)

Proof. (b) holds by (e) in Definition ???. We prove (a). Suppose not. \(\eta_\mu > s_\xi \) since \(\nu_\mu^\xi \) exists. Hence \(s_\mu < \eta_\mu \). Hence \(\nu_\mu < \nu_\mu^\xi \leq \nu_\mu^\xi = \nu_\xi \). Contradiction!

QED(Lemma 3.7.15)
Lemma 3.7.16. Let $\xi + 1 \leq_T \mu$. Then $e^{\xi + 1 + \mu} | s_\xi + 1 = \text{id}$.

We proved by induction on μ. For $\mu = \xi + 1$ it is trivial. Now let $\xi + 1 <_T \mu + 1$ and let it hold at $\gamma = T(\mu + 1)$. Then $\xi < \gamma$ and hence: $\kappa_\mu \geq \lambda_\xi = \lambda^\eta_\xi$.

Hence $t_\mu \geq s_\xi + 1$ and:

$$e^{\gamma, \mu + 1} | t_\mu = \text{id}$$

by (g). Hence:

$$e^{\xi + 1, \mu + 1}(\alpha) = e^{\gamma, \mu + 1} e^{\xi + 1, \gamma}(\alpha) = \alpha \text{ for } \alpha \leq s_\eta.$$

Now let μ be a limit ordinal and let the induction hypothesis hold at γ for all γ with: $\xi + 1 \leq_T \gamma <_T \mu$. For $i \leq_T j <_T \mu$ we then have: $e^{i \mu}(\alpha) = e^{j \mu} e^{i \gamma}(\alpha) = e^{j \mu}(\alpha)$.

But then by induction on $\alpha \leq s_\eta$ we have:

$$e^{i \mu}(\alpha) = \text{lub}\{e^{j \mu}(\alpha) : i \leq_T j <_T \mu\} = \alpha$$

QED(Lemma 3.7.16)

Definition 3.7.8. $\hat{s}_\gamma =: \text{lub}\{s_\xi : \xi < \gamma\}$.

Lemma 3.7.17. Let $\gamma = T(\xi + 1)$. Then $\hat{s}_\gamma \leq t_\xi \leq s_\gamma$.

Proof.

(1) $\hat{s}_\gamma \leq t_\eta$, since if $i < \gamma$, then $\lambda_i = \lambda^\gamma_i \leq \kappa_\xi$.

(2) $t_\xi \leq s_\gamma$.

This is trivial for $\gamma = \xi$. Now let $\gamma < \xi$. Then $\kappa_{\eta} < \lambda_{\gamma} = \lambda^\xi_{\gamma}$. Hence $t_\eta \leq s_\gamma$.

QED(Lemma 3.7.17)

Definition 3.7.9. X is in limbo at μ iff $X \subset \hat{s}_\mu$ and there is no pair $\langle i, j \rangle$, such that $i \in X$, $j \geq \hat{s}_\mu$ and $i <_T j$.

Lemma 3.7.18. If $\xi + 1 \leq_T \mu$, then $\langle t_\xi, r_\xi \rangle$ is in limbo at μ.

Proof. By induction on μ.

Case 1: $\mu = \xi + 1$ by Lemma 3.7.10.

Case 2: $\mu = \delta + 1 \geq_T \xi + 1$.
Let $\gamma = T(\delta + 1)$. Then it hold at γ. Moreover, $\hat{s}_\gamma \leq t_\gamma \leq s_\gamma$. Let $i \in (t_\xi, s_\xi]$ and $i <_{T^\mu} j$, where $j \geq \hat{s}_\mu = s_{\hat{s}_\mu + 1}$. We derive a contradiction. If $j > s_\mu$, then $j = s_\delta + 2 + l$. Hence $e^{\gamma^\mu}(k) = j$, where $k = t_\delta + 1 + l$. Since $e^{\gamma^\mu}(i) = i$, we conclude: $i <_{T^\gamma} k$, where $\hat{s}_\gamma \leq t_\delta < k$. Contradiction!

QED(Case 2)

Case 3: μ is a limit ordinal.

Suppose $i \in (t_\xi, s_\xi]$ with $i \leq_{T^\mu} h$, $h \geq \hat{s}_\mu$. Then $h = e^{\gamma^1,\mu}(\bar{h})$ for a γ such that

$$\xi + 1 <_{T^\mu} \gamma + 1 <_{T^\mu} \mu$$

But $e^{\gamma^1,\mu} \upharpoonright s_\gamma + 1 = id$ by Lemma 3.7.16. Hence $\bar{h} > s_\gamma$. Hence $\bar{h} \geq \hat{s}_\gamma = s_\gamma + 1$. Hence $i \notin_{T^\gamma + 1} \bar{h}$ by the induction hypothesis. Hence $i \notin_{T^\gamma + 1} h$.

QED(Lemma 3.7.18)

By Lemma 3.7.16, $I^\xi |s_\xi + 1 = I|s_\gamma + 1$ for $\xi \leq \gamma < \eta$. The componentwise union:

$$\bar{I} = \bigcup_{\xi < \eta} I^\xi |s_\xi$$

is then a normal iteration of length

$$\tilde{\eta} = \text{lub}\{s_\xi : \xi < \eta\}$$

For $\xi < \tilde{\eta}$ set:

Definition 3.7.10. $\gamma(i) = \text{the least } \gamma \text{ such that } i \leq s_\gamma$.

(Hence $\hat{s}_\gamma \leq i \leq s_\gamma$.) The following lemma establishes an important connection between the normal iteration \bar{I} and the reiteration R.

Lemma 3.7.19. Let $i \leq_{\bar{I}} j$. Then $\gamma(i) \leq_{T} \gamma(i)$.

Proof. Suppose not. Let i, j be a counterexample. Then $\gamma(i) \leq_{T} \gamma(j)$. Hence $i < j$ and $\gamma(i) < \gamma(j)$. Set: $\gamma = \gamma(j)$. There is $\mu + 1 \leq T\gamma$ such that $T(\mu + 1) < \gamma(i) < \mu + 1$. Set $\tau = T(\mu + 1)$. Then $s_\tau < i$, since $\tau < \gamma(i)$. Hence $t_\mu \leq s_\tau < i$ by Lemma 3.7.17. But $i \leq r_\gamma(i) \leq s_\mu$, since $\gamma(i) \leq \mu$. Hence $i \leq_{T^\gamma} j$ by Lemma 3.7.18, since $j \geq \hat{s}_\gamma$. Hence $i \notin_{T^\gamma} j$, since $T(s_\gamma + 1) = \bar{I}|s_\gamma + 1$. Contradiction!

QED(Lemma 3.7.19)

Lemma 3.7.20. Let $\tau = T(\xi + 1) \leq \mu$. Then:

$$\text{crit}(e^{\tau^\mu}) = t_\xi \text{ and } e^{\tau^\mu}(t_\xi) \leq s_\mu$$
3.7. SMOOTH ITERABILITY

Proof. By induction on μ.

Case 1. $\mu = \xi + 1$. $e^{\tau,\xi+1}(t_\xi) = s_\xi + 1 = \dot{s}_{\xi+1} > t_\eta$, but

$$e^{t,\xi+1}(i) = e^{\tau,\xi+1}(i) = i \text{ for } i < t_\xi$$

Case 2. $\mu = \delta + 1$ is a successor.

Let $\gamma = T(\delta + 1)$. Then:

$$e^{\tau,\mu}(t_\xi) = e^{\gamma,\mu} \circ e^{\tau,\mu}(s_\gamma)$$

$$\leq e^{\gamma,\mu}(t_\delta) = s_\delta + 1 = \dot{s}_\mu$$

By the induction hypothesis we have:

$$e^{\tau,\mu}(t_\xi) = e^{\gamma,\mu} \circ e^{\tau,\gamma}(s_\xi) \geq e^{\tau,\gamma}(t_\xi) > t_\eta$$

For $i < t_\xi$ we have:

$$e^{\tau,\mu}(i) = e^{\gamma,\mu}e^{\tau,\gamma}(i) = e^{\tau,\mu}(i) = i$$

(since $i < t_\gamma$).

QED (Case 2)

Case 3. μ is a limit cardinal. Then $e^{\tau,\mu} | t_\xi = \text{id}$, since $e^{\tau,\gamma} | t_\xi = \text{id}$ for $t \leq_T \gamma <_T \mu$ (cf. the proof of Lemma 3.7.16). Moreover $e^{\tau,\mu}(t_\xi) \geq e^{\tau,\gamma}(t_\xi) > t_\xi$.

Claim. $e^{\tau,\mu}(t_\xi) \leq \dot{s}_\mu$.

Proof. Let $h < e^{\tau,\mu}(t_\xi)$. Then $h = e^{\gamma,\tau}(\bar{b})$ where $\xi \leq_T \gamma <_T \mu$. Assume w.l.o.g. that $\gamma = T(\delta + 1)$, where $\delta + 1 < T \mu$. Then:

$$\bar{b} < e^{\tau,\gamma}(t_\xi) \leq s_\gamma \leq t_\delta.$$

But $e^{\gamma,\mu} | t_\delta = \text{id}$ by the induction hypothesis.

Hence:

$$h = e^{\gamma,\mu}(\bar{b}) = \bar{b} < \bar{s}_\gamma \leq \dot{s}_\mu$$

QED (Lemma 3.7.20)

In order to prove Theorem 3.7.14 we must find a cofinal branch b in T such that

$$\langle I^i : i \in b \rangle, \langle e^{i,j} : i < j \in b \rangle$$
has a good limit. An obvious necessary condition is that
\[\langle \eta_i : i \in b \rangle, \langle e^{i,j} : i < j \text{ in } b \rangle \]
have a transitivized direct limit:
\[\eta, (e^i : i \in b) \].

Note. This does not say that \(e^i \) inserts \(I^i \) into a good limit \(I \). It simply gives what a system of indices which, with luck, might be used to construct a good limit.

We obtain a rather surprising result:

Lemma 3.7.21. Let \(b \) be any cofinal branch in \(T \). Then the commutative system:
\[\langle \eta_i : i \in b \rangle, \langle e^{i,j} : i < j \text{ in } b \rangle \]
has a well founded limit.

Note. This is surprising since, as we shall see, there is only one branch which yields a good limit, whereas these could be many cofinal branches.

We now turn to the proof of Lemma 3.7.21. Let \(i_0 \in b \) such that there is no drop point in \(b \setminus i_0 \). Hence \(e^{i,j}(\eta_i) = \eta_i \) for \(i \leq j, i, j \in b \). Let \(\tilde{\eta} + 1, \langle e^i : i \in b \setminus i_0 \rangle \) be the direct limit of
\[\langle \eta_i + 1 : i \in b \setminus i_0 \rangle, \langle e^{i,j} : i < j \text{ in } b \setminus i_0 \rangle \]
We claim that \(\tilde{\eta} \) is well founded.

Set: \(\tilde{\kappa}_\tau = t_\xi \) for \(\tau, \xi + 1 \in b \setminus i_0, \tau = T(\xi + 1) \). Using Lemma 3.7.20 it is straightforward to see that:

(a) \(e^{\tau,\mu} | \tilde{\kappa}_\tau = \text{id} \) for \(\tau \leq \mu \) in \(b \setminus i_0 \).
(b) \(\tilde{\kappa}_\tau < e^{\tau,\xi+1}(\tilde{\kappa}_\tau) \leq \tilde{\kappa}_{\xi+1} \).
(c) \(e^{\tau,\xi+1}(\tilde{\kappa}_\tau + j) = e^{\tau,\xi+1}(\tilde{\kappa}_\tau) + j \).
(d) If \(\tau \) is a limit ordinal, then:
\[\eta_{\tau} = \bigcup \{ \text{rng } e^{i,\tau} : i_0 < i < \tau \text{ in } b \} \].

Given this, the conclusion follows from a sublemma, which -in an effort to simplify notation- we formulate abstractly:
Sublemma. Let η be a limit ordinal. Let $\langle \delta_i : i < \eta \rangle$ be a sequence of ordinals and $e_{ij} : \delta_i \rightarrow \delta_j$ ($i \leq j < \eta$) be a commutative system of order preserving maps. Let

$$\Delta = \{ e_i : i < \eta \}$$

be the direct limit of

$$\langle \delta_i : i < \eta \rangle, \langle e_{ij} : i \leq j < \eta \rangle$$

Let $<_{\Delta}$ be the induced order on Δ. Assume that $\kappa_i < \delta_i$ for $i < \eta$ such that the following hold:

(a) $e_{ij} | \kappa_i = id$

(b) $\kappa_i < e_{i,i+1}(\kappa_i) \leq \kappa_{i+1}$

(c) $e_{i,i+1}(\kappa_i + j) = e_{i,i+1}(\kappa_i) + j$

(d) $\delta_\lambda = \bigcup_{i < \lambda} \text{rng}(e_i, \lambda)$ for limit $\lambda < \eta$.

Then $<_{\Delta}$ is well founded.

Proof. Set $\hat{\Delta} = \text{wfc}(\langle \Delta, <_{\Delta} \rangle)$. Assume w.l.o.g. that $\hat{\Delta}$ is transitive and $<_{\Delta} \cap \hat{\Delta}^2 = \in \cap \hat{\Delta}^2$. Thus, our assertion amounts to: $\hat{\Delta} = \Delta$.

(1) $\kappa_j \geq \kappa_i$ for $j > i$.

Proof. Otherwise $e_{i,j+1}(\kappa_i) > \kappa_j$ where $\kappa_j < \kappa_i$, contradicting (a).

(2) $\kappa_j > \kappa_i$ for $j > i$.

Proof. $\kappa_j \geq \kappa_{j-1} > \kappa_i$ by (b).

(3) Let $e_i(h) \in \hat{\Delta}$ and

$$e_{ij}(h + l) = e_{i,j}(h) + l \text{ for } j \geq i.$$

Then $e_i(h + l) = e_i(h) + l$ for $h + l \leq \mu$.

Proof. Suppose not. Let $k = e_i(h) + l, e_j(k) = k$. Then:

$$e_j(e_{ij}(h + l)) > k = e_j(e_{ij}(h) + l)$$

Hence:

$$e_{ij}(h) + l = e_{ij}(h + l) > k = e_{ij}(h) + l$$

Contradiction! QED(3)

Taking $h = 0$, we have $e_{ij}(l) = i$ for $l < k_i$. Hence:
(4) \(\kappa_i \subset \tilde{\Delta} \) and \(e_i \upharpoonright \kappa_i = \text{id} \).

(5) Let \(e_{ij}(h) \geq \kappa_j \). Then \(e_{ij}(h + l) = e_{ij}(h) + l \) for all \(l < \delta_i \).

Proof. By induction on \(j \geq i \). The case \(i = j \) is trivial. Now let \(j = k + 1 \), where it holds at \(k \). Then \(e_{i,k}(h) \geq \kappa_k \), since otherwise:

\[
e_{ij}(h) = e_{k,k+1}e_{ik}(h) = e_{i,h} < \kappa_h < \kappa_j.
\]

Hence:

\[
e_{i,k}(h + l) = e_{kj}e_{ik}(h + l) = e_{kj}(e_{ik}(h) + l)
= e_{kj}(h) + l
\]

since if \(e_{ik}(h) = \kappa_k + a \), then:

\[
e_{k,k+1}(h + l) = e_{k,k+1}(\kappa_k + a + l) = e_{k,k+1}(\kappa_k) + a + l
= e_{k,k+1}(\kappa_k + a) + l = e_{k,k+1}(h) + l
\]

Now let \(j \) be a limit ordinal. Then:

\[
\delta_j, \{ e_{ij} : i < j \}
\]

is the limit of

\[
\{ \delta_i : i < j \}, \{ e_{h,i} : h \leq i < j \}
\]

and we apply (3).

QED(5)

We now prove \(\Delta \subset \tilde{\Delta} \) by cases as follows:

Case 1: For all \(i < \eta, h < \delta_i \) there is \(j > i \) such that \(e_{ij}(h) < \kappa_j \).

Then \(e_i(h) = e_j e_{i,j}(h) \subset \kappa_j \), since \(e_j \upharpoonright \kappa_j = \text{id} \). Thus \(\Delta = \bigcup_i \text{rng}(e_i) \subset \bigcup_i \kappa_i \subset \tilde{\Delta} \).

Case 2: Case 1 fails.

Then there is \(i \) such that for some \(h < \delta_i \), we have: \(e_{ij}(h) \geq \kappa_i \) for all \(j \geq i \).

Since \(e_{jk}e_{ik}(h) \geq e_{ik}(h) \geq \kappa_k \) for \(i_0 \leq j \leq k \), there is for each \(j \geq i_0 \) a least \(h_j \) such that \(e_{ij}(h_j) \geq \kappa_l \) for all \(l \geq j \).

Claim. \(e_{ij}(h_j) = h_j \) for \(i_0 \leq i \leq j \).

Proof. Suppose not. Let \(j \) be the least counterexample. Then \(j = l + 1 \) for an \(l \geq i \). Since \(e_{i,l}(\kappa_l + a) = e_{i,j}(\kappa_l) + a \) for \(\kappa_l + a < \delta_i \), we know that:

\(h_j = e_{l,i}(b) \) for a \(b < \delta_i \). But then there is \(j' > i \) such that

\[
e_{l,j}(b) = e_{j,j'}(h_j) < \kappa_j
\]
3.7. SMOOTH ITERABILITY

Contradiction!

\[\text{QED(Claim)} \]

But then \(e_i(h_i) = e_j(h_j) \) for \(i_0 \leq i \leq j < \eta \). Now let \(\tilde{h} = e_i(h_i) \) for \(i_0 \leq i < \eta \). Then:

\textbf{Claim.} \(\tilde{h} = \bigcup \{ h_i : i_0 \leq i < \eta \} \).

\textbf{Proof.} \(\tilde{h} = \bigcup e_i h_i \). But if \(a < h_i \), then \(e_{ij}(a) < \kappa_j \) for some \(j \geq i \) by the minimality of \(h_i \). Hence \(e_i(a) = e_j(e_{ij}(a)) = e_{i,j}(a) < h_j \), since \(e_j \kappa_j = \text{id} \).

\[\text{QED(Claim)} \]

Hence \(\tilde{h} \in \tilde{\Delta} \) and:

\[e_j(h_j + l) = \tilde{h} + l \text{ for } h_j + l < \delta_j, \]

by (3), (5). Hence \(\text{rng}(e_j) \subset \tilde{\Delta} \) and \(\Delta = \tilde{\Delta} \). This proves the sublemma and with it Lemma 3.7.21.

\[\text{QED(Lemma 3.7.21)} \]

Note that \(\eta_0 \geq \tilde{\kappa}_i \) for \(i \in b \setminus i_0 \) where \(e^i(\eta_i) = \tilde{\eta} \). Hence as a corollary of the proof we have:

\textbf{Corollary 3.7.22.} Set \(\tilde{\eta}_i = \text{the least } h \text{ such that } e^i(h) \geq \tilde{\kappa}_j \text{ for all } j \geq i \). Then \(\tilde{\eta}_i \) is defined for sufficiently large \(i \) and \(e^i(\tilde{\eta}_i) = \tilde{\eta} \). Moreover \(\tilde{\eta} = \text{lub}\{ \tilde{\eta}_i : i < \eta \} \).

However, in order to prove Theorem 3.7.14 we must find the "right" cofinal branch in \(T \). Lemma 3.7.19 suggests an obvious strategy: Let \(\tilde{b} \) be the unique well founded cofinal branch in \(\tilde{T} \). Set:

\[\tilde{b} = \{ \gamma(i) : i \in \tilde{b} \}, b = \{ \tau : \bigvee \gamma \in \tilde{b}, \tau \leq_T \gamma \} \]

Then \(b \) is a cofinal branch in \(T \). We show that this branch works, thus establishing the existence assertion of Theorem 3.7.14.

By Lemma 3.7.21, the commutative system

\[\langle \eta_i + 1 : i \in \tilde{b} \rangle, \langle e^i : i \leq j \text{ in } b \rangle \]

has a transitivized direct limit:

\[\tilde{\eta} + 1, \langle e^i : i \in b \rangle \]

This gives us a system of indices with which to work.
We must show that the commutative insertion system:

\[\{ I^h : h \in b \}, \{ e^{h,j} : h \leq j \text{ in } b \} \]

has a good limit \(I \). By induction on \(i < \tilde{\eta} \) we, in fact, show:

Lemma 3.7.23. Let \(i < \tilde{\eta} \). Then the above commutative system has a good limit \(I|i + 1 \) with respect to \(i \) in the sense of Definition ?? at the end of §3.7.1. In other words, \(I|i + 1 \) has length \(i + 1 \) and \(e^\xi| h + 1 \) inserts \(I^\xi| h + 1 \) into \(I|i + 1 \) where was \(e^\xi(h) = i \).

Remark on notation. In §3.7.1 we showed that there can be at most one good limit below \(i \). We denote this, if it exists, by \(I^j_i + 1 \). But then \((I^j_i + 1)|h + 1 = I|h + 1 \) by uniqueness.

We recall that we defined: \(\bar{\kappa}_\tau = t_\xi \) where \(\tau = T(\xi + 1), \xi + 1 \in b \), and that \(\bar{\kappa}_\tau = \text{crit}(e^{\tau,j}) = \text{crit}(e^\tau) \) for \(\tau < j \) in \(b \).

But then \(\bar{I} = \bigcup_{\tau \in b} I^\tau|\bar{\kappa}_\tau \), since if \(\tau = T(\xi + 1), \xi + 1 \in b \), then:

\[I^\tau|\bar{\kappa}_\tau = (I^\xi|s_{\eta + 1})|\bar{\kappa}_\tau = \bar{I}|\bar{\kappa}_\tau. \]

We prove Lemma 3.7.23 by induction on \(i \leq \tilde{\eta} \).

Case 1. \(i < \tilde{\eta} = \text{lh}(\bar{I}) \).

Let \(e^\xi(h) = i \). Let \(\xi < T \tau \in b \), where \(i + 1 < \bar{\kappa}_\tau \). Then \(e^\xi|h + 1 = (e^\tau|i + 1)(e^{\eta,T}|h + 1) \) where \(e^\tau|\delta + 1 = \text{id} \). Hence \(e^\xi|h + 1 = e^\xi\tau = h + 1 \) into \(I^\tau|i + 1 = I|i + 1 \).

Case 1.

Case 2. \(i = \tilde{\eta} \).

Let \(\tilde{b} \) be the unique cofinal well founded branch in \(\bar{I} \). Let \(M_{\tilde{\eta}}, \langle \pi_{i,j} : i \in \tilde{b} \rangle \) be the transitivized direct limit of:

\[\langle M_i : i \in b \rangle, \langle \pi_{i,j} : i \leq_T j \in \tilde{b} \rangle. \]

This gives us \(I|\tilde{\eta} + 1 \). We must prove that, if \(e^\xi(\tilde{\eta}) = \tilde{\eta}, \xi \in b \). Then \(e^\xi \) inserts \(I^\xi|\tilde{\eta} + 1 \) into \(I|\tilde{\eta} + 1 \). By Lemma 3.7.8 it suffices to prove:

\[(*) \text{ Let } e^\gamma(\mu_\gamma) = \mu. \text{ Either } e^\gamma(\mu_\gamma) = \mu \text{ or else } e^\gamma(\mu_\gamma) = \mu \text{ and whenever } i < T \gamma \mu_\gamma, \text{ then } e^\gamma(i) \in b. \]
3.7. SMOOTH ITERABILITY

We know: \(\kappa_\tau = \text{crit}(e^{\tau \xi + 1}) = t_\xi \) for \(\tau = T(\xi + 1), \xi + 1 \in b \). Set:

\[\hat{\lambda}_\tau = e^{\tau \xi + 1}(\kappa_\tau) = s_\xi + 1. \]

(1) \(b \cap \bigcup_{\tau \in b}(\kappa_\tau, \hat{\lambda}_\tau) = \emptyset. \)

Proof. Suppose not. Let \(i \in b \cap (\kappa_\tau, \hat{\lambda}_\tau), \tau \in b \). Let \(\mu > \tau \) such that \(\mu \in b \). Let \(\mu = \gamma(j), j \in b \). Then \(\hat{s}_\mu \leq j \leq s_\mu \). Then \(j > T \ i \in I \), where \(I|s_\mu + 1 = I^\mu|s_\mu + 1 \). Here \(j > T \ i \in I^\mu \). But \((\kappa, \hat{\lambda}_\tau) = (t_\xi, s_\xi] \), where \(\tau = T(\xi + 1), \xi + 1 \in b \), and is therefore in limbo at \(\mu \), since \(\xi + 1 \leq T \mu \). Hence \(j \not> T \ i \in I^\mu \). Contradiction!

QED(1)

Now let \(\gamma = \gamma(i) \in b \), then \(\hat{\gamma} \leq i \leq s_\gamma \). Let \(\gamma = T(\xi + 1), \xi + 1 \in b \). Then \(s_\gamma < s_\xi + 1 = \lambda_\gamma \). But \((\kappa_\gamma, \hat{\lambda}_\gamma) \cap b = \emptyset \). Hence:

(2) \(i \leq \kappa_\tau \) if \(\gamma = \gamma(i) \in b \).

Set:

\[A = \{ \gamma \in b : \hat{s}_\gamma < \kappa_\gamma \} \]

We consider two cases:

Case 2.1. \(A \) is cofinal in \(b \).

Here we make use of the following general lemma on normal reiteration:

Lemma 3.7.24. Let \(\hat{s}_\mu \leq j < e^{\xi \mu}(i) \). Then \(j \in \text{rng}(e^{\sigma}, \mu) \).

Proof. Suppose not. Let \(\mu \) be the least counterexample. Then \(\mu > \xi \).

Case 1. \(\mu \) is a limit ordinal.

Let \(\zeta \) such that \(\xi \leq \zeta < \mu \) and \(j = e^{\xi \mu}(j') \). Then \(j' \geq \kappa_\zeta \), since otherwise:

\[j = j' < \kappa_\zeta < \hat{\lambda}_\zeta < \hat{s}_\mu. \]

Contradiction! Thus \(\hat{s}_\zeta \leq j' \leq e^{\xi \mu}(i) \). By the minimality of \(\mu \) we conclude:

\[j' \in \text{rng}(e^{\xi \mu}); \]

hence \(j = e^{\xi \mu}(j') \in \text{rng}(e^{\xi \mu}) \). Contradiction!

Case 2. \(\mu = \zeta + 1 \) is a successor.

Let \(\tau = T(\zeta + 1) \). Then \(j \geq \hat{s}_\mu = s_\zeta + 1 = \hat{\lambda}_\tau \). Moreover:

\[e^{\tau \mu}(\kappa_\tau + h) = \hat{\lambda}_\tau + h \text{ for } h \leq \eta_\tau. \]

Let \(j = \hat{\lambda}_\tau + h, e^{\xi \mu}(i) = \hat{\lambda}_\tau + k \). Hence \(h < k \). Set \(j' = \kappa_\tau + h \).

Then \(e^{\tau \mu}(j') = i \), where \(\hat{s}_\tau \leq \kappa_\tau \leq j' < e^{\xi \mu}(i) \). By the minimality
of μ we conclude: $j' \in \text{rng}(e^{\xi, \tau})$. Hence $j = e^{\tau, \mu}(j') \in \text{rng}(e^{\xi, \mu})$. Contradiction!

QED(Lemma 3.7.24)

Let $\tau_0 \in h$ such that $\tilde{\eta} \in \text{rng}(\bar{e}^\gamma)$ for $\tau_0 < \gamma < b$. Set:

$$\tilde{\eta}_\tau = (e^\tau)^{-1}(\tilde{\eta}) \text{ for } \tau \in b \setminus \tau_0.$$

Then

(3) $e^\tau(\tilde{\kappa}_\tau) < \tilde{\eta}$ for $\tau \in b \setminus \tau_0$.

Proof. Let $\tau < \gamma < A$. Then $e^{\gamma, \gamma}(\tilde{\kappa}_\tau) \leq \hat{s}_\gamma < \tilde{\kappa}_\gamma$. Hence $e^\tau(\tilde{\kappa}_\tau) = e^\gamma \circ e^{\gamma, \gamma}(\tilde{\kappa}_\tau) = e^{\gamma, \gamma}(\tilde{\kappa}_\tau) < \tilde{\eta}$. QED(3)

Now set:

$$B := (\eta \setminus \bigcup_{\tau \in b} [\tilde{\kappa}_\tau, \tilde{\lambda}_\tau]) = \bigcup_{\tau \in b \setminus \tau_0} [\hat{s}_\tau, \tilde{\kappa}_\tau].$$

Then:

(4) $\hat{b} \in \text{rng}(e^\tau)$.

Proof. Let $\tau \leq \gamma < A$. Then $\hat{s}_\gamma \leq j \leq \eta_\tau = e^{\tau, \gamma}(\eta_\tau)$ for $j \in [\hat{s}_\gamma, \tilde{\kappa}_\gamma)$. But then by Lemma 3.7.24:

$$[\hat{s}_\gamma, \tilde{\kappa}_\gamma) \subset \text{rng}(e^{\tau, \gamma}).$$

But $e^\gamma \upharpoonright [\hat{s}_\gamma, \tilde{\kappa}_\gamma) = \text{id}$. Hence:

$$[\hat{s}_\gamma, \tilde{\kappa}_\gamma) \subset \text{rng}(e^\tau) = \text{rng}(\bar{e}^\gamma e^{\gamma, \gamma}).$$

QED(4)

But B is cofinal in $\tilde{\eta}$. Hence

(5) $e^{\tau, \mu}\tilde{\eta}_\tau$ is cofinal in $\tilde{\eta}$. Hence we then get:

(6) $\hat{b} \in \text{rng}(\bar{e}^\tau)$ is cofinal in $\tilde{\eta}$.

Proof.

Case 1. $\hat{b} \cap B$ is cofinal in $\tilde{\eta}$. Hence there are arbitrarily large $i < \tilde{h}_\tau$ such that $e^\tau(i) \in \hat{b}$. But $\bar{e}^\tau(i) \leq e^\tau(i)$, so $\bar{e}^\tau(i) \in \hat{b}$. But $\bar{e}^\tau(i) > e^\tau(h)$ for $h < i$.

QED(Case 1)

Case 2. Case 1 fails.

We know

$$\tilde{b} \subset B' = (\eta \setminus \bigcup_{\tau} [\tilde{\kappa}_\tau, \tilde{\lambda}_\tau]) = \bigcup_{\tau} [\hat{s}_\tau, \tilde{\kappa}_\tau)$$
3.7. SMOOTH ITERABILITY

But \(B' \wedge B = \{ \tilde{b} : \gamma \leq \tau \in b \} \). Hence \(\tilde{b} \wedge \tilde{b} \subset \{ \tilde{b} : \gamma \leq \tau \in b \} \) for \(\tau_1 \geq \tau_0 \). Let \(\tau \in A \) such that \(\tau \geq \tau_1 \). Then \(\delta \tau < \tilde{b} \). Let \(j = \text{lub}(\tilde{e}^\tau)^{-1} \cap (\delta \tau, \tilde{b}) \). Then \(\tilde{e}^\tau(j) = \text{lub}[\delta \tau, \tilde{b}] = \tilde{b} \).

\[
\text{QED(6)}
\]

But if \(\tilde{e}^\tau(h) \in \tilde{b} \) and \(j \leq \tilde{T}^\tau h \), then \(\tilde{e}^\tau(i) \leq \tilde{e}^\tau(h) \); hence \(\tilde{e}^\tau(j) \in \tilde{b} \).

Thus the set:
\[
\tilde{b} = \{ i : \tilde{e}^\tau(i) \in \tilde{b} \}
\]
is a cofinal branch in \(I^\tau \). But since \(\tilde{b} \) is well founded, it follows that \(\tilde{b} \) is well founded. Hence \(\tilde{b} = T^\tau \{ \tilde{b} \} \) by the unique iterability. Hence \((*)\) holds.

\[
\text{QED(Case 2.1)}
\]

Case 2.2. Case 2.1 fails.

Then \(\delta \gamma = \tilde{b} \) for \(\gamma \in b \), where \(\tau_1 \in b \). If \(\tau = T(\xi + 1) \in b \wedge b_1 \), then
\[
e^\tau \xi + 1(\tilde{b}) = \tilde{b} = s_\xi + 1 = \delta \xi + 1 = \tilde{b} \xi + 1
\]

It follows easily that:

(7) \(e^\tau(\tilde{b}) = \tilde{b} \) for \(\tau \in b \wedge b_0 \).

Since \((\tilde{b}, b_0) \cap \tilde{b} = \emptyset \), we have:

(8) \(e^\tau(b) = \tilde{b} \) for \(\tau \in b \wedge b_0 \).

(9) \(\tilde{b} \wedge b_1 \subset \{ \tilde{b} : \tau \in b \wedge b_1 \} \).

Hence:

(10) \(\tilde{e}^\tau(\tilde{b}) \in \tilde{b} \) for \(\tau \) such that \(e^\tau(\tilde{b}) = \tilde{b} \).

Proof. Let \(\gamma \in b \wedge b_1 \) such that \(\gamma > \tau \) and \(\tilde{b} \gamma \in \tilde{b} \). Then \(e^\tau(\tilde{b}) = \tilde{b} \gamma \) by (8). Hence
\[
e^\tau(\tilde{b}) \leq \tilde{T}^\tau \tilde{e}^\tau(\tilde{b}) = \tilde{b} \gamma
\]

But if \(\gamma = T(\xi + 1) \) and \(\xi + 1 \in b \), we have:
\[
e^\gamma(\tilde{b}) = \tilde{b} \gamma, \text{ since } \tilde{b} \gamma = t_\xi
\]

Hence \(\tilde{e}^\tau(\tilde{b}) = \tilde{e}^\gamma \tilde{e}^\tau(\tilde{b}) = \tilde{b} \gamma \). Hence \(\tilde{e}^\tau(\tilde{b}) \leq \tilde{b} \gamma \in \tilde{b} \). Hence \(\tilde{e}^\tau(\tilde{b}) \in \tilde{b} \), and \((*)\) is proven.

Proof. Let \(\gamma \in b \wedge b_1 \) such that \(\gamma > \tau \) and \(\tilde{b} \gamma \in \tilde{b} \). Then \(e^\tau(\tilde{b}) = \tilde{b} \gamma \) by (8). Hence
\[
e^\tau(\tilde{b}) \leq \tilde{T}^\tau \tilde{e}^\tau(\tilde{b}) = \tilde{b} \gamma
\]

But if \(\gamma = T(\xi + 1) \) and \(\xi + 1 \in b \), we have:
\[
e^\gamma(\tilde{b}) = \tilde{b} \gamma, \text{ since } \tilde{b} \gamma = t_\xi
\]

Hence \(\tilde{e}^\tau(\tilde{b}) = \tilde{e}^\gamma \tilde{e}^\tau(\tilde{b}) = \tilde{b} \gamma \). Hence \(\tilde{e}^\tau(\tilde{b}) \leq \tilde{b} \gamma \in \tilde{b} \). Hence \(\tilde{e}^\tau(\tilde{b}) \in \tilde{b} \), and \((*)\) is proven.

QED (Case 2.2)

Case 3. \(i > \tilde{b} \).

Then \(e^\gamma(\tilde{b} + i) = \tilde{b} + j \), since \(\tilde{b} \gamma \geq \tilde{b} \gamma \).
CHAPTER 3. MICE

Using this follows easily by induction on i, using Lemma 3.7.8 and Lemma 3.7.7, that $I|i + 1$ exists. We leave this to the reader.

QED(Lemma 3.7.23)

This proves the existence part of Theorem 3.7.24. We must still prove uniqueness.

Definition 3.7.11. Let b be a cofinal branch in:

$$R = \langle \langle I^1, \langle \nu_i \rangle, \langle e^i \rangle \rangle, T \rangle,$$

where R is a reiteration of limit length η. b is **good for R** iff R extends to R' of length $\eta + 1$ with $b = T^u(\eta)$.

We have proven the existence of a good branch b. Now we must show that it is the only one. Suppose not. Let b^* be a second good branch, inducing R^* of length $\eta + 1$ with $b^* = T^u(\eta)$.

We have proven the existence of a good branch b. Now we must show that it is the only one. Suppose not. Let b^* be a second good branch, inducing R^* of length $\eta + 1$ with $b^* = T^u(\eta)$. Since b, b^* are distinct cofinal branches in T, there is $\tau_0 < \eta$ such that:

$$(b \setminus \tau_0) \cap (b^* \setminus \tau_0) = \emptyset.$$

$I' = (I^\eta)^R$ has length $\bar{\eta}$ and $I^* = (I^\eta)^{R'}$ has length η^*. However:

$$\bar{\eta} = \bigcup_{i < \eta} s_i + 1, \bar{I} = \bigcup_{i < \eta} I|s_i + 1$$

remain unchanged. Moreover $I = I'|\bar{\eta} = I^*|\bar{\eta}$. Since \hat{b} is the unique cofinal well founded branch in \bar{I}, we must have:

$$\hat{b} = T^u\{\bar{\eta}\} = T^u\{\bar{\eta}\}.$$

Now let $\gamma > \tau_i$ such that:

$$\gamma = \gamma(i) \in \hat{b} = \{\gamma(i) : i \in \hat{b}\}.$$

Then $\gamma \in b \setminus \tau_0$. Let $\gamma = \gamma(i)$ where $i \in \hat{b}$. Then $\delta_i \leq i \leq s_\gamma$.

Let δ be least such that $\delta \in b^*$ and $\delta > \tau_0$. Then $\delta = \xi + 1$ and $\tau = T^* (\xi + 1) < \gamma$. Then $t_\xi \leq s_\tau$. But

$$s_\tau < \delta_\gamma \leq i \leq s_\gamma,$$

where $s_\gamma + 1 = \delta_{\gamma + 1} \leq \delta_\xi = s_\xi + 1$.

3.7. SMOOTH ITERABILITY

Hence \(i \in (t_\xi, s_\xi) \). But then:

\[
i < s_\xi + 1 = \lambda_\xi^* \leq \kappa_\delta^* = \text{crit}(e^\delta)
\]

Hence \(e^\delta(i) = i \in b^* \). But \(i < T^* \tilde{\eta} \), since \(i \in \tilde{b} \). Hence, letting \(e^\delta(\tilde{\eta}_\delta^*) = \tilde{\eta} \), we have:

\[i < T^* \tilde{\eta}_\delta^*, \text{ where } \tilde{\eta}_\delta^* \geq \tilde{s}_0 = s_\xi + 1.\]

But this is impossible, since \((t_\xi, s_\xi]\) is in limbo at \(\delta \). Contradiction!

QED (Theorem 3.7.14)

We have shown that, if \(M \) is uniquely normally iterable, then it is uniquely normally iterable in the sense that every normal reiteration of limit length has exactly one good branch. As we stated at the outset, the result can be relativized to a regular \(\theta > \omega \). In this case we restrict ourselves to \(\theta \)-reiteration.

Definition 3.7.12. Let \(\theta > \omega \) be regular. A normal reiteration \(R = \langle(I^i), (e^{i,j}), T \rangle \) is called a \(\theta \)-reiteration if \(\text{lh}(R) < \theta \) and \(\text{lh}(I^i) < \theta \) for all \(i \). \(M \) is uniquely normally \(\theta \)-reiterable iff every \(\theta \)-reiteration of limit length \(< \theta \) has one good branch.

We have shown that, if \(M \) is uniquely normally \(\theta \)-iterable, then it is uniquely normally \(\theta \)-reiterable. But what if \(M \) is, in fact, \(\theta + 1 \) iterable? Can we strengthen the conclusion correspondingly? We define:

Definition 3.7.13. Let \(\theta, R \) be as above. \(R \) is a \(\theta \) iff \(\text{lh}(R) \leq \theta \) and \(\text{lh}(I^i) < \theta \) for all \(i \). \(M \) is uniquely normally \(\theta + 1 \) reiterable iff every \(\theta \)-reiteration of length \(\leq \theta \) has a unique good branch.

Now suppose \(M \) be normally \(\theta + 1 \)-iterable. Let \(R \) be a \(\theta + 1 \) reiteration of length \(\theta \). Define \(\tilde{I}, \tilde{b}, \tilde{b}, b, b \) exactly as before. Then \(b \) is a cofinal branch in \(T \).

(It is also the unique such branch, since if \(b' \) were another such, then \(b \cap b' \) is club in \(\theta \). Hence \(b = b' \).) \(b \) has at most finitely many drop points, since otherwise some proper segment of \(b \) would have infinitely many drop points. Suppose that \(\gamma \in b \) and \(b \setminus \gamma \) has no drop points. Then:

\[\langle(I^i : i \in b \setminus \gamma), (e^{i,j} : i < j \in b \setminus \gamma)\rangle\]

has a unique good limit:

\[\langle I, (e^i : i \in b \setminus \gamma)\rangle\]

by Lemma 3.7.9. Hence \(b \) is a good branch. Thus we have:

Lemma 3.7.25. If \(M \) is uniquely normally iterable, then it is uniquely normally reiterable. Moreover if \(\theta > \omega \) is regular, then:
(a) If M is uniquely normally θ-iterable, then it is uniquely normally θ-reiterable.

(b) If M is uniquely normally $\theta + 1$-iterable, then it is uniquely normally $\theta + 1$-reiterable.

Remark. The assumption that M is uniquely normally iterable can be weakened somewhat. We define:

Definition 3.7.14. Let S be a normal iteration strategy for M. S is insertion stable iff whenever I is an S-conforming iteration of M and e inserts \overline{I} into I, then \overline{I} is an S-conforming iteration.

Now suppose that M is iterable by an insertion stable strategy S. We can define the notion of a normal reiteration on $\langle M, S \rangle$ exactly as before, except that we require each of the component normal iterations I^i to be S-conforming. (We could also call this an S-conforming normal reiteration on M). All of the assertions we have proven in this subsection go through for reiterations on $\langle M, S \rangle$, with nominal changes in formulation and proofs. For instance, if we alter the definition of good branch mutatis mutandis, our proofs give:

$\langle M, S \rangle$ is uniquely reiterable in the sense that every reiteration of limit length has exactly one good branch.

We close this section with two technical lemmas which will be of use later. Both assume the unique iterability (or θ-iterability) of M.

Lemma 3.7.26. Let I, I' be normal iteration of M. There is at most one pair $\langle R, \xi \rangle$ such that

$$R = \langle \langle I^i \rangle, \langle \nu_i \rangle, \langle e^{i+j} \rangle, T \rangle,$$

is a reiteration of $M, \text{lh}(R) = \xi + 1, I = I^0, I^1 = I^\xi$.

Proof. Assume such R, ξ to exist. We show that R, ξ are defined by a recursion:

$$R|i + 1 \equiv F(R|i)$$

where ξ is least such that $F(R|\xi + 1)$ is undefined. F will be defined solely by reference to I, I'. We have:

$$R|1 = \langle \langle I \rangle, \varnothing, \langle \text{id} \upharpoonright \text{lh}(I) \rangle, \varnothing \rangle.$$

At limit $\lambda, R|\lambda + 1 = F(R|\lambda)$ is given by the unique good branch in $R|\lambda$. Now let $R|i + 1$ be given. If $I^i = I^1$, then $F(R|i + 1)$ is undefined. If not,
3.7. SMOOTH ITERABILITY

let \(s = s_i \). Then \(I^{|s+1} = I^{|s+1} \), since \(\nu_i = \nu_{i+1} \). If \(i + 1 < \text{lh}(I^i) \), then \(\nu_i = \nu_{i+1} \). Hence \(I^{|s+2} = I^{|s+2} \). We have shown:

\[
\begin{align*}
\text{s = the maximal } s \text{ such that } s+1 &\leq \text{lh}(I) \\
\text{and } I^{|s+1} &\neq I^{|s+1}
\end{align*}
\]

But then \(R|i+2 \) is uniquely defined from \(R|i+1 \) and \(\nu_i = \nu'_s \).

QED (Lemma 3.7.26)

For later reference we state a further lemma about reiterations:

Lemma 3.7.27. Let \(R = \{\{I_i\}, \{\nu_i\}, (e^{i,j})_T\} \) be a reiteration of length \(\mu+1 \). Let \(I^i \) be of length \(\eta \) for \(i \leq \mu \). Set:

\[
A_j = A_j^R = \{i : i < j \text{ and } (i, j)_T \text{ has no drop point in } R\}
\]

for \(j \leq \mu \). Set:

\[
\sigma_{i,j} = \sigma_{i,j}^i \text{ for } i \in A_j \text{ or } i = j
\]

. Then:

(a) \(e^{i,\mu}(\eta) = \eta_i \) for \(i \in A_\mu \).

(b) \(\sigma_{i,\mu} : M_\eta \rightarrow \Sigma \circ \eta_i \) for \(i \in A_\mu \).

(c) If \(\mu \) is a limit ordinal, then

\[
M_\eta = \bigcup_{i \in A_\mu} \text{rng}(\sigma_{i,\mu}).
\]

Proof. We proved it by induction on \(\mu \).

Case 1. \(\mu = 0 \). Then \(A_\mu = \emptyset \) and there is nothing to prove.

Case 2. \(\mu = j+1 \) is a successor. If \(\mu \) is a drop point, then \(A_\mu = \emptyset \) and there is nothing to prove. Assume that it is not a drop point. Then \(h = T(\mu) \) is the maximal element of \(A_\mu \). (c) holds vacuously. We now prove (a), (b) for \(i = h \). By our construction, \(e^{h,\mu}(\eta_h) = \eta_h \) could only fail if \(\mu \) is a drop point, so (a) holds. We now prove (b) for \(i = h \). If \(t_j < \eta_h \), then \(e^{h,\mu} = e^{h,\mu} \) and:

\[
\sigma_{h,\mu} = \sigma_{\eta_h}^{h,\mu} = \sigma_{\eta_h}^{h,\mu}.
\]

Hence (b) holds. Now let \(t_j = \eta_h \). Then \(\eta_\mu = s_j + 1 \) and:

\[
\sigma_{\eta_h}^{h,\mu} : M_{\eta_h} \rightarrow \sigma_{\eta_h}^{h,\mu} M_{\eta_h},
\]
where $F = E_{\nu_j}^{M_j}$. Hence (b) holds.

Now let $i < h$. Then $i \in A_h^{R|h+1}$. This gives us $\sigma_{ih} = \sigma_{n_i}^{i,h}$. Then (a)-(c) holds for $R|h+1$ by the induction hypothesis.

By Lemma 3.7.5 we then easily get:

$$\sigma_{h,i} \sigma_{i,h} = \sigma_{i,\mu}.$$

It follows easily that (a), (b) hold at i.

QED(Case 2)

Case 3. μ is a limit ordinal. Then $A_\mu = [i_0, \mu)_T$ for a $i_0 < T \mu$. We know that:

$$\eta_\mu, \{e^{i,\mu} : i \in A_\mu\}$$

is the transitive direct limit of:

$$\langle \nu_i : i \in A_\mu \rangle, \{e^{i,j} : i \leq j \text{ in } A_\mu\}$$

Hence (a) holds at μ. But:

$$I^\mu, \{e^{i,\mu} : i \in A_\mu\}$$

is the good limit of:

$$\langle I^i : i \in A_\mu \rangle, \{e^{i,j} : i \leq j \text{ in } A_\mu\}$$

(where $e^{j,\mu} e^{i,j} = e^{i,\mu}$). But then (c) holds by Lemma 3.7.7. Hence (b) holds, since (b) holds for $R|i+1$ whenever $i \in A_\mu$ (hence $A_i = A_\mu \cap i$).

QED(Lemma 3.7.27)

3.7.3 A first conclusion

In this section we prove:

Theorem 3.7.28. Let M' be a normal iterate of M. Then M' is normally iterable.

We prove it in the slightly stronger form:

Lemma 3.7.29. Let $I = \langle \langle M_i \rangle, \langle \nu_i \rangle, \langle \pi_{i,j} \rangle, T \rangle$ be a normal iteration of M of length $\eta + 1$. Let $\sigma : N \to \Sigma^*, M_i \min \rho$. Then N is normally iterable.
First, however, we prove a technical lemma. Recalling the definition (??) of the function \(W(I, I', \nu) \), we prove:

Lemma 3.7.30. Let \(W(I, I', \nu) = \langle I^*, I'' , e \rangle \), where \(F, \nu, \kappa, \tau, \lambda, s, t \) are as in ?? . Let \(I, I^*, I', I'' \) be of length \(\eta + 1, \eta^* + 1, \eta' + 1, \eta'' + 1 \) respectively. Let \(\sigma = \tilde{\sigma}_{\eta^*} \) be induced by \(e \). Set:

\[
M_\tau = M_\eta \parallel \mu \text{ where } \mu \text{ is maximal such that } \tau \text{ is a cardinal } M_\eta \parallel \mu.
\]

(Hence \(\mathbb{P}(\kappa) \cap M_\tau = \mathbb{P}(\kappa) \cap J_{\nu}^{E_{M'}}^{\eta'} \). Then:

(a) \(\sigma : M_\tau \rightarrow \Sigma : M_{\eta''}^{\eta''} \)

(b) \(\sigma(X) = F(X) \text{ for } X \in \mathbb{P}(\kappa) \cap M' \) (hence \(\kappa = \text{crit}(\sigma) \)).

Proof.

Case 1. \(t = \eta \) and \(\tau \) is a cardinal in \(M_\eta \).

Then \(\eta^* = \eta, M_\tau = M, \eta'' = \eta + 1 \) and:

\[
\tilde{\sigma}_\eta = \tilde{\sigma}_\eta = \pi_{\eta_{\eta'}}^{\eta_{\eta''}} : M_\eta \rightarrow \Sigma : M_{\eta''}^{\eta''}
\]

QED(Case 1)

Case 2. \(t < \eta \) and \(\tau \) is a cardinal in \(M_\eta \). Then \(\eta^* = \eta, M_\tau = M_\eta \). Moreover, \(\tilde{\sigma} = \sigma_\eta \); hence (a) holds. Set:

\[
M'_{\eta''} = M_t \parallel \mu \text{ where } \mu \text{ is maximal such that } \tau \text{ is a cardinal in } M_t \parallel \mu.
\]

Then \(M'_{\eta''} = M_s^{\eta_s} \) and:

\[
\tilde{\sigma}_t = \tilde{\sigma}_t = \pi_{t_{s+1}}^{\eta_{t_{s+1}}} : M_s^{\eta_s} \rightarrow \Sigma : M_{\eta''}^{\eta''}
\]

Note that \(\mu \geq \lambda_t, \) since \(\lambda_t \) in inaccessible in \(M_\eta \) and \(\tau < \lambda_t \) is a cardinal in \(M_\eta \). Then \(\sigma_\eta \upharpoonright \lambda_t = \tilde{\sigma}_t \upharpoonright \lambda_t \) and \(J_{\lambda_t}^{E_{M_t}} = J_{\lambda_t}^{E_{M_\eta}} \). Hence \(\sigma_\eta \upharpoonright J_{\lambda_t}^{E_{M_t}} = \sigma_\eta \upharpoonright J_{\lambda_t}^{E_{M_\eta}} \). Hence:

\[
\sigma_\eta(X) = \tilde{\sigma}_t(X) = F(X) \text{ for } X \in \mathbb{P}(\kappa) \cap M.
\]

QED(Case 2)

Case 3. \(\tau \) is not a cardinal in \(M_\eta \). Then \(\eta^* = t, \eta'' = s + 1 \), and:

\[
\tilde{\sigma}_t = \tilde{\sigma}_t : M_s \rightarrow \Sigma : M_{s+1}^{\eta_{s+1}}
\]

QED(Lemma 3.7.30)
Corollary 3.7.31. Let:

\[R = \langle \langle I^i \rangle, \langle \nu_i \rangle, \langle e^{i,j} \rangle, T \rangle, \]

be a reiteration where:

\[I^i = \langle \langle M^i_k \rangle, \langle \nu^i_k \rangle, \langle \pi^i_{k,j} \rangle, T^i \rangle \] is of length \(\eta_i + 1 \).

Let \(\xi = T(i + 1) \). Let \(I^*_i \) have length \(\eta^*_i + 1 \). Set: \(M^*_i = M^\xi_{\eta^*_i} \| \mu \), where \(\mu \) is maximal such that \(\tau_i \) is a cardinal in \(M^\xi_{\eta^*_i} \). Then:

\[\tilde{\sigma}^{\xi,i+1}_{\eta^*_i} : M^*_i \rightarrow M^{i+1}_{\eta^*_i} \text{ and:} \]

\[\tilde{\sigma}^{\xi,i+1}_{\eta^*_i}(X) = E^i_{\nu_i}(X) \text{ for } X \in \mathbb{P}(\kappa_i) \cap M^i_{\eta^*_i} \].

Note. \(\mathbb{P}(\kappa_i) \cap M^*_i = \mathbb{P}(\kappa_i) \cap J^{\mathcal{M}^i} \).

Note. This does not say that \(M^{i+1}_{\eta^*_i} \) is a \(* \)-ultrapower of \(M^i_{\eta^*_i} \) by \(E^\mathcal{M}^i_{\eta^*_i} \).

This suggests the following definition:

Definition 3.7.15. Let \(I^* = \langle \langle N_i \rangle, \langle \nu^*_i \rangle, \langle \pi^*_{i,j} \rangle, T \rangle \) be a normal iteration of length \(\eta \).

By a reiteration mirror (RM) of \(I^* \) we mean a pair \(\langle R, I' \rangle \) such that

(a) \(R = \langle \langle I^i \rangle, \langle \nu_i \rangle, \langle e^{i,j} \rangle, T \rangle \) is a reiteration of \(M \) of length \(\eta \), where

\[I^i = \langle \langle M^i_k \rangle, \langle \nu^i_k \rangle, \langle \pi^i_{k,j} \rangle, T^i \rangle \] is of length \(\eta_i \).

(b) \(I' = \langle \langle M^i_k \rangle, \langle \pi^*_{i,j} \rangle, \langle \sigma^i \rangle, \langle \rho^i \rangle \rangle \) is a mirror of \(I^* \). (Hence \(\sigma_i(\nu^*_i) = \nu_i \)).

(c) \(M^i_{\eta^*_i} = M_{\eta^*_i}^i \).

(d) If \(h = T(i + 1) \), then

\[M^*_i = M^h_{\eta^*_i} \| \mu \), where \(\mu \) is maximal such that \(\tau_i \) is a cardinal in \(M^h_{\eta^*_i} \) and \(\pi^*_{h,i+1} = \tilde{\sigma}^{h,i+1}_{\eta^*_i} \), where \(\eta^*_i + 1 = lh(I^*_i) \).

Definition 3.7.16. \(\langle I^*, R, I' \rangle \) is called an RM-triple if \(\langle R, I' \rangle \) is an RM of \(I^* \).

We obviously have:

Lemma 3.7.32. \(i + 1 \) is a drop point in \(I^* \) iff it is a drop point in \(R \).
Moreover:

Lemma 3.7.33. If \((i, j)\) has no drop point, then \(\pi_{ij}^j = \sigma_{\eta_i}^j\).

Proof. By induction on \(j\), using Lemma 3.7.27. We leave this to the reader.

By Lemma 3.7.13 and Lemma 3.6.38 we have:

Lemma 3.7.34. Let \((I^*, R, I')\) be an RM-triple of length \(\eta + 1\). Let \(E^N_\nu \neq \emptyset\), where \(\nu > \nu_i^*\) for \(i < \eta\). Then \((I^*, R, I')\) extends to a triple of length \(\eta + 2\), with \(\nu = \nu_\eta^*\) (hence \(\nu_\eta = \sigma_\eta(\nu)\)).

The proof is left to the reader. By Corollary 3.7.25 and Lemma 3.6.37 we have:

Lemma 3.7.35. Let \((I^*, R, I')\) be an RM-triple of limit length \(\eta\). Let \(b\) be the unique good branch in \(I_0\). Then there is a unique extension to an RM-triple of length \(\eta + 1\). Moreover, \(b = T^\omega(\eta)\) in this extension.

The proof is again left to the reader.

If \(I\) is a normal iteration of \(M\) of length \(\eta + 1\) and:

\[\sigma : M \to \Sigma^* M_\eta \min \rho,\]

these two lemmas yield a successful iteration strategy \(S\) for \(N\) as follows:

Let \(G\) be a function such that whenever \(\Gamma = (I^*, R, I')\) is an RM-triple of length \(\mu + 1\), and \(E^N_\nu \neq \emptyset\) with \(\nu > \nu_i^*\) for \(i < \mu\). Then \(G(\Gamma, \nu) = \Gamma' = (I'^*, R', I'')\) is an extension to an RM-triple of length \(\mu + 2\) with \(\nu_\mu^* = \nu\). If \(I^* = (\langle N_i \rangle, \langle \nu_i^* \rangle, \langle \pi_{ij}^* \rangle, T)\) is a normal iteration of \(N\) of limit length \(\eta\) we attempt to build an RM of \(I^*\) as follows. We define:

\[\Gamma_i = (I^* \mid i + 1, R_i, I'_i)\]

by induction on \(i\).

Case 1. \(i = 0\), \(R_1 = \langle \langle I \rangle, \emptyset, \langle e \rangle, \emptyset \rangle\) where \(e\) is the identical insertion on \(I\), \(I'_1 = \langle \langle M_0 \rangle, \langle \text{id} \rangle, \langle \sigma \rangle, \langle \rho \rangle \rangle\).

Case 2. \(i = \eta + 1\), \(\Gamma_i \equiv G(\Gamma, \nu_\eta^*)\).

Case 3. \(i = \lambda\) is a limit.

If \(\Gamma_h\) is undefined for some \(h < \lambda\), then \(\Gamma_\lambda\) is undefined. If not, set:

\[\tilde{\Gamma} = \bigcup_{h < \lambda} \Gamma_h = (I^* \mid \lambda, R \mid \lambda, I' \mid \lambda)\]
Let b be the unique good branch in $R(\lambda)$. If $b \neq T^*\{\lambda\}$, then Γ_λ is undefined. If not, then Γ_λ is the unique extension of $\hat{\Gamma}$ having length $\lambda + 1$. (Hence $T^*_\lambda(\lambda) = b$).

If Γ_i is undefined for some $i < \eta$, then $S(I^*)$ is undefined. Otherwise set:

$$\hat{\Gamma} = \bigcup_{i<\eta} \Gamma_i = \langle I^*, R, I' \rangle,$$

and:

$$S(I^*) = \text{the unique good branch in } R.$$

It follows easily that, if I^* is S-conforming, then $S(I^*)$ exists and I^* extends uniquely to a normal iteration of length $\eta + 1$ with: $T^*\{\eta\} = S(I^*)$.

This proves Lemma 3.7.29 and with it Theorem 3.7.28.

Note. An easy modification of the proof shows that, if M is normally iterable by an insertion stable strategy, then every S-conforming iterate of M is normally iterable.

This is a relatively weak result, and could, in fact, have been obtained without the use of pseudo projecta. (However, it would not know how to do it without the use of reiteration). What we really want to prove is that M is smoothly iterable. The above proof indicates a possible strategy for doing so, however: If M is "smoothly reiterable", and:

$$\sigma : N \to \Sigma_\nu \min \rho,$$

we could use the same procedure to define a successful smooth iteration strategy for N. In §3.7.4 we shall define "smooth reiterability" and show that if holds for M.

3.7.4 Reiteration and Inflation

By a **smooth reiteration** of M we mean the result of doing (finitely or infinitely many) successive normal reiterations. We define:

Definition 3.7.17. A **smooth reiteration** of M is a sequence $S = \langle \langle I_i : i < \mu \rangle, \langle e_{i,j} : i \leq j < \mu \rangle \rangle$ such that $\mu \geq 1$ and the following hold:

(a) I_i is a normal iteration of M of successor length $\eta_i + 1$.

(b) $e_{i,j}$ inserts an $I_i|\alpha$ into I_j, where $\alpha \leq \eta_i + 1$.

(c) $e_{h,j} = e_{i,j} \circ e_{h,i}$.
3.7. SMOOTH ITERABILITY

(d) If \(i + 1 < \mu \), there is a normal reiteration:

\[
R_i = \langle (I^i_0), \langle \nu^i_0 \rangle, \langle e_i^k \rangle, T_i \rangle
\]

of length \(\eta_i + 1 \) such that \(I_i = I^i_0, I_{i+1} = I^h_i \) and \(\bar{e}_{i,i+1} = e_i^{0,\eta_i} \).

Note. \(R_i \) is unique by Corollary 3.7.26.

Call \(i \) a drop point in \(S \) iff \(R_i \) has a truncation on the main branch.

(e) If \(\lambda < \mu \) is a limit ordinal, then there are at most finitely many drop points \(i < \lambda \). Moreover, if \(h < \lambda \) and \((h, \lambda) \) is free of drop points, then:

\[
I_\lambda, \langle e_{i,\lambda} : h \leq i < \lambda \rangle
\]

is the good limit of:

\[
(I_i : h \leq i < \lambda), \langle e_{i,j} : h \leq i \leq j < \lambda \rangle
\]

This completes the definition. We call \(\mu \) the length of \(S \).

Note. Since \(e_{l,\lambda} = e_{h,\lambda} e_{l,h} \) for \(l < h < \lambda \), we follow our usual convention, calling:

\[
I^\lambda, \langle e_{i,\lambda} : i < \lambda \rangle
\]

the good limit of:

\[
(I_i : h \leq i < \lambda), \langle e_{i,j} : i \leq j < \lambda \rangle
\]

We call \(M \) smoothly reiterable if every smooth reiteration of \(M \) can be properly extended in any legitimate way. We note:

Fact. If \(I \) is a normal iteration of \(M \), then \(\langle (I), \varnothing, (\text{id} \upharpoonright I), \varnothing \rangle \) is a smooth reiteration of \(M \) of length 1.

Fact. If \(S = \langle (I_0), \langle e_i \rangle \rangle \) is a smooth reiteration of \(M \) of length \(i + 1 \), and \(R = \langle (I'), \langle \nu' \rangle \rangle \) is a normal reiteration of length \(\eta + 1 \) with \(I^0 = I_i \), then \(S \) extends to \(S' \) of length \(i + 2 \) with \(I_{i+1}' = I^\eta \) and \(e'_{i,i+1} = e_i^{0,\eta} \) (hence \(R = R_s' \)).

Fact. Let \(S = \langle (I_0), \langle e_i \rangle \rangle \) be a smooth reiteration of \(M \) of limit length \(\lambda \). Assume:

(a) \(S \) has finitely many drop points.

(b) \(S \) has a good limit: \(I, \langle e_i : i < \lambda \rangle \).

Then \(S \) extends uniquely to \(S' \) of length \(\lambda + 1 \) with \(I_\lambda' = I, e_{i,\lambda}' = e_i \).
Clearly, then, saying that M is smoothly reiterable is the same as saying that, whenever S is as in Fact 3, then (a), (b) are true. In the next subsection (§3.7.5) we shall prove the smooth iterability of M. The proof is, in all essentials, due to Farmer Schlutzenberg, and is based on his remarkable theory of inflations. This subsection is devoted an exposition of that theory.

Before proceeding to the precise definition of inflation, however, we give an introduction to Schlutzenberg’s methods. Let $R = \langle (I^i), (\nu_i), (c^{i,j}), T \rangle$ be a reiteration of M. Schlutzenberg calls I' an “inflation” of I^0, since it was obtained by introducing new extenders into the original sequence. He makes the key observation that the pair I_0, I_1 determines a unique record of the changes made in passing from I_0 to I_1. We shall call that record the history of I_1 and denoted by $\text{hist}(I_0, I_1)$.

Let $\eta_i + 1 = \text{lh}(I^i)$ for $i < \text{lh}(R)$. For $\alpha \leq \eta_i$, set:

$$l(\alpha) = I^i(\alpha) =: \text{the least } i \text{ such that } I^i|\alpha + 1 = I^i|\alpha + 1.$$

Let $s_i, t_i, \hat{s}_i = \text{lub}_{h<i} s_h$ be defined as in §3.7.2. Then:

Lemma 3.7.36. (a) $l(\alpha) = \text{the least } i \text{ such that } I^i|\alpha + 1 = I^i|\alpha + 1$ where $\alpha + 1 \leq s_j + 1$. Hence $j \geq l$. Contradiction!

Suppose $l \neq i$. Then $\alpha \leq s_l$, since otherwise $s_l + 1 \leq \alpha$ and $I^i|s_{l+2} \neq I^i|s_{l+2}$, since $\nu_{l+1}^i < \nu_{s_l}^i$. Hence:

$$I^i|s_{l+2} = I^{l+1}|s_{l+2} \neq I^i|s_{l+2},$$

since $s_{l+1} + 1 \leq s_l + 2$. But $s_l + 2 \leq \alpha + 1$. Hence: $I^i|\alpha + 1 \neq I^i|\alpha + 1$. Contradiction!

QED(a)

(b) Suppose not. Then $i \neq l, \alpha \leq s_l$ and $I^i|s_{l+1} = I^i|s_{l+1}$ for $l \leq j < \text{lh}(R)$. Contradiction!

QED(Lemma 3.7.36)

Hence $\hat{s}_i \leq \alpha \rightarrow l^i(\alpha) = i.$

Lemma 3.7.37. If $h \leq i$ and $I^h|\alpha + 1 = I^i|\alpha + 1$ then $\nu_{\alpha}^h \leq \nu_{\alpha}^i.$
3.7. SMOOTH ITERABILITY

Proof. By induction on i.

Case 1. $i = 0$ (trivial).

Case 2. $i = h + 1$.

Then $I^i|s_{h+1} = I^h|s_{h+1}$ and $\nu^i_{s_{h+1}} \leq \nu^h_{s_h}$. Thus it holds for $\alpha \leq s_h$ by the induction hypotheses. But $l(\alpha) = i$ for $\alpha > s_h$.

Case 3. i is a limit.

Then $I^i|s_{j+1} = I^j|s_{j+1}$ for $j < i$. Hence if holds for $\alpha < \bar{s}_i = \text{lub}_{j<i} s_j$ by the induction hypothesis. But $l(\alpha) = i$ for $\alpha \geq \bar{s}_i$.

QED(Lemma 3.7.37)

The next lemma is crucial to developing the theory of inflations:

Lemma 3.7.38. Let $\alpha \leq \eta, l = l(\alpha)$. Set:

$$a = \{\gamma \leq \eta_0 : e^{s_l}(\gamma) < \alpha\}.$$

There is a unique e inserting $I^0|a+1$ into $I^l|\alpha+1$ such that $\tilde{e} \upharpoonright a = e^{s_l} \upharpoonright a$ and $\tilde{e}(a) = \alpha$.

Proof. By induction on i.

Case 1. $i = 0$. Set $a = \alpha, e = \text{id} \upharpoonright \alpha + 1$.

Case 2. $i = h + 1$.

If $\alpha \leq s_h$, then $I^i|\alpha + 1 = I^h|\alpha + 1$. Hence $l = l^h(\alpha)$ and the result holds by the induction hypothesis.

If $\alpha > s_h$, then $l(\alpha) = i$, since $I^i|s_{h+1} \neq I^i|s_{h+1}$. Then $\alpha = s_h + 1 + j$. Let $\mu = \overline{I}(h+1)$. Then $\tilde{e}^{s_{j+1}}(\overline{\sigma})$, where $\overline{\sigma} = t_k + j$. But $s_{j+1} \leq s_{\mu}$ by Lemma 3.7.17. Hence $l^\mu(t_k) = l^\mu(\overline{\sigma}) = \mu$. Clearly:

$$a = \{\gamma \leq \eta_0 : e^{s_{j+1}}(\gamma) < \overline{\sigma}\}.$$

Since $\mu \leq h$, the induction hypothesis gives a unique f inserting $I^h|a + 1$ into $I^\mu|\overline{\sigma} + 1$ such that $\tilde{f} \upharpoonright a = e^{s_h \upharpoonright a}$ and $\tilde{f}(a) = \overline{\sigma}$. Thus $\tilde{e} = \tilde{e}^{s_{j+1}} \tilde{f}$ has the desired properties.

QED(Case 2)

Case 3. i is a limit ordinal.
Then $I^1|s_j + 1 = I^j|s_j + 1$ for $j < i$. Hence the assertion holds for $\alpha < s_i = \text{lub}_{j<i} s_j$ by the induction hypothesis. But $l(\alpha) = i$ for $s_i < \alpha$. Then there is $j < i$ such that $\alpha = \tilde{\epsilon}^{i,j}(\overline{\alpha})$. Hence $l(\overline{\alpha}) = j$ as in Case 2. Since $\tilde{\epsilon}^{0,j} = \tilde{\epsilon}^{i,j} \circ \tilde{\epsilon}^{0,j}$, we conclude as in Case 2 that:

$$a = \{ \gamma < \eta : e^{0,j}(\gamma) < \overline{\alpha} \}$$

By the induction hypothesis there is f inserting $I^0|a + 1$ into $I^j|\overline{\alpha} + 1$ such that $\tilde{f} \upharpoonright a = \tilde{\epsilon}^{0,j} \upharpoonright a$ and $\tilde{f}(a) = \overline{\alpha}$. Hence $\tilde{e} = \tilde{\epsilon}^{i,j} \circ \tilde{f}$ has the desired properties.

QED(Lemma 3.7.38)

Definition 3.7.18. For $i < \text{lh}(R)$, $\alpha \leq \eta_0$ set:

$$a^i_\alpha =: \text{lub}\{ \xi < \eta_0 : e^{0,l}(\xi) < \alpha \} \quad \text{where } l = l^i(\alpha)$$

$$e^i_\alpha =: \text{the unique } e \text{ inserting } I^0|a^i_\alpha + 1 \text{ into } I^i|a + 1 \text{ such that } \tilde{e} \upharpoonright a^i_\alpha = \tilde{\epsilon}^{0,j} \upharpoonright a^i_\alpha \text{ and } \tilde{e}(a^i_\alpha) = \alpha$$

It follows easily that:

Lemma 3.7.39. (a) If $l = l^i(\alpha)$, then $\alpha \leq \eta_l$ and $l = l^l(\alpha)$, $a^i_\alpha = a^l_\alpha$ and $\tilde{e}^i_\alpha = \tilde{e}^l_\alpha$.

(Hence $e^i_\alpha = e^l_\alpha$ and $a^i_\alpha = a^l_\alpha$ whenever $l^i(\alpha + 1) = l^l(\alpha + 1)$.)

(b) If $e^{\mu,i}(\overline{\alpha}) = \alpha$, $s_\mu \leq \overline{\alpha}$, $\delta_i \leq \alpha$, then:

$$l^\mu(\overline{\alpha}) = \mu, l^\mu(\mu) = i, a^\mu_\alpha = a^i_\alpha, \text{ and } \tilde{e}^{\mu,i} \tilde{e}^\mu_\alpha = \tilde{e}^i_\alpha.$$

(c) $\tilde{e}^i_\eta \upharpoonright a^i_\eta = \tilde{e}^{i,\eta_\mu} \upharpoonright a^i_\eta; \tilde{e}^i_\eta(a^i_\eta) = \eta_l$ ($l^{\eta_l} = \eta_l$, since $\eta_l \geq \delta_i$).

(d) If there is no truncation on the main branch of $R|i + 1$, then $\tilde{\epsilon}^{0,i} = \tilde{\epsilon}^{i}_{\eta_l}$ and $a_{\eta_l} = \eta_0$ (since $e^{0,i}(\eta_0) = \eta_l$).

The proof is left to the reader.

We now fix an $i < \text{lh}(R)$ and set:

$$I = \langle \{ M_\alpha \}, \{ \nu_\alpha \}, \{ \pi_{\alpha,\beta} \}, T \rangle =: I^0$$

$$I' = \langle \{ M'_\alpha \}, \{ \nu'_\alpha \}, \{ \pi'_{\alpha,\beta} \}, T' \rangle =: I^1$$

$$a = \{ a^i_\alpha : \alpha \leq \eta_i \}, e_\alpha = e^i_\alpha \text{ for } \alpha \leq \eta_i.$$

$\langle a, \{ e_\alpha : \alpha \leq \eta'_l \} \rangle$ is then called the *history* of I' from I. We shall show that it is completely determined by the pair $\langle I, I' \rangle$. a_α is called the *ancestor* of α in this history.

We prove:
3.7. SMOOTH ITERABILITY

Theorem 3.7.40. Let $I, I', a, \{e_\alpha : \alpha \leq \eta_l\}$ be as above. Then:

1. Let $a : \text{lh}(I') \to \text{lh}(I)$ and e_α inserts $I|\alpha + 1$ into $I'|\alpha + 1$ for $\alpha < \text{lh}(I')$. Moreover, $\tilde{e}_\alpha(a_\alpha) = \alpha$.

2. Let $a_\alpha < \eta_0$. If $\tilde{\nu}_\alpha = \tilde{\sigma}_\alpha(\nu_\alpha)$ exists, then $\alpha + 1 < \text{lh}(I')$ and $\nu'_\alpha \leq \tilde{\nu}_\alpha$.

3. Let $a_\alpha < \eta, \alpha + 1 < \text{lh}(I'), \nu'_\alpha = \tilde{\nu}_\alpha$. Then:

 $$a_{\alpha + 1} = a_\alpha + 1, \tilde{e}_{\alpha + 1} | a_{\alpha + 1} = \tilde{e}_\alpha.$$

 For $\alpha + 1 < \text{lh}(I')$, define the index of α (in $\alpha = \text{in}(\alpha)$) as:

 $$\text{in}(\alpha) = \begin{cases} 0 & \text{if } \alpha \text{ is as in (3)} \\ 1 & \text{if not} \end{cases}$$

4. If $\text{in}(\alpha) = 1, \gamma = T'(\alpha + 1)$, then $a_{\alpha + 1} = a_\gamma$.

5. If $\beta \leq < T' \alpha$, then $a_\beta \leq T a_\alpha$ and $\tilde{e}_\beta | a_\beta = \tilde{e}_\alpha | a_\beta$. Moreover, if α is a limit, then $a_\alpha = \sup \{a_\beta : \beta < T' \alpha\}$. (Hence $\tilde{e}_\alpha | a_\alpha = \bigcup_{b < T' \alpha} \tilde{e}_b | a_\beta$).

 Note. By (4), (5), we have:

 If $\in (\alpha) = 1, \gamma = T'(\alpha + 1)$, then $\tilde{e}_{\alpha + 1} | a_{\alpha + 1} = \tilde{e}_\gamma | a_\gamma$.

6. If $R|i + 1$ has a truncation on the main branch, then there is $\alpha \in \{e_\eta_i(\eta_{\eta_i}), \eta_{\eta_i} | T'\}$ which is a drop point in I'.

 Note. By Lemma 3.7.39 (a) we have:

 $$e_{\eta_i}(\eta_{\eta_i}) = \text{lub } \tilde{e}_{\eta_i} a_{\eta_i} = \text{lub } e^{0,i} a_{\eta_0} = e^{0,i}_{\eta_{\eta_i}}(\eta_{\eta_i}).$$

We prove Theorem 3.7.40 by induction on i:

Case 1. $i = 0$.

Trivial, since $a_\alpha = \alpha, \tilde{e}_\alpha = \text{id} | \alpha + 1$.

Case 2. $i = h + 1$.

1. (1) is given.

2. If $\alpha \leq s_h$, then $I^h|\alpha + 1 = I^h|\alpha + 1$, hence $l^i(\alpha) = l^h(\alpha), e^i_\alpha = e^h_\alpha, \tilde{\nu}_\alpha^i = \tilde{\nu}_\alpha^h$. By the induction hypothesis $\nu^i_\alpha = \tilde{\nu}_\alpha^h$. But $\nu^i_\alpha < \nu^h_\alpha$. Now let $\alpha > s_h$. Then $l(\alpha) = i$ and $\alpha = s_h + 1 + j$ for some j. Let $\mu = T(h + 1)$.
Then, $\varepsilon^{\mu,i}(\overline{\alpha}) = \alpha$ where $\overline{\alpha} = t_h + 1$. Just as in the proof of Lemma 3.7.38 (Case 2), we have: $\mu = l^\mu(t_h) = l^\mu(\overline{\alpha})$ and $\varepsilon^{\mu,i} \circ \varepsilon_\overline{\alpha} = \varepsilon_\alpha$. Hence:

$$\nu^i_\alpha = \tilde{\sigma}^{\mu,i}_\alpha(\nu^0_\alpha) = \tilde{\sigma}^{\mu,i}_\alpha(\nu^0_\alpha) = \tilde{\sigma}^{\mu,i}_\alpha(\varepsilon^0_\alpha)$$

(Since if $e = e_1 \circ e_0$, then $\tilde{\sigma}^e_\alpha = \varepsilon^{e_1}_{e_0(\beta)} \circ \varepsilon^e_\beta$). By the induction hypothesis:

$$\nu^\mu_\overline{\alpha} \leq \varepsilon^{\mu,i}_\alpha.$$ QED(2)

(3) If $\alpha < s_h$, then $\nu^i_\alpha = \nu^h_\alpha, \nu^0_\alpha = \nu^i_\alpha$, since $I^\mid s_h + 1 = I^h \mid s_h + 1$. Hence $\nu^h_\alpha = \nu^i_\alpha$. Hence $a^\mu_{\alpha+1} = a^h_{\alpha+1}$, $\tilde{\sigma}^{\mu,i+1}_\alpha = \tilde{\sigma}^{\mu,i+1}_\alpha$ by the induction hypothesis.

But $l^i(\alpha + 1) = l^h(\alpha + 1)$. Hence: $a^\mu_{\alpha+1} = a^h_{\alpha+1}$, $a^\mu_\alpha = a^i_\alpha, \varepsilon^{\mu,i+1}_\alpha = \varepsilon^{\mu,i+1}_\alpha, \nu^0_\alpha = \nu^i_\alpha$. The conclusion is immediate. Now let $\alpha = s_h$. We still have $\varepsilon_\alpha = \varepsilon^i_\alpha$; hence $\nu^i_\alpha = \nu^0_\alpha$. But $\nu^i_\alpha < \nu^h_\alpha \leq \nu^i_\alpha$. Contradiction!

Now let $\alpha > s_h$. We again have: $\alpha = s_h + 1 + j, \alpha = \varepsilon^{\mu,i}(\overline{\alpha})$, where $\mu = T(h + 1)$ and $\overline{\alpha} = t_h + j$. As before, we have $l^i(\alpha) = i, l^i(\overline{\alpha}) = \mu$. Moreover $\nu^i_\alpha = \tilde{\sigma}^{\mu,i}(\nu^0_\alpha)$ and $\nu^0_\alpha = \tilde{\sigma}^{\mu,i}(\nu^0_\alpha)$. Hence $\nu^i_\alpha = \nu^h_\alpha$. Hence:

$$a^\mu_{\alpha+1} = a^h_{\alpha+1}, e^\mu_{\alpha+1} = e^h_{\alpha+1} \mid \overline{\alpha} + 1 = e^\mu_{\alpha+1}.$$

But $i = l^i(\alpha) = l^i(\alpha + 1), \mu = l^i(\overline{\alpha}) = l^h(\overline{\alpha} + 1)$, and $\varepsilon^{\mu,i}(\overline{\alpha} + 1) = \alpha + 1$.

Hence:

$$a = a^i_\alpha \text{ and } a_{\alpha+1} = a^i_{\alpha+1} = a^\mu_{\alpha+1} = a + 1.$$ Moreover, we have:

$$e^{\mu,i+1}_\alpha \mid a + 1 = e^{\mu,i+1}_\alpha \mid a + 1 = e^{\mu,i}_\alpha \overline{\alpha} = e_\alpha.$$ QED(3)

(4) If $\alpha < s_h$ the result follows by the induction hypothesis, since $I^\mid \alpha + 2 = I^h \mid h + 2$. Now let $\alpha = s_h$. Then $n(\alpha) = 1$ as shown above. Let $\mu = T(h + 1), \gamma = t_h$. Then $\varepsilon^{\mu,i}(\gamma) = \alpha + 1$. Hence $a^\mu_\alpha = a^i_\alpha, a^\mu_{\alpha+1} = a^h_{\alpha+1}, a^\mu_\gamma = a^h_\gamma, n(\alpha) = 1$. Now let $\alpha > s_h$. Then $i = h + 1$ is not a drop point in R, since otherwise $\eta_i = s_k + 1 = \alpha$. Hence $\alpha + 1 \notin \ln(P) = \eta_1 + 1$. Contradiction! Then $\alpha = s_h + 1 + j$ and $\alpha = \varepsilon^{\mu,i}(\overline{\alpha})$ where $\overline{\alpha} = t_h + j$ and $\mu = T(h + 1)$. Note that $\varepsilon^{\mu,i}(\overline{\alpha}) = \varepsilon^{\mu,i}(\overline{\alpha}) = \varepsilon^{\mu,i}(\overline{\alpha} + 1)$. Clearly $\alpha + 1 = e^{\mu,i}(\overline{\alpha} + 1)$.

As in the foregoing proofs we have:

$$\tilde{\sigma}^{\mu,i}(\nu^0_\alpha) = \nu^i_\alpha; \tilde{\sigma}^{\mu,i}(\nu^0_\alpha) = \nu^i_\alpha.$$ Hence $\nu^i_\alpha < \nu^h_\alpha$ and $n(\overline{\alpha}) = 1$. But the induction hypothesis we conclude: $a^\mu_{\alpha+1} = a^h_{\alpha+1}$, where $\overline{\alpha} = T^\mu(\overline{\alpha} + 1)$. But, as before, $a^\mu_{\alpha+1} = a^h_{\alpha+1}$, since $\varepsilon^{\mu,i}(\overline{\alpha} + 1) = \alpha + 1, l^h(\overline{\alpha} + 1) = \mu, l^h(\alpha + 1) = i$. Thus it suffices to show:
Claim. $a^\mu_\alpha = a^i_\gamma$, where $\gamma = T^i(\alpha + 1)$.

We consider two cases:

Case A. $\kappa^\mu_\alpha > \kappa_\alpha$. Then $\tilde{e}^{\mu,i}(\tau) = \gamma$ by Lemma 3.7.10 (1). As before $l^\mu(\tau) = \mu, l^i(\gamma) = i$ and $a^\mu_\gamma = a^i_\gamma$.

Case B. $\kappa^\mu_\alpha < \kappa_\alpha$. Then $\gamma = \tau$ by Lemma 3.7.10(1). Then $\tau \leq t_h$, where $I^i|t_h + 1 = I^\mu|t_h + 1$. Hence $a^\mu_\tau = a^\mu_\gamma$.

QED (4)

(5) Set:

$$A_i(\beta, \alpha) \leftrightarrow (a^i_\beta \leq T^0 a^i_\alpha \land \tilde{e}^i_\alpha | a^i_\beta = \tilde{e}^i_\beta | a^i_\alpha)$$

We first prove:

Claim 1. $\beta \leq T^i \alpha \rightarrow A_i(\beta, \alpha)$.

Note that $A_i(\gamma, \beta) \land A_i(\beta, \alpha) \rightarrow A_i(\gamma, \alpha)$. We proved by induction on α.

Case 1. $\alpha \leq s_i$.

Then $I^i|\alpha + 1 = I^h|\alpha + 1$ and the conclusion follows by the induction hypothesis.

Case 2. Case 1 fails.

Set: $\mu = T(h + 1), \tilde{e}^{\mu,i}(\bar{\tau}) = \alpha$. Then, as before, $l^\mu(\bar{\tau}) = \mu, l^i(\alpha) = i, a^\mu_{\bar{\tau}} = a^\mu_\tau$, and $\tilde{e}^i_\alpha = \tilde{e}^{\mu,i}_\alpha$.

Case 2.1. $\alpha = s_h + 1$.

Then $\bar{\tau} = t_h$ and $\bar{\tau} = T^h(\alpha)$, since (t_i, s_i) is in limbo at i. Since $I^i|\bar{\tau} + 1 = I^h|\bar{\tau} + 1$, we have: $a^\mu_{\bar{\tau}} = a^\mu_\tau, \tilde{e}^i_\alpha = \tilde{e}^i_\tau$. Then:

$$\tilde{e}^i_\alpha | a^\mu_{\bar{\tau}} = \tilde{e}^{\mu,i}_\alpha | a^\mu_{\bar{\tau}} = \tilde{e}^i_\alpha | a^\mu_\alpha = \tilde{e}^i_\alpha | a^\mu_\tau = \tilde{e}^i_\tau | a^i_\alpha$$

(since $\tilde{e}^{\mu,i} | \bar{\tau} = \text{id}$). Thus $A_i(\bar{\tau}, \alpha)$. If $\beta < T^i \alpha$, then $\beta \leq T^i \bar{\tau}$ and hence $A_i(\beta, \bar{\tau})$, since $I^i|\bar{\tau} + 1 = I^h|\bar{\tau} + 1$. Hence $A_i(\beta, \alpha)$.

QED(Case 2.1)

Case 2.2. The above cases fail and $\beta > s_i$. Then, letting $\tilde{e}^{\mu,i}(\bar{\beta}) = \beta$, we have: $\bar{\beta} \leq T^\mu \bar{\tau}$. Hence $A_\mu(\bar{\beta}, \bar{\tau})$. But $a^\mu_{\bar{\beta}} = a^i_{\bar{\beta}}, a^\mu_{\bar{\alpha}} = a^i_{\alpha}$ and $\tilde{e}^{\mu,i}_\beta = \tilde{e}^i_\beta$. Hence:

$$\tilde{e}^i_\alpha | a^i_{\beta} = \tilde{e}^{\mu,i}_\alpha | a^\mu_{\bar{\beta}} = \tilde{e}^{\mu,i}_\beta | a^\mu_{\bar{\beta}} = \tilde{e}^i_\beta | a^i_{\beta}$$

QED(Case 2.2)
Case 2.3. The above cases fail and there is $\gamma > s_1$ such that $\beta < T_1 \gamma < T_2 \alpha$. Then $A_i(\beta, \gamma)$ by the induction hypothesis on α. But $A_i(\gamma, \alpha)$ by Case 2.2. Hence $A_i(\beta, \alpha)$.

QED(Case 2.3)

Case 2.4. The above cases fail.

Then $\beta \leq t_h$, since $(t_h, s_h]$ is in limbo at i. Hence $\alpha = \xi + 1$ is a successor ordinal where $\xi > r_i$. Let $\tilde{e}_{\mu,i}^{r_i}(\xi) = \xi$. Then $\tilde{e}_{\mu,i}^{r_i}(\xi + 1) = e_{\mu,i}(\xi^+ + 1) = \xi + 1 = \alpha$. Let $\bar{T} = T_\mu(\xi + 1), \tau = T(\xi + 1)$. Then $\tau = T \leq t_h$ by Lemma 3.7.10(1), since otherwise $\tau = \tilde{e}_{\mu,i}(\tau) > s_1$ and Case 2.3 would hold. Hence $a^* = a^*_\tau$ and $\tilde{e}_{\tau}^i = \tilde{e}_{\tau}^i$ since $T(\bar{T}) + 1 = T^*|\tau + 1$. But $A(\tau, \bar{T})$ by the induction hypothesis.

Hence

$$\tilde{e}_{\alpha}^i(a^*) = \tilde{e}_{\mu,i}^i(a^*_\tau) \leq \tilde{e}_{\mu,i}^i(a^*_\tau) = \tilde{e}_{\mu,i}^i(a^*_\tau) = \tilde{e}_{\mu,i}^i(a^*_\tau).$$

Thus $A(\tau, \alpha)$ holds. But $A_i(\beta, \tau)$ holds by the induction hypothesis, since $T(\bar{T}) + 1 = T^*|\tau + 1$. Hence $A_i(\beta, \alpha)$.

QED(Case 2.4)

This proves Claim 1.

Claim 2. If α is a limit ordinal, then $a_\alpha = \sup_{\beta < T_1 \alpha} a_\beta$.

Proof. $\sup_{\beta < T_1 \alpha} a_\beta \leq a_\alpha$ follows by Claim 1. We prove the reverse.

If $\alpha \leq s_h$, then $T^*|\alpha + 1 = T^*|\alpha + 1$ and it holds by the induction hypothesis. Now let $\alpha > s_h$. Set: $b = \{ \beta : s_h < \beta < T_1 \alpha \}$. Then $\sup b = \alpha$ and $l_i(\beta) = i$ for $\beta \in b$. Hence:

$$a_\alpha = \{ \xi < \eta_1 : \tilde{e}_{\eta_1}^i(\xi) < \alpha \} = \bigcup_{\beta \in b} \{ \xi < \eta_1 : \tilde{e}_{\eta_1}^i(\xi) < \beta \}$$

$$= \bigcup_{\beta \in b} a_\beta$$

QED(5)

(6) If $i = h + 1$ is a drop point on $R^*|i + 1$, then $M_{s_h}^* \neq M_{t_i}$, where $\eta^i = s_h + 1, t_i = T^*(s_h + 1)$. Hence η_i is a drop point in I^i. Now suppose that $h + 1$ does not drop in $R^*|i + 1$. Let $\mu = T(h + 1)$. Then there must be a drop point on the main branch of $R^*|\mu + 1$. Hence I^μ has a drop point in $(\epsilon, \eta_\mu)|T^\mu$ where $\epsilon = \tilde{e}^\mu_{s_h}(a^*_{s_h})$. Since $\tilde{e}_{\mu,i}(\eta_\mu) = \eta_i$, it follows easily from Lemma 3.7.10(7) that there is a drop point on T^i in $(\epsilon^i, t_i)|T^i$. Since $\hat{s}_\mu \leq \eta_\mu, \hat{s}_i \leq \eta_i$, we have:

$$\mu = l^i = l^\mu(\eta_\mu), i = l^i = l^i(\eta_i).$$

Hence $a^\mu_{\eta_\mu} = a^i_{\eta_i}$. Clearly:

$$e_{\mu,i}^i(\epsilon) = \text{lub } \tilde{e}_{\mu,i}^i(\epsilon).$$
Since $\tilde{e}^\mu_\eta \mid a^\mu_\eta = \tilde{e}^{0,\mu} \mid a^\mu_\eta$, we have: $\epsilon = \lub \tilde{e}^{0,\mu} a^\mu_\eta$. Hence:

$$e^{\mu,i}(\epsilon) = \lub \tilde{e}^{0,i} a^i_\eta = e^i_\eta(a^i_\eta).$$

Hence I^i has a drop in $(e^i_\eta(a^i_\eta), \eta|_T)$.

QED(6)

This completes Case 2.

Case 3. $i = \lambda$ is a limit ordinal.

(1) is given.

(2) Set $\hat{s} = \hat{s}_\lambda = \lub_{i<\lambda} s_i$. Then $I^\lambda|s_i + 1$ for $i < \lambda$. Thus (2) holds by the induction hypothesis for $\alpha < \hat{s}$. Now let $\alpha \leq \hat{s}$ then $I^\lambda(\alpha) = \lambda$. Pick $\mu < \lambda$ such that $\alpha \in \text{rng}(\tilde{e}^{\mu,\lambda})$ and there is no drop in $(\mu,\lambda)_T$. Let $i = h + 1$, where $\mu = T(h + 1), h + 1 < \lambda \lambda$. If $\tilde{e}^{\mu,\lambda}(\hat{\alpha}) = \alpha$, then $\hat{\alpha} \geq t_h$, since $\tilde{e}^{\mu,\lambda}|t_h = \text{id}$. Hence $\bar{\alpha} \geq s_h + 1 = \hat{s}_i$, where $\tilde{e}^{i,\lambda} (\bar{\alpha}) = \alpha$. Hence $l^i = l^i(\bar{\alpha}) = i$. Hence $a^i_\bar{\pi} = a^\lambda_\alpha$ and $e^i_\alpha = \tilde{e}^{i,\lambda}\tilde{e}^i_\alpha$. We are assuming that:

$$\tilde{\nu}^\lambda_\alpha = \tilde{\sigma}^{e^\lambda}_{a^\lambda_\alpha}(\nu^0_{a^\lambda_\alpha}) \text{ exists.}$$

But then:

$$\tilde{\nu}^i_\alpha = \tilde{\sigma}^{\varepsilon^i}_{a^\lambda_\alpha}(\nu^0_{a^\lambda_\alpha}) \text{ exists and } \tilde{\sigma}^{i,\lambda}_{\bar{\pi}}(\tilde{\nu}^i_\alpha) = \tilde{\nu}^i_\alpha.$$

Clearly: $\nu^\lambda_\alpha = \tilde{\sigma}^{i,\lambda}_{\bar{\pi}}(\nu^\lambda_{\bar{\pi}})$. But $\nu^\lambda_{\bar{\pi}} \leq \nu^\lambda_{\bar{\pi}}$ by the induction hypothesis. Hence $\nu^\lambda_{\bar{\pi}} \leq \tilde{\nu}^\lambda_\alpha$.

QED(2)

(3) For $\alpha < \hat{s}_\lambda$ it holds by the induction hypothesis, so let $\alpha \geq \hat{s}_\lambda$. Let $\mu, h, i, \bar{\pi}$ be as in (2). Then $I^\lambda(\alpha) = \lambda, l^i(\alpha) = i$. We assume $\text{in}^i(\alpha) = 0$, i.e.:

$$\alpha < \eta_\lambda \text{ and } \nu^\lambda_{\bar{\pi}} = \tilde{\nu}^\lambda_\alpha.$$

But then:

$$\bar{\pi} < \eta_\lambda \text{ and } \nu^\lambda_{\bar{\pi}} = \tilde{\nu}^i_\alpha \text{ hence } \text{in}^i(\bar{\pi}) = 0$$

Hence $a^i_{\bar{\pi} + 1} = a^{\lambda}_{\bar{\pi} + 1}$ and $\tilde{e}^i_{\bar{\pi} + 1} \mid a^{\lambda}_{\bar{\pi} + 1} = \tilde{e}^i_{\bar{\pi}}$. But $l^i(\bar{\pi} + 1) = i, l^i(\bar{\pi} + 1) = \lambda$. Hence

$$a^\lambda_{\alpha + 1} = a^i_{\bar{\pi} + 1} = a^{\lambda}_{\bar{\pi} + 1} + 1$$

and

$$\tilde{e}^\lambda_{\alpha + 1} \mid a^\lambda_{\alpha + 1} = \tilde{e}^i_{\bar{\pi} + 1} \mid a^i_{\bar{\pi}} + 1$$

$$= \tilde{e}^\lambda e^i_{\bar{\pi}} = e^\lambda_\alpha$$

QED(3)
(4) For $\alpha < \tilde{s}_\lambda$ it holds by the induction hypothesis, so let $\alpha \geq \tilde{s}_\lambda$. Let μ, h, i, π be as in (2) with the additional stipulation that $\gamma \in \text{rng}(\tilde{e}^{\mu,\lambda})$ where $\gamma = T^\lambda(\alpha + 1)$. Let $\tilde{e}^{i,\lambda}(\gamma) = \gamma$. Then either $\gamma \geq \tilde{s}_\lambda$ and $\tilde{\gamma} \geq \tilde{s}_\lambda = s_\lambda + 1$, or $\gamma < \tilde{s}_\lambda$ and $\tilde{\gamma} = \gamma$. It follows easily that $\tilde{\gamma} = T^i(\tilde{\gamma} + 1)$. Moreover $i(\tilde{\gamma} + 1) = 1$, since $i(\tilde{\gamma} + 1) = 1$. But then $a^i_{\tilde{\gamma}} = a^i_{\tilde{\gamma}}$. But $a^i_{\tilde{\gamma}} = a^i_{\tilde{\gamma}}$. Moreover $a^i_{\tilde{\gamma}} = a^i_{\tilde{\gamma}}$. (If $\gamma \geq \tilde{s}_\lambda$, this is because $I^i(\tilde{\gamma}) = i$. If $\gamma < \tilde{s}_\lambda$, it is because $I^i(\gamma + 1) = I^i(\tilde{\gamma} + 1)$.

QED(4)

(5) If $\alpha < \tilde{s}$, it follows by the induction hypothesis. Now let $\alpha \geq \tilde{s}$. Suppose $\beta \leq_T \alpha$. Let μ, i, h, π be as in (2), where $\beta \in \text{rng}(e^{\mu,\lambda})$. Let $e^{i,\lambda}(\beta) = \beta$. Then $a^i_\alpha = a^i_{\pi}$ and $\tilde{e}^i_\alpha = \tilde{e}^{i,\lambda}e^i_\lambda$ as before. If $\beta \geq \tilde{s}$, then $I^i(\beta) = i, I^l(\beta) = \beta, a^l_\beta = a^l_{\beta}$, and $\tilde{e}^l_\beta = \tilde{e}^{l,\lambda}e^l_\lambda$. But $a^{l}_{\beta} \leq_T 0 a^l_{\pi}$ and $\tilde{e}^{l}_{\beta} a^l_{\beta} = \tilde{e}^{l}_{\beta} a^l_{\beta}$. Hence: $a^{l}_{\beta} \leq_T 0 a^l_{\alpha}$ and:

$$\tilde{e}^{l}_{\beta} a^l_{\beta} = \tilde{e}^{l,\lambda}e^l_\lambda a^l_{\beta} = \tilde{e}^{l}_{\beta} a^l_{\alpha}.$$

If $\beta < \tilde{s}$, then $\tilde{\beta} = \tilde{e}^{i,\lambda}(\beta) = \beta$ and $I^l|\beta + 1 = I^l|\tilde{\beta} + 1$. Hence $a^{l}_{\beta} = a^l_{\beta}$ and $\tilde{e}^{l}_{\beta} a^l_{\beta} = \tilde{e}^{l,\lambda}e^l_\lambda a^l_{\beta}$. Thus, exactly as before, we get: $a^l_{\beta} \leq_T 0 a^l_{\alpha}$ and $\tilde{e}^{l}_{\beta} a^l_{\beta} = \tilde{e}^{l}_{\beta} a^l_{\beta}$. It remains only to show that if $\alpha \geq \tilde{s}$ is a limit, then $a^{l}_{\alpha} = \sup\{a_{\beta} : \beta <_T \alpha\}$. This follows exactly as in Case 2.

QED(5)

(6) Suppose $R|^\lambda + 1$ has a truncation on the main branch. Clearly $\eta_\lambda \geq \tilde{s}_\lambda$, so $I^\lambda(\eta_\lambda) = \lambda$. Let μ, i, h, π be as in (2) with $\alpha = \eta_\lambda$. Then $[i, \lambda]|I^\lambda$ is free of drops. Hence $\tilde{e} * i, \lambda(\eta_\lambda) = \eta_\lambda$. But $R|i + 1$ then has a drop on the main branch. Hence there is a drop in $(e^{i,\lambda}(a^i_{\eta_\lambda}), \eta_\lambda)|I^\lambda + 1$. By Lemma 3.7.1 (7) it follows that there is a drop in $(e^{i,\lambda}(\epsilon), \eta_\lambda)|I^\lambda$, where $\epsilon = e_{\eta_\lambda}(a^i_{\eta_\lambda})$. But $I^i(\eta_\lambda) = i$, since $\eta_\lambda \geq \tilde{s}_\lambda$. Hence $a^i_{\eta_\lambda} = a^i_{\eta_\lambda}$ and $\epsilon = e_{\eta_\lambda}(a^i_{\eta_\lambda}) = \text{lub} e^{i,\lambda} e^{i,\lambda} a^i_{\eta_\lambda}$. Moreover $e^{i,\lambda}(\epsilon) = \text{lub} e^{i,\lambda} e^{i,\lambda} a^i_{\eta_\lambda} = e_{\eta_\lambda}(a^i_{\eta_\lambda})$.

QED(6)

This completes the proof of Lemma 3.7.40.

Inflations

Following Farmer Schlutzangen we define:

Definition 3.7.19. Let I be a normal iteration of M of successor length $\eta + 1$. Let I' be a normal iteration of M. I' is an inflation of I iff there exist
3.7. SMOOTH ITERABILITY

a pair \(\langle a, e \rangle \) satisfying (1)-(5) in Theorem 3.7.40 (with \(e = \langle e_\alpha : \alpha < \lh(I') \rangle \)). We call any such pair a history of \(I' \) from \(I \).

Lemma 3.7.41. Let \(I, I' \) be as above. Then there is at most one history of \(I' \) from \(I \).

Proof. Let \(\langle a, e \rangle \) be a history. By the conditions (1)-(5), this history satisfies a recursion of the form:

\[
\langle a_\alpha, e_\alpha \rangle = F(\langle \langle a, e \rangle : \xi < \alpha \rangle),
\]

where \(F \) is defined by reference to the pair \(\langle I, I' \rangle \) alone. To see this we note:

(a) \(a_0 = \emptyset \) by (1).

(b) Let \(a_\alpha, e_\alpha \) be given. Then:

\[
a_{\alpha+1} = \begin{cases}
a_\alpha + 1 & \text{if } \text{in}(\alpha) = 0 \\
\beta & \text{where } \beta = T'(\alpha + 1) \text{ if } \text{in}(\alpha) = 1
\end{cases}
\]

\[
\tilde{e}_{\alpha+1}(a_\alpha + 1) = \alpha + 1
\]

(c) If \(\lambda \) is a limit ordinal, then:

\[
a_\lambda = \bigcup_{a < T' \lambda} a_\alpha; \tilde{e}_\lambda | a_\lambda = \bigcup_{a < T' \lambda} \tilde{e}_\alpha | a_\alpha; \tilde{e}_\lambda(a_\lambda) = \lambda.
\]

QED(Lemma 3.7.41)

Definition 3.7.20. Let \(I' \) be an inflation of \(I \). We denote the unique history of \(I' \) from \(I \) by: \(\text{hist}(I, I') \).

Note. Schlutzenberg’s original definition replaced (5) in Definition 3.7.19 by the following statement, which we now prove as a lemma:

Lemma 3.7.42. Let \(\mu \leq a_\alpha \) such that \(e_\alpha(\mu) \leq T' \beta \leq T' \tilde{e}_\alpha(\mu) \). Then \(a_\beta = \mu \). Moreover \(\tilde{e}_\beta | \mu = \tilde{e}_\alpha | \mu \). (Hence \(\tilde{e}_\mu(\mu) = \beta, e_\beta(\mu) = e_\alpha(\mu) = \sup \tilde{e}_\alpha^{\mu} \).
Proof. By induction on α.

Case 1. $\alpha = 0$. Then $a_\alpha = 0$ and $e_\alpha(0) = \tilde{e}_\alpha(0) = 0$.

Case 2. $\alpha = \gamma + 1$.

Case 2.1. $\text{in}(\gamma) = 0$.

Then $a_\alpha = a_\alpha + 1, \tilde{e}_\alpha | a_\alpha = \tilde{e}_\gamma$. For $\mu < a_\alpha$ the conclusion follows by the induction hypothesis, since $\tilde{e}_\alpha(\mu) = \tilde{e}_\gamma(\mu)$ and:

$$e_\alpha(\mu) = \text{lub} \tilde{e}_\alpha^{\alpha} \mu = \tilde{e}_\gamma^{\alpha} \mu = e_\gamma(\mu)$$

where $\tilde{e}_\alpha | \mu = \tilde{e}_\gamma | \mu$.

Now let $\mu = a_\alpha$. Then $\tilde{e}_\alpha(a_\alpha) = \alpha$ and:

$$e_\alpha(a_\alpha) = \text{lub} \tilde{e}_\alpha^{\alpha} a_\alpha = \text{lub} \tilde{e}_\gamma^{\alpha} (a_\gamma + 1) = \gamma + 1 = \alpha$$

The conclusion is then trivial, since $\beta = 2$.

Case 2.2. Let $\tau = T'(\gamma + 1)$. Then $a_\alpha = a_\tau, \tilde{e}_\alpha | a_\tau = \tilde{e}_\tau | a_\tau$. For $\mu < a_\alpha$ the conclusion follows by the induction hypothesis, since then:

$$\mu < a_\tau, \tilde{e}_\alpha(\mu) = \tilde{e}_\tau(\mu), e_\alpha(\mu) = e_\tau(\mu)$$

Now let $\mu = a_\alpha = a_\tau$. Then $\tilde{e}_\alpha(a_\alpha) = \alpha$ and:

$$e_\alpha(a_\alpha) = \text{lub} \tilde{e}_\tau^{\alpha} a_\tau = e_\tau(a_\tau) \leq \tau$$

Now let:

$$e_\alpha(a_\alpha) \leq T' \beta \leq T' \tilde{e}_\alpha(a_\alpha) = \alpha$$

If $\beta \leq \tau = \tilde{e}_\tau(a_\tau)$ then the conclusion follows by the induction hypothesis, since $\tilde{e}_\alpha | \tau = \tilde{e}_\tau | \alpha$. Otherwise $\beta = \alpha$ and the conclusion is trivial.

Case 3. α is a limit ordinal.

Then $a_\alpha = \text{sup} \{ a_\gamma : \gamma < T' \alpha \}$ and:

$$\tilde{e}_\alpha | a_\gamma = \bigcup_{\gamma < T' \alpha} \tilde{e}_\gamma | a_\gamma.$$

If $\mu < a_\alpha$, then the conclusion follows by the induction hypothesis, since then $\mu < a_\gamma$ for a $\gamma < T' \alpha$. Thus $\tilde{e}_\alpha | \mu = \tilde{e}_\gamma | \mu$ and:

$$e_\alpha(\mu) = \text{lub} \tilde{e}_\alpha^{\alpha} \mu = \text{lub} e_\gamma^{\alpha} \mu = e_\gamma(\mu)$$

Now let $\mu = a_\alpha$. We consider two cases:
3.7. SMOOTH ITERABILITY

Case 3.1. \(a_\alpha = a_\gamma \) for a \(\gamma \leq_T' \alpha \).

Then \(a_\alpha = a_\gamma \) and \(\tilde{e}_\alpha \upharpoonright a_\alpha = \tilde{e}_\gamma \upharpoonright a_\gamma \) for sufficiently large \(\gamma < T' \alpha \). Let:

\[e_\alpha(a_\alpha) \leq T' \beta \leq T' \tilde{e}_\alpha(a_\alpha) = \alpha. \]

Then \(\beta \leq T' \gamma = \tilde{e}_\gamma(a_\gamma) \) for a \(\gamma \leq T' \alpha \). But:

\[e_\gamma(a_\gamma) = \text{h} \tilde{e}_\gamma a_\gamma = \text{h} \tilde{e}_\alpha a_\alpha = e_\alpha(a_\alpha). \]

Hence:

\[e_\gamma(\mu) \leq T' \beta \leq T' \tilde{e}_\gamma(\mu) = \gamma \]

and the result follows by the induction hypothesis.

Case 3.2. Case 3.1 fails.

Set:

\[E = \{ \beta : \beta + 1 < T' \alpha \text{ and } \text{in}(\beta) = 0 \}. \]

Claim. \(\sup B = \alpha \).

Proof. Suppose not. Let \(\gamma < T' \alpha \) such that \(\text{in}(\beta) = 1 \) whenever \(\gamma < T' \beta + 1 < T' \alpha \). Using (4) and (5) in Definition 3.7.19 it follows easily by induction on \(\xi < \alpha \) that: \(a_\xi = a_\gamma \). Hence Case 2.1 applies. Contradiction!

QED(Claim)

But for \(\gamma \in B \) we have:

\[a_{\gamma + 1} = a_\gamma + 1, \; \tilde{e}_\alpha \upharpoonright a_{\gamma + 1} = \tilde{e}_{\gamma + 1} \upharpoonright a_{\gamma + 1} = \tilde{e}_{\gamma}. \]

Thus:

\[e_\alpha(a_\alpha) = \text{h} \beta \in B \tilde{e}_{\beta + 1} a_{\beta + 1} = \alpha. \]

Thus \(e_\alpha(a_\alpha) = \tilde{e}_\alpha(a_\alpha) \) and the conclusion follows trivially.

QED(Lemma 3.7.42)

Extending inflations

By Definition 3.7.19 it follows easily that:

Lemma 3.7.43. Let \(I' \) be an inflation of \(I \) with history \((a,e) \). Let \(a \leq \mu \leq \text{lh}(I') \). Then \(I'|\mu \) is an inflation of \(I \) with history \((a \upharpoonright \mu,e \upharpoonright \mu) \).
Proof. (1)-(5) continue to hold.

Taking \(\mu = 1 \) it becomes evident that an inflation might say very little about the original iteration \(I \). Hence it is useful to have lemmas which enable us to extend a given inflation \(I' \) to an \(I'' \) of greater length, thus “capturing” more of \(I \). We prove two such lemmas:

Lemma 3.7.44. Let \(I' \) be an inflation of \(I \) of successor length \(\eta' + 1 \). Let \(a = a\eta' \) and assume that \(\tilde{v} = \sigma_a e_\eta(\nu_a) \) exists. Assume further that \(\tilde{v} > \nu_\xi \) for all \(\nu < \eta' \). Extend \(I' \) to \(I'' \) of length \(\eta' + 2 \) by appointing \(\nu''_\eta = \tilde{v} \). Then \(I'' \) is an inflation of \(I \) with history \(\langle a', e' \rangle \), where \(a' \upharpoonright \eta' + 1 = a, a'_{\eta' + 1} = a_{\eta'}, e' \upharpoonright a = \tilde{e} \upharpoonright a, \) and \(e''_{\eta + 1}(a'_{\eta + 1}) = \eta' + 1 \).

Proof. We must show that (1)-(5) are satisfied. The only problematical case is (5). We must show that if \(\Gamma <^{T'} \eta' + 1 \), then \(a_\gamma <^{T'} a_{\eta'} + 1 \) and \(\tilde{e}_\gamma \upharpoonright a_\gamma = \tilde{e}_{\eta' + 1} \upharpoonright a_\gamma \). It suffices to prove that for \(\gamma = T''(\eta' + 1) \). Let \(\bar{\gamma} = T(a_{\eta'} + 1) \). Then \(e_{\eta'}(\bar{\gamma}) \leq^{T'} e_{\eta'}(\gamma) \) by Lemma 3.7.1 (3). Hence \(a_\gamma = \bar{\gamma} \) and \(\tilde{e}_\gamma \upharpoonright a_\gamma = \tilde{e}_{\eta'} \) by Lemma 3.7.43, where \(\tilde{e}_{\eta' + 1} \upharpoonright \eta' + 1 = \tilde{e}_{\eta'} \).

QED(Lemma 3.7.44)

Lemma 3.7.45. Let \(I' \) be an inflation of \(I \) of limit length \(\eta' \). Let \(b \) be the unique cofinal well founded branch in \(I' \). Extend \(I' \) to \(I'' \) of length \(\eta' + 1 \) by appointing: \(\{ \xi : \xi <^{T''} \eta' \} = b \). Then \(I'' \) is an inflation of \(I \) with history \(\langle a', e' \rangle \), where:

\[
\begin{align*}
a' \upharpoonright \eta' &= a, \quad a'_{\eta'} = \sup_{\beta \in b} a'_\beta, \quad e' \upharpoonright \eta' = \tilde{e} \upharpoonright \eta', \\
e'_{\eta} \upharpoonright a'_{\eta'} &= \bigcup_{\beta \in b} \tilde{e}_\beta \upharpoonright a_\beta, \quad e'_{\eta}(a'_{\eta}) = \eta'.
\end{align*}
\]

Proof. (1)-(5) are satisfied.

Composing Inflations

We now show that if \(I' \) in an inflation of \(I \) and \(I'' \) is an inflation of \(I' \), then \(I'' \) is an inflation of \(I \).

Theorem 3.7.46. Let \(I, I', I'' \) be normal iteration of \(M \) with: \(\text{lh}(I) = \eta + 1, \text{lh}(I') = \eta' + 1 \). Let \(I' \) be an inflation of \(I \) with:

\[\text{hist}(I, I') = \langle a, e \rangle.\]

Let \(I'' \) be an inflation of \(I' \) with:

\[\text{hist}(I', I'') = \langle a', e' \rangle.\]
3.7. SMOOTH ITERABILITY

Then I'' is an inflation of I with:

$$\text{hist}(I, I'') = \langle a'', e'' \rangle,$$

where: $a''_\alpha = a'_\alpha$, $e''_\alpha = e'_\alpha e_{a'_\alpha}$. (Hence $e''_\alpha = e'_\alpha e_{a'_\alpha}$).

Proof. We verify (1)-(5).

(1) $a'' = a \cdot a'$ clearly maps $\text{lh}(I')$ into $\text{lh}(I)$. Since e'_α inserts $I'|a'_\alpha + 1$ into $I''|\alpha + 1$ and $e_{a'_\alpha}$ inserts $I|a''_\alpha + 1$ into $I'|a'_\alpha + 1$, then $e'_{a\alpha} \cdot e_{a'_\alpha}$ inserts $I|a''_\alpha + 1$ into $I''|\alpha + 1$.

QED(1)

Now let:

$$I = \langle \langle M_\alpha \rangle, \langle \nu_\alpha \rangle, \langle \pi_{\alpha, \beta} \rangle, T \rangle$$
$$I' = \langle \langle M'_\alpha \rangle, \langle \nu'_{a'_\alpha} \rangle, \langle \pi'_{\alpha, \beta} \rangle, T' \rangle$$
$$I'' = \langle \langle M''_\alpha \rangle, \langle \nu''_{a''_\alpha} \rangle, \langle \pi''_{a, \beta} \rangle, T'' \rangle$$

We recall by Lemma 3.7.5 that if e inserts I into I' and e' inserts I' into I'' then $e' e$ inserts I into I''. Moreover:

$$\tilde{\sigma}' = \tilde{\sigma}' \cdot \tilde{\sigma}.$$

Thus, in particular:

$$\tilde{\sigma}'_{\xi} = \tilde{\sigma}'_{\xi} \cdot \tilde{\sigma}'_{\xi} = \tilde{\sigma}'_{\xi} \cdot \tilde{\sigma}'_{\xi} \text{ for } \xi < a''_\alpha.$$

(2) If $\nu''_\alpha = \tilde{\sigma}'_{a''_\alpha} (\nu_{a''_\alpha})$ exists, then

$$\nu''_\alpha = \tilde{\sigma}'_{a''_\alpha} \cdot \tilde{\sigma}'_{a''_\alpha} (\nu_{a''_\alpha}) = \tilde{\sigma}'_{a''_\alpha} (\tilde{\nu}'_{a''_\alpha}).$$

But then $\nu'_\alpha \leq \tilde{\nu}'_{a''_\alpha}$ and:

$$\nu''_\alpha \leq \tilde{\sigma}'_{a''_\alpha} (\nu'_{a''_\alpha}) \leq \tilde{\sigma}'_{a''_\alpha}.$$

QED(2)

Now let:

$\text{in}(\alpha) = \text{the index of } \alpha \text{ with respect to } I, I'$,

$\text{in}'(\alpha) = \text{the index of } \alpha \text{ with respect to } I', I''$,

$\text{in}''(\alpha) = \text{the index of } \alpha \text{ with respect to } I, I''$.

(3) It is easily seen that if \(\in''(\alpha) = 0 \), then \(\in(a'_{\alpha}) = \in'(\alpha) = 0 \). Hence:

\[
a'_{\alpha+1} = a'_{\alpha} + 1, a''_{\alpha+1} = a''_{\alpha+1} + 1 = a''_{\alpha+1} + 1.
\]

Moreover:

\[
\bar{e}'_{\alpha+1} | a''_{\alpha} + 1 = \bar{e}'_{\alpha+1} | a''_{\alpha} + 1
\]

\[
= \bar{e}'_{\alpha+1} | e_{\alpha} a''_{\alpha} + 1
\]

\[
= \bar{e}'_{\alpha+1} | (a'_{\alpha} + 1) \cdot \bar{e}_{\alpha} a''_{\alpha}
\]

\[
= \bar{e}'_{\alpha} \cdot \bar{e}_{\alpha} a''_{\alpha} = \bar{e}'_{\alpha}.
\]

QED(3)

(4) Assume \(\in''(\alpha) = 1 \). Then either \(\in'(\alpha) = 1 \) or \(\in(a'_{\alpha}) = 1 \).

Case 1. \(\in'(\alpha) = 1 \).

Let \(\gamma = T''(\alpha + 1) \). Thus \(a'_{\gamma} = a'_{\alpha+1} \). Hence

\[
a''_{\gamma} = a_{\alpha+1} = a''_{\alpha+1}.
\]

Case 2. \(\in(a'_{\alpha}) = 1 \) but \(\in'(\alpha) = 0 \).

Let \(\gamma = T''(a'_{\alpha} + 1) \). Then:

\[
a''_{\gamma} = a''_{a'_{\alpha} + 1} = a'a''_{\alpha+1}.
\]

Let \(\beta = T''(\alpha + 1) \). Then:

\[
e_{\alpha}(\gamma) \leq T''(\alpha + 1) \leq T''(\alpha + 1)
\]

Hence by Lemma 3.7.42:

\[
\gamma = a'_{\beta}, a''_{\alpha+1} = a_{\gamma} = a''_{\alpha} = a''_{\beta}.
\]

QED(4)

(5) Let \(\beta < T''(\alpha) \). Then \(a''_{\beta} \leq T''(\alpha) \) and:

\[
a''_{\beta} = a''_{\alpha} \leq T''(\alpha) = a''_{\alpha}.
\]

Now let \(\mu < a''_{\beta} \). Then:

\[
\bar{e}'_{\alpha} (\mu) = \bar{e}'_{\alpha} \cdot \bar{e}_{a''_{\beta}} (\mu) \cdot \bar{e}_{a''_{\alpha}} (\mu) \quad (\text{since } \mu < a''_{\beta} \leq T''(\alpha))
\]

\[
= \bar{e}'_{\beta} \cdot \bar{e}_{a''_{\beta}} (\mu) = \bar{e}'_{\beta} (\mu) \quad (\text{since } \bar{e}_{a''_{\beta}} (\mu) < \bar{e}_{a''_{\beta}} (a'_{\beta}) = \bar{e}'_{\beta} (\mu))
\]

This proves the first part of (5).
3.7. SMOOTH ITERABILITY

Now let α be a limit ordinal. Then $a'_\alpha = \sup_{\beta < \tau(\alpha)} a'_\beta$. If $a'_\alpha = a'_\beta$ for a $\beta < \tau(\alpha)$, then:

$$a'_\alpha = a'_\beta \text{ and } a''_\alpha = a''_\beta$$

for sufficiently large $\beta \leq \tau(\alpha)$. Hence $a'_\alpha = \sup_{\beta < \tau(\alpha)} a''_\beta$.

Now suppose $a'_\alpha > a'_\beta$ for all $\beta < \tau(\alpha)$. Then a'_α is a limit ordinal and:

$$a''_\alpha = a''_\beta = \sup_{\xi < \tau(a'_\alpha)} a_\xi = \sup_{\beta < \tau(\alpha)} a'_\beta = \sup_{\beta < \tau(\alpha)} a''_\beta.$$

QED(5)

This proves Theorem 3.7.46.

3.7.5 Smooth Reiterability

In §3.7.2 we proved that if M is uniquely normally iterable, then it is normally reiterable. In this section we prove the fact announced in §3.7.4. that if M is uniquely normally iterable, then it is smoothly iterable. Just as before, it will also be of interest to know whether this theorem can be relativized to a regular cardinal $\kappa > \omega$. We called a normal reiteration $R = \langle \langle I^i \rangle, \ldots \rangle$ a κ-iteration iff each of its component normal iteration I^i has length less than κ. If we are given a smooth κ-reiteration $S = \langle \langle I^i, \langle e^i, j^i \rangle \rangle \rangle$, we call it a smooth κ-reiteration iff each of its induced reiteration $R_i (i + 1 < \text{lh}(S))$ is a κ-reiteration of length less than κ. We proved previously that, if M is uniquely normally κ-iterable, then it is normally κ-iterable. In the present case the proofs are more subtle, and the best we can get is:

Theorem 3.7.47. Let $\kappa > \omega$ be regular. Let M be uniquely normally $\kappa + 1$-iterable. Then it is smoothly $\kappa + 1$-reiterable. (Hence if M is uniquely normally iterable, it is uniquely smoothly iterable).

We don’t see any way to weaken the hypothesis of this theorem. Thus, for instance, if we only know that M is uniquely normally ω_1-iterable, we have no proof that it is smoothly ω_1-iterable.

We prove Theorem 3.7.47. From now on we take “reiteration” as meaning “κ-reiteration” and “smooth reiteration” as meaning “smooth κ-reiteration”.

We assume M to be uniquely normally $\kappa + 1$-iterable. The desired conclusion then is given by:

Lemma 3.7.48. Let $S = \langle \langle I^i, \langle e^i, j^i \rangle \rangle \rangle$ be a smooth reiteration of M of limit length $\mu \leq \kappa$. Then:
(a) \(S \) has at most finitely many drop points.
(b) \(S \) has a good limit \(I, \{e_i : i < \mu\} \).

Proof. Case 1. \(\mu = \kappa \).

(a) is immediate by \(\text{cf}(\kappa) > \omega \), since if \(S \) had infinitely many drop points, then so would \(S\gamma + 1 \) for some \(\gamma < \kappa \).

To prove (b), let \((i, \kappa) \) be free of drop points, where \(i < \kappa \). We must show that \(\langle (I_j : i \leq j < \kappa), (e^{h,j} : i \leq h \leq j < \kappa) \rangle \) has a good limit:

\[I, \{e^j : i \leq j < \kappa\} \]

(We then set: \(e^h = e^i \cdot e^{h,i} \) for \(h < i \)). But this is immediate by Lemma 3.7.9.

QED(Case 1)

The hard case is:

Case 2. \(\mu < \kappa \).

By induction on \(\mu \) we prove (a), (b) and:

(c) If \(i < \mu \), then \(I \) is an inflation of \(I_i \) with history \(\langle a^i, \{e^i_\alpha : \alpha < \eta_i\} \rangle \), where \(\eta_i + 1 = \text{lh}(I_i) \).

(d) If \(i < \mu \) and \((i, \mu) \) has no drop point in \(S \), then \(a^i_\mu = \eta_i \) and \(e^i_\mu = e_i \).

Assume that this holds at every limit ordinal \(\lambda < \mu \). Then:

Claim 1. Let \(i \leq j < \mu \). Then

(i) \(I_j \) is an inflation of \(I_i \) with history \(\langle a^{i,j}, \{e^{i,j}_\alpha : \alpha < \eta_j\} \rangle \).

(ii) If the interval \((i, j) \) has no drop point in \(S \), then \(a^{i,j}_{\eta_j} = \eta_i \) and \(e^{i,j}_{\eta_j} = e_i \).

Proof. Suppose not. Let \(j \) be the least counterexample. Then \(i < j \) since (i), (ii) hold trivially for \(i = j \). But \(j \) is not a limit ordinal since otherwise (i), (ii) hold by the induction hypothesis. Hence \(j = h + 1 \). We first show that it hold for \(i = h \).

(i) is immediate by Theorem 3.7.40. We now prove (ii) for \(i = h \). Let \(R, \xi \) be the unique objects such that:

\(\langle (I^i), (\nu^i), (e^{k,i}) \rangle, T \)
3.7. SMOOTH ITERABILITY

is a normal reiteration of length $\xi + 1$ and $I_h = I^0, I_j = I^\xi$. Then $e_{h,j} = e^{0,\xi}$. Since R has no truncation on its main branch, $e_{h,j}$ inserts I_h into I_j and $e_{h,j}(\eta_h) = \eta_j$. But $a^{h,j}_{\alpha} = \{\alpha < \eta_h : e_{h,j}(\alpha) < \eta_j\}$. Hence $a^{h,j}_{\eta_j} = \eta_h$. But:

$$e_{h,j} \mid \eta_h = e^{h,j} \mid \eta_h \text{ and } e_{h,j}(\eta_h) = e^{h,j}_{\eta_j}(\eta_h) = \eta_j$$

Hence $e_{i,h} = e^{h,j}_{\eta_j}$.

But then $i < h$. We know that (i), (ii) hold at h and that

$$a^{i,j}_{\eta_i} = a^{i,h}_{a^{h,j}_{\eta_i}}, e^{i,j}_{\alpha} = e^{h,j}_{\alpha} \cdot e^{i,h}_{a^{h,j}_{\eta_i}},$$

where $a^{h,j}_{\eta_i} = \eta_h, a^{i,h}_{\eta_i} = \eta_i, e_{i,h} = e^{i,h}_{\eta_h}, e_{h,j} = e^{h,j}_{\eta_j}$. Thus:

$$a^{i,j}_{\eta_i} = a^{i,h}_{\eta_i} = \eta_i \text{ and } e^{i,j}_{\eta_i} = e^{i,j}_{\eta_j} = e^{i,j}_{\eta_j}$$

Contradiction!

QED(Claim 1)

We now attempt to prove (a)-(d), taking an indirect approach. Call I a simultaneous inflation if it is an inflation of I_i for each $i < \mu$. Our job is to find a simultaneous inflation which also satisfies the conditions (a), (b) and (d). There is no shortage of simultaneous inflations. For instance the normal iteration of length 1:

$$\langle\langle M\rangle, \emptyset, \langle \text{id} \downarrow M \rangle, \emptyset \rangle$$

is a simultaneous inflation. Starting with this, we attempt to form a tower of simultaneous inflations $I_{(i)}$, where $I^{(\xi)}$ is an iteration of length $\xi + 1$ extending $I_{(i)}$ for $i < \xi$. The attempt will have only limited success. If we have constructed $I^{(\xi)}$ for ξ below a limit ordinal λ, we shall, indeed, be able to construct $I^{(\lambda)}$. In attempting to go for $I^{(\xi)}$ to $I^{(\xi+1)}$, however, we may encounter a “bad case”, which blocks us from going further. Using the $\kappa + 1$-normal iterability of M we can, however, show that, if the bad case does not occur, we reach I^κ. But this turns out to be a contradiction. Hence the bad case must have occurred below κ. A close examination of this “bad case" then reveals it to be a very good case, since it gives $I = I^{(\xi)}$ satisfying (a)-(d).

In the following let:

$$I_i = \langle \langle M_{\eta_i} \rangle, \langle \nu_{\alpha} \rangle, \langle \pi_{\alpha,\beta} \rangle, T_i \rangle \text{ be of length } \eta_i + 1.$$

We attempt to construct:

$$I = \langle \langle M_{\alpha} \rangle, \langle \nu_{\alpha} \rangle, \langle \pi_{\alpha,\beta} \rangle, T \rangle \text{ of length } \eta + 1.$$
satisfying (a)-(d).

We successively construct:

\[I^{(\eta)} = (\langle M_\alpha^{(\xi)} \rangle, \langle \nu_\alpha^{(\xi)} \rangle, \langle \pi_\alpha^{(\xi)} \rangle, T^{(\xi)} \rangle \text{ of length } \eta + 1. \]

The intention is that \(I^{(\xi)} = I|\xi + 1 \) will be defined up to an \(\xi < \theta \) and that \(I = I^{(\eta)} \) will have the desired properties (a)-(d). The proof that there is such an \(\xi \) is highly indirect and non-constructive. We shall require:

(A) \(I^{(\xi)} \) is an inflation of \(I_i \) with history

\[(a^{(\xi),i}, e^{(\xi),i}) \text{ for } i < \mu. \]

(B) \(i < \xi \longrightarrow I^{(\xi)} = I^{(\xi)}|i + 1. \)

Note. By (B) we can write \(M_i, \nu_i, \pi_i, T, I \) instead of \(M_\alpha^{(\xi)} \), etc. without reference to \(\xi \). Similarly we can write \(a^i, e^i \) instead of \(a^{(\xi),i}, e^{(\xi),i} \).

Then, for \(\alpha \leq \xi \) we have:

\[a^i_\alpha \leq \eta_i \text{ and } e^i_\alpha \text{ inserts } I|a^i_\alpha + 1 \text{ into } I|\alpha + 1. \]

(C) Let \(\alpha \leq \xi \). Then \(\alpha = \bigcup_{i<\mu} e^i_\alpha a^i_\alpha. \)

By (C) we have:

1. \(\alpha = \sup \{ \hat{e}^i_\alpha (a^i_\alpha) : i < \mu \}, \) since \(\hat{e}^i_\alpha (a^i_\alpha) = \operatorname{lub} e^i_\alpha a^i_\alpha. \)

 Set: \(e^{i,j}_{(\alpha)} = e^{i,j}_{a^i_\alpha}. \) Hence by (C) we have:

2. \(I|\alpha + 1, \langle e^i_\alpha : i < \mu \rangle \) is the good limit of

\[\langle I|a^i_\alpha + 1 : i < \mu \rangle, \langle e^{i,j}_{(\alpha)} : i \leq j < \mu \rangle \]

Now set: \(\sigma^{i}_{(\alpha)} = \sigma^{e^{i,j}_{(\alpha)},\nu^{i,j}_{(\alpha)}}, \) \(\sigma^{e^{i,j}_{(\alpha)}}_{a^i_\alpha} = \sigma^{e^{i,j}_{(\alpha)}}_{a^i_\alpha}. \) Then: \(\sigma^{h}_{(\alpha)} e^{h,i}_{(\alpha)} = e^{h}_{(\alpha)}. \) We can define \(\hat{\sigma}^{i}_{(\alpha)}, \hat{\sigma}^{(i)}_{(\alpha)}, \) similarly. Note, however, that \(\sigma^{i}_{(\alpha)} \) might be a partial function on \(M_{a^i_\alpha}, \) whereas \(\hat{\sigma}^{i}_{(\alpha)} \) in a total function. Nonetheless we do have:

3. \(\sigma^{i}_{(\alpha)} : M^{i}_{a^i_\alpha} \longrightarrow \Sigma^* M_{a}, \) for sufficiently large \(i < \kappa. \)

Proof. \(\sigma^{i}_{(\alpha)} = \pi^{e^{i,j}_{(\alpha)}(a^i_\alpha)}_{(\alpha)}, \) where:

\[\hat{\sigma}^{i}_{(\alpha)} : M^{i}_{a^i_\alpha} \longrightarrow \Sigma^* M^{e^{i,j}_{(\alpha)}(a^i_\alpha)}. \]
3.7. SMOOTH ITERABILITY

By (1) we can pick i big enough that there is no truncation in $(e_{\alpha_i}(a_{\alpha_i})$, $\alpha)$. Hence $\pi_{i,(\alpha_i(a_{\alpha_i})}$ is Σ^*-preserving.

QED(3)

We construct $I^{(\xi)} = I^{\xi + 1}$ by recursion on ξ as follows:

Case 1. $\xi = 0$.

$I^{(0)} = \langle \langle M \rangle, \emptyset, \langle \text{id} \mid M \rangle, \emptyset \rangle$ is the 1-step iteration of M. (A)-(C) hold trivially.

Case 2. $\xi = \theta + 1$ and $a_{\theta_i}^j < \eta_i$ for arbitrarily large $i < \mu$. Let D be the set of i such that:

$$a_{\theta_i}^j < \eta_i \text{ and } \sigma_i^{(j)} : M_{a_{\theta_i}^j}^{i} \rightarrow \Sigma^* M_{\theta}$$

Then D is unbounded in μ by (3). Clearly:

$$\sigma_i^{(j)}(\nu_{a_{\theta_i}^j}^j) \geq \nu_{a_{\theta_i}^j}^j \text{ for } i \in D, j \in D \setminus i.$$

But then for sufficiently large $i \in D$ we have:

$$\sigma_i^{(j)}(\nu_{a_{\theta_i}^j}^j) = \nu_{a_{\theta_i}^j}^j \text{ for } j \in D \setminus i.$$

(To see this, suppose not. Then there is a monotone sequence $\langle \nu_n : n < \omega \rangle$ such that $i_n \in D$ and

$$\sigma_i^{(j)}(\nu_{a_{\theta_i}^j}^j) > \nu_{a_{\theta_i}^j}^{i_n + 1}.$$

Set $\gamma_n = \sigma_i^{(j)}(\nu_{a_{\theta_i}^j}^j)$. Then: $\gamma_n > \gamma_{n+1}$. Hence M_{θ} is ill founded. Contradiction!)

Let D' be the set of such $i \in D$. Then there is $\nu \in M_{\theta}$ such that $\nu = \sigma_i^{(j)}(\nu_{a_{\theta_i}^j}^j)$ for $i \in D$.

Claim. $\nu > \nu_\delta$ for $\delta < \theta$.

Proof. Pick an $i \in D$ large enough that $\delta \in e_{\theta_i}^{i+1}a_{\theta_i}^i$. Let $e_{\theta_i}(\delta) = \delta$. Then $\nu^i < \nu_{a_{\theta_i}^j}^j$. Hence

$$\nu_\delta = \nu = \sigma_i^{(j)}(\nu_{a_{\theta_i}^j}^j) < \sigma_i^{(j)}(\nu_{a_{\theta_i}^j}^j) = \nu$$

QED(Claim)

We are now in a position to apply the extension lemma Lemma 3.7.44. Extend $I^{(\theta)}$ to $I^{(\theta+1)}$ by setting $\nu_\theta = \nu$. For each $i \in D'$, $I' = I^{(\theta+1)}$ is an inflation of I_i with history $\langle \alpha^i, e^i \rangle$, where:

$$a^i \mid \theta + 1 = a^i, a^i_{e+1} = a^e_{e+1} + 1, e^i \mid a^i = e^i \mid a^\theta_{\theta+1} \text{ and } e^i_{\theta+1}(a^\theta_{\theta+1}) = \theta + 1.$$
But D' is cofinal in μ. It follows easily that I' is an inflation of each I_i ($i < \mu$). Thus (A) holds for $\xi = \theta + 1$. (B) follows trivially. (C) hold trivially for $\alpha < \theta$. But then (c) holds for $\alpha = \xi = \theta + 1$, since $\sigma^i_\theta(a^i_\theta) = \theta$ for $i < \mu$ and $\theta = \bigcup_{i<\mu} e^i_\theta a^i_\theta$.

QED(Case 2)

Case 3. $\xi = \theta + 1$ and Case 2 fails.

Then $a^i_\theta = \eta^i$ for sufficiently large i. This is the “bad case” in which $I^{(\theta+1)}$ is undefined.

Case 4. $\xi = \lambda$ is a limit ordinal.

Let $\bar{I} = I|\lambda$ be the componentwise union: $\bar{I} = \bigcup_{\gamma<\lambda} I^{(\gamma)}$. \bar{I} is then an inflation of I_i ($i < \mu$) with history:

$$a^i|\lambda = \bigcup_{\gamma<\lambda} a^i|\gamma, e^i|\lambda = \bigcup_{\gamma<\lambda} e^i|\gamma.$$

Let b be the unique well founded cofinal branch in \bar{I}. Extend \bar{I} to $I' = I^{(\lambda)}$ of length $\lambda + 1$ by setting: $T^{e^i} \{ \lambda \} = b$. By Lemma 3.7.45, I' is then an inflation of each I_i with history (a^i, e^i) such that:

$$a^i|\lambda = a^i|\lambda, e^i|\lambda = e^i|\lambda, a^i \lambda = a^i \beta, e^i \lambda = e^i \beta.$$

(A), (B) are then trivially satisfied. But then so is (C) since

$$\bigcup_{i<\mu} e^i u a^i \lambda = \bigcup_{i<\mu} b = \lambda.$$

QED(Case 4)

We note that the construction in Case 4 goes through for $\xi = \kappa$, since M is $\kappa + 1$-normally iterable. Hence $I^{(\kappa)}$ would exist if the bad case did not occur. This is impossible, however, since:

(4) If λ is a limit ordinal and $I^{(\lambda)}$ exists, then $\text{cf}(\lambda) \leq \mu$ or $\text{cf}(\lambda) \leq \eta_i$ for some $i < \mu$.

Proof. Suppose first that $\lambda > e^i \lambda (a^i \lambda)$ for all $i < \mu$. Since $\lambda = \text{lub}_{i<\mu} e^i \lambda (a^i \lambda)$ by (1), we conclude that $\text{cf}(\lambda) \leq \mu$. Otherwise $\lambda = e^i \lambda (a^i \lambda) = \text{lub} e^i \lambda a^i \lambda$. Hence $a^i \lambda$ is a limit ordinal. Hence $\text{cf} \lambda \leq a^i \lambda \leq \eta_i$.

QED(4)

Hence the bad case occurs at $\xi = \delta + 1$, where $\delta < \kappa$. $I = I^{(\delta)}$ is the final element of our tower. For sufficiently large $i < \mu$ we have:

$a^i_\delta = \eta_i$. Thus if $i \leq j < \mu$ we have:

$$a^i_{\eta_j} = a^i_{a^j_\delta} = a^i_\delta = \eta_i, e^i_{\eta_j} = e^i_{a^j_\delta}.$$

We now show:
3.7. SMOOTH ITERABILITY

(5) There are only finitely many drop points $h + 1 < \mu$ in S.

Proof. Suppose not. Since the assertion is true for all $\mu' < \mu$, we conclude that there are cofinally many truncation points $h + 1 < \mu$ in S. By (1), we can then pick such an $h + 1 > i$, where i is chosen such that $\tilde{\tau}_i^j(a_i^j, \delta)_T$ has no truncation point in I. But we can also choose i large enough that $a_i^j = \eta_i$. By Theorem 3.7.40(6) there is a drop point:

$$\alpha \in \tilde{\tau}_i^{i+1}(a_i^i, \eta_i + 1)_{T+1}.$$

By Lemma 3.7.1(6) we then conclude that there is a drop point in $\tilde{\tau}_i^i(a_i^i, \delta)_T$. Contradiction!

QED(5)

Now suppose i_0 is chosen large enough that there is no drop point in (i, δ) in S, and that $a_{i_0}^j = \eta_j$ for $i_0 \leq j < \theta$. By Claim (1)(ii), we have

$$\sigma_{\eta_i}^{i,j} = \eta_i \text{ and } e_{i,j}^{i,j} = e_{i,j}^{i,j}$$

for $i_0 \leq i \leq j < \theta$. By (2) we have:

$$I, \{e_{i,j}^{i,j} : i_0 \leq i < \mu\}$$

is the good limit of

$$\langle I i \eta_i + 1 : i_0 \leq i < \mu \rangle, \{e_{i,j}^{i,j} : i_0 \leq j < \mu\}$$

We have thus proven (a), (b) in Lemma 3.7.48. (c) and (d) are immediate by the construction.

This proves Lemma 3.7.48 and, with it, Theorem 3.7.47.

Note. By the same method we get:

Let S be an insertion stable strategy for M and assume that $\langle M, S \rangle$ is $\kappa + 1$-normally-iterable. Then $\langle M, S \rangle$ is κ-smoothly-iterable.

The proofs require only cosmetic changes.

We note the following consequence of Lemma 3.7.48:

Lemma 3.7.49. Let $S = \{I_i\}, \{e_{i,j}\}$ be a smooth reiteration of M of length μ, where each I_i is of length $\eta_i + 1$. For $j < \mu$ set:

$$A_j = \{i < j : (i, j] \text{ has no drop points in } S\}, \ A_j^* = A_j \cup \{j\}.$$

(Hence $i \in A_j \rightarrow A_i = i \cap A_j$.) For $i \in A^*$ set: $\pi_{i,j} = \sigma_{\eta_i}^{e_{i,j}}$. Then:
(a) $\pi_{i,j} \cdot \pi_{h,i} = \pi_{h,j}$ for $h \leq i \leq j$ in A^*_j.

(b) $\pi_{i,j} : M_{i} \to \Sigma^* M_{j}$.

(c) If $j = \lambda$ is a limit ordinal, then:

$$M_{\eta_{\lambda}}, \langle \pi_{i,\lambda} : i \in A_{\lambda} \rangle$$

is the direct limit of:

$$\langle M_{i} : i \in A_{\lambda} \rangle, \langle \pi_{i,j} : i < j \text{ in } A_{\lambda} \rangle$$

Proof.

(a) Since $e_{h,i}(\eta_{h}) = \eta_{i}$ and $e_{i,j}(\eta_{h}) = \eta_{j}$, we have: $\sigma^{e_{h,i}}_{(\eta_{h})} = \sigma^{e_{i,j}}_{(\eta_{h})}$.

We prove (b), (c) by induction on j as follows:

Case 1. $j = 0$. Then $A_{j} = \emptyset$ and there is nothing to prove.

Case 2. $j = i + 1$. We must prove (b). If $i + 1$ is a drop point, then $A_{j} = \emptyset$ and there is nothing to prove. If not, it suffices to prove it for $h = i$, by (a) and the induction hypothesis. Then the main branch of R_{i} has no drop point in R_{i}, where R_{i} is the unique reiteration from I^{i} to I^{i+1}. Then $\pi_{i,i+1} = (\sigma^{0,\gamma}_{\eta_{i}})^{R_{i}}$, where $\gamma + 1 = \text{lh}(R_{i})$. But:

$$\sigma^{0,\gamma}_{\eta_{i}} : M_{i} \to \Sigma^* M_{\eta_{i+1}} \text{ in } R_{i}.$$

QED(Case 2)

Case 3. $j = \lambda$ is a limit ordinal.

It suffices to prove (c), since (b) then follows by the induction hypothesis. In S we have:

$$I_{\lambda}, \langle e_{i,\lambda} : l \in A_{\lambda} \rangle$$

is the good limit of

$$\langle I : i \in A_{\lambda} \rangle, \langle \pi_{i,j} : i \leq j \text{ in } A_{\lambda} \rangle$$

But then $M_{\eta} = \bigcup_{i \in A_{\lambda}} \text{rng}(\pi_{i,\lambda})$. This implies (c).

QED(Lemma 3.7.49)
3.7. SMOOTH ITERABILITY

3.7.6 The final conclusion

We now apply the method of §3.7.3 to show that M is smoothly iterable. In §3.5.2 we defined a smooth iteration of N to be a sequence $\langle I_i : i < \mu \rangle$ of normal iterations, inducing sequences $\langle N_i : i < \mu \rangle$, $\langle \pi_{i,j} : i \leq j < \mu \rangle$ with the following properties:

- N_i is the initial model of I_i. Moreover $N_0 = N$.
- Let $i + 1 < \mu$. Then I_i is of successor length. N_{i+1} is the final model of I_i and $\pi_{i,i+1}$ is the partial embedding of N_i into N_{i+1} determined by I.
- $\pi_{i,j} \pi_{h,i} = \pi_{h,i}$.
- Call $i + 1 < \mu$ a drop point in I iff I_i has a truncation on its main branch. If the interval $[i,j]$ has no drop point, then:
 $$\pi_{i,j} : N_i \rightarrow_{\Sigma_1} N_j.$$
- If $\lambda < \mu$ is a limit ordinal, $i_0 < \lambda$ and (i, λ) has no drop point, then:
 $$N_{\lambda \cdot} \langle \pi_{i,\lambda} : i_0 \leq i < \mu \rangle$$
is the direct limit of
 $$\langle N_i : i_0 \leq i < \mu \rangle, \langle \pi_{i,j} : i \leq j < \mu \rangle.$$

$\langle \langle N_i \rangle, \langle \pi_{i,j} \rangle \rangle$ is called the induced sequence.

Call a smooth iteration I critical if it has successor length $\eta + 1$ and I_η is of limit length. By a strategy for N we mean a partial function S defined on critical smooth iterations such that $S(I)$, if defined, is a well founded cofinal branch in I_η, where $\text{lh}(I) = \eta + 1$.

A smooth iteration $I = \langle I_i : i < \mu \rangle$ is S-conforming iff whenever μ and $\lambda < \text{lh}(I_i)$ is a limit ordinal, then:
$$S \upharpoonright \langle I_i \upharpoonright a \rangle = T^\infty_{\lambda \cdot} \langle \lambda \rangle.$$

S is a successful strategy for N iff every S-conforming smooth iteration I of N can be properly extended in any legitimate S-conforming way. In other words:
(A) Let I have length $\eta + 1$ and let I_η have length $i + 1$. Let $Q = N^Q_\eta$ be the final model of I_η. Let $E^Q_\nu \neq \varnothing$, where ν is greater than all the indices ν^Q_j ($j < i$) employed in I_η. Then Q is $*$-extendible by E^Q_ν.

(B) If I is critical, then $S(I)$ is defined.

(C) Let I have limit length μ. Then there are only finitely many drop points in I. Moreover, if $l_0 < \mu$ and (i_0, μ) is free of drops, then:

$$\langle N_i : i_0 \leq i < \mu \rangle, \langle \pi_i, j : i \leq j < \mu \rangle$$

has a well founded direct limit:

$$N_\mu, \langle \pi_{i, \mu} : i_0 \leq i < \mu \rangle$$

We say that N is smoothly iterable iff it has a successful smooth iteration strategy.

These concepts can, of course, be relativized to an ordinal α. To this end we define the total length of $I = \langle I_i : i < \mu \rangle$ to be:

$$\text{tl}(I) = \sum_{i < \mu} \text{lh}(I_i).$$

The notion of α-successful smooth iteration strategy is then defined as before, except that we restrict ourselves to iteration of total length less than α.

We shall prove:

Theorem 3.7.50. Let $\kappa > \omega$ be regular. Let M be $\kappa + 1$-uniquely normally iterable. Then M is κ-smooth iterable.

From now on assume M to be $\kappa + 1$-uniquely normally iterable. Under a “smooth iteration” of M we shall understand a smooth iteration of total length $< \kappa$.

We shall prove Theorem 3.7.50 in the slightly stronger form:

Lemma 3.7.51. Let I be a normal iteration of M of length $\eta + 1 < \kappa$. Let:

$$\sigma : N \rightarrow^* M_\eta \min \rho$$

Then N is smoothly iterable.

In §3.7.3 we derived the normal iterability of N from the premiss of Lemma 3.7.51. Our main tool was the reiteration mirror (RM). If $I = \langle \langle N_i \rangle, \langle \nu_i \rangle, \langle \pi_i, j \rangle, T \rangle$ is a normal iteration of length η, we define a reiteration mirror of I to be a pair $\langle R, I' \rangle$ such that:
3.7. SMOOTH ITERABILITY

(a) \(R = \langle \langle I^i \rangle, \langle \nu_i^j \rangle, \langle \epsilon^j \rangle, T \rangle \) is a reiteration of \(M \) of length \(\eta \), where:
\[
I^i = \langle \langle M^i_{h}, \langle \nu_{h}^i \rangle, \langle \epsilon^i \rangle, \pi^i_{h,j} \rangle, T^i \rangle
\]
is of length \(\eta_i + 1 \)

(b) \(I' = \langle \langle M^i_{h}, \langle \pi^i_{h,j} \rangle, \langle \sigma_i \rangle, \langle \rho^i \rangle \rangle \rangle \) is a mirror of \(I \) with \(\sigma_i(\nu_i) = \nu_i^j \).

(c) \(M_{0} = M_{h} \).

(d) If \(h = T(i + 1) \), then:
\[
M_{i}^{*} = M_{h}^{*} \mid \mu \text{ where } \mu \text{ is maximal such that } \tau_{i}^{*} \text{ is a cardinal in } M^{h}
\]
and \(\pi_{h,i+1}^{*} = \sigma_{h,i+1}^{*} \text{ where } \eta_{h} + 1 = \text{lh}(I^i) \).

\(\langle I, R, I' \rangle \) is called an RM triple iff \(\langle R, I' \rangle \) is an RM of \(I \). We observed that:

Lemma 3.7.34 Let \(\langle I, R, I' \rangle \) be an RM triple of length \(\eta + 1 \). Let \(E_{\nu}^{N_{\eta}} \neq \emptyset \),\(\nu > \nu_i \) for all \(i < \eta \). Then \(\langle I, R, I' \rangle \) extends to an RM triple of length \(\eta + 2 \) with \(\nu = \nu_\eta \).

We fixed a function \(G \) such that whenever \(\Gamma = \langle I, R, I' \rangle \) is a triple satisfying the above condition with respect to \(E_{\nu}^{N_{\eta}} \neq \emptyset \), then \(G(\Gamma, \nu) = \langle \tilde{I}, \tilde{R}, \tilde{I}' \rangle \) is such an extension.

We also observed that:

Lemma 3.7.35. Let \(\langle I, R, I' \rangle \) be an RM-triple of limit length \(\eta \). Let \(b \) be the unique good branch in \(I' \). Then there is a unique extension to an RM-triple of length \(\eta + 1 \). Moreover, \(b = T''\{\eta \} \) in this extension.

We also noted that:

Lemma 3.7.32. \(i + 1 \) is a drop point in \(I' \) iff it is a drop point in \(R \).

Lemma 3.7.33. If \((i, j) \) has no drop point, then \(\pi_{ij} = \sigma_{h,j}^{\eta} \).

We then choose a function \(G \) such that whenever \(\langle I, R, I' \rangle \) is an RM-triple of length \(\mu + 1 \) and \(E_{\nu}^{N_{\mu}} \neq \emptyset \) with \(\nu > \nu_i \) for \(i < \mu \), then \(G \) chooses a \(\Gamma = \langle \tilde{I}, \tilde{R}, \tilde{I}' \rangle \) with \(G(\Gamma, \nu) \) extending \(\Gamma \) of length \(\mu + 2 \) with \(\tilde{\nu}_{\mu} = \nu \). Now let:
\[
\sigma : N \rightarrow \Sigma \rightarrow M_{\eta} \min \rho
\]
where \(\tilde{I} = \langle \langle \tilde{M}_{i}, \langle \tilde{\nu}_{i} \rangle, \langle \tilde{\pi}_{i,j} \rangle, \tilde{T} \rangle \rangle \) is a normal iteration of \(M \) of length \(\eta + 1 \).

Using \(G \) we defined a partial function \(\Gamma \) on normal iterations of \(N \) such that:
\[
\Gamma(I) = \langle I, R, I' \rangle \text{ is a RM-triple with: }
\]
\(\tilde{I} = I^0 \) in \(R \), where \(M'0 = \tilde{M}_{\eta}, \sigma_0 = \sigma, \rho^0 = \rho \) in \(I' \).
The definition of Γ is uniform (with respect to G) in $\sigma, N, \tilde{I}, \rho$, so we can write:

$$\Gamma_{N,\tilde{I},\sigma,\rho}(I) \text{ or } \Gamma(N, \tilde{I}, \sigma, \rho, I).$$

We then defined a strategy:

$$S = S_{N,\tilde{I},\sigma,\rho}$$

for N as follows:

Let I be a normal iteration N of limit length. If $\Gamma(I)$ is undefined, then so is $S(I)$. If not, then we define $S(I)$ to be the unique good branch in R.

It follows easily, using Lemma 3.7.34 and Lemma 3.7.35 that if I is S-conforming, then $\Gamma(I)$ is defined. But then it follows by the same two lemmas that S is successful strategy for N.

From now on let \tilde{I}, as above, be a normal iteration of M and let:

$$\sigma : N \rightarrow_{\Sigma^*} M_{\eta}.$$

Defining the above construction we now prove that N is smoothly iterable.

We first define:

Definition 3.7.21. Let $I = \langle I_i : i < \mu \rangle$ be a smooth iteration of N such that

$$I_i = \langle \langle N^{(i)}_h \rangle, \langle \nu^{(i)}_h \rangle, \langle \tau^{(i)} \rangle, T^{(i)} \rangle.$$

I induces $\langle \langle N_i \rangle, \langle \pi_{i,j} \rangle \rangle$. By a Δ-like sequence for I we mean any sequence $\Delta = \langle \Gamma_i : i < \mu \rangle$ with the following properties (a) and (b):

(a) $\Gamma_i = \langle I_i, R_i, I'_i \rangle$ is an RM triple.

Let

$$R_i = \langle \langle I'_i \rangle_h, \langle \nu^{(i)}_h \rangle, \langle \epsilon^{(i)}_i \rangle, T^{(i)}_i \rangle$$

where I'_i is of length $\eta^{(i)}_h + 1$ and:

$$I'_i = \langle \langle M^{(i)}_h \rangle, \langle \sigma^{(i)}_h \rangle, \langle \pi^{(i)}_h \rangle, \langle \rho^{(i,h)} \rangle \rangle$$

with: $\nu^{(i)}_h = \sigma^{(i)}_h (\nu^{(i)}_h)$.

(b) Set $\tilde{I}_i = I'_i$ for $i < \mu$. Then $\tilde{I} = \langle \tilde{I}_i : i < \mu \rangle$ is a smooth reiteration of M inducing $\langle \tilde{\epsilon}_{i,j} : i \leq j < \mu \rangle$.

3.7. SMOOTH ITERABILITY

(c) Set: \(\tilde{\sigma}_i = \sigma^{(i)}_0, \tilde{\rho}^i = \rho^{(i),0} \),
\[\Gamma_i = \Gamma_{N_i, I, \tilde{\sigma}_i, \tilde{\rho}^i}(I_i). \]

(d) \(\hat{I}_0 = \tilde{I}, \hat{\sigma}_0 = \sigma, \hat{\rho}^0 = \rho. \) Moreover, if \(i + 1 < \mu \) and \(\eta_i = \text{lh}(R_i) \), then:
\[\hat{I}_{i+1} = I_i^{\eta_i}, \hat{\sigma}_{i+1} = \sigma^{(i)}_{\eta_i}, \hat{\rho}^{i+1} = \rho^{(i),\eta_i}. \]

This completes the definition.

Note. \(\hat{e}_{i,i+1} = e^{\eta_i,\eta_i}_i \) for \(i + 1 < \mu \). Clearly \(\hat{I}_i \) is of length \(\eta_i + 1 \), where \(\eta_i = \eta_i^0. \)

Set: \(\hat{M}_i = M_i^{(0)} = \) the final model of \(\hat{I}_i. \)

Then: \(\hat{\sigma}_i : N_i \rightarrow \Sigma^* \hat{M}_i \min \hat{\rho}^i \), where \(\langle (N_i), (\pi_{i,j}) \rangle \) is the sequence induced by \(I. \)

Recall that, if \(i + 1 < \mu \), then \(i + 1 \) is a drop point in \(I \) iff the main branch of \(I_i \) has a drop point in \(I_i. \) Similarly, \(i + 1 \) is a drop point in \(\tilde{I} \) iff the main branch of \(R_i \) has a drop point in \(R_i. \) But the main branch of \(R_i \) is the main branch of \(I_i. \) Hence by Lemma 3.7.32:

Lemma 3.7.52. \(i + 1 \) is a drop point in \(I \) iff it is a drop point in \(\tilde{I}. \)

By Lemma 3.7.49 we then have:

Lemma 3.7.53. For \(i < \mu \) set:
\[A_i = \{ h < i : (h, i] \text{ has no drop point in } I \}; A^*_i = A_i \cup \{ i \}. \]
\[A^*_i = A_i \cup \{ i \}. \]

For \(i \in A^*_j \) set: \(\hat{\pi}_{i,j} = \hat{\sigma}_{\eta_i,j}^{e_i,j}. \) Then:

(i) \(\hat{\pi}_{i,j} \cdot \hat{\pi}_{h,i} = \hat{\pi}_{h,j}. \)

(ii) \(\hat{\pi}_{i,j} : \hat{M}_i \rightarrow \Sigma^* \hat{M}_j. \)

(iii) If \(\lambda \) is a limit ordinal, then:
\[\hat{M}_\lambda, \langle \hat{\pi}_{i,\lambda} : i \in A_\lambda \rangle \]

is the direct limit of:
\[\langle \hat{M}_i : i \in A_i \rangle, \langle \hat{\pi}_{i,j} : i \leq j \text{ in } A_\lambda \rangle. \]
Note. If \(\langle N_i, \langle \pi_{i,j} \rangle \rangle \) is the sequence induced by \(I = \langle I_i : i < \mu \rangle \), then (i)-(iii) hold with \(\pi_{i,j}, N_i \) in place of \(\hat{\pi}_{i,j}, \hat{M}_i \).

Definition 3.7.22. Let \(I \) be as above. By a \(\Delta \)-sequence for \(I \) we mean a \(\Delta \)-sequence \(h_i : i < i \) which, in addition, satisfies:

1. \(\hat{\pi}_{i,j} \hat{\rho}_n^i \subset \rho_n^i \leq \hat{\pi}_{i,j}(\hat{\rho}_n^i) \) for all \(n < \omega \).

Lemma 3.7.54. There is at most one \(\Delta \)-sequence for \(I \).

Proof. Let \(\Gamma = \langle \Gamma_i : i < \mu \rangle \) be a \(\Delta \)-sequence for \(I \). By induction on \(i \) we show that \(\Gamma_i \) is uniquely determined by: \(I, N, \hat{I}, \sigma, \rho \). For \(i = 0 \) this is trivial, since \(\Gamma_0 = \Gamma_{N,I,\sigma,\rho}(I_0) \). For \(i + 1 \) we have:

\[
\Gamma_{i+1} = \Gamma_{N_{i+1},I_{i+1},\sigma_{i+1},\hat{\rho}_{i+1}}(I_{i+1})
\]

where:

\[
N_{i+1} = N^{(i)}_{\eta}, \hat{I}_{i+1} = I^{(i)}_{\eta}, \hat{\sigma}_{i+1} = \sigma^{(i)}_{\eta}, \hat{\rho}_{i+1} = \rho^{(i)}_{\eta}
\]

are determined by \(\Gamma_i \).

Now let \(i = \lambda \) be a limit ordinal. By Lemma 3.7.53, \(\hat{M}_\lambda \) is determined by \(\Delta \upharpoonright \lambda \). Similarly \(N_\lambda \) is determined by \(I \upharpoonright \lambda \), hence by \(\Delta \upharpoonright \lambda \). But \(\hat{\sigma}_\lambda \) is defined by: \(\hat{\sigma}_\lambda \pi_{i,\lambda} = : \hat{\pi}_{i,\lambda} \hat{\sigma}_i \), hence is determined by \(\Delta \upharpoonright \lambda \). By Lemma 3.6.42 of §3.6.2 it then follows that \(\hat{\rho}_\lambda \) is uniquely determined by \(\Delta \upharpoonright \lambda \).

QED(Lemma 3.7.54)

We let \(\Delta(I) \) denote the unique \(\Delta \)-sequence for \(I \) if it exists. Using Lemma 3.7.53 and Lemma 3.6.37 again we get:

Lemma 3.7.55. Let \(I = \langle I_i : i < \mu \rangle \) be a smooth iteration of \(N \) of limit length. Let \(\Delta = \Delta(I) \) exist. Then:

\(\langle N_i : i < \mu \rangle, \langle \pi_{i,j} : i \leq j < \mu \rangle \)

has a transitivized direct limit:

\(N, \langle \pi_{i,j} : i < \lambda \rangle \).

Thus \(I \) extends to a smooth iteration \(I^+ \) of length \(\mu + 1 \), where \(I^+_\mu \) is the iteration \(\langle \langle N_\lambda \rangle, \emptyset, \langle \text{id} \rangle, \emptyset \rangle \) of length 1. Moreover, \(\Delta(I^+) \) exists.
3.8. UNIQUE ITERABILITY

The proof is left to the reader.

We now define a strategy \(S \) for smooth iterations of \(N \): Let \(I \) be a critical smooth iteration of \(N \) of length \(\eta + 1 \). If \(\Delta(I) \) does not exist, then \(S(I) \) is undefined. Now let:

\[
\Delta(I) = \langle \Gamma_i : i \leq \eta \rangle, \Gamma_\eta = \langle I_\eta, R_\eta, I'_\eta \rangle.
\]

Let \(b \) be the unique good branch in \(R_\eta \). Then \(b \) is a cofinal, well-founded branch in \(I_\eta \) and we set: \(S(I) = b \).

Note. \(S_{i+1} = S_{N_i, I_i, \hat{\sigma}_i, \hat{\rho}_i}(I_\eta) \).

Lemma 3.7.56. If \(I \) is \(S \)-conforming, then \(\Delta(I) \) exists.

Proof. Let \(I = \langle I_i : i < \mu \rangle \). By induction on \(i \) we see that \(\Gamma_i = \Gamma_{N_i, I_i, \hat{\sigma}_i, \hat{\rho}_i}(I_i) \) exists, since \(I_i \) is \(S_{N_i, I_i, \hat{\sigma}_i, \hat{\rho}_i} \)-conforming.

QED (Lemma 3.7.56)

It remains only to show that \(S \) is successful - i.e. that the condition (A)-(C) described at the outset are fulfilled. (A) follows by Lemma 3.7.34. (B) follows by Lemma 3.7.35. (C) follows by Lemma 3.7.55. This proves Lemma 3.7.51 and with it Theorem 3.7.56.

Note. If \(S \) is an insertion-stable strategy for \(M \) and \(\langle M, S \rangle \) is normally \(\kappa + 1 \)-iterable, then \(M \) is smoothly \(\kappa \)-iterable. Only cosmetic changes in the above proof are needed to show this.

3.8 Unique Iterability

3.8.1 One small mice

Although we have thus far developed the theory of mice in considerable generality, most of this book will deal with a subclass of mice called **one small**. These mice were discovered and named by John Steel. It turns out that a great part of many one small mice are uniquely normally iterable. Using the notion of Woodin cardinal defined in the preliminaries we define:

Definition 3.8.1 (1-small). A premouse \(M \) is one small iff whenever \(E^M_\nu \neq \emptyset \), then

\[
\text{no } \mu < \kappa = \text{crit}(E^M_\nu) \text{ is Woodin in } J^M_\kappa
\]
Note. Since J^E_κ is a ZFC model, we can employ the definition of “Woodin cardinal” given in the preliminaries. An examination of the definition shows that the statement “μ is Woodin” is, in fact, first order over H_τ where $\tau = \mu^+$. Thus the statement “μ is Woodin in M” makes sense for any transitive ZFC model M. It means that $\mu \in M$ and “μ is Woodin” hold in H^M_τ where $\tau = \mu^+$ (taking $\tau = \text{card} M$ if no $\xi > \mu$ is a cardinal in M). We then have:

Lemma 3.8.1. Let M be a premouse such that $E^M_\nu \neq \emptyset$ and let us set:

$$\kappa = \text{crit}(E^M_\nu), \lambda = \lambda(E^M_\nu) =: E^M_\kappa(\kappa), \tau = \tau(E^M_\kappa) =: \kappa^{+E^M_\kappa}.$$

The following are equivalent:

(a) No $\mu < \kappa$ is Woodin in J^E_κ

(b) No $\mu \leq \kappa$ is Woodin in J^E_τ

(c) No $\mu < \lambda$ is Woodin in J^E_λ

(d) No $\mu \leq \lambda$ is Woodin in J^E_γ.

Proof: (d)\Rightarrow(c)\Rightarrow(b)\Rightarrow(a) is clear. We now show (a)\Rightarrow(d). Assume (a). Since $J^E_\kappa \prec J^E_\tau$ we have (c). But then (b) holds. Since $\pi : J^E_\tau \to J^E_\nu$ cofinally, we conclude that π is elementary on J^E_γ. Hence (d) holds. QED (Lemma 3.8.1).

Recalling the typology developed in §3.3, we have:

Lemma 3.8.2. Every active one-small premouse is of type 1.

Proof: Suppose not. Let $M = (J^E_\nu, F)$ be a counterexample. We derive a contradiction by proving:

Claim. κ is Woodin in M, where $\kappa = \text{crit}(F)$.

Proof: Let $A \subset \kappa$, $A \in M$. We show that some $\tau < \kappa$ is A-strong on J^E_κ. It is easily seen that (J^E_κ, B) $\prec (J^E_\lambda, F(B))$ whenever $B \subset \kappa$, $B \in M$. Hence it suffices to find a $\tau < \lambda$ such that τ is $F(A)$-strong in J^E_κ.

Claim. κ is $F(A)$-strong in J^E_κ.

Proof: Suppose not. Then there is $\xi < \lambda$ such that whenever $G \in J^E_\lambda$ is an extender at κ on J^E_κ, then $F(A) \cap \xi \neq G(A) \cap \xi$ (where $A = F(A) \cap \kappa$). Let ξ be the least such. Since M is not of type 1, there is $\bar{\lambda} < \lambda$ such that $F = F \upharpoonright \lambda$ is a full extender at κ in M. Hence $F \in J^E_\kappa$. But:

$$\langle J^E_\kappa, F(A) \rangle \prec \langle J^E_\kappa, F(A) \rangle$$
Since for $\alpha_1, \ldots, \alpha_n < \lambda$ we have:

$$\langle J^E_{\lambda}, F(A) \rangle \models \varphi[\alpha] \iff \langle J^E_{\lambda}, F(A) \rangle \models \varphi[\alpha] \iff \langle \alpha \rangle \in F(e)$$

where $e = \{ \langle \xi \rangle < \kappa : \langle J^E_{\kappa}, A \rangle \models \varphi[\xi] \}$. Hence $\xi < \lambda$ by minimality. Hence $F \in J^E_{\lambda}$ and $F(A) \cap \xi = F(A) \cap \xi$. Contradiction! QED (Lemma 3.8.2).

We leave it to the reader to show:

- If M is one small and $\mu \in M$, then $M||\mu$ is one small (for limit μ).
- Let $\langle M_i : i < \lambda \rangle$ be a sequence of one small premice. Let $\pi_{ij} : M_i \rightarrow \Sigma^M_{ij} M_j$ for $i \leq j < \lambda$, where the π_{ij} commute. Let $M_{\lambda}, \langle \pi_{i\lambda} : i < \lambda \rangle$ be the direct limit of $\langle M_i : i < \lambda \rangle, \langle \pi_{ij} : i \leq j < \lambda \rangle$. Then M_{λ} is one small.

It then follows easily that:

Lemma 3.8.3. Any full iterate of a small mouse is one small.

In particular, any normal iterate of a one small mouse is one small.

In §3.8.2 we shall show that there is a large class of one small premice, all of which have the normal uniqueness property. That will be our main result in this section.

3.8.2 Woodiness and non unique branches

In the preliminaries we defined the notion of A-strong. We now adapt these notion to certain admissible structures in place of V.

Definition 3.8.2. $N = J^E_{\alpha}$ is a limit structure iff N is acceptable and there are arbitrarily large $\tau \in N$ such that $N \models \tau$ is a cardinal.

Definition 3.8.3. Let $N = J^E_{\alpha}$ is a limit structure. $\kappa \in N$ is strong in N iff for arbitrarily large $\xi \in N$ there is $F \in N$ such that:

- F is an extender at κ on N of length $\geq \xi$.
- N is extendible by F.
- Let $\pi : N \rightarrow N' = J^E_{\alpha'}$. Then $J^E_{\xi} = J^E_{\xi'}$.

Hence, if ξ is a cardinal in N, it follows that $H^N_{\xi} = H_{\xi'}$.
Definition 3.8.4. Let $A \subset N$, where $N = J^E_\kappa$ is as above, $\kappa \in N$ is A-strong in N iff (N, A) is amenable and for arbitrarily large $\xi \in N$ there is $F \in N$ such that

- F is an extender at κ of length $\geq \xi$
- N is extendible by F (hence so is (N, A))
- Let $\pi : (N, A) \mapsto (N', A') = (J^E_\alpha, A')$. Then $J^E_\xi = J^E'_{\xi'}$ and $A \cap J^E_\xi = (A' \cap J^E_{\xi'})$.

Definition 3.8.5. N is Woodin for $A \subset N$ iff there are arbitrarily large $\kappa \in N$ which are A-strong in N.

Hence if $N = J^E_{\xi^M}, \xi \in M$, then $M \models \text{“}\xi\text{ is Woodin”}$ if and only if ξ is Woodin for all $A \in M$ such that $A \subset N$.

In this subsection we shall prove:

Theorem 3.8.4. Let M be a premouse. Let

$I = \langle \{M_i\}, \{\nu_i\}, \{\pi_{ij}\}, T \rangle$

be an iteration of M of limit length η. Set:

$$\tilde{\eta} = \sup_{i < \eta} \kappa_i = \sup_{i < \eta} \lambda_i; \quad N = J^E_{\tilde{\eta}} =: \bigcup_{i < \eta} M_i|\nu_i$$

Assume that b_0, b_1 are distinct cofinal well founded branches in T (hence $\tilde{\eta} = \sup b_h$ for $h = 0, 1$). Then N is Woodin with respect to every $A \subset N$ such that $A \in M_{b_0}, M_{b_1}$.

The proof will require many steps. We first prepare the ground by reformulating the definition of “strong” and “A-strong”.

Note that if $A \subset \text{ON}$, then $A \cap J^E_\xi = A \cap \xi$ for $\xi \in N$. Thus, if $F \in N$ verifies A-strongness, then so does $F|\xi$. In the following we shall make frequent use of this fact. Since, in the book, we have generally worked with full extenders, we pause now to remind ourselves what it means to say:

F is an extender at κ on M of length ξ

We take M as being acceptable. The above statement then means that the following hold:

(a) $\xi > \kappa$ is Gödel closed (i.e. closed under Gödel pairs \langle, \rangle).
3.8. UNIQUE ITERABILITY

(b) \(\kappa \in M \) and \(\mathbb{P}(\kappa) \cap M \in M \)

(c) \(F : \mathbb{P}(\kappa) \cap M \rightarrow \mathbb{P}(\xi) \)

(d) \(F \) has an extension \(\tilde{\pi} \) characterized by:

\[\begin{align*}
&\bullet \ \tilde{\pi} : H^M_\kappa \rightarrow \Sigma_0 H \text{ cofinally, where } H \text{ is transitive} \\
&\bullet \ F(X) = \tilde{\pi}(X) \cap \xi \text{ for } X \in \mathbb{P}(\kappa) \cap M \\
&\bullet \ \text{Each } x \in H \text{ has the form } \tilde{\pi}(f)(\xi), \text{ where } \xi < \xi \text{ and } f \in H^M_\kappa \text{ is a function on } \kappa.
\end{align*} \]

Then \(\tilde{\pi} \) is uniquely characterized by \(F \). Moreover, \(\tilde{\pi} \) is definable from \(F \) by an “ultrapower” construction which is absolute in ZFC\(^-\) models. Thus \(\tilde{\pi} \in M \) if \(F \in M \) and \(M \models \text{ZFC}^- \). But then \(\tilde{\pi} \in M \) if \(F \in M \) and \(M \) is a limit structure in the above sense, since then \(M \) is a union of transitive ZFC\(^-\) models.

\[\pi : M \rightarrow F \ M' \] here means that \((M', T) \) is the \(\Sigma_0 \) lift-up of \(M, \tilde{\pi} \). We say that \(M \) is extendable by \(F \) if \((M', \pi) \) exists.

Definition 3.8.6. Let \(M = (J^E_\alpha, B) \) be acceptable. Let \(F \) be an extender on \(M \) at \(\kappa \in M \) of length \(\xi \leq \alpha \). Let \(\tilde{\pi} \) be the extension of \(F \) and let \(\tilde{\pi}(J^E_\kappa) = J^E_\xi \). \(F \) is strong with respect to \(M \) iff \(J^E_\xi = J^E_\xi \). If \(F \) is strong, we define a function \(\tilde{F} \) on \(\mathbb{P}(J^E_\kappa) \cap M \) by \(\tilde{F}(a) =: \tilde{\pi}(a) \cap J^E_\xi \).

Note that \(\tilde{F}(a) = F(a) \) for \(a \subset \kappa \).

Note. If \(M \) is a premouse, \(E_\nu \neq \emptyset \) and \(\tau_\nu \) is a cardinal in \(M \), then \(E_\nu \) is a strong extender on \(M \) at \(\kappa \) of length \(\lambda_\nu \). If \(\nu \in M \), then \(E_\nu \in M \), but the case \(\nu = \alpha \) can give us trouble.

Definition 3.8.7. Let \(M, F, \kappa, \xi \) be as above. Let \(A \subset M \). \(F \) is \(A \)-strong in \(M \) iff

\[\begin{align*}
&\bullet \ \langle M, A \rangle \text{ is amenable} \\
&\bullet \ F \text{ is strong in } M \\
&\bullet \ \tilde{F}(A \cap J^E_\kappa) = A \cap J^E_\xi.
\end{align*} \]

We note:

Fact. Let \(F \) be an extender on \(M \) at \(\kappa \in M \) of length \(\eta \). Let \(\kappa < \mu < \xi \), where \(\mu \) is Gödel closed. Define \(F' = F|\mu \) by:

\[F'(X) = F(X) \cap \mu \text{ for } X \in \mathbb{P}(\kappa) \cap M. \]

Then:
(a) F' is an extender on M at κ of length μ

(b) If F is strong in M, so is F'

(c) If F is A-strong in M, so is F'

(d) If M is extendible by F, then it is extendible by F'.

We sketch the proof of (b). Let π be the extension of F with:

$$\pi: J^E_\tau \longrightarrow \Sigma_0 H \text{ cofinally, where } \tau = \kappa^{+M}.$$

Similarly for π', F'. Let:

$$\pi': J^E_\tau \longrightarrow \Sigma_0 H' \text{ cofinally}$$

Define:

$$k : H' \longrightarrow \Sigma_0 H \text{ cofinally}$$

by $k(\pi'(f)(\xi)) = \pi(f)(\xi)$ where $\xi < \mu$ and $f \in J_\kappa$ is a function on κ. Then $k|\mu = id$, since:

$$k(\xi) = k(\pi'(id|\tau)(\xi)) = \pi(id|\tau)(\xi) = \xi$$

But then $\tilde{k} = k|J^E_\mu$ maps J^E_μ cofinally to J^E_ξ, since $k(J^E_\xi) = J^E_\xi$ for limit $\xi < \mu$. Now let h', h be the Σ_1 Skolem function of J^E_μ, J^E_ξ respectively. Then

$$\tilde{k}(h'(i, (\xi))) = h(i, (\xi))$$

for $i < \omega, \xi_1, \ldots, \xi_n < \mu$. It follows easily that \tilde{k} is an isomorphism of J^E_μ onto J^E_μ. Hence $\tilde{k} = id, J^E_\mu = J^E_\mu$.

(QED (part (b)).

We shall sometimes make use of the following:

Lemma 3.8.5. Let M be a premouse. Let $F = E^M_\nu \neq \emptyset$, where $\kappa = \kappa_\nu$, $\tau = \tau_\nu$, $\lambda = \lambda_\nu$ and τ is a cardinal in M. Hence F is strong at κ of length λ in M. Let $G \in M$ be an extender at $\bar{\kappa} < \kappa$ on M of length κ. Let $\kappa < \mu \leq \lambda$, where μ is Gödel closed. Set:

$$F' = F|\mu, \quad D = F' \circ G$$

Then:

(a) $D \in M$ is an extender on M at $\bar{\kappa}$ of length μ.

(b) If G is strong in M, so is D. Moreover we then have $D = \bar{F}' \circ \bar{G}$.

(c) If $A \subset M$ and G, F' are A-strong in M, then so is D.

3.8. UNIQUE ITERABILITY

Note that we do not assume $F \in M$. **Proof**: We first prove (a). Obviously $G \in J^E_\tau$ is an extender on J^E_τ at $\bar{\kappa}$ of length κ. But this is expressed by $J^E_\tau \models \varphi[G, \bar{\kappa}, \kappa]$, where φ is a first order formula. But $\pi_F : J^E_\tau \prec J^E_\nu$. Hence:

$$J^E_\nu \models [\pi_F(G), \bar{\kappa}, \lambda]$$

Thus $\pi_F(G)$ is an extender on M at $\bar{\kappa}$ of length λ, and we set:

$$D = \pi_F(G)|\mu$$

Then:

$$D(X) = D'(X) \cap \mu = \pi_F(G)(X) \cap \mu = \pi_F(G(X)) \cap \mu = F(G(X)) \cap \mu = F'(G(X))$$

This proves (a). We now prove (b).

Clearly $G \in J^E_\tau$ is strong in J^E_ν, where $\tau = \tau_\nu$. But J^E_ν in a ZFC$^{-}$ model and the fact that G is strong and expressible by a fourth order statement:

$$J^E_\nu \models G \text{ is strong.}$$

But $\pi_F : J^E_\tau \prec J^E_\nu$. Hence

$$J^E_\tau \models D' = \pi_F(G) \text{ is strong.}$$

Hence D' is strong in M. Hence $D = D'|\mu$ is strong in M. Finally we note that $\tilde{E}(a) = \pi_F(a)$ for $a \subset J_\kappa$, since $\pi_F(\kappa) = \lambda$ (i.e. F is a full extender). But then

$$\tilde{D}(a) = \tilde{D}'(a) \cap J^E_\mu = \tilde{F}(\tilde{G}(a)) \cap J^E_\mu = \tilde{F}'\tilde{G}(a).$$

Hence $\tilde{D}(a) = \tilde{D}'(a) \cap J^E_\mu = \tilde{F}(\tilde{G}(a)) \cap J^E_\mu = \tilde{F}'\tilde{G}(a)$. This proves (b). To prove (c) we note that, if both G, F' are A-strong, then:

$$\tilde{F}'\tilde{G}(A \cap J^E_\kappa) = \tilde{F}'(A \cap J^E_\kappa) = A \cap J^E_\mu$$

QED (Lemma 3.8.5)

Lemma 3.8.6. Let $N = J^E_\kappa$ be a limit structure. Let $F \in N$ be a strong extender at κ on N of length η, where η is regular in N. Then N is extendible by F.

Proof: Suppose not. Let

$$D = \{(f, \alpha) \in N : \alpha < \xi \text{ and } f \text{ is a function on } \kappa = \text{crit}(F)\}$$
Let $e \subset D^2$ be defined by:

$$\langle f, \alpha \rangle \in \langle g, \beta \rangle \iff \langle \alpha, \beta \rangle \in F(\{\langle \xi, \zeta \rangle : f(\xi) \in g(\zeta)\})$$

Our assumption says that e is ill-founded. Hence there is a sequence $\langle f_i, \alpha_i \rangle_{i < \omega}$ such that

$$\langle f_{i+1}, \alpha_{i+1} \rangle \in \langle f_i, \alpha_i \rangle, \text{ for } i < \omega$$

Let $\langle f_0, \alpha_0 \rangle \in J_\gamma E$ where $\gamma > \xi$ is regular in N. We can assume without lose of generality that $\langle f_i, \alpha_i \rangle \in J_\gamma E$. If not, replace f_i by f_i' where

$$f_i'(\xi) = \begin{cases} f_i(\xi) & \text{if } f_i(\xi) \in J_\gamma E \\ 0 & \text{otherwise} \end{cases}$$

But then $e' = e \cap J_\gamma E$ is ill-founded, where $e' \in N$. Since N is a union of transitive ZFC^- models, it follows by absoluteness that:

$$N \models e'$ is ill-founded.

But then there is $\langle \langle f_i, \alpha_i \rangle : i < \omega \rangle \in N$ such that

$$\langle f_{i+1}, \alpha_{i+1} \rangle \in \langle f_i, \alpha_i \rangle \text{ for } i < \omega$$

Let $\tilde{\pi} \in N$ be the extension of F. Then:

$$\tilde{\pi} : J_\gamma E \longrightarrow \chi_0 H \text{ cofinally.}$$

Set: $X_i = \{\langle \xi, \zeta \rangle : f_{i+1}(\xi) \in f_i(\xi) \in f_i(\zeta)\}$. Let $\tau = \kappa^+ N$, we have $\langle X_i : i < \omega \rangle \in J_\tau E$. Set

$$\langle \tilde{X}_i : i < \omega \rangle = \tilde{\pi}(\langle X_i : i < \omega \rangle)$$

Then $\tilde{X}_i \cap \eta = F(X_i)$ for $i < \omega$. Since η is regular in N and F is strong, we have:

$$\langle \alpha_i : i < \omega \rangle \in J_\tau E \subset H$$

But $\langle \alpha_{i+1}, \alpha_i \rangle \in F(X_i) \subset \tilde{X}_i$ for $i < \omega$. Hence H satisfies the statement:

There is $g : \omega \longrightarrow \tilde{\pi}(\kappa)$ such that $\langle g(i+1), g(i) \rangle \in \tilde{X}_i$ for $i < \omega$

But then $J_\tau E$ satisfies:

There is $g : \omega \longrightarrow \kappa$ such that $\langle g(i+1), g(i) \rangle \in X_i$ for $i < \omega$

Hence $f_{i+1}(g(i+1)) \in f_i(g(i))$ for $i < \omega$. Contradiction! QED (Lemma 3.8.6)

But then by Fact 1, it follows easily that:
Lemma 3.8.7. Let \(N \) be a limit structure, \(\kappa \in N \). Then \(\kappa \) is strong in \(N \) iff for arbitrarily large \(\eta \in N \) there is \(F \in N \) which is strong for \(N \) at \(\kappa \) of length \(\eta \).

Lemma 3.8.8. Let \(N, \kappa \) be as above. Let \(A \subseteq N \). Then \(\kappa \) is \(A \)-strong in \(N \) iff for arbitrarily large \(\xi \in N \) there is \(F \in N \) which is \(A \)-strong for \(N \) at \(\kappa \) of length \(\xi \).

The proofs are left to the reader.

We are now ready to embark upon the proof of Theorem 3.8.4.

The proof will have many steps. We shall in fact, first prove it under a simplifying assumption, in order to display the method more clearly.

Since \(b_0, b_1 \) are distinct and \(T \) is a tree, there is an \(\alpha < \eta \) such that \((b_0 \setminus \alpha) \cap (b_1 \setminus \alpha) \neq \emptyset \). Define a sequence \(\langle \delta_i : i < \omega \rangle \) by:

\[
\begin{align*}
\delta_0 &= \text{the least } \xi \in b_i \setminus (\alpha + 1) \\
\delta_{2i+1} &= \text{the least } \xi \in b_1 \text{ such that } \xi > \delta_{2i} \\
\delta_{2i+2} &= \text{the least } \xi \in b_0 \text{ such that } \xi > \delta_{2i+1}
\end{align*}
\]

By minimality, each \(\delta_i \) is a successor ordinal. Note that

\[T(\delta_{2i+1}) < \delta_{2i} < \delta_{2i+1} \]

since otherwise, setting \(\xi = T(\delta_{2i+1}) \), we would have \(\xi \geq \delta_{2i}, \xi \in b_1 \); hence \(\xi > \delta_{2i} \). But then \(\delta_{2i+1} \leq \xi < \delta_{2i+1} \). Contradiction! A similar argument shows:

\[T(\delta_{2i+2}) < \delta_{2i+1} < \delta_{2i+2} \]

Hence:

1. \(T(\delta_{i+1}) < \delta_i < \delta_{i+1} \) for \(i < \omega \).

 Set

2. \(\gamma_i =: \delta_i - 1, \gamma_i^* = T(\delta_i) \).

 By (1) we then have

3. \(\kappa_{\gamma_{i+1}} < \lambda_{\gamma_{i+1}} \leq \lambda_{\gamma_i} \leq \kappa_{\gamma_{i+2}} \).

 We have \(\lambda_{\gamma_i} \leq \kappa_{\gamma_{i+2}} \) since \((\gamma_i + 1)T(\gamma_{i+2} + 1) \). Now note that for \(n < \omega \) we have:

4. If \(n \) is even, then \(\langle \delta_n + 1 : i < \omega \rangle \) has the same definition as \(\langle \delta_i : i < \omega \rangle \) with \(\delta_n \) in place of \(\alpha \). Similarly for \(n \) odd, with \(b_0, b_1 \) reversed.

 Hence we may without lose of generality assume \(\alpha \) chosen large enough that:
CHAPTER 3. MICE

(5) No \(\xi \in (b_h \setminus \alpha) \) is a drop point \((h = 0, 1)\). Thus \(M_{\gamma_i} = M_{\gamma_i}' \), and we have:

(6) \(\pi_{\gamma_i, \delta_i} : M_{\gamma_i}' \rightarrow_{E_{\nu_{\gamma_i}}} M_{\delta_i} \).

Clearly

(7) \(\sup_{t<\omega} \gamma_i = \sup_{t<\omega} \delta_i = \nu \), since otherwise \(\sup_{t<\omega} \gamma_i \in (b_0 \setminus \alpha) \cap (b_1 \setminus \alpha) \).

By (6) we conclude:

(8) \(\tau_{\gamma_i} \) is a cardinal in \(M_\xi \) for \(\xi \geq \gamma_i^* \).

Set:

(9) \(N = J^E_\xi =: \bigcup_i J^{E_{M_{\gamma_i}}} = \bigcup_i J^{E_{\nu_{\gamma_i}}} \).

Until further notice we make the following simplifying assumption:

(SA) \(E_{\nu_{\gamma_i}}|_{\kappa_{\gamma_i}} \in M_{\gamma_i} \ (i < \omega) \)

This would be true e.g. if \(M \) were passive and no truncation occurred in the iteration, since then \(E_{\nu_{\gamma_i}} \in M_{\gamma_i} \).

Using this assumption we get:

(10) \(N \models \) there are arbitrarily large strong cardinals.

Proof: Since we can choose \(\alpha \) (and hence \(\kappa_{\gamma_0} \)) arbitrarily large, it suffices by (4) to show:

Claim. \(\kappa_{\gamma_0} \) is strong in \(N \).

Proof: Set \(F_n = E_{\gamma_0}|_{M_{\gamma_0}} \), \(F'_n = F_n|_{\kappa_{\gamma_{n+1}}} \). Set \(G_0 = F'_0, G_{n+1} = F'_{n+1} \circ G_n \). Using Lemma 3.8.5 we get:

\(G_n \in N \) is strong in \(N \) at \(\kappa_{\gamma_0} \) of length \(\kappa_{\gamma_{n+1}} \)

QED (10)

(11) Let \(A \in M_{b_0} \cap M_{b_1} \). Then \(N \) is Woodin for \(A_0 \).

Proof. Assume \(\alpha \) is so chosen that \(A \in \text{rng}(\pi_{\gamma_0, b_0}) \cap \text{rng}(\pi_{\gamma_1, b_1}) \). It suffices to prove:

Claim. \(\kappa_{\gamma_0} \) is \(A \)-strong in \(N \).

Then \(F_n \) is \(A \)-strong, since

\(\pi_{\gamma_0, \gamma_{n+1}}(A \cap J^E_{\kappa_{\gamma_0}}) = A \cap J^E_{\kappa_{\gamma_0}} \)

Hence \(F'_n \) is \(A \)-strong. Hence \(G_n \) is \(A \)-strong for \(n < \omega \). QED (11)
3.8. UNIQUE ITERABILITY

Note. Even if \(F_0 \notin N \), it follows that \(\tilde{G}_n(A \cap J^E_{\gamma_0}) = A \cap J^E_{\gamma_{n+1}} \), where \(\tilde{G}_0 = \tilde{F}_0', \tilde{G}_{n+1} = \tilde{F}_{n+1}' \circ \tilde{G}_n \).

We now face the task of proving (10), (11) without the special assumption (SA). In order to prove (10) it would suffice to find a \(\beta + 1 < \eta \) such that

\[
\mu_{\gamma_0} \leq \mu_\beta < \mu_{\gamma_1} < \lambda_\beta \quad \text{and} \quad E_{\nu_\beta}^{M_\beta} | \kappa_{\gamma_1} \in M_\beta
\]

since then, setting \(\tilde{G} = E_{\nu_\beta}^{M_\beta} | \kappa_{\gamma_1} \), we have \(G \in N \) is strong in \(N \) at \(\kappa_\beta \) of length \(\kappa_{\gamma_1} \).

If we set:

\[
G_0 = G, G_{n+1} = F_{n+1} \circ G_n
\]

it follows that

\[
G_n \in N \text{ is strong in } N \text{ at } \kappa_\beta \text{ of length } \kappa_{\gamma_{n+1}}
\]

We now look for such a \(\beta \). As a first step, however, we choose \(\alpha \) large enough to prevent the occurrence of an unfortunate configuration. For active premice \(M \) let \(E_M^{\kappa_{\gamma_1}} \) denote the topmost extender. Call \(n < \omega \) undesirable iff

\[
\text{crit}(E_{\nu_\beta}^{M_{\gamma_{n+1}}}) \in [\gamma_n, \gamma_{n+1})
\]

(12) If \(\alpha \) is chosen sufficiently large, then no \(n < \omega \) is undesirable.

Proof: Suppose not. Then there are infinitely many undesirable \(n \). But then these are undesirable \(n, m \) such that \(n < m \) and \(n, m \) are both add or both even. Then \(\delta_{n+1} < \delta_{m+1} \). Let \(\tilde{k} = \text{crit}(E_{\nu_\beta}^{M_{\gamma_{n+1}}}) \).

Then \(\tilde{k} < \kappa_{\gamma_{n+1}} = \text{crit}(\pi_{\delta_{n+1}, \delta_{m+1}}) \) by undesirability. Hence \(\tilde{k} = \text{crit}(E_{\nu_\beta}^{M_{\gamma_{m+1}}}) \). But \(\tilde{k} < \kappa_{\gamma_{n+1}} \leq \kappa_m \) by (3). Hence \(m \) is not undesirable. Contradiction!

QED

From now on let \(\alpha \) be chosen as in (12). In the following assume that:

\[
(*) \quad \gamma < \eta \text{ and } \kappa_{\gamma} = \text{crit}(E_{\nu_\gamma}^{M_{\gamma}}) < \kappa < \lambda_{\gamma}
\]

where \(\kappa \) is inaccessible in \(M_\gamma \). Later we shall apply our argument to the case \(\gamma = \gamma_0, \kappa = \kappa_{\gamma_1} \).

We call \(\gamma \) good for \(\kappa \) iff \(E_{\nu_\gamma}^{M_{\gamma}} | \kappa \in M_\gamma \).

(13) If \(\gamma \) is not good for \(\kappa \), then

\[
\text{a) } E_{\nu_\gamma}^{M_{\gamma}} \text{ is the top extender of } M_\gamma
\]

\[
\text{b) } \mu_{\gamma}^{M_{\gamma}} \leq \kappa.
\]

Proof:
(a) It is immediate, since otherwise $E^{M_\gamma}_{\kappa_\gamma} \in M_\gamma$.

(b) Set $F = E^{M_\gamma}_{\kappa_\gamma} \restriction \kappa$, $\tilde{F} = \{ \langle x,\alpha \rangle : \alpha \in F(x) \}$. Then \tilde{F} is $\Sigma_1(M_\gamma)$, $\tilde{F} \subset J^{E^{M_\gamma}_{\kappa_\gamma}}_\kappa$, $\tilde{F} \notin M_\gamma$. QED (13)

(14) Let γ, κ satisfy (\ast). Let $\beta + 1 \leq_T \gamma$ such that $\kappa < \lambda_\beta$. Then:

(a) crit($\pi_{\beta+1,\gamma}$) > κ if $\beta + 1 \neq \gamma$

(b) If γ is not good for κ, then $\pi_{\beta+1,\gamma}$ is total on $M_{\beta+1}$

Proof:

(a) Let $\beta + 1 = T(\mu + 1)$ where $\mu + 1 \leq_T \gamma$. Then $\beta + 1$ is the least ξ such that $\lambda_\xi > \kappa_\mu$, where $\kappa_\mu = \text{crit}(\pi_{\beta+1,\gamma})$. Hence $\kappa < \lambda_\beta \leq \kappa_\mu$.

(b) Suppose not. Then there is a least truncation point $\xi + 1$ such that $\beta + 1 \leq_T \xi + 1 \leq_T \gamma$. Then $M^*_\xi \in M^*_\gamma$, where $\xi^* = T(\xi + 1)$. Moreover we have:

$$\pi_{\xi^*,\gamma} : M^*_\xi \rightarrow \Sigma_1 M^*_\gamma, \text{crit}(\pi_{\xi^*,\gamma}) > \kappa,$$

since

$$\beta + 1 \leq \xi^*, \text{crit}(\pi_{\beta+1,\gamma}) > \kappa$$

Hence $\rho^1_{M^*_\xi} \leq \kappa$. Since M^*_ξ is a segment of M it follows that λ_β is not a cardinal in M^*_ξ. But λ_β is a cardinal in M^*_γ, since $\beta + 1 \leq \xi^*$. Contradiction! QED (14)

We now set:

Definition 3.8.8. Let γ, κ satisfy (\ast). $\gamma^+ \cong \gamma^+(\kappa)$ is defined as follows:

- if γ is not good for κ and there is $\beta + 1 \leq_T \gamma$ such that $\kappa_\beta < \kappa < \lambda_\beta$, set $\gamma^+ = \beta$.
- Otherwise γ^+ is undefined.

Note. If γ^+ is defined, then the pair γ^+, κ satisfies (\ast).

(15) If $\beta = \gamma^+$, then $\kappa_\gamma < \kappa_\beta$.

Proof: Let $\xi = T(\beta + 1)$. Then $\pi_{\xi,\gamma} : M^*_\beta \rightarrow \Sigma_1 M_\gamma$, since $\pi_{\beta+1,\gamma}$ is total on $M_{\beta+1}$ by (14). Then $\pi_{\beta,\gamma}(\overline{\kappa}) = \kappa_\gamma$, where $\overline{\kappa} = E^{M^*_\gamma}_{\text{top}}$, since $\kappa_\gamma = \text{crit}(E^{M^*_\gamma}_{\text{top}})$. Hence $\kappa_\beta > \overline{\kappa}$, since otherwise $\kappa_\beta \leq \overline{\kappa}$ and

$$\kappa < \lambda_\beta \leq \pi_{\xi,\gamma}(\overline{\kappa}) = \kappa_\gamma < \kappa$$

Contradiction! Hence $\kappa_\gamma = \pi_{\xi,\gamma}(\overline{\kappa}) = \kappa < \kappa_\beta$. QED(15)

We now iterate the operation γ^+.
3.8. **UNIQUE ITERABILITY**

Definition 3.8.9. Let γ, κ satisfy (*). We set:

$$\gamma^0 = \gamma, \; \gamma^{n+1} \equiv (\gamma^n)^+$$

Note that $\gamma^{n+1} < \gamma^n$ if defined. Hence there is a maximal $n < \omega$ such that γ^n is defined. Hence there is a maximal $n < \omega$ such that γ^n is defined. We set

$$\bar{\gamma} = \bar{\gamma}(\kappa) =: \gamma^n$$

(16) The pair $\bar{\gamma}, \kappa$ satisfies (*). Moreover, $\kappa_{\bar{\gamma}} \leq \kappa_{\bar{\gamma}} < \kappa < \lambda_{\bar{\gamma}}$ and $\kappa_{\bar{\gamma}} < \kappa_{\bar{\gamma}}$ if $\bar{\gamma} \neq \gamma$.

Definition 3.8.10. $\mu = \mu(\kappa) =$ the least μ such that $\kappa < \lambda_\mu$.

Note. $\mu(\kappa_{\gamma_1}) = \gamma^*_1$.

(17) Either $\bar{\gamma}$ is good for $\bar{\kappa}$ or $\mu = \mu(\kappa) \leq T \bar{\gamma}$.

Proof: Suppose not. Then $\mu \leq \bar{\gamma}$ but $\mu \not\leq T \bar{\gamma}$.

Claim. There is $\beta + 1 \leq T \bar{\gamma}$ such that $\kappa < \lambda_\beta$.

Proof: If $\bar{\gamma} = \beta + 1$ is a successor, then $\kappa < \lambda_\mu \leq \lambda_\beta$. Now let $\bar{\gamma}$ be a limit ordinal. Pick $\beta + 1 < T \bar{\gamma}$ such that $\beta \geq \mu$. Then $\kappa < \lambda_\mu \leq \lambda_\beta$.

QED (Claim.)

Let β be the least such. Since $\bar{\gamma}$ is not good but $\bar{\gamma}^+$ is undefined, we conclude $\kappa \leq T \kappa_\beta$. Let $\xi = T(\beta + 1)$. Then $\kappa < \lambda_\xi$, since $\kappa_\beta < \lambda_\xi$. Hence $\mu \leq \xi$. But then $\mu < \xi$ since:

$$\xi \leq T \beta + 1 \leq T \bar{\gamma} \text{ and } \mu \not\leq T \bar{\gamma}$$

If $\xi = \zeta + 1$ is a successor, then $\kappa < \lambda_\zeta$, since $\lambda_\mu \leq \lambda_\xi$. Thus:

$$\zeta + 1 \leq T \bar{\gamma}, \; \zeta < \beta, \; \kappa < \lambda_\zeta,$$

contradicting the minimality of β. Thus ξ is a limit ordinal. Pick $\zeta + 1 \in (\mu, \xi)_T$. Then $\kappa < \lambda_\mu \leq \lambda_\zeta$ and we again have:

$$\zeta + 1 \leq T \bar{\gamma}, \; \zeta < \beta, \; \kappa < \lambda_\zeta$$

Contradiction! QED (17) Applying this to the case $\gamma = \gamma_0, \kappa = \kappa_{\gamma_1}$, we get:

(18) Let $\gamma = \gamma_0, \kappa = \kappa_{\gamma_1}$. Then $\bar{\gamma}$ is good for κ.

Proof: Suppose not. Then $\mu = T(\gamma_1 + 1) \leq T \bar{\gamma}$ by (17). Hence $M_\mu = M'_{\gamma_1}$, since $b_1 \setminus \alpha$ has no truncation.

Case 1: $\mu = \bar{\gamma}$.
Then $\pi_{\mu, \gamma_1 + 1} : M_\gamma \rightarrow^*_{E_{\nu, \gamma_1}} M_{\gamma_1 + 1}$, where $\kappa_\gamma < \kappa = \kappa_\gamma < \lambda_\gamma$. But $E_{\nu_\gamma}^{M_{\kappa}}$ is the top extender of M_κ since γ is not good for κ. Hence $\kappa_\gamma = \text{crit}(E_{\nu_\gamma}) = \text{crit}(E_{\nu_\gamma}^{M_{\gamma_1 + 1}})$, and $\kappa > \kappa_\gamma$, $\kappa = \kappa_\gamma$. But then $\kappa_\gamma \leq \kappa_\gamma < \kappa_{\gamma_0}$. This is the undesirable situation which we had eliminated by our choice of α. Contradiction! QED (Case 1.)

Case 2: $\mu \leq \bar{\gamma}$.

Let $\mu = T(\beta + 1), \beta + 1 \leq \bar{\gamma}$. Then $\kappa < \lambda_\beta \leq \lambda_\beta$. Hence

$$\pi_{\mu, \bar{\gamma}} : M_\beta^* \rightarrow^*_{\Sigma_r} M_{\tau_r} = \text{crit}(\pi_{\mu, \bar{\gamma}}) = \kappa_\beta$$

since $\pi_{\beta + 1, \bar{\gamma}}$ in total on $M_{\beta + 1}$ by (14).

Clearly $\kappa_\beta \geq \kappa > \kappa_\gamma$, since $\bar{\gamma}^+$ does not exist. But then:

$$\kappa_\gamma = \text{crit}(E_{\tau_r}), \text{ since } \bar{\tau}_r = \text{crit}(E_{\tau_r})$$

$M_\mu = M_\gamma^*$, since $\mu = T(\gamma_1 + 1)$ and no truncation occurs above α in b_1. Since $\kappa_\beta \geq \kappa$ and $\rho_{M_{\beta}} \leq \kappa$, we have $\rho_{M_{\beta}}^* \leq \kappa$. But then M_β^* is not a proper segment of M_μ, since $\tau_\gamma < \lambda_\mu \leq \lambda_\beta$ would not be a cardinal in M_μ. Hence $M_\mu = M_\beta^*$. Hence $\kappa_\gamma = \text{crit}(E_{\tau_r})$ and $\kappa_{\gamma_0} \leq \kappa_\gamma \leq \kappa = \kappa_{\gamma_1}$. But this is, again, the undesirable situation. Contradiction! QED (18)

Using this we prove:

(19) $N \models$ there are arbitrarily large strong cardinals.

Proof: Since α (and hence α_λ_α) can be chosen as large as we want, it suffices to show:

Claim. There is a $\kappa' \geq \kappa_{\gamma_0}$ which is strong in N.

Proof: We know that $E_{\nu_\gamma}^{M_{\kappa}}$ is strong in N at $\kappa_\gamma \geq \kappa_{\gamma_0}$ of length λ_γ. By (18), $G \in M_{\kappa} \parallel \tau_\gamma \subset N$, where G is strong in N at κ_γ of length κ. We again set: $F'_n = E_{\nu_\gamma}^{M_{\kappa_0}} \mid \kappa_{\gamma_n + 1}$. Set $G_0 = G$, $G_{n+1} = F'_n \circ G_n$.

By Lemma 3.8.5 it then follows by induction on n that $G_n \in N$ is strong for N at κ_γ of length $\kappa_{\gamma_n + 1}$. QED (19)

We must still show that N is Woodin for A whenever $A \in M_{b_0} \cap M_{b_1}$. We first prove this for the special case $A \subset \eta$:

(20) Let $A \in M_{b_0} \cap M_{b_1}$ such that $A \subset \bar{\xi}$. Then N is Woodin for A.

Before proving this, however, we prove an auxiliary lemma:
3.8. UNIQUE ITERABILITY

(21) Let \(\gamma, \kappa \) satisfy (*). Let \(\beta = \gamma^+ \) be defined (hence \(\kappa_\gamma < \kappa_\beta \)). Set:

\[
F = E_{\nu_\gamma}^{M_\gamma} | \kappa, \ G = E_{\nu_\beta}^{M_\beta} | \kappa
\]

Let \(a \subset \kappa \) such that \(a \in M_\gamma \) and \(\tilde{F}(a \cap \kappa_\gamma) = a \). Then \(a \in M_\beta \) and \(G(a \cap \kappa_\beta) = a \).

Proof: \(E_{\nu_\gamma}^{M_\gamma} \) is the top extender of \(M_\gamma \), since \(\gamma^+ \) exists and \(\pi_{\beta+1, \gamma} \) is a total function on \(M_{\beta+1} \) by (14). Hence:

\[
\pi_{\xi, \gamma} : M_\beta^* \rightarrow \Sigma_\kappa \ M_\gamma, \ \kappa_\beta = \text{crit}(\pi_{\xi, \gamma})
\]

where \(\xi = T(\beta + 1) \). Since \(\kappa_\gamma < \kappa_\beta \) we conclude:

\[
\kappa_\gamma = \text{crit}(E_{\text{top}}^{M_\gamma}) = \text{crit}(E_{\text{top}}^{M_\beta^*})
\]

Set \(A = E_{\text{top}}^{M_\gamma}(a \cap \kappa_\gamma), \ \tilde{A} = E_{\text{top}}^{M_\beta^*}(a \cap \kappa_\gamma) \).

Then \(\pi_{\xi, \gamma}(\tilde{A}) = A \) and:

\[
\tilde{A} \cap \kappa_\beta = A \cap \kappa_\beta = a \cap \kappa_\beta, \ A \cap \kappa = a
\]

Since \(\text{crit}(\pi_{\beta+1, \gamma}) \geq \lambda_\beta > \kappa \), we have:

\[
G(a \cap \kappa_\beta) = \pi_{\xi, \beta+1}(a \cap \kappa_\beta) \cap \kappa = \pi_{\xi, \gamma}(a \cap \kappa_\beta) = A \cap \kappa = a
\]

QED (21)

It is now easy to prove (20). Since \(\alpha \) can be chosen as large as we want, it again suffices to show that if \(A \in \text{rng}(\pi_{\gamma_0, b_0}^* \cap \text{rng}(\pi_{\gamma_1, b_1}^* \in N \). We in fact show that \(\kappa_\gamma \) is \(A \)-strong, where \(\gamma = \gamma_0 \). We again define:

\[
G_0 = G = E_{\nu_\gamma}^{M_\gamma} | \kappa, \ G_{n+1} = F_{n+1} \circ G_n
\]

where \(\kappa = \kappa_\gamma \). By iterated use of (21) we then have: \(A \cap \kappa = G(A \cap \kappa_\gamma) \).

It then follows inductively that:

\[
G_n(A \cap \kappa_\gamma) = A \cap \kappa_{\gamma_{n+1}}
\]

since \(F_n'(A \cap \kappa_\gamma) = A \cap \kappa_{\gamma_{n+1}} \).

QED(20)

We now show that this implies the full result. We use the fact that any \(A \subset N \) can be coded by a set \(\tilde{A} \subset \tilde{\eta} \). Let \(N = J_{\eta}^E \) and suppose that \(\alpha \leq \eta \) is Gödel-closed. By Corollary 2.4.12 we know \(M = h_{M^\gamma}(\omega \times \alpha) \), where \(M = J_{\alpha}^E \). Let \(k_\alpha \) be the canonical \(\Sigma_1(M) \) uniformization of:

\[
\{ (\nu, x) : x = h_M((\nu)_0, (\nu)_1) \}
\]

Then \(k_\alpha \) injects \(M \) into \(\alpha \) and is uniformly \(\Sigma_1(M) \). Set \(k = k_{\tilde{\xi}} \). Then:
(a) \(k_\alpha = k \mid \alpha \) if \(\alpha < \tilde{\xi} \) is Gödel-closed.

(b) \(k^{-1}_\mu = k^{-1} \mid \mu \) if \(\mu < \tilde{\xi} \) is a cardinal in \(N \) (since \(J^E_\mu \) is \(\Sigma_1 \)-elementary submodel of \(N \)).

(c) \(k_\alpha \in N \) for Gödel-closed \(\alpha < \tilde{\xi} \).

(d) Let \(A \subset N \) and set \(\tilde{A} = k''A \). If \(\mu < \tilde{\xi} \) is a cardinal in \(N \), then \(\tilde{A} \cap \mu = k''_\mu (A \cap J^E_\mu) \) (hence \(\langle N, \tilde{A} \rangle \) is amenable if \(\langle N, A \rangle \) is amenable.

Theorem 3.8.4 then follows from

(22) Let \(A \subset N \) such that \(\langle N, \tilde{A} \rangle \) is amenable and \(N \) is Woodin with respect to \(\tilde{A} \). Then \(N \) is Woodin with respect to \(A \).

Proof: Let \(G \in N \) be \(\tilde{A} \)-strong in \(N \) at \(\kappa \) of length \(\mu \), where \(\mu > \omega \) is regular in \(N \).

Claim. \(G \) is \(A \)-strong in \(N \) (i.e. \(\tilde{G}(A \cap J^E_\kappa) = A \cap J^E_\mu \)).

Proof: \(N \) is extendable by \(G \). Set:

\[
\pi : N \longrightarrow G \quad N' = J^E_{\pi \kappa}
\]

Let \(k', k'_\alpha \) be defined over \(N \) like \(k, k_\alpha \) over \(N \). Since \(G \) is strong in \(N \) we have: \(J^E_\mu = J^E_{k'} \) and \(k_\mu = k'_{\mu'} \). Let \(\nu = \pi(\kappa) \). Then \(k'_\nu = k' \mid J^E_{\nu'} \).

Hence for \(y \in J^E_{\mu} \) we have:

\[
y \in \tilde{G}(A \cap J^E_\kappa) \iff k_\mu(y) \in k'_\nu\pi(G(A \cap J^E_{\kappa}))
\]

\[
\iff k_\mu(y) \in k'_\nu \pi(A \cap J^E_\kappa)
\]

\[
\iff k_\mu(y) \in \pi(k''_{\kappa'}(A \cap J^E_{\kappa}))
\]

\[
\iff k_\mu(y) \in G(\tilde{A} \cap \kappa)
\]

\[
\iff k_\mu(y) \in \tilde{A} \cap \mu = k''_\mu (A \cap J^E_\kappa)
\]

\[
\iff y \in A \cap J^E_\kappa
\]

This proves (22) and with it Theorem 3.8.4.

Note. The notion of premouse which we develop in this book is based on the notion developed by Mitchell and Steel in [MS]. However, they employ a different indexing of the extenders than we do. Their indexing makes it much easier to prove Theorem 3.8.4, since our special assumption (SA), when reformulated for their premise, turns out to the outright.

We note a further consequence of our theorem:

Lemma 3.8.9. Let \(N = J^E_{\eta} \) be as in Theorem 3.8.4. There are arbitrarily large \(\nu \in N \) such that \(E_\nu \neq \emptyset \).
3.8. UNIQUE ITERABILITY

3.8.3 One smallness and unique branches

We now apply the method of the previous subsection to one small mice. We let $M, b_0, b_1, \alpha, \gamma_n (n < \omega)$, etc. be as before, but also assume that M is one small. It is easily seen that every normal iterate of M must be one small. Hence M_{b_0}, M_{b_1} are one small. Letting $\eta, \tilde{\eta}, N$ be as before, we set:

Definition 3.8.11. $Q := J^{E_N}_{\beta}$, where $\beta = \min (\text{On}_{M_{b_0}}, \text{On}_{M_{b_1}})$.

By Theorem 3.8.4 we obviously have:

Lemma 3.8.10. $\tilde{\eta}$ is Woodin in Q.

From now on, assume w.l.o.g. that $\text{On}_{M_{b_0}} \leq \text{On}_{M_{b_1}}$ (i.e. $\text{On}_{M_{b_0}} = \beta$). Then:

Lemma 3.8.11. $M_{b_0} = Q$.

Proof: Suppose not. Then there is $\nu \geq \tilde{\eta}$ such that $E^{M_{b_0}}_\nu \neq \emptyset$. But then $\nu > \tilde{\eta}$, since $\tilde{\eta}$ is a limit of cardinals in M_{b_0} and ν is not. Taking ν as minimal, we then have $J^{E_{M_{b_0}}}_\nu = J^{E_N}_\nu \models \tilde{\eta}$ is Woodin. Hence M_{b_0} is not one small. Contradiction! QED (Lemma 3.8.11)

But then we can essentially repeat our earlier argument to show:

Lemma 3.8.12. Let $A \subset N$ be $\Sigma^*(Q)$ such that (N, A) is amenable. Then N is Woodin for A.

Proof: As before, we can assume w.l.o.g. that $A \subset \text{On}_Q$. Let A be $\Sigma^*(Q)$ in a parameter p by Σ^* definition φ. We assume α to be chosen as before, but now large enough that for $h = 0, 1$:

- $p \in \text{rng}(\pi_{\gamma_1}^*, b_h)$
- If $N \neq Q$, then $N \in \text{rng}(\pi_{\gamma_1}^*, b_h)$
- If $\text{On}_{M_{b_h}} > \text{On}_Q$ (hence $h = 1$), then $Q \in \text{rng}(\pi_{\gamma_1}^*, b_1)$.

Since $M_{b_0} = Q$ we have

$$\pi_{\gamma_2, b_0} : M_{\gamma_2}^{*} \rightarrow \Sigma^* Q$$

with critical point κ_{2i}.

Let A_{2i} be defined over $M_{\gamma_2}^{*}$ in $P_{2i} = \pi_{\gamma_2, b_0}^{-1}()$ by φ. Set:

$$N_{2i} = \begin{cases}
\pi_{\gamma_2, b_0}^{-1}(N) & \text{if } N \in Q \\
M_{\gamma_2}^{*} & \text{if not}
\end{cases}$$
CHAPTER 3. MICE

Then \(\langle N_{2i}, A_{2i} \rangle \) is amenable and:

\[
(\pi_{\gamma^*, b} \mid N_{2i}) : \langle N_{2i}, A_{2i} \rangle \rightarrow \Sigma_0 \langle N, A \rangle
\]

It follows easily that \(A_{2i} \cap \kappa_{2i} = A \cap \kappa_{2i} \) and

\[
E_{\gamma b} (A \cap \kappa_{2i}) = \pi_{\gamma^*, \gamma_{2i+1}} (A \cap \kappa_{2i}) = A \cap \lambda_{2i}
\]

If \(\text{On} \cap M_{b_{1}} = \text{On} \cap Q \), it follows by symmetry from the proof of Lemma 3.8.11 that \(M_{b_{1}} = Q \). Hence:

\[
\pi_{\gamma^*_b, 1} : M^{\ast}_{2i+1} \rightarrow \Sigma^* Q \text{ with critical point } \kappa_{2i+1}
\]

If we then define \(A_{2i+1}, N_{2i+1}, P_{2i+1} \) as before, we get:

\[
E_{\nu_i} (A \cap \kappa_i) = \pi_{\gamma^*_i, \gamma_{i+1}} (A \cap \kappa_i) = A \cap \lambda_i
\]

for \(i < \omega \). If \(M_{b_{1}} \neq Q \), we then set:

\[
A_{2i+1} = \pi^{-1}_{\gamma^*_2, b_1} (A), N_{2i+1} = \pi^{-1}_{\gamma^*_2, b_1} (N)
\]

and get the same result. Defining \(F'_i \) as before, we then have:

\[
F'_i (A \cap \kappa_i) = A \cap \kappa_{i+1}, \text{ for } i < \omega
\]

Moreover, we can repeat our earlier proof to get \(G_0 (A \cap \gamma) = A \cap \kappa_{\gamma^*} \). It then follows by induction on \(i \) that

\[
G_i (A \cap \kappa_i) = A \cap \kappa_{i+1}, \text{ for } i < \omega
\]

Hence \(\kappa_{\gamma^*} \geq \kappa_{\gamma_0} \) is \(A \)-strong in \(N \). But we can choose \(\alpha \) and with it \(\kappa_{\gamma^*} \) arbitrarily large.

QED (Lemma 3.8.12)

Note. It is not hard to show that \(F'_i \) is a strong extender at \(\kappa \) on \(N \) and that \(\tilde{F}_i \) is the associated function defining \(f \) earlier. However, we will not need this.
3.8. UNIQUE ITERABILITY

Recapitulating:

Lemma 3.8.13. Let $A \subseteq N$, such that A is $\Sigma^*(N)$ in a parameter p. Suppose that (N, A) is amenable. Choose α big enough that:

- $p \in \text{rng}(\pi_{\gamma_n^*, \gamma_n})$
- $N \notin Q \implies N \in \text{rng}(\pi_{\eta_0^*, h_0})$ for $h = 0, 1$ such that $M_{h_0} = Q$ and:
- $A, N \in \text{rng}(\pi_{\gamma_1^*, h_1})$ if $M_{h_1} \neq Q$.

Let $\tilde{F}_{i}^j, \tilde{F}_i (i < \omega)$ be defined as above. Then:

$$\tilde{F}_i (A \cap J^E_{\kappa_{\gamma_0}}) = A \cap J^E_{\kappa_{\gamma_1^{i+} \gamma_0}}, \text{ for } i < \omega$$

Note that, by lemma 3.8.12, we can conclude that if $\rho_Q^\omega \geq \tilde{\eta}$ and $A \in \Sigma^*(Q)$ such that $A \subseteq N$, then N is Woodin with respect to A. We now prove:

Lemma 3.8.14. $\rho_Q^\omega \geq \tilde{\eta}$.

Proof: Suppose not. We consider several cases:

Case 1: $\rho_Q^\alpha \geq \tilde{\eta}$ and $\rho_Q^\alpha+1 < \tilde{\eta}$ for any $n < \omega$. Then there is a $\Sigma_{i+1}^n (Q)$ set $B \subseteq \tilde{\eta}$ such that (N, B) is not amenable. But B then has the form:

$$B(\xi) \iff \bigvee z A(z, \xi)$$

where $A \subseteq N = H_n^{\gamma_0}$ is Σ_0^n in a parameter p. Let $\delta < \tilde{\eta}$ such that $B \cap \delta \notin N$. Pick α big enough that $\delta < \kappa_{h_0} (h = 0, 1)$ and the conditions in Lemma 3.8.13 are satisfied with respect to \tilde{A}, p. There is $\xi < \delta$ such that

$$\xi \in B \text{ and } \bigwedge z \in J^E_{\kappa_{\gamma_0}} A(z, \xi),$$

since otherwise $B \cap \delta \subseteq N$. Set $\tilde{A} = \{ < : A(z, \xi) \}$. Then $\tilde{A} \subseteq N \in \Sigma_0^{(n)} (Q)$ in (p, ξ) and the conditions in Lemma 3.8.13 are satisfied for $\tilde{A}, (p, \xi)$ in place of A, p. Hence for a sufficient $n < \omega$ we will have:

$$\emptyset = \tilde{A} \cap J^E_{\kappa_{\gamma_0}} = \tilde{F}_n (\tilde{A} \cap J^E_{\kappa_{\gamma_0}}) = \tilde{A} \cap J^E_{\kappa_{\gamma_1^{i+} \gamma_0}} \neq \emptyset$$

Contradiction! QED(Case 1)

Note. The case $N = M_{b_0}$ is included in Case 1.
Case 2: Case 1 fails. Then $\rho_{n+1} < \tilde{\eta} < \rho^n$ in Q. Set: $Q^* = Q^n \circ P^n_Q$. By Lemma 2.5.22 of §2.6., Q is n-sound and:

$$Q^* = h_{Q^*}(\tilde{\eta} \cup p)$$

where $P = P^n_Q$. Let $\delta = \rho_{n+1}^{n+1}$. Pick α big enough that $\kappa_{\tilde{\eta}}, \kappa_{\tilde{\eta}^*} > \delta$ and:

- $p, p^n_Q, \eta \in \text{rng}(\pi_{\tilde{\eta}^*} b_n)$ for $h = 0, 1$

- $Q \in \text{rng}(\pi_{\tilde{\eta}^*} b_n)$ of $Q \neq M_{b_1}$

Each element of Q^* has the form:

$$h_{Q^*}(i, (\xi, \tilde{\eta}, p)), \text{ where } i < \omega, \xi < \tilde{\eta}$$

Case 2.1: There is μ such that $\kappa_{\tilde{\eta}} < \mu < \tilde{\eta}$ and

$$h_{Q^*}(i, (\xi, \tilde{\eta}, p)) = \mu \text{ where } i < \omega, \xi < \kappa_{\tilde{\eta}}$$

Let:

$$y = h_{Q^*}(i, (\xi, \tilde{\eta}, p)) \iff \bigvee z \in Q^* H(z, i, \xi, y)$$

where $H \subset Q^*$ is $\Sigma_0^{(n)}(Q)$ in $\tilde{\eta}, p, P^n_Q$.

Let β be least such that

$$\bigvee z \in S^n_{\beta} H(z, i, \xi, y)$$

It follows easily that $S^n_{\beta} \in \text{rng}(\pi_{\tilde{\eta}^*} b_n)$ for $h = 0, 1$. But then $\{\mu\}$ is $\Sigma_4(Q)$ in the parameters

$$r = \langle i, \xi, \tilde{\eta}, p, P^n_Q, S_{A}^E \rangle$$

$$y = \mu \iff \bigvee z \in S^n_{\beta} H(z, i, \xi, y)$$

But $\langle N, \{\mu\} \rangle$ is obviously amenable. It is easily seen that $\{\mu\}, r$ satisfy the condition in Lemma 3.8.13 in place of A, p. Hence, for sufficient n:

$$\emptyset = \{\mu\} \cap \kappa_{\tilde{\eta}} = F_n(\{\mu\} \cap \kappa_{\tilde{\eta}}) = \{\mu\} \cap \kappa_{\tilde{\eta}+1} \neq \emptyset$$

Contradiction! \hspace{1cm} QED(Case 2.1)

Case 2.2. Case 2.1. fails. Set $X = \{h_{Q^*}(i, (\xi, \tilde{\eta}, p)) : i < \omega, \xi < \kappa_{\tilde{\eta}}\}$. Since $\kappa_{\tilde{\eta}}$ is Gödel-closed, we know that $X = h_{Q^*}(\kappa_{\tilde{\eta}} \cup (\tilde{\eta}, p))$. Hence $Q^*|X \sim_{\Sigma_1} Q^*$. Transitivize X to get:

$$\sigma : Q^* \sim (Q^*|X)$$
3.8. UNIQUE ITERABILITY

Then \(Q^* \rightarrow \Sigma_1 Q^* \). Let \(\sigma(\vec{p}) = P \). But the failure of Case 2.1 we know that \(X \cap \vec{\eta} = \kappa_{\gamma_0} \). Since \(\vec{\eta} \in \text{rng}(\sigma) \) we can conclude: \(\sigma(\kappa_{\gamma_0}) = \vec{\eta} \).

\(\sigma \) extends to \(\sigma' : Q \rightarrow \Sigma_1(n) Q \), where \(Q^PQ \) and \(\sigma'(P^n_Q) = P^n_Q \), \(Q \) is a constructible extension of \(J^E_{\kappa_{\gamma_0}} \), since \(Q \) is a constructible extension of \(J^E_{\vec{\eta}} = N \). We now “compare” \(Q \) with \(N. \kappa_{\gamma_0} \) is Woodin in \(Q \), since \(\vec{\eta} \) is Woodin in \(Q \). Let \(\nu < \vec{\eta} \) be minimal such that \(E_{\nu} \neq \emptyset \) in \(N \) and \(\nu > \kappa_{\gamma_0} \).

Then \(J^E_{\nu N} \) is a constructible extension of \(J^E_{\kappa_{\gamma_0}} \). Letting \(\beta = \text{ON} \cap Q \) then we have \(\beta < \nu \), since otherwise \(\kappa_{\gamma_0} \) would be Woodin in \(J^E_{\nu} \). Hence \(N \) would be not one small, contradiction! But then \(Q \in J^E_{\nu} \subset N \). There is \(B \subset Q^* \) which is \(\Sigma_1(Q^*) \) in \(p \) such that \(B \cap \delta \notin N \). (Recall that \(\delta = \rho^n_{\rho} < \kappa_{\gamma_0} \)).

Let \(\mathcal{B} \) be \(\Sigma_1(Q^*) \) in \(p \) by the same definition. Since \(\sigma \mid \kappa_{\gamma_0} = \text{id} \), we then get \(B \cap \kappa_{\gamma_0} = B \cap \kappa_{\gamma_0} \). But \(B \notin N \), since \(Q^* \notin N \). Hence \(B \cap \delta = B \cap \delta \notin N \). Contradiction!

QED (Lemma 3.8.14)

Making use of this we prove:

Lemma 3.8.15. There is no truncation on the branch \(b_0 \).

Proof: Suppose not. Let \(\mu + 1 \) be the least truncation point. Let \(\mu^* = T(\mu + 1) \) (hence \(\mu + 1 \leq \gamma_0 + 1 \) and \(\mu^* \leq \gamma_0^\#_\delta \)). Then \(\rho^\vec{\eta}_{\mu^*} \leq \kappa_\mu \). Hence \(\rho^\vec{\eta}_{\mu^*} \leq \kappa_\mu < \vec{\eta} \), since \(\text{crit}(\pi_{\mu^*, b}) = \kappa_\mu \). Contradiction!

QED (Lemma 3.8.15)

Hence \(\pi_{b_0} : M \rightarrow_{\Sigma^*} Q \). We shall use this fact to garner information about \(M \). We know:

(a) \(Q = J^E_\beta \) is a constructible extension of \(N = J^E_{\vec{\eta}} \).

(b) \(\vec{\eta} = \text{lub}\{\nu : E_{\nu} \neq \emptyset\} \)

(c) \(\rho^\vec{\eta}_Q \geq \vec{\eta} \) (hence \(Q \) is sound).

(d) If \(A \subset N = J^E_{\vec{\eta}}, A \in \Sigma(Q) \), then \(N \) is Woodin for \(A \).

Note. By soundness we have: \(\Sigma^*(Q) = \Sigma_{\mu}(Q) \).

We shall prove:

Lemma 3.8.16. Let \(\eta_0 = \text{lub}\{\nu : E^M_\nu \neq \emptyset\} \). Then:
(a) $\eta_0 \leq \text{ON}_M$ is a limit ordinal. Hence M is a constructible extension of $N_0 = J_{\eta_0}^M$.

(b) $\rho_M^\omega \geq \eta_0$. Hence M is sound.

(c) Let $A \in \Sigma_\omega(M)$ such that $A \subseteq N$. Then N_0 is Woodin for A.

Proof: Set $\pi = \pi_0, \rho_0$. For $i \in b_0$ set: $\pi_i = \pi_i, b_0$. Then $\pi_i : M_i \rightarrow Q$. We find prove (a). Suppose not $\eta_0 \neq 0$, since otherwise the iteration would be impossible. Hence there is a maximal ν, such that $E^M_\nu \neq \emptyset$. The statement $E^M_\nu \neq \emptyset$ is $\Sigma_\nu(M)$ in ν and the statement “ν is maximal” is $\Pi_1(M)$. Hence these statement hold in Q of $\pi(\nu)$. But $\pi(\nu) < \eta$ is not maximal. Contradiction! QED(a)

We now prove (b). If not, then $\rho_M^\nu \leq \nu$ where $E^M_\nu \neq \emptyset$. But $\rho_M^\nu|_{\nu} \leq \lambda$, where $\kappa = \text{crit}(E^M_\nu)$ and $\lambda = \lambda(E^M_\nu) = E^M_\nu(\kappa)$. Hence $\rho_M^\nu \leq \lambda < \nu$. Hence $\rho_M^\nu \leq \pi(\rho_M^\nu) \leq \pi(\lambda) < \pi(\nu) < \eta$

Contradiction! QED(b)

We now prove (c). Let $A \in N_0$ be $\Sigma_\omega(\cdot)$. Since M is sound, A is $\Sigma_\omega(M)$ by Corollary 2.6.30. Let A be $\Sigma_\omega(M)$ in q and let A' be $\Sigma_\omega(Q)$ in $q' = \pi(q)$ by the same definition. Pick $n < \omega$ such that $\rho_M^n = \eta_0$ and $\rho_Q^n = \eta$. Clearly, every $\Sigma_\omega(H_M^n, A)$ statement translates uniformly into a statement which is $\Sigma_\omega(M)$ in q. Similarly for Q, A', q'. Hence:

$\pi | N_0 | (N_0, A) \prec (N, A')$

But the statement “N is Woodin for A” is elementary in (N, A'). Hence N_0 is Woodin for A. QED(Lemma 3.8.16)

We now define:

Definition 3.8.12. A premouse M is restrained iff it is one small and does not satisfy the condition (a)-(c) in Lemma 3.8.16.

We have proven:

Theorem 3.8.17. Every restrained premouse has the minimal uniqueness property.

By theorem 3.6.1 and theorem 3.6.2 we conclude:

Corollary 3.8.18. Let $n > \omega$ be regular. Let M be a restrained premouse which is normally $\kappa + 1$-iterable. Then M is fully $\kappa + 1$-iterable.
3.8. **UNIQUE ITERABILITY**

Hence, if \(\alpha > \omega \) is a limit cardinal and \(M \) is normally \(\alpha \)-iterable, then \(M \) is fully \(\alpha \)-iterable. This holds of course for \(\alpha = \infty \) as well.

We also note the following fact:

Lemma 3.8.19. Let \(M \) be restrained. Then every normal iterate of \(M \) is restrained.

Proof: Let \(I = (\langle M_i \rangle, \langle \nu_i \rangle, \langle \pi_i \rangle, T) \) be the iteration of \(M \) to \(M' = M_\mu \).

Case 1: There is a truncation on the main branch \(b = \{ i : i \leq T \} \). Let \(i + 1 \) be the last truncation point. Then \(\kappa_i < \lambda_h \) where \(h = T(i + 1) \). Hence \(\rho_{M_h}^M \leq \lambda_h < \nu_h \). Hence \(\rho_{M_h}^M \leq \pi_{h, \nu}(\rho_{M_h}^M_b) < \pi_{h, \nu}(\nu_h) \), where \(E_{\pi_{h, \nu}(\nu_h)}^{M'} \neq \emptyset \). Hence \(M' \) is restrained.

Case 2: Case 1 fails. Then \(\pi_{0, 1} : M \rightarrow \Sigma^+ M' \).

Case 2.1: \(\rho_{M_h}^M < \nu \) for a \(\nu \) such that \(E_{\nu}^M \neq \emptyset \). This is exactly like Case 1. It remains the case:

Case 2.2: Case 2.1 fails. Then \(\eta = \inf\{ \nu : E_{\nu}^M \neq \emptyset \} \) is a limit ordinal and \(M \) is a constructible extension of \(J_{\nu}^{E_{\nu}^M} \). But then there is \(A \subset J_{\nu}^{E_{\nu}^M} \) such that \(A \in \Sigma_{\omega}(M) \) and \(J_{\nu}^{E_{\nu}^M} \) is not Woodin for \(A \). Repeating the proof of Lemma 3.8.16, it follows that \(\pi_{0, n} \) is an elementary embedding of \(M \) into \(M' \). If \(A \) is \(\Sigma_{\omega}(M) \) in \(p \) and \(A' \) is \(\Sigma_{\omega}(M') \) is \(\pi(p) \), it follows that \(N' = J_{\nu'}^{E_{\nu'}^{M'}} \) is not Woodin for \(A' \), where

\[
\nu' = \text{lub}\{ \nu : E_{\nu}^{M'} \neq \emptyset \} = \pi_{0, \mu}(\eta)
\]

Hence \(M' \) is restrained. QED(Lemma 3.8.19)

Note. We could also show that every smooth iterate of a restrained premouse is restrained. This does not hold for full iterates, however, since there can be a restrained \(M \) such that \(M'|_\mu \) is not restrained for some \(\mu \in M \).
Bibliography

[MS] R. Jensen: *Measures of order 0*.1

1Handwritten notes
2Handwritten notes
3Handwritten notes