Mazurkiewicz Sets
Mariam Beriashvili, Ralf Schindler
January 18, 2018

Abstract
We produce a model of ZF+DC with no wellordering of the reals in which there are Mazurkiewicz sets.

Definition. A Mazurkiewicz Set is a subset of \(\mathbb{R}^2 \) which meets every straight line in \(\mathbb{R}^2 \) in exactly two points. It is easy to construct such a set using a well-order of \(\mathbb{R} \). We now produce a model of ZF + DC with a Mazurkiewicz set which does not have a well-ordering of \(\mathbb{R} \).

Let \(g \) be \(C(\omega_1) \)-generic over \(L \). Write \(\mathbb{R}^* = \mathbb{R} \cap L[g] \). Our model will be a forcing extension of \(L(\mathbb{R}^*) \) Working inside \(L(\mathbb{R}^*) \), we define a partial order \(\mathbb{P}_M \) as follows: \(p \in \mathbb{P}_M \) iff

\[
\exists x \in \mathbb{R}^*(p \in L[x], L[x] \models "p \text{ is a Mazurkiewicz set"}
\]

and

\[
(\exists y \in p)(x \leq_T y).
\]

Notice that if \(p \in \mathbb{P}_M \) and \(x, x' \in \mathbb{R}^* \) both witness this, then \(x \leq_T \) some element of \(p \in L[x'] \) so \(x \in L[x'] \), and also \(x' \in L[x] \) by symmetry, so \(L[x] = L[x'] \). Let us write \(x(p) \) for the constructibility degree of some/all reals \(x \in \mathbb{R}^* \) witnessing \(p \in \mathbb{P}_M \).

By \(L[x(p)] \) we mean \(L[x] \) for some/all \(x \in x(p) \). We say \(p \leq_{\mathbb{P}_M} q \) iff \(p \supset q \) and \(p \setminus q \subseteq L[x(p)] \setminus L[x(q)] \).

Let \(m \) be \(\mathbb{P}_M \)-generic over \(L[g] \). We claim that \(L(\mathbb{R}^*),[m] \) is a model of ZF + DC with a Mazurkiewicz set which does not have a well-ordering of \(\mathbb{R} \).

Lemma 1. Let \(p \in \mathbb{P}_M \), and \(x \in \mathbb{R}^* \) such that \(L[x] \nsubseteq L[x(p)] \). There is then some \(q \leq p \) such that \(x \in x(q) \).

Proof. Work in \(L[x] \) and let \((l_i : i < \omega_1) \) enumerate all the straight lines such that \(l_i \cap L[x(p)] \leq 1 \). Let us construct \((p_i : i \leq \omega_1) \) as follows: \(p_0 = p \).

\[
p_\lambda = \bigcup_{i < \lambda} p_i \text{ for } \lambda \leq \omega_1 \text{ a limit. Suppose } p_i \text{ is constructed. Pick } a \subset \mathbb{R}^2, \text{ \overline{\lambda} } \leq 2 \text{ such that}
\]

...
1. \(a \cap l(x, y) = \emptyset \) for all \(y, z \in p_i, y \neq z \), where \(l(y, z) \) is the line \(l \) with \(y, z \in l \), and
2. \((p_i \cup a) \cap l_i = 2 \).

Set \(p_{i+1} = p_i \cup a \). Finally, set \(q = p_{\omega_1} \). \(q \) is desired.

The same proof shows:

Lemma 2 \((\mathbb{P}_M; \leq_{\mathbb{P}_M})\) is \(\omega \)-closed in both \(L(\mathbb{R}^*) \) as well as \(L[g] \).

Proof. Let \(\cdots \leq p_{n+1} \leq p_n \leq \cdots, p_n \in \mathbb{P}_M \) and let \(x \in \mathbb{R}^* \) be such that
\[
(x(p_n) : n < \omega), (p_n : n < \omega) \in L[x]
\]
. Then proceed basically as in the proof of Lemma 1. \(\dashv \)

This shows that \(L(\mathbb{R}^*)[m] \models ZF + DC \).

Also, \(L(\mathbb{R}^*)[m] \models \text{"\(\bigcup m \) is a Mazurkiewicz Set"} \). We are left with having to verify that \(L(\mathbb{R}^*)[m] \) does not have a well-ordering of its reals, which by Lemma 2 is \(\mathbb{R}^* \).

Let us assume that \(p \in m \) and
\[p \Vdash_{L(\mathbb{R}^*)} \phi(-, -, \vec{z}, \dot{m}) \] ”there is a well-ordering of \(\mathbb{R} \),

in fact
\[p \Vdash_{L(\mathbb{R}^*)} \phi(-, -, \vec{z}, \dot{m}) \] defines a well-ordering of \(\mathbb{R}^* \),”

where \(\dot{m} \) is the canonical name for \(m \).

By Lemma 1, we may assume that \(\vec{z} \in L[x(p)] = L[g \upharpoonright \alpha] \) for some \(\alpha < \omega_1 \). Let \(g^* \) be \(C(\alpha, \omega_1) \)-generic over \(L[g] \). There must then be \(p_0 \leq p \), \(p_0 \in g, p_1 \leq p, p_1 \in g \upharpoonright \alpha \cdot g^*, \gamma \in OR, k, l_0, l_1 < \omega, l_0 \neq l_1 \) such that

1. \(p_0 \Vdash_{L(\mathbb{R}^*)} \phi(-, -, \vec{z}, \dot{m}) \) ”if \(y \) is the \(\check{\gamma} \)-th real acc. to \(\phi(-, -, \vec{z}, \dot{m}) \), then \(y(\check{k}) = \check{l_0} \),”

and

2. \(p_1 \Vdash_{L(\mathbb{R}^*)} \phi(-, -, \vec{z}, \dot{m}) \) ”if \(y \) is the \(\check{\gamma} \)-th real acc. to \(\phi(-, -, \vec{z}, \dot{m}) \) then \(y(\check{k}) = \check{l_1} \).”

2
The \(\dot{m} \) of the second statement is formally a different object from the \(\dot{m} \) of the first statement. Again by Lemma 1, we may assume that there is some \(\beta < \omega_1, \beta > \alpha \), such that \(L[x(p_0)] = L[g \upharpoonright \beta] \) and \(L[x(p_1)] = L[g \upharpoonright \alpha^* g^* \upharpoonright [\alpha, \beta]] \).

Let \(u \in \mathbb{R} \cap L[g, g^*] \) be such that \(x(p_0), x(p_1) \in L[u] \).

The following is the key claim.

Lemma 3. If \(l \) is a straight line in \(L[u] \), then \(\overline{l \cap (p_0 \cup p_1)} \leq 2 \).

Proof. As \(p_0 \) is a Mazurkiewicz set in \(L[x(p_0)], \overline{l \cap p_0} \leq 2 \).

Symmetrically, \(\overline{l \cap p_1} \leq 2 \), so that \(\overline{l \cap (p_0 \cup p_1)} \leq 4 \).

Assume that \(x_1, x_2 \in l \cap p_0, x_1 \neq x_2 \), and \(x_1', x_2' \in l \cap p_1, x_1' \neq x_2' \).

By absoluteness, \(g \upharpoonright \beta \upharpoonright g^* \upharpoonright [\alpha, \beta] \) is generic over \(L \).

Let \(\mathcal{C}(\beta) \)-names \(\tau_1, \tau_2 \) for \(x_1, x_2 \) and \(L[g^* \upharpoonright [\alpha, \beta]] \) has \(\mathcal{C}(\alpha) \)-names \(\tau_1', \tau_2' \) for \(x_1', x_2' \) i.e.,

\[
L[g^* \upharpoonright [\alpha, \beta]] \models \text{"there are } \mathcal{C}(\alpha)\text{ - names } \tau_1', \tau_2' \text{ such that } \models \tau_1' \neq \tau_2', \tau_1 \neq \tau_2, \text{ and } \tau_1', \tau_2' \in l(\tau_1, \tau_2)' \text{"}.
\]

By absoluteness,

\[
L \models \text{"there are } \mathcal{C}(\alpha)\text{ - names } \tau_1', \tau_2' \text{ such that } \models \lnot \tau_1' \neq \tau_2', \tau_1 \neq \tau_2, \text{ and } \tau_1', \tau_2' \in l(\tau_1, \tau_2)' \text{"}.
\]

Write \(\overline{x_1} = \tau_1^l, \overline{x_1'} = \tau_1'^l \). Then

a. \(\overline{x_1}, \overline{x_2} \in L[g \upharpoonright \alpha], \overline{x_1} \neq \overline{x_2} \)
b. \(l(\overline{x_1}, \overline{x_2}) = l(x_1, x_2) \)
c. \(x_1, x_2 \in p_0 \).

By the fact that \(p \subset p_0 \) is a Mazuirkiewicz set in \(L[x(p)] \) we must then have that actually \(x_1, x_2 \in p \).

Symmetrically, \(x_1', x_2' \in p \). But, then \(\overline{x_1, x_2, x_1', x_2'} \leq 2 \).

We have shown, that \(\overline{l \cap (l_0 \cup l_1)} = 4 \) is impossible.

Now let us assume that \(\overline{l \cap (l_0 \cup l_1)} = 3 \), say \(x_1, x_2, x_3 \in l \) are pairwise different with \(x_1, x_2 \in p_0, x_3 \in p_1 \). The previous argument showed that if \(\overline{l \cap L[g \upharpoonright \alpha^* g^* \upharpoonright [\alpha, \beta]]} \geq 2 \), then \(\overline{l \cap L[g \upharpoonright \alpha]} \geq 2 \), and then \(x_1, x_2 \in p \), so
that \(\{x_1, x_2, x_3\} \subset p_1 \), which contradicts the fact that they are pairwise different.

hence \(l \cap L[g \upharpoonright \alpha \sim g^* \upharpoonright [\alpha, \beta]] \leq 1 \), so that \(x_3 \) is the only element of \(l \cap L[g \upharpoonright \alpha \sim g^* \upharpoonright [\alpha, \beta]] \). \(x_3 \) is then definable inside \(L[g \upharpoonright \beta \sim g^* \upharpoonright [\alpha, \beta]] \) from the parameters \(x_1, x_2 \in L[g \upharpoonright \beta] \), so that \(x_3 \in L[g \upharpoonright \beta] \). Therefore, \(x_3 \in L[g \upharpoonright \beta] \cap L[g \upharpoonright \alpha \sim g^* \upharpoonright [\alpha, \beta]] = L[g \upharpoonright \alpha] \). But then \(x_3 \in L[x(p)] \cap p_1 \) implies that \(x_3 \in p \) by the definition of \(\leq \). Hence \(\{x_1, x_2, x_3\} \subset p_0 \), which is a contradiction. Lemma 3 is verified. \(\Box \)

Now let \(y \in \mathbb{R} \cap L[g \upharpoonright \beta \sim g^* \upharpoonright [\alpha, \beta]] \) be such that \(L[y] = L[g \upharpoonright \beta \sim g^* \upharpoonright [\alpha, \beta]] \). In the light of Lemma 3, the proof of Lemma 1 may be need to show the following.//

Lemma 4. There is some \(q \in P_L^{L[g \upharpoonright \beta \sim g^* \upharpoonright [\alpha, \beta]]} \) such that \(y \in x(q) \) and \(q \supset P_0 \cup p_1 \).

Let us write \(\mathbb{R}^* = \mathbb{R} \cap L[g \upharpoonright \beta \sim g^* \upharpoonright [\alpha, \beta]] \). We have \(q, p_0, p_1 \in P_{\mathbb{M}}^{L(\mathbb{R}^*)} \) and \(q \leq_{P_{\mathbb{M}}^{L(\mathbb{R}^*)}} p_0, p_1 \) by Lemma 4.

But we have that \(L(\mathbb{R}^*) \equiv L(\mathbb{R}^*) \) in the language of set theory with parameters from \(\mathbb{R}^* \cup OR \) and he also have that \(L(\mathbb{R} \cap L[g \upharpoonright \alpha \sim g^*]) \equiv L(\mathbb{R}^*) \) in the language of set theory with parameters from \(\mathbb{R} \cap L[g \upharpoonright \alpha \sim g^*] \cup OR \). (1) and (2) on pages 4 and 5 then imply that \(p_0 \models_{P_{\mathbb{M}}^{L(\mathbb{R}^*)}} \phi(\gamma, \gamma, \bar{z}, \bar{m}) \) if \(y \) is the \(\gamma \)-th real acc. to \(\phi(-, -, \bar{z}, \bar{m}) \), then \(y(\bar{k} = \bar{l}_0) \), and

\[p_1 \models_{P_{\mathbb{M}}^{L(\mathbb{R}^*)}} M(\mathbb{R} \cap L[g \upharpoonright \alpha \sim g^*]) \) if \(y \) is the \(\gamma \)-th acc. to \(\phi(-, -, \bar{z}, \bar{m}) \) then \(y(\bar{k} = \bar{l}_1) \). By \(l_0 \neq l_1 \) this contradicts \(p_0 \models_{P_{\mathbb{M}}^{L(\mathbb{R}^*)}} \). We have shown that there is no well-order of \(\mathbb{R}^* \) inside \(L(\mathbb{R}^* \{ \bar{m} \}) \).

References
