Dilemmas and truths in set theory

Ralf Schindler

Institut für Mathematische Logik und Grundlagenforschung
WWU Münster, Germany
Set Theory and Cantor’s Continuum Hypothesis

- Set theory started with the following theorem of Georg Cantor.
- Cantor (Nov 11, 1873, in a letter to R. Dedekind): \(\mathbb{R} \) is uncountable. I.e., there are uncountably many real numbers.
- Cantor’s first proof of this used nested intervals.
- But how many real numbers are there?
- Continuum Hypothesis (CH): For every uncountable \(A \subseteq \mathbb{R} \) there is a bijection \(f : \mathbb{R} \rightarrow A \).
- Cantor’s Program: Show CH by “induction on the complexity” of \(A \subseteq \mathbb{R} \).
Set theory started with the following theorem of Georg Cantor.

- Cantor (Nov 11, 1873, in a letter to R. Dedekind): \mathbb{R} is uncountable. I.e., there are uncountably many real numbers.
- Cantor’s first proof of this used nested intervals.
- But how many real numbers are there?
- Continuum Hypothesis (CH): For every uncountable $A \subset \mathbb{R}$ there is a bijection $f: \mathbb{R} \to A$.
- Cantor’s Program: Show CH by “induction on the complexity” of $A \subset \mathbb{R}$.
Set Theory and Cantor’s Continuum Hypothesis

- Set theory started with the following theorem of Georg Cantor.
- Cantor (Nov 11, 1873, in a letter to R. Dedekind): \mathbb{R} is uncountable. I.e., there are uncountably many real numbers.
- Cantor’s first proof of this used nested intervals.
- But how many real numbers are there?
- Continuum Hypothesis (CH): For every uncountable $A \subset \mathbb{R}$ there is a bijection $f : \mathbb{R} \to A$.
- Cantor’s Program: Show CH by “induction on the complexity” of $A \subset \mathbb{R}$.
Set theory started with the following theorem of Georg Cantor.

Cantor (Nov 11, 1873, in a letter to R. Dedekind): \mathbb{R} is uncountable. i.e., there are uncountably many real numbers.

Cantor’s first proof of this used nested intervals.

But how many real numbers are there?

Continuum Hypothesis (CH): For every uncountable $A \subset \mathbb{R}$ there is a bijection $f: \mathbb{R} \to A$.

Cantor’s Program: Show CH by “induction on the complexity” of $A \subset \mathbb{R}$.
Set Theory and Cantor’s Continuum Hypothesis

- Set theory started with the following theorem of Georg Cantor.
- Cantor (Nov 11, 1873, in a letter to R. Dedekind): \mathbb{R} is uncountable. I.e., there are uncountably many real numbers.
- Cantor’s first proof of this used nested intervals.
- But how many real numbers are there?
- Continuum Hypothesis (CH): For every uncountable $A \subset \mathbb{R}$ there is a bijection $f: \mathbb{R} \rightarrow A$.
- Cantor’s Program: Show CH by “induction on the complexity” of $A \subset \mathbb{R}$.
Set Theory and Cantor’s Continuum Hypothesis

- Set theory started with the following theorem of Georg Cantor.
- Cantor (Nov 11, 1873, in a letter to R. Dedekind): \mathbb{R} is uncountable. I.e., there are uncountably many real numbers.
- Cantor’s first proof of this used nested intervals.
- But how many real numbers are there?
- Continuum Hypothesis (CH): For every uncountable $A \subset \mathbb{R}$ there is a bijection $f: \mathbb{R} \to A$.
- Cantor’s Program: Show CH by “induction on the complexity” of $A \subset \mathbb{R}$.
Set theory started with the following theorem of Georg Cantor.

Cantor (Nov 11, 1873, in a letter to R. Dedekind): \mathbb{R} is uncountable. I.e., there are uncountably many real numbers.

Cantor’s first proof of this used nested intervals.

But how many real numbers are there?

Continuum Hypothesis (CH): For every uncountable $A \subset \mathbb{R}$ there is a bijection $f : \mathbb{R} \rightarrow A$.

Cantor’s Program: Show CH by “induction on the complexity” of $A \subset \mathbb{R}$.
Cantor–Bendixson (1883): Every uncountable *closed* $A \subseteq \mathbb{R}$ contains a perfect subset.

Young (1906): Every uncountable G_δ– oder F_σ–set $A \subseteq \mathbb{R}$ contains a perfect subset.

Aleksandrov/Hausdorff (1916): Every uncountable *Borel* set $A \subseteq \mathbb{R}$ contains a perfect subset.

Suslin (around 1917): Every uncountable *analytic* set $A \subseteq \mathbb{R}$ contains a perfect subset.

At this level, people got stuck.
Cantor–Bendixson (1883): Every uncountable closed $A \subset \mathbb{R}$ contains a perfect subset.

Young (1906): Every uncountable G_δ– oder F_σ–set $A \subset \mathbb{R}$ contains a perfect subset.

Aleksandrov/Hausdorff (1916): Every uncountable Borel set $A \subset \mathbb{R}$ contains a perfect subset.

Suslin (around 1917): Every uncountable analytic set $A \subset \mathbb{R}$ contains a perfect subset.

At this level, people got stuck.
Cantor–Bendixson (1883): Every uncountable closed $A \subset \mathbb{R}$ contains a perfect subset.

Young (1906): Every uncountable G_δ– oder F_σ–set $A \subset \mathbb{R}$ contains a perfect subset.

Aleksandrov/Hausdorff (1916): Every uncountable Borel set $A \subset \mathbb{R}$ contains a perfect subset.

Suslin (around 1917): Every uncountable analytic set $A \subset \mathbb{R}$ contains a perfect subset.

At this level, people got stuck.
▷ Cantor–Bendixson (1883): Every uncountable closed $A \subset \mathbb{R}$ contains a perfect subset.

▷ Young (1906): Every uncountable G_δ– oder F_σ–set $A \subset \mathbb{R}$ contains a perfect subset.

▷ Aleksandrov/Hausdorff (1916): Every uncountable Borel set $A \subset \mathbb{R}$ contains a perfect subset.

▷ Suslin (around 1917): Every uncountable analytic set $A \subset \mathbb{R}$ contains a perfect subset.

▷ At this level, people got stuck.
Cantor–Bendixson (1883): Every uncountable closed $A \subset \mathbb{R}$ contains a perfect subset.

Young (1906): Every uncountable G_δ– oder F_σ–set $A \subset \mathbb{R}$ contains a perfect subset.

Aleksandrov/Hausdorff (1916): Every uncountable Borel set $A \subset \mathbb{R}$ contains a perfect subset.

Suslin (around 1917): Every uncountable analytic set $A \subset \mathbb{R}$ contains a perfect subset.

At this level, people got stuck.
Cantor’s Generalized Continuum Hypothesis

- In addition to sets of natural numbers, of reals, of sets of reals, etc., Cantor started considering sets *in general*.
- “By a ‘set’ we understand any gathering-together M of determined well-distinguished objects m of our intuition or of our thought, into a whole.” (Cantor, 1995)
- This idea leads to the cumulative hierarchy of sets.
- For every set x whatsoever, the *power set* $\mathcal{P}(x)$ exists.
Cantor’s Generalized Continuum Hypothesis

- In addition to sets of natural numbers, of reals, of sets of reals, etc., Cantor started considering sets *in general*.
- “By a ‘set’ we understand any gathering-together M of determined well-distinguished objects m of our intuition or of our thought, into a whole.” (Cantor, 1995)
- This idea leads to the cumulative hierarchy of sets.
- For every set x whatsoever, the *power set* $\mathcal{P}(x)$ exists.
Cantor’s Generalized Continuum Hypothesis

- In addition to sets of natural numbers, of reals, of sets of reals, etc., Cantor started considering sets in general.
- “By a ‘set’ we understand any gathering-together M of determined well-distinguished objects m of our intuition or of our thought, into a whole.” (Cantor, 1995)
- This idea leads to the cumulative hierarchy of sets.
- For every set x whatsoever, the power set $\mathcal{P}(x)$ exists.
Cantor’s Generalized Continuum Hypothesis

► In addition to sets of natural numbers, of reals, of sets of reals, etc., Cantor started considering sets in general.

► “By a ‘set’ we understand any gathering-together M of determined well-distinguished objects m of our intuition or of our thought, into a whole.” (Cantor, 1995)

► This idea leads to the cumulative hierarchy of sets.

► For every set x whatsoever, the power set \(\mathcal{P}(x) \) exists.
Cantor’s Generalized Continuum Hypothesis

- In addition to sets of natural numbers, of reals, of sets of reals, etc., Cantor started considering sets in general.
- “By a ‘set’ we understand any gathering-together M of determined well-distinguished objects m of our intuition or of our thought, into a whole.” (Cantor, 1995)
- This idea leads to the cumulative hierarchy of sets.
- For every set x whatsoever, the power set $\mathcal{P}(x)$ exists.
Cantor’s Theorem (1892): Let x be any set. There is no surjection $f : x \to \mathcal{P}(x)$.

This time, Cantor’s proof uses a diagonal argument.

How big is $\mathcal{P}(x)$ in comparison to x?

Generalized Continuum Hypothesis (GCH): For every infinite set x and every $A \subset \mathcal{P}(x)$, there is either a surjection $f : x \to A$ or else a bijection $f : \mathcal{P}(x) \to A$.

We need to talk about axiomatizations of set theory in order to discuss CH and GCH.
Cantor’s Theorem (1892): Let \(x \) be any set. There is no surjection \(f : x \to \mathcal{P}(x) \).

This time, Cantor’s proof uses a diagonal argument.

How big is \(\mathcal{P}(x) \) in comparison to \(x \)?

Generalized Continuum Hypothesis (GCH): For every infinite set \(x \) and every \(A \subset \mathcal{P}(x) \), there is either a surjection \(f : x \to A \) or else a bijection \(f : \mathcal{P}(x) \to A \).

We need to talk about axiomatizations of set theory in order to discuss CH and GCH.
Cantor’s Theorem (1892): Let \(x \) be any set. There is no surjection \(f: x \to \mathcal{P}(x) \).

This time, Cantor’s proof uses a diagonal argument.

How big is \(\mathcal{P}(x) \) in comparison to \(x \)?

Generalized Continuum Hypothesis (GCH): For every infinite set \(x \) and every \(A \subset \mathcal{P}(x) \), there is either a surjection \(f: x \to A \) or else a bijection \(f: \mathcal{P}(x) \to A \).

We need to talk about axiomatizations of set theory in order to discuss CH and GCH.
Cantor’s Theorem (1892): Let \(x \) be any set. There is no surjection \(f : x \to \mathcal{P}(x) \).

This time, Cantor’s proof uses a diagonal argument.

How big is \(\mathcal{P}(x) \) in comparison to \(x \)?

Generalized Continuum Hypothesis (GCH): For every infinite set \(x \) and every \(A \subset \mathcal{P}(x) \), there is either a surjection \(f : x \to A \) or else a bijection \(f : \mathcal{P}(x) \to A \).

We need to talk about axiomatizations of set theory in order to discuss CH and GCH.
Cantor’s Theorem (1892): Let x be any set. There is no surjection $f : x \to \mathcal{P}(x)$.

This time, Cantor’s proof uses a diagonal argument.

How big is $\mathcal{P}(x)$ in comparison to x?

Generalized Continuum Hypothesis (GCH): For every infinite set x and every $A \subset \mathcal{P}(x)$, there is either a surjection $f : x \to A$ or else a bijection $f : \mathcal{P}(x) \to A$.

We need to talk about axiomatizations of set theory in order to discuss CH and GCH.
The axiom system ZFC (Zermelo–Fraenkel with choice)

- Any two sets with the same elements are equal.
- For all \(x \) and \(y \), \(\{x, y\} \), \(\bigcup x \), and \(\mathcal{P}(x) \) exist.
- There is an infinite set.
- Separation. For all \(x \) and for all formulae \(\varphi(y) \), \(\{y \in x : \varphi(y)\} \) exists.
- Replacement. For all \(x \) and for all formulae \(\varphi(y, z) \) such that for all \(y \in x \) there is a unique \(z \) with \(\varphi(y, z) \), \(\{z : \exists y \in x \varphi(y, z)\} \) exists.
- Every \(x \) with \(\emptyset \notin x \) admits a choice function.
- Every nonempty set has an \(\in \)–least element.
The axiom system ZFC (Zermelo–Fraenkel with choice)

- Any two sets with the same elements are equal.
- For all \(x \) and \(y \), \(\{x, y\} \), \(\bigcup x \), and \(\mathcal{P}(x) \) exist.
- There is an infinite set.
- Separation. For all \(x \) and for all formulae \(\varphi(y) \), \(\{y \in x : \varphi(y)\} \) exists.
- Replacement. For all \(x \) and for all formulae \(\varphi(y, z) \) such that for all \(y \in x \) there is a unique \(z \) with \(\varphi(y, z) \), \(\{z : \exists y \in x \varphi(y, z)\} \) exists.
- Every \(x \) with \(\emptyset \notin x \) admits a choice function.
- Every nonempty set has an ∈–least element.
The axiom system ZFC (Zermelo–Fraenkel with choice)

- Any two sets with the same elements are equal.
- For all x and y, $\{x, y\}$, $\bigcup x$, and $\mathcal{P}(x)$ exist.
- There is an infinite set.
- Separation. For all x and for all formulae $\varphi(y)$, $\{y \in x : \varphi(y)\}$ exists.
- Replacement. For all x and for all formulae $\varphi(y, z)$ such that for all $y \in x$ there is a unique z with $\varphi(y, z)$, $\{z : \exists y \in x \varphi(y, z)\}$ exists.
- Every x with $\emptyset \notin x$ admits a choice function.
- Every nonempty set has an \in–least element.
The axiom system ZFC (Zermelo–Fraenkel with choice)

- Any two sets with the same elements are equal.
- For all x and y, $\{x, y\}$, $\bigcup x$, and $\mathcal{P}(x)$ exist.
- There is an infinite set.
- Separation. For all x and for all formulae $\varphi(y)$, $\{y \in x : \varphi(y)\}$ exists.
- Replacement. For all x and for all formulae $\varphi(y, z)$ such that for all $y \in x$ there is a unique z with $\varphi(y, z)$, $\{z : \exists y \in x \varphi(y, z)\}$ exists.
- Every x with $\emptyset \notin x$ admits a choice function.
- Every nonempty set has an \in–least element.
The axiom system ZFC (Zermelo–Fraenkel with choice)

- Any two sets with the same elements are equal.
- For all x and y, $\{x, y\}$, $\bigcup x$, and $\mathcal{P}(x)$ exist.
- There is an infinite set.
- **Separation.** For all x and for all formulae $\varphi(y)$, $\{y \in x : \varphi(y)\}$ exists.
- **Replacement.** For all x and for all formulae $\varphi(y, z)$ such that for all $y \in x$ there is a unique z with $\varphi(y, z)$, $\{z : \exists y \in x \varphi(y, z)\}$ exists.
- Every x with $\emptyset \notin x$ admits a choice function.
- Every nonempty set has an \in–least element.
The axiom system ZFC (Zermelo–Fraenkel with choice)

- Any two sets with the same elements are equal.
- For all x and y, $\{x, y\}$, $\bigcup x$, and $\mathcal{P}(x)$ exist.
- There is an infinite set.
- **Separation.** For all x and for all formulae $\varphi(y)$, $\{y \in x : \varphi(y)\}$ exists.
- **Replacement.** For all x and for all formulae $\varphi(y, z)$ such that for all $y \in x$ there is a unique z with $\varphi(y, z)$, $\{z : \exists y \in x \varphi(y, z)\}$ exists.
- Every x with $\emptyset \notin x$ admits a choice function.
- Every nonempty set has an \in–least element.
The axiom system ZFC (Zermelo–Fraenkel with choice)

- Any two sets with the same elements are equal.
- For all \(x \) and \(y \), \(\{x, y\} \), \(\bigcup x \), and \(\mathcal{P}(x) \) exist.
- There is an infinite set.
- **Separation.** For all \(x \) and for all formulae \(\varphi(y) \), \(\{y \in x : \varphi(y)\} \) exists.
- **Replacement.** For all \(x \) and for all formulae \(\varphi(y, z) \) such that for all \(y \in x \) there is a unique \(z \) with \(\varphi(y, z) \), \(\{z : \exists y \in x \varphi(y, z)\} \) exists.
- Every \(x \) with \(\emptyset \notin x \) admits a choice function.
- Every nonempty set has an \(\in \)–least element.
The axiom system ZFC (Zermelo–Fraenkel with choice)

- Any two sets with the same elements are equal.
- For all x and y, $\{x, y\}$, $\bigcup x$, and $\mathcal{P}(x)$ exist.
- There is an infinite set.
- **Separation.** For all x and for all formulae $\varphi(y)$, $\{y \in x : \varphi(y)\}$ exists.
- **Replacement.** For all x and for all formulae $\varphi(y, z)$ such that for all $y \in x$ there is a unique z with $\varphi(y, z)$, $\{z : \exists y \in x \varphi(y, z)\}$ exists.
- Every x with $\emptyset \notin x$ admits a choice function.
- Every nonempty set has an \in–least element.
The usual formulation of ZFC allows the formulae φ in Separation and Replacement to contain *parameters*.

It may be shown, though, that these parameters are not needed:

Levy (1971): If in the formulation of Separation and Replacement, the formulae φ are required to be lightface (parameter free), then we get a system which is as strong as ZFC.
The usual formulation of ZFC allows the formulae φ in Separation and Replacement to contain parameters.

It may be shown, though, that these parameters are not needed:

Levy (1971): If in the formulation of Separation and Replacement, the formulae φ are required to be lightface (parameter free), then we get a system which is as strong as ZFC.
The usual formulation of ZFC allows the formulae φ in Separation and Replacement to contain *parameters*.

It may be shown, though, that these parameters are not needed:

Levy (1971): If in the formulation of Separation and Replacement, the formulae φ are required to be lightface (parameter free), then we get a system which is as strong as ZFC.
ZFC formalizes the idea (albeit somewhat indirectly) that the universe of set theory arises from nothing (\(\emptyset\)) through the operations \(x \mapsto \mathcal{P}(x)\) and \(x \mapsto \bigcup x\) in a cumulative fashion:

- If we define \(V_\alpha = \bigcup \{\mathcal{P}(V_\beta) : \beta < \alpha\}\) for ordinals \(\alpha\), then ZFC proves that every \(x\) is an element of some \(V_\alpha\). The \(V_\alpha\)'s are called ranks.
- Provably, there is no set of all sets. (By Cantor’s Theorem: if \(v\) were such a set, then there would be a surjection from \(v\) onto \(\mathcal{P}(v)\).)
- However, we may introduce a new category of objects, classes ("inconsistent multiplicities" in the language of Cantor), and there will be a class of all sets.
ZFC formalizes the idea (albeit somewhat indirectly) that the universe of set theory arises from nothing (\emptyset) through the operations $x \mapsto \mathcal{P}(x)$ and $x \mapsto \bigcup x$ in a cumulative fashion:

- If we define $V_\alpha = \bigcup \{\mathcal{P}(V_\beta) : \beta < \alpha\}$ for ordinals α, then ZFC proves that every x is an element of some V_α. The V_α's are called ranks.

- Provably, there is no set of all sets. (By Cantor’s Theorem: if ν were such a set, then there would be a surjection from ν onto $\mathcal{P}(\nu)$.)

- However, we may introduce a new category of objects, classes ("inconsistent multiplicities" in the language of Cantor), and there will be a class of all sets.
ZFC formalizes the idea (albeit somewhat indirectly) that the universe of set theory arises from nothing (\emptyset) through the operations $x \mapsto \mathcal{P}(x)$ and $x \mapsto \bigcup x$ in a cumulative fashion:

If we define $V_\alpha = \bigcup \{ \mathcal{P}(V_\beta) : \beta < \alpha \}$ for ordinals α, then ZFC proves that every x is an element of some V_α. The V_α’s are called ranks.

Provably, there is no set of all sets. (By Cantor’s Theorem: if ν were such a set, then there would be a surjection from ν onto $\mathcal{P}(\nu)$.)

However, we may introduce a new category of objects, classes (“inconsistent multiplicities” in the language of Cantor), and there will be a class of all sets.
ZFC formalizes the idea (albeit somewhat indirectly) that the universe of set theory arises from nothing (\emptyset) through the operations $x \mapsto \mathcal{P}(x)$ and $x \mapsto \bigcup x$ in a cumulative fashion:

If we define $V_\alpha = \bigcup \{\mathcal{P}(V_\beta) : \beta < \alpha\}$ for ordinals α, then ZFC proves that every x is an element of some V_α. The V_α's are called ranks.

Provably, there is no set of all sets. (By Cantor’s Theorem: if ν were such a set, then there would be a surjection from ν onto $\mathcal{P}(\nu)$.)

However, we may introduce a new category of objects, classes ("inconsistent multiplicities" in the language of Cantor), and there will be a class of all sets.
ZFC formalizes the idea (albeit somewhat indirectly) that the universe of set theory arises from nothing (\emptyset) through the operations $x \mapsto \mathcal{P}(x)$ and $x \mapsto \bigcup x$ in a cumulative fashion:

If we define $V_\alpha = \bigcup \{ \mathcal{P}(V_\beta) : \beta < \alpha \}$ for ordinals α, then ZFC proves that every x is an element of some V_α. The V_α's are called ranks.

Provably, there is no set of all sets. (By Cantor’s Theorem: if ν were such a set, then there would be a surjection from ν onto $\mathcal{P}(\nu)$.)

However, we may introduce a new category of objects, classes (“inconsistent multiplicities” in the language of Cantor), and there will be a class of all sets.
ZFC formalizes the idea (albeit somewhat indirectly) that the universe of set theory arises from nothing (\emptyset) through the operations $x \mapsto P(x)$ and $x \mapsto \bigcup x$ in a cumulative fashion:

If we define $V_\alpha = \bigcup\{P(V_\beta) : \beta < \alpha\}$ for ordinals α, then ZFC proves that every x is an element of some V_α. The V_α's are called ranks.

Provably, there is no set of all sets. (By Cantor’s Theorem: if v were such a set, then there would be a surjection from v onto $P(v)$.)

However, we may introduce a new category of objects, classes (“inconsistent multiplicities” in the language of Cantor), and there will be a class of all sets.
The introduction of classes is tantamount to adding a *truth predicate* to the language of set theory.

BGC (Bernays–Gödel with choice) results from ZFC by adding a new sort of variables, class variables X, Y, ..., and demanding that the universe of all classes is closed under the logical operations; instead of talking about formulae in Separation and Replacement we now talk about classes.

A philosophical credo. In contrast to sets, classes do not exist *de re*, they just exist *de dicto*. Otherwise the collection of all classes would just be another rank of the set theoretical universe, and what appeared to be classes are in fact sets.
The introduction of classes is tantamount to adding a *truth predicate* to the language of set theory.

BGC (Bernays–Gödel with choice) results from ZFC by adding a new sort of variables, class variables X, Y, ..., and demanding that the universe of all classes is closed under the logical operations; instead of talking about formulae in Separation and Replacement we now talk about classes.

A philosophical credo. In contrast to sets, classes do not exist *de re*, they just exist *de dicto*. Otherwise the collection of all classes would just be another rank of the set theoretical universe, and what appeared to be classes are in fact sets.
Classes and Truth

- The introduction of classes is tantamount to adding a *truth predicate* to the language of set theory.

- **BGC** (Bernays–Gödel with choice) results from ZFC by adding a new sort of variables, class variables $X, Y, ...$, and demanding that the universe of all classes is closed under the logical operations; instead of talking about formulae in Separation and Replacement we now talk about classes.

- A philosophical credo. In contrast to sets, classes do not exist *de re*, they just exist *de dicto*. Otherwise the collection of all classes would just be another rank of the set theoretical universe, and what appeared to be classes are in fact sets.
The introduction of classes is tantamount to adding a *truth predicate* to the language of set theory.

BGC (Bernays–Gödel with choice) results from ZFC by adding a new sort of variables, class variables X, Y, ..., and demanding that the universe of all classes is closed under the logical operations; instead of talking about formulae in Separation and Replacement we now talk about classes.

A philosophical credo. In contrast to sets, classes do not exist *de re*, they just exist *de dicto*. Otherwise the collection of all classes would just be another rank of the set theoretical universe, and what appeared to be classes are in fact sets.
The introduction of classes is tantamount to adding a *truth predicate* to the language of set theory.

BGC (Bernays–Gödel with choice) results from ZFC by adding a new sort of variables, class variables X, Y, ..., and demanding that the universe of all classes is closed under the logical operations; instead of talking about formulae in Separation and Replacement we now talk about classes.

A philosophical credo. In contrast to sets, classes do not exist *de re*, they just exist *de dicto*. Otherwise the collection of all classes would just be another rank of the set theoretical universe, and what appeared to be classes are in fact sets.
Tarski (1936)/Mostowski (1950): Whereas the truth predicate for set theory cannot be defined in the language of ZFC, it may be defined in the language of BGC in a Δ^1_1 fashion. All instances of the Tarski schema

$$\varphi \iff \Box \varphi \text{ is true}$$

for set theoretical φ may be proven in BGC.

Sch (2002): The Tarski sentence of negation,

$$\forall \Box \varphi \left(\Box \neg \varphi \text{ is true } \iff \neg \Box \varphi \text{ is true } \right)$$

is not provable in BGC, though (unless BGC is inconsistent). The Tarski schema of negation is provable in BGC plus Σ^1_1 induction.
Tarski (1936)/Mostowski (1950): Whereas the truth predicate for set theory cannot be defined in the language of ZFC, it may be defined in the language of BGC in a Δ^1_1 fashion. All instances of the Tarski schema

$$\varphi \iff \Gamma \varphi \-downarrow \text{ is true}$$

for set theoretical φ may be proven in BGC.

Sch (2002): The Tarski sentence of negation,

$$\forall \Gamma \varphi \downarrow \left(\Gamma \neg \varphi \downarrow \text{ is true} \iff \neg \neg \Gamma \varphi \downarrow \text{ is true} \right)$$

is not provable in BGC, though (unless BGC is inconsistent). The Tarski schema of negation is provable in BGC plus Σ^1_1 induction.
Tarski (1936)/Mostowski (1950): Whereas the truth predicate for set theory cannot be defined in the language of ZFC, it may be defined in the language of BGC in a Δ^1_1 fashion. All instances of the Tarski schema

$$\varphi \iff \Box \varphi \uparrow \text{ is true}$$

for set theoretical φ may be proven in BGC.

Sch (2002): The Tarski sentence of negation,

$$\forall \Box \varphi \uparrow \left(\Box \neg \varphi \uparrow \text{ is true } \iff \neg \Box \varphi \uparrow \text{ is true } \right)$$

is not provable in BGC, though (unless BGC is inconsistent). The Tarski schema of negation is provable in BGC plus Σ^1_1 induction.
Tarski (1936)/Mostowski (1950): Whereas the truth predicate for set theory cannot be defined in the language of ZFC, it may be defined in the language of BGC in a Δ^1_1 fashion. All instances of the Tarski schema

$$\varphi \longleftrightarrow \neg \neg \varphi \text{ is true}$$

for set theoretical φ may be proven in BGC.

Sch (2002): The Tarski sentence of negation,

$$\forall \neg \neg \varphi \left(\neg \neg \neg \varphi \text{ is true} \longleftrightarrow \neg \neg \varphi \text{ is true} \right)$$

is not provable in BGC, though (unless BGC is inconsistent). The Tarski schema of negation is provable in BGC plus Σ^1_1 induction.
Sch (1993): We may in fact define a Tarskian hierarchy of meta–languages for the language of set theory.

Each language \mathcal{L}_α comes with a new sort of variables for classes of type α. We demand that if $\varphi(x)$ is from \mathcal{L}_β, some $\beta < \alpha$, then

$$\{x : \varphi(x)\}$$

exists as a class of type α.

The truth predicate for $\bigcup_{\beta < \alpha} \mathcal{L}_\beta$ may then be defined in \mathcal{L}_α, and we may formulate natural theories BGC^α which prove the appropriate Tarski schemas.
Sch (1993): We may in fact define a Tarskian hierarchy of meta–languages for the language of set theory.

Each language L_α comes with a new sort of variables for classes of type α. We demand that if $\varphi(x)$ is from L_β, some $\beta < \alpha$, then

$$\{x : \varphi(x)\}$$

exists as a class of type α.

The truth predicate for $\bigcup_{\beta < \alpha} L_\beta$ may then be defined in L_α, and we may formulate natural theories BGC^α which prove the appropriate Tarski schemas.
Sch (1993): We may in fact define a Tarskian hierarchy of meta–languages for the language of set theory.

Each language \mathcal{L}_α comes with a new sort of variables for classes of type α. We demand that if $\varphi(x)$ is from \mathcal{L}_β, some $\beta < \alpha$, then

$$\{x : \varphi(x)\}$$

exists as a class of type α.

The truth predicate for $\bigcup_{\beta < \alpha} \mathcal{L}_\beta$ may then be defined in \mathcal{L}_α, and we may formulate natural theories BGC^α which prove the appropriate Tarski schemas.
Sch (1993): We may in fact define a Tarskian hierarchy of meta–languages for the language of set theory.

Each language \mathcal{L}_α comes with a new sort of variables for classes of type α. We demand that if $\varphi(x)$ is from \mathcal{L}_β, some $\beta < \alpha$, then

$$\{x : \varphi(x)\}$$

exists as a class of type α.

The truth predicate for $\bigcup_{\beta < \alpha} \mathcal{L}_\beta$ may then be defined in \mathcal{L}_α, and we may formulate natural theories BGC^α which prove the appropriate Tarski schemas.
Gödel (1938)/Cohen (1963): It is consistent with ZFC that all coanalytic sets of reals (in fact, all sets of reals whatsoever) satisfy CH and even more that GCH holds true, and it is also consistent that there is a coanalytic counterexample to CH. This is shown using Gödel’s constructible universe L and Cohen’s method of forcing.

So what is true?

Gödel’s Program: Decide statements which are independent from ZFC with the help of well-justified large cardinal axioms!
Gödel (1938)/Cohen (1963): It is consistent with ZFC that all coanalytic sets of reals (in fact, all sets of reals whatsoever) satisfy CH and even more that GCH holds true, and it is also consistent that there is a coanalytic counterexample to CH. This is shown using Gödel’s constructible universe L and Cohen’s method of forcing.

So what is true?

Gödel’s Program: Decide statements which are independent from ZFC with the help of well-justified large cardinal axioms!
Back to Cantor’s Program.

- Gödel (1938)/Cohen (1963): It is consistent with ZFC that all coanalytic sets of reals (in fact, all sets of reals whatsoever) satisfy CH and even more that GCH holds true, and it is also consistent that there is a coanalytic counterexample to CH. This is shown using Gödel’s constructible universe L and Cohen’s method of forcing.

- So what is true?

- Gödel’s Program: Decide statements which are independent from ZFC with the help of well-justified large cardinal axioms!
Gödel (1938)/Cohen (1963): It is consistent with ZFC that all coanalytic sets of reals (in fact, all sets of reals whatsoever) satisfy CH and even more that GCH holds true, and it is also consistent that there is a coanalytic counterexample to CH. This is shown using Gödel’s constructible universe L and Cohen’s method of forcing.

- So what is true?
- Gödel’s Program: Decide statements which are independent from ZFC with the help of well-justified large cardinal axioms!
Replacement may be construed as a “large cardinal axiom.” It says that for every formula \(\varphi \) there is a rank \(V_\alpha \) which reflects \(\varphi \), i.e.,

\[
\varphi(x_1, \ldots x_k) \iff V_\alpha \models \varphi(x_1, \ldots, x_k)
\]

for all \(x_1, \ldots, x_k \in V_\alpha \).

The exploitation of this idea leads to stronger and stronger reflection principles: “If \(V \) has a certain property, then there is a rank \(V_\alpha \) which also has this property.”
Large cardinals

- Replacement may be construed as a “large cardinal axiom.” It says that for every formula φ there is a rank V_α which reflects φ, i.e.,

$$\varphi(x_1, \ldots, x_k) \iff V_\alpha \models \varphi(x_1, \ldots, x_k)$$

for all $x_1, \ldots, x_k \in V_\alpha$.

- The exploitation of this idea leads to stronger and stronger reflection principles: “If V has a certain property, then there is a rank V_α which also has this property.”
Large cardinals

- Replacement may be construed as a “large cardinal axiom.” It says that for every formula \(\varphi \) there is a rank \(V_\alpha \) which reflects \(\varphi \), i.e.,

\[
\varphi(x_1, \ldots x_k) \iff V_\alpha \models \varphi(x_1, \ldots, x_k)
\]

for all \(x_1, \ldots, x_k \in V_\alpha \).

- The exploitation of this idea leads to stronger and stronger reflection principles: “If \(V \) has a certain property, then there is a rank \(V_\alpha \) which also has this property.”
Replacement may be construed as a “large cardinal axiom.” It says that for every formula φ there is a rank V_α which reflects φ, i.e.,

$$\varphi(x_1, \ldots, x_k) \iff V_\alpha \models \varphi(x_1, \ldots, x_k)$$

for all $x_1, \ldots, x_k \in V_\alpha$.

The exploitation of this idea leads to stronger and stronger reflection principles: “If V has a certain property, then there is a rank V_α which also has this property.”
Here is a list of some of the large cardinal concepts which are on the market nowadays.

- Inaccessible < Mahlo < weakly compact < measurable < strong < Woodin < subcompact < supercompact < λ_0 < ...

- Shelah/Woodin (1990): If there are infinitely many Woodin cardinals, then CH holds for all projective sets.

- Aside: Woodin (1990), Claverie/Sch (2008): On the other hand, under MM, or just under BMM plus NS_{ω_1} is precipitous, there is a Σ^1_3 definable counterexample to CH.
Here is a list of some of the large cardinal concepts which are on the market nowadays.

- Inaccessible $< \text{Mahlo} < \text{weakly compact} < \text{measurable} < \text{strong} < \text{Woodin} < \text{subcompact} < \text{supercompact} < I_0 < ...$

Shelah/Woodin (1990): If there are infinitely many Woodin cardinals, then CH holds for all projective sets.

Aside: Woodin (1990), Claverie/Sch (2008): On the other hand, under MM, or just under BMM plus NS_{ω_1} is precipitous, there is a Σ^1_3 definable counterexample to CH.
Here is a list of some of the large cardinal concepts which are on the market nowadays.

- Inaccessible $< \text{Mahlo} < \text{weakly compact} < \text{measurable} < \text{strong} < \text{Woodin} < \text{subcompact} < \text{supercompact} < I_0 < ...$

- Shelah/Woodin (1990): If there are infinitely many Woodin cardinals, then CH holds for all projective sets.

- Aside: Woodin (1990), Claverie/Sch (2008): On the other hand, under MM, or just under BMM plus NS_{ω_1} is precipitous, there is a Σ_3^1 definable counterexample to CH.
Here is a list of some of the large cardinal concepts which are on the market nowadays.

- Inaccessible $<$ Mahlo $<$ weakly compact $<$ measurable $<$ strong $<$ Woodin $<$ subcompact $<$ supercompact $<$ I_0 $<$...

Shelah/Woodin (1990): If there are infinitely many Woodin cardinals, then CH holds for all projective sets.

Aside: Woodin (1990), Claverie/Sch (2008): On the other hand, under MM, or just under BMM plus NS_{ω_1} is precipitous, there is a Σ^1_3 definable counterexample to CH.
Solovay/Levy (196?): It is consistent with ZFC plus large cardinals that GCH holds true, and it is also consistent with ZFC plus large cardinals that there is (possibly very complicated) counterexample to CH.

Even if large cardinals don’t settle CH, they are useful for Cantor’s Program. But do they exist?

Can we prove their existence from well-justified reflection principles?
Solovay/Levy (196?): It is consistent with ZFC plus large cardinals that GCH holds true, and it is also consistent with ZFC plus large cardinals that there is (possibly very complicated) counterexample to CH.

Even if large cardinals don’t settle CH, they are useful for Cantor’s Program.

But do they exist?

Can we prove their existence from well–justified reflection principles?
Solovay/Levy (196?): It is consistent with ZFC plus large cardinals that GCH holds true, and it is also consistent with ZFC plus large cardinals that there is (possibly very complicated) counterexample to CH.

Even if large cardinals don’t settle CH, they are useful for Cantor’s Program.
But do they exist?

Can we prove their existence from well–justified reflection principles?
Solovay/Levy (196?): It is consistent with ZFC plus large cardinals that GCH holds true, and it is also consistent with ZFC plus large cardinals that there is (possibly very complicated) counterexample to CH.

Even if large cardinals don’t settle CH, they are useful for Cantor’s Program.
But do they exist?

Can we prove their existence from well–justified reflection principles?
Bernays’ System of Class Theory

- Bernays has formulated a system of class theory which proves the existence of inaccessible and Mahlo cardinals via reflection principles.

- Bernays’ System B_{refl} is BGC together with the following schema of reflection. For every formula φ in the language of BGC with no class quantifiers,

 \[\forall X \varphi(X) \rightarrow \exists \text{ a transitive } u \forall x \subset u \varphi^u(x \cap u). \]

- B_{refl} thus expresses that the class of all ordinals is a weakly compact cardinal.
Bernays’ System of Class Theory

- Bernays has formulated a system of class theory which proves the existence of inaccessible and Mahlo cardinals via reflection principles.
- Bernays’ System B_{refl} is BGC together with the following schema of reflection. For every formula φ in the language of BGC with no class quantifiers,

$$\forall X \varphi(X) \rightarrow \exists \text{ a transitive } u \forall x \subset u \varphi^u(x \cap u).$$

- B_{refl} thus expresses that the class of all ordinals is a weakly compact cardinal.
Bernays’ System of Class Theory

- Bernays has formulated a system of class theory which proves the existence of inaccessible and Mahlo cardinals via reflection principles.

- Bernays’ System B_{refl} is BGC together with the following schema of reflection. For every formula φ in the language of BGC with no class quantifiers,

$$\forall X \varphi(X) \rightarrow \exists \text{ a transitive } u \forall x \subset u \varphi^u(x \cap u).$$

- B_{refl} thus expresses that the class of all ordinals is a weakly compact cardinal.
Bernays’ System of Class Theory

- Bernays has formulated a system of class theory which proves the existence of inaccessible and Mahlo cardinals via reflection principles.
- Bernays’ System B_{refl} is BGC together with the following schema of reflection. For every formula φ in the language of BGC with no class quantifiers,

$$\forall X \varphi(X) \rightarrow \exists \text{ a transitive } u \forall x \subset u \varphi^u(x \cap u).$$

- B_{refl} thus expresses that the class of all ordinals is a weakly compact cardinal.
Bernays (1961): B_{refl} proves the existence of inaccessible and in fact Mahlo cardinals.

Sch (1995): B_{refl} proves $\Delta^1_{1,BGC}$ class comprehension.

Sch (1995): $\Delta^1_{1,BGC}$ class comprehension implies the existence of non-predicative classes.

Sch (1995): If κ is weakly compact in L, then $(L_\kappa; \Delta^1_{1;L}(L_\kappa))$ is a model of B_{refl}.
Bernays (1961): B_{refl} proves the existence of inaccessible and in fact Mahlo cardinals.

Sch (1995): B_{refl} proves Δ^1_1, BGC class comprehension.

Sch (1995): Δ^1_1, BGC class comprehension implies the existence of non–predicative classes.

Sch (1995): If κ is weakly compact in L, then $(L_\kappa; \Delta^1_1(L_\kappa))$ is a model of B_{refl}.
Bernays (1961): B_{refl} proves the existence of inaccessible and in fact Mahlo cardinals.

Sch (1995): B_{refl} proves $\Delta^1_{1,\text{BGC}}$ class comprehension.

Sch (1995): $\Delta^1_{1,\text{BGC}}$ class comprehension implies the existence of non–predicative classes.

Sch (1995): If κ is weakly compact in L, then $(L_\kappa; \Delta^1_1(L_\kappa))$ is a model of B_{refl}.
Bernays (1961): B_{refl} proves the existence of inaccessible and in fact Mahlo cardinals.

Sch (1995): B_{refl} proves Δ^1_1, BGC class comprehension.

Sch (1995): Δ^1_1, BGC class comprehension implies the existence of non–predicative classes.

Sch (1995): If κ is weakly compact in L, then $(L_\kappa; \Delta^1_1(L_\kappa))$ is a model of B_{refl}.
A dilemma in the philosophy of set theory

- Our only apparently good arguments for the existence of large cardinals are based on reflection principles.
- The weakest successful system which exploits this idea, namely Bernays’ B_{refl}, presupposes the existence of non–predicative classes.
- There are no non–predicative classes, as classes only exist \textit{de dicto}.
- Hence … ?
A dilemma in the philosophy of set theory

- Our only apparently good arguments for the existence of large cardinals are based on reflection principles.
 - The weakest successful system which exploits this idea, namely Bernays’ B_{refl}, presupposes the existence of non–predicative classes.
 - There are no non–predicative classes, as classes only exist *de dicto*.
 - Hence ... ?
A dilemma in the philosophy of set theory

- Our only apparently good arguments for the existence of large cardinals are based on reflection principles.
- The weakest successful system which exploits this idea, namely Bernays’ B_{refl}, presupposes the existence of non-predicative classes.
- There are no non-predicative classes, as classes only exist \textit{de dicto}.
- Hence ... ?
A dilemma in the philosophy of set theory

- Our only apparently good arguments for the existence of large cardinals are based on reflection principles.
- The weakest successful system which exploits this idea, namely Bernays’ B_{refl}, presupposes the existence of non-predicative classes.
- There are no non-predicative classes, as classes only exist \textit{de dicto}.
- Hence ... ?
A dilemma in the philosophy of set theory

► Our only apparently good arguments for the existence of large cardinals are based on reflection principles.
► The weakest successful system which exploits this idea, namely Bernays’ B_{refl}, presupposes the existence of non–predicative classes.
► There are no non–predicative classes, as classes only exist de dicto.
► Hence ... ?
On the other hand, there are many statements which imply the consistency of the existence of large cardinals with ZFC, in fact the existence of canonical inner models with such large cardinals.

One example is given by a violation of GCH:

Gitik/Sch (2001): Suppose that $2^{\aleph_n} = \aleph_{n+1}$ for all $n < \omega$, but $2^{\aleph_\omega} > \aleph_{\omega_1}$. Then for all $n < \omega$ there is an inner model of ZFC with n Woodin cardinals.

Whereas inner models with large cardinals are ubiquitous in set theory, arguments in favor of the existence of large cardinals tend to be flawed.
The Consistency of Large Cardinals

- On the other hand, there are many statements which imply the consistency of the existence of large cardinals with ZFC, in fact the existence of canonical inner models with such large cardinals.

- One example is given by a violation of GCH:
 - Gitik/Sch (2001): Suppose that $2^{\aleph_n} = \aleph_{n+1}$ for all $n < \omega$, but $2^{\aleph_\omega} > \aleph_{\omega_1}$. Then for all $n < \omega$ there is an inner model of ZFC with n Woodin cardinals.

- Whereas inner models with large cardinals are ubiquitous in set theory, arguments in favor of the existence of large cardinals tend to be flawed.
The Consistency of Large Cardinals

- On the other hand, there are many statements which imply the consistency of the existence of large cardinals with ZFC, in fact the existence of canonical inner models with such large cardinals.

- One example is given by a violation of GCH:

 Gitik/Sch (2001): Suppose that $2^\aleph_n = \aleph_{n+1}$ for all $n < \omega$, but $2^\aleph_\omega > \aleph_{\omega_1}$. Then for all $n < \omega$ there is an inner model of ZFC with n Woodin cardinals.

- Whereas inner models with large cardinals are ubiquitous in set theory, arguments in favor of the existence of large cardinals tend to be flawed.
The Consistency of Large Cardinals

On the other hand, there are many statements which imply the consistency of the existence of large cardinals with ZFC, in fact the existence of canonical inner models with such large cardinals.

One example is given by a violation of GCH:

Gitik/Sch (2001): Suppose that $2^{\aleph_n} = \aleph_{n+1}$ for all $n < \omega$, but $2^{\aleph_\omega} > \aleph_{\omega_1}$. Then for all $n < \omega$ there is an inner model of ZFC with n Woodin cardinals.

Whereas inner models with large cardinals are ubiquitous in set theory, arguments in favor of the existence of large cardinals tend to be flawed.
Cantor’s Continuum Hypothesis, revisited

- Where should the journey go?
- Non–option: Forget about the question.
- 1st option: Woodin’s “Ultimate L.” (Yields CH.)
- 2nd option: Forcing Axioms, e.g., PFA, MM, MM++. (Yield \(\neg \text{CH} \), in fact \(2^{\aleph_0} = \aleph_2 \).)
- 3rd option: Woodin’s Axiom (\(\ast \)). (Yields \(\neg \text{CH} \) again.)
- Conjecture: MM++ \(\implies \) (\(\ast \)).
Where should the journey go?

- Non–option: Forget about the question.
- 1st option: Woodin’s “Ultimate L.” (Yields CH.)
- 2nd option: Forcing Axioms, e.g., PFA, MM, MM\(^++\). (Yield \(\neg\) CH, in fact \(2^{\aleph_0} = \aleph_2\).)
- 3rd option: Woodin’s Axiom (*). (Yields \(\neg\) CH again.)
- Conjecture: MM\(^++\) \(\implies\) (*).
Cantor’s Continuum Hypothesis, revisited

Where should the journey go?

Non–option: Forget about the question.

1st option: Woodin’s “Ultimate L.” (Yields CH.)

2nd option: Forcing Axioms, e.g., PFA, MM, MM++. (Yield \(\neg \text{CH} \), in fact \(2^{\aleph_0} = \aleph_2 \).

3rd option: Woodin’s Axiom (\(*\)). (Yields \(\neg \text{CH} \) again.)

Conjecture: MM++ \(\implies \) (*).
Cantor’s Continuum Hypothesis, revisited

- Where should the journey go?
- Non–option: Forget about the question.
- 1st option: Woodin’s “Ultimate L.” (Yields CH.)
 - 2nd option: Forcing Axioms, e.g., PFA, MM, MM++. (Yield \negCH, in fact $2^{\aleph_0} = \aleph_2$.)
 - 3rd option: Woodin’s Axiom (\ast). (Yields \negCH again.)
- Conjecture: MM++ \implies (\ast).
Cantor’s Continuum Hypothesis, revisited

- Where should the journey go?
- Non–option: Forget about the question.
- 1st option: Woodin’s “Ultimate L.” (Yields CH.)
- 2nd option: Forcing Axioms, e.g., PFA, MM, MM++. (Yield \(\neg \text{CH} \), in fact \(2^{\aleph_0} = \aleph_2 \).)
- 3rd option: Woodin’s Axiom (\(\ast \)). (Yields \(\neg \text{CH} \) again.)
- Conjecture: MM++ \(\implies \) (\(\ast \)).
Cantor’s Continuum Hypothesis, revisited

- Where should the journey go?
- Non-option: Forget about the question.
- 1st option: Woodin’s “Ultimate L.” (Yields CH.)
- 2nd option: Forcing Axioms, e.g., PFA, MM, MM++. (Yield \(\neg \text{CH} \), in fact \(2^{\aleph_0} = \aleph_2 \).)
- 3rd option: Woodin’s Axiom (\(\ast \)). (Yields \(\neg \text{CH} \) again.)
- Conjecture: MM++ \(\implies \) (\(\ast \)).
Cantor’s Continuum Hypothesis, revisited

- Where should the journey go?
- Non–option: Forget about the question.
- 1st option: Woodin’s “Ultimate L.” (Yields CH.)
- 2nd option: Forcing Axioms, e.g., PFA, MM, MM^{++}. (Yield $\neg \text{CH}$, in fact $2^{\aleph_0} = \aleph_2$.)
- 3rd option: Woodin’s Axiom (\ast). (Yields $\neg \text{CH}$ again.)
- Conjecture: $\text{MM}^{++} \implies (\ast)$.