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Abstract. We generalize results of [3] and [1] to hyperprojective sets of reals, viz. to more
than finitely many strong cardinals being involved. We show, for example, that if every set
of reals in Lu, (R) is weakly homogeneously Souslin, then there is an inner model with an
inaccessible limit of strong cardinals.
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1 Introduction and statement of results

It has turned out that there is a close connection between the two kinds of objects
referred to in the title. For example, STEEL (unpublished) has observed recently that
if V'1s a “minimal” inner model with a limit A of strong cardinals, then in VCol(Aw)
every projective subset of R x R can be uniformized by a function with a projective
graph. By earlier (unpublished) work of WoODIN it is also the case in VColAw) that
every projective set of reals is Lebesgue measurable and has the property of Baire.
Actually, [3] (cum grano salis) shows that an assumption being slightly weaker than
the existence of w many strong cardinals gives the exact consistency strength of these
regularity properties of projective sets to hold simultaneously. (Cf. [3] for an exact
statement of the results and also on background information.)

Projective subsets of R are those sets of reals appearing earliest in the hierarchy
L(R). Following the usual definition, we let

J1(R) = Vipa,
IA(R) =,y Jy(R) for A alimit ordinal,
Jy+1(R) =rud(J,(R)),
where rud denotes the rudimentary closure operator (cf. for example [7] for details).
Then P(R) N Jo(IR) are precisely the projective subsets of R.
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Here we are interested in certain properties of sets of reals in J,(R) for 2 <y < w;,
like the above mentioned regularity properties. We generalize results of [3] and [1] to
such sets of reals, viz. to more than finitely many strong cardinals being involved.

We use the core model theory of [8] and [3]. (In fact, for technical reasons explained
in [3] we have to use the “Friedman-Jensen indexing” of extender sequences rather
than the “Mitchell-Steel indexing”. However, this won’t be a serious issue here.) Our
first theorem and features of its proof are the main technical tools used for showing
the subsequent results.

Theorem 1.1. Assume that there is no inner model with a Woodin cardinal, and
that Q is a measurable cardinal. Let K denote Steel’s core model of height ). Let
1 < a <w;. Suppose that Jffl E “there are < wa many strong cardinals”. Then the
set of reals coding K N HC = JE is an element of J114(R).

For the case a = 1 this follows from [3], which in turn generalizes a theorem of [2].
In fact, Theorem 1.1 is obtained by a straightforward generalization of arguments
in [3]. One can show that Theorem 1.1 gives the best possible estimate of K N HC.

HAUSER has shown in [1] that if the theory of R is frozen under all further forcing
extensions, then there is an inner model with w many strong cardinals. Due to the
following result, we here get the w many strong cardinals in K to be below w;, and
also a generalization to hyperprojective levels.

Methods of WooDIN (unpublished) show that the following is the best possible
result. We write M <® A to mean that M E ¢(z) iff N'E ¢(z) for all z € RM for
transitive models M C N.

Theorem 1.2. Assume that there is no inner model with « Woodin cardinal. Let
1 < a <w;. Suppose that for all B < a, for all partial orderings PeV, and forallG
being P-generic over V we have Ji4g(RY) <P Ji45(RVIC). Then there is an inner
model K with wa many ordinals k < wy such that K F “k is a strong cardinal”. In
particular, if @ = wy, then wy is an inaccessible limit of strong cardinal in K.

Weak homogenity implies generic absoluteness, so that as a corollary one obtains
the following .

Theorem 1.3. Let 1 < a < wy. Suppose that every set of reals in J144(R) s
weakly homogeneously Souslin. Then there is an inner model with wa many strong
cardinals. If & = w, then there is an inner model with an inaccessible limit of strong
cardinals.

It is, however, not known whether one can get a model in which every set of reals
in J,,,(R) is weakly homogeneous starting from a model with an inaccessible limit of
strong cardinals and a measurable above, say. (It is conjectured that this is not the
case.) Anyway, WOODIN has constructed a model in which every set of reals in L, (R)
is weakly homogeneous starting from an assumption being considerably weaker than
a Woodin cardinal.

Going further, STEEL has shown in [8] that if every set of reals in Juw,+1(R) is
weakly homogeneous, then there is an inner model with a Woodin cardinal. '

Next, we have the following result giving information about consistency strength
of global Lebesgue measurability. Except for the use of Q in order to build K, methods
of WoODIN show that this is best possible. '
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Theorem 1.4. Assume that there is no inner model with a Woodin cardinal, and
that © is a measurable cardinal. Let K denote Steel’s core model of height 2. Let
1 < a < w;i. Suppose that for all partial orderings P € Vo and for all G being P-ge-
neric over V we have that all sets of reals in J141o(RYI]) are Lebesgue measurable
(in V[G]). Then there are wa many ordinals k such that K F “c is a strong cardinal”.
In particular, if @ = wy, then wy is an inaccessible limil of strong cardinals in K.

Finally, our last theorem is obtained from Theorems 1.1, 1.2, and [9], and gener-
alizes a main result of [3] (which in turn was obtained by exploiting an idea due to
HucH WOODIN). Again, except for the use of € one can show that in fact this is
best possible by lifting the arguments of STEEL and WOODIN mentioned in the first
paragraph of this paper to higher levels of the hyperprojective hierarchy.

Theorem 1.5. Assume that there is no inner model with a Woodin cardinal
and that Q is a measurable cardinal. Let K denote Steel’s core model of height €.
Let 1 < a < wy. Suppose that inside J14qo(R) every set of reals is Lebesgue mea-
surable and has the property of Baire, and that every subset of R x R can be unifor-
mized. Then J‘ﬁ‘; F “there are wa many strong cardinals”. In particular, if o = w;,
then inside K, wy =w] is an inaccessible limit of cardinals k < w; such that
Jf,i F “% is a strong cardinal”.

We leave it to the reader’s fantasy to derive more along these lines by -using
arguments of the present paper.

2 Proofs of the results

Well, the proof of Theorem 1.1 is the most tricky part. For this, we have to develop
some core model theory, following [3]. Until the proof of Theorem 1.1, let us assume
that Q is a fixed measurable cardinal, that there is no inner model with a Woodin
cardinal, and that K denotes Steel’s core model of height 2, as constructed in [8].

Let M be any premouse, and let £ < On N M. We denote by d™ (k) the order
type of all £ < & such that JM F “ is a strong cardinal”. Whereas in [3] we were
only interested in the case ™ (k) < w, we will here have to weaken this to d* (k) < k.

For premice M and N with M < N we say that M is a §-cutpoint in N if M is
passive and has a largest cardlnal every cardinal in M remains a cardinal in A/, and
whenever F = EY = () is an extender with k = c.p.(F) < OnN M and v > On N M,
then dM(x ) <. m1n{6 k} orelse F is partial (1 e., there exists { € [v,On N N] such
that o, (‘7£ ) < k).

A premouse M is called §-full (with witness W) if W > M is a universal weasel
such that M is a é-cutpoint in W and every class-sized iterate W’ of W with
iteration map ¢ : W — W' has the definability property at all & < i(On N M)
with d"’'(k) < min{6, x} and & is greater than the generators of all extenders used
along the branch from W to W’. M is called strongly 6-full (w1th witness W) 1f |24

witnesses that M is é-full and On N M is a (successor) cardinal in W.
' A premouse M D> N is called a §-collapsing mouse for N if M is 6-full, N is a
6-cutpoint in M, and g,(M) < On N M. We remark that a premouse A is strongly

6-full just in case N is §-full and for every §-collapsing mouse M for N we have that
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A premouse M with top extender F' and c.p.(F) =« is called a é-beaver if
dM(k) = 6 < k and there is a universal weasel W witnessing that TINw = = JMu is
6-full and such that Ult(W, F') is fully iterable. A premouse M is called znternally
6-full if for any iterate M* of M with iteration map s : M — M*, whenever there
are § < min{6, v} and F with critical point « greater than the generators of all exten-
ders used along the branch from M to M* such that (JM ,F)is a 6-beaver, then
EM =F.

The following two lemmas are shown in [3] for the case § < w, but the proofs go
thru virtually unchanged in the general case.

Lemma 2.1. Let M be a countable premouse, and let § be an ordznal Then the
following are equivalent:

(1) M is é-full.

(2) M is internally 6-full with a largest cardinal A, and for any k < w, N s
k-iterable, M < Cr41(N) (in fact, M is a 6-cutpoint in Cry1(N)), and gp121(N) > A
whenever N' < M is as follows:

(a) M is a §-cutpoint in N,

(b) N is k-iterable using eztenders with critical point > A and indez > On N M,

(c) for all k-iterates N* of N as in (b) if F = EN" withv > On N M has
the critical point k < X, then (JN F)isa d‘M( )-beaver (and redundantly,
dM(x) < min{§, k}).

Lemma 2.2. Let M be a countable premouse wz'th top extender F' # 0 and with
critical point k, and let § be an ordinal. Then the following are equivalent:
(1) M is a 6-beaver.
(2) TMu is internally §-full, and for any k < w, gk41(N) > &M and Ult(N, F)
18 k- ztemble whenever N' < ]};‘fM s as follows:
(a) TMr is a b-cutpoint in N,
(b) N is k-iterable using extenders with critical point > ktM,

(c) for all k-iterates N* of N as in (b), if G = EY" with v > On N M has
the critical point p € M, then (JN G) is a dM( )-beaver (and redundantly,
aM () < min{s, u}).

Given Lemmas 2.1 and 2.2, the proof of the next lemma is a routine exercise in
constructibility theory. Actually, it is verified by exactly the same reasoning which
establishes (J# : a< a) € Ja41 from the uniformity of the J-hierarchy, say.

Lemma2.3. Let f <w; and n < w. Then the following sets of reals are elements
of Ji4p+1(R):
(a) Awp+n = {z : z codes an wp + n-full premouse},
(b) Bupin = {z : z codes a strongly wf + n-full premouse},
(¢) Cuptn = {z : z codes an wf + n-collapsing mouse},
(d) Duptn = {z : = codes an wf + n-beaver}.

Proof. We use the well-known fact that for £ < w, the assertion “z codes a
1-small k-iterable premouse” is uniformly I}(z). This can be shown with [8, 2.4] and
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the concept of a-goodness (cf. [4, §5]; recall that we still assume that there is no inner
model with a Woodin cardinal, so that all sufficiently iterable premice are 1-small,
and K is universal for coiterable premice).

Well, it is easy to see that if Ayupgt+n isin J1yg4+1(R), then so are Cyp4n and Bypin
(for the latter one uses the remark above after the definition of a collapsing mouse).
We will thus restrict ourselves to showing that {Aupg4n, Dwpsn} C J14p+1(R), given
that D = € J1+E+1(IR) for all wB+7 < wf+n. In fact, by simultaneous induction

wh+
on (#,n) € w; X w (ordered lexicographically) we prove the following:

(Dgmy {Awptn, Dupin} C Jr4p41(R),
(2)8,n) (Agym  wB+R <wf+n) € Jippr(R),
(3)([3,”) (Dw_,5+ﬁ w4+ n<wl+ ’n) € J1+ﬁ+1 (]R)

To commence, let = n = 0. A premouse M is 0-full just in case there is
a universal weasel W > M. By Lemma 2.1 and the fact that iterability is 113, it is
easily seen that the set of all reals coding 0-full premice is a II3 subset of R. (Actually,
this is also a well-known fact.) This establishes (1)¢0,0)- Of course, (2)(0,0) and (3)(0,0)
are vacuously true.

By Lemma 2.1 and straightforward first steps of our induction we then get that
for n < w the set of all reals coding n-full premice is a projective subset of R. Using
Lemma 2.2, the same holds for n-beavers if n < w. As the projective sets of reals are
the ones in J3(R), we thus have (1)(on) for n < w. (This was already shown in [3].)
As for (2)(0,n) and (3)(o,n), they follow from (1)(o,m) for all @ < n.

In fact, the set of codes of n-full premice is IT}, , 3 for n < w. In order to check this
and also to handle the cases # > 0 and n = 0, we have to inspect a bit closerly what
Lemma 2.1 combined with Lemma 2.2 buys us. Namely, from Lemma 2.1 we get that
the set Aypinty is V2 IR D, where D C R is arithmetical in R\ D,p1r,, uniformly in
all # < wy and n < w. Similarily, Lemma, 2.2 gives that Dypynyt is VB3R D/ where
D' C R? is arithmetical in (R \ Awptn) X (R\ Dypyn), uniformly in all B < w; and
n < w. Notice that this immediately gives (1)(s,n41) from (1) n), and also (2)(g,n+1)
viz. (3)(p,n+1) from (2)(s n) viz. (3)(g,n) together with (1)), for any g, n.

We are hence left with the task of showing (1)(s,0), (2)(g,0), and (3)(g,0) from the
inductive assumptions.

Well, we have that (Awﬁ +7 wh+TE< wp) is a recursive function with values in
J1+5(R) (by (l)(ﬁ,ﬁ)), moreover whose proper initial segements are in J145(R) as well
(by (2)(55)), and whose definition can hence be carried out over J144(R) (as A Fimi

is uniformly V® 3% D, where D is arithmetical in R\Dwﬁ 7). But this implies (2),0)-
Condition (3)(g,0) is established in much the same way. But now (1)(g,0) easily follows
using Lemmas 2.1 and 2.2. 0O

Again, the proof in [3] of the next two theorems for the case v < § < w goes thru
unchanged in the general case.

Theorem 2.4. Assume that wy; = w] is inaccessible in K, and suppose y < wy to
be such that Juff F % is the order type of the strong cardinals”. Let § > . Then for
all premice M we have that M < TE iff ®5(M). Here, ®5(M) denotes the following

assertion: ‘There is a countable strongly 6-full M > M such that for all countable
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strongly 6-full N, if M, N coiterate to comparable premice M*, N*, respectively,
such that M* A N'*, then

(a) M* is a §-cutpoint in N,
(b) there is no drop along the main branches on ezther side, and

(¢) if i : M — M* and j : N'— N* denote the maps coming from the coilera-
tion, then "M C JIN

The proof of Theorem 2.4 actually gives that regardless of the number of strong
cardinals in Jj, K and regardless of whether w; is inaccessible in K or not, ®; (T X )

holds as long as & not greather than the §*® strong cardinal in Tin, K (if there is one).

Theorem 2.5. Assume that w; = wY is a successor in K, and suppose v < Wi

to be such that jK E % is the order type of the strong cardinals”. Let 6§ > v. Then
there is some N « JK such that for all premice M we have that M JK iff there
is a 8-collapsing mouse M for N with M 4 M.

We can now commence with proving the results of this paper.

Proof of Theorem 1.1. This is now a straightforward consequence of Theo-
rems 2.4, 2.5, together with Lemma 2.3. o

Proof of Theorem 1.2. We may assume w.l.o.g. that there is no inner model
with a Woodin cardinal. As in [1], say, Xi-absoluteness gives that V is closed under
the f-operation, so that we can make sense of a global K by piecing together the core
models built inside the various daggers. We now prove Theorem 1.2 by verifying the
following two claims.

Notice that we may assume w.l.0.g. that d¥(x) < & for all £ being measurable
in 7, K, o

Clalm 1. Let k < wy be such that d¥ (k) < wa and X F “k is strong”. Then
K F “k is strong”, too.

Proof. Suppose that K < w; were a counterexample. We may then pick A large
enough such that J& F “k is not strong”. Let wf + n = d¥ (k) < wa, where n < w.
Now any initial segment of K is y-full for any 7, in any set generic extension of V
(this follows from [8, 8.3]). Hence in VCol(A*w) the following assertion is true:

There is a strongly wf + n + 1-full N > JE such that N F “« is not strong”.

Let zo € RY be a code for JX. Via coding, the displayed assertion is X, (J145(R))
in zg by Lemma 2.3(b). It is true in y Cel(A, “’) and hence in V as well by our ab-
soluteness assumption. Let N > JXK, N € V be a witness for the latter. Let
W > N witness that N is strongly wf + n + 1-full. We get an elementary embedding
o : K — W from the coiteration of K with W as in the proof of [8, 8.10]. By
JE = % and the fact that W witnesses that A is strongly wf + n + 1-full, we
get that o | K4+ 1 = id (this follows by an argument as in the proof of (8, 5.1]).
This implies that J;}’wl) F “k is strong”, so a fortiori JJY F “k is strong”. In turn,
this implies that N' = J¥ v F “kisstrong”, as On N N is a cardinal in W.
Contradiction! O (Claim 1)
Claim 2. There are wa many k < wy such that J(f F “k s strong”.

Proof. Suppose not. Let B < @ and n < w be such that wB+n is the order type
of the strong cardinals in th :
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Case 1. w; is inaccessible in K.

‘Let ¥ = \Ilzgi:_l_l abbreviate the statement

for all M, M', if ®,p4n+1(M) and Pupgins1(M’), then M I M’ or M < M,
and if M = U¢Mﬁ+n+1(M) M, then On N M = w;,
and M F ZFC + “there are w8 + n many strong cardinals”.

(Here, ®,p1n41(M) is as in Theorem 2.4.) By Theorem 2.4, ®,p4n+1(M) holds iff
M < JX, so that ¥ holds (in V). However, via coding, ¥ is Yu(J1+8(R)) in a real
coding wB + n by Lemma 2.3(b). Hence ¥ holds in any set generic extension of V by
our absoluteness assumption.

Let A be any singular cardinal. By [5], ATX = At. In the next paragraph let us
work in V[G], where G is Col(),w)-generic over V.

Let M witness that ¥ holds. In particular, M is a premouse of height At = w;.
Let us first suppose that there is a (unique) & < A such that J){i F “k is strong” and
d¥ (k) = wB+n. As cofinally proper initial segments of M are wf+n+ 1-full, an easy
reflection argument gives that M itself is w8+ n+ 1-full. Let W > M witness that M
is w@ 4 n+ 1-full. We have that ®,54n+1(TK) by the remark after Theorem 2.4, and
thus JX <« M < W. Moreover, we get an elementary o : K — W from coiterating
K with W as in the proof of Claim 1 with o | K + 1 = id. But on the other hand, «
is strong in J){i, but not in M :_JJFK by ¥. Hence o [ « + 1 # id. Contradiction!

Hence wfB+n is the order type of the strong cardinals in j{i, too, by Claim 1. But
then we have ®gin41 (JEK) for all £ < At again by the remark after Theorem 2.4,
le, M= in. But this implies M F -ZFC, contradicting ¥.

Case 2. w; 1s a successor in K.

Then there is some N = JEK <] ch such that M <« .Z;f Iff there exists an
wf + n-collapsing mouse N’ for N such that M < A’, by Theorem 2.5. Hence,
via coding, the fact that w; = ¢+K is expressed by a Yw(J14p(R)) statement in a
parameter for a real coding N' by Lemma 2.3(c). However, this statement becomes

false in V' ¢ow1%), Contradiction! O (Claim 2) O
Notice that in the course of verifying Claim 2 in Case 1 we actually showeg that
wl4n

Juf F “there are more than wf + n many strong cardinals” implies that ¥optnt1
fails. This will be exploited during the proof of Theorem 1.5. :

We also remark that looking at the previous proof a bit closerly gives that if
the ¥, 44-theory of Ji45(R) agrees with the %, 14-theory of J;45(RYIC]) (with real
parameters) whenever G is P-generic over V for some P € V, then there are w8 + n
strong cardinals smaller than w; in K. This will be needed in the proof of Theorem 1.5.

Proof of Theorem 1.3. The existence of a weakly homogeneous tree trivially
implies the existence of a measurable cardinal. Let  denote the least one.

Let B < a. It suffices to show that for all partial orderings P € V; and for all G
being P-generic over V we have J115(R) <® J;;4(RI]) because then Theorem 1.2
straightforwardly gives Theorem 1.3.

But the desired absoluteness follows from the fact that every set of reals in
Yw(J14p(R)) is weakly homogeneous, exactly as in [8, p. 56f]. Alas, every such set is
in J144(R), and is thus weakly homogeneous by assumption. a
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Proof of Theorem 1.4. Suppose Theorem 1.4 fails. Let wf +n < wa be
the order type of the set of strong cardinals in K, where n < w. Assuming that for -
all singular cardinals (in V) A < § there is some k < A with d¥(k) = wB + n and
JH E “k is strong”, we may define F(}) to be the unique such. Hence F'is regressive
on the class of all singular cardinals below €, so that FODOR’s Lemma gives us a
stationary A C Q with F being constant on A. But setting k = F()) for any A € A,
we have that d¥ (k) = wf + n as well as K F “x is strong”, contradicting the choice
of wB + n as the order type of the strong cardinals in K.

Hence we may choose a singular cardinal A < € such that in J K there are exactly
(in order type) wf + n many strong cardinals. By [5], ME = )+ andso At = wY[G]
is a successor cardinal in K, where G is Col(),w)-generic over V. Now work in VI[G]
for the rest of this proof. Fix f : w — X bijective. Then zy € R is a code for A,
where we set (n, m) € z iff f(n) < f(m) (here we identify R with P(w xw)). For any
¢ < wy such that &€ > ), we my define z¢ € R by (n,m) € 2 iff Fo f(n) < F o f(m),
where F' is least (in the order of constructibility) in K with F' : A — £ bijective.
But this F is also least in any large enough wf + n-collapsing mouse M for J¥ with
F : X — ¢ bijective, by Theorem 2.5. Hence by Lemma 2.3(c) the relation < on
‘R x R defined by z < y iff there are £ < &’ with z = z¢ and y = z¢s 1s Y (J1+p(R)) in
2o and a code for a proper initial segment of jj‘: . Notice that < gives an uncountable
sequence of distinct reals. Hence by [6] there is a set of reals in %, (J14p(R)) which
is not Lebesgue measurable. However, this contradicts our assumption, which gives
that every set of reals in Ji1q(R) is Lebesgue measurable (in V[G]). 0

We remark that this proof in fact also shows that if in no forcing extension of V
(for some forcing P € Vq) there is an uncountable sequence of distinct reals being
in J14a(R), then there is an inner model with wa many strong cardinals. Again,
except for the use of § this is best possible. WooODIN and STEEL (unpublished)
independently of each other have both shown that if in no forcing extension of V (for
some forcing P € Vq) there is an uncountable sequence of distinct reals being in L(R),

then ADY(® holds.

Proof of Theorem 1.5. Assuming the hypotheses of Theorem 1.5, a reasoning
slightly generalizing [9] gives, for any f < w; and n < w such that wf +n < we, a
transitive model M#? of ZFC (of height w;) such that the following assertion holds:
The T,-theory of Ji45(RY) is the same as the Ln-theory of J1+p(IRMf), which in

turn is the same as the X,-theory of Ji45(RM E[G]) whenever G is P-generic over MP
for some P € MP.

Well, using Ti-absoluteness as in the proof of Theorem 1.2, we can build K Mf,
and by the second remark following the proof of Theorem 1.2 we have that

KM? £ “there are at least wf + n — 4 strong cardinals”.

Now let us suppose toward contradiction that there are wf+n < wa many strong
cardinals in Juff ., where n < w. If w; were a successor cardinal in K, we would
get a contradiction exactly as in the proof of Theorem 1.4. We may hence assume
w.l.0.g. that w is inaccessible in K. In particular, guhtn , Is true, where this is the

w
assertion from the proof of Theorem 1.2. (Notice that it is a lightface assertion.) Set

M = M£+100) so that KM has at least wf + n + 1 many strong cardinals. However,




Strong Cardinals and Sets of Reals in L, (R) 369

by the choice of M we have that \I'zgi" +1 18 true in M. But this contradicts the first
remark after the proof of Theorem 1.2. ‘ a

3 Open problems

(1) How can one remove the assumption on the existence of Q from Theorems 1.3,
1.4, and 1.57 Recent work of STEEL and the author shows that this assumption may
be weakened to “€2 is a Mahlo cardinal” if K is replaced by a smaller core model, but
it would be highly desirable to remove €2 at all from the core model theory below an
inaccessible limit of strong cardinals, say. Work of JENSEN as well as recent work of
STEEL and the author in fact indicates that this should be possible.

(2) What is necessary to construct a model in which every projective set of reals
is Lebesgue measurable and has the property of Baire, and every I}, ;-relation
admits a uniformizing function with a graph of prescribed complexity, for n > 17
[3] does not give full information about this. For example, in the case n = 1 if the
untformizing function is required to be IT (in the same parameter as the relation
to be uniformized), then A}-determinacy holds (cf. [8, Cor. 7.14]), whereas STEEL’s
proof shows that (still for n = 1) for the functlon to be Al an inaccessible k with
Vi F “there is a strong cardinal” suffices.
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