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Abstract

Generalizing Woodin’s extender algebra, cf. e.g. [8], we isolate the long
extender algebra as a general version of Bukowský’s forcing, cf. [1], in the
presence of a supercompact cardinal.

1 Introduction.

Recently, a wonderful theorem of Lev Bukowský, cf. [1], found some interesting
applications in set theoretic geology, cf. [9], which proves the set–directedness of the
collection of all grounds of a given model of set theory, [5], which analyzes the mantle
of the least inner model with a strong cardinal above a Woodin cardinal, and [6].1

Said theorem of Bukowský gives a necessary and sufficient criterion for when
V is a λ–c.c. generic extension of a given inner model W . Inspired by [3], this
paper explores the relationship between Bukowský’s result and W. Hugh Woodin’s
extender algebra, cf. e.g. [8, pp. 1657ff.]. A special case of Bukowský’s forcing may
be construed as a version of the extender algebra.

The current paper proposes a generalization of the extender algebra to long ex-
tenders, cf. the forcing PE defined in section 4 below. The long extender algebra
PE then corresponds to a general version of Bukowský’s forcing in the presence of a
supercompact cardinal.

∗2000 Mathematics Subject Classifications: 03E15, 03E45, 03E60.
†Keywords: Forcing, extender algebra.
1The terms “ground,” “bedrock,” and “mantle” are taken from [4]. If W̄ ⊂ W are both inner

models, then W̄ is a ground of W iff W is a generic extension of W̄ . The mantle of W is the
intersection of all grounds of W . That the collection of all grounds be set–directed means that the
intersection of any collection of grounds which may be indexed by a set contains a ground.
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2 A criterion for an inner model to be V .

Definition 2.1 Let W be an inner model of V . Let λ be an infinite cardinal. We
say that W uniformly λ–covers V iff for all functions f ∈ V with dom(f) ∈ W
and ran(f) ⊂ W there is some function g ∈ W with dom(g) = dom(f) such that
f(x) ∈ g(x) and Card(g(x)) < λ for all x ∈ dom(g).

If there is some poset P ∈ W having the λ–c.c. in W and some g which is P–
generic over W such that V = W [g], then W uniformly λ–covers V . Bukowský’s
Theorem 3.3 will say that the converse is true also.

The following is probably part of the folklore.

Theorem 2.2 Let W be an inner model of V , and let λ be an infinite regular cardi-
nal. Assume that W uniformly λ–covers V , and assume also that P(2<λ)∩ V ⊂ W .
Then W = V .

Proof. Let us call any set Γ of functions an antichain iff for all a, b ∈ Γ with
a 6= b there is some i ∈ dom(a) ∩ dom(b) with a(i) 6= b(i).

It is easily seen that the hypotheses on W give that

2<λW ⊂ W. (1)

To verify (1), notice first that by P(2<λ)∩V ⊂ W , W computes the cardinal successor
of 2<λ correctly and for every γ < (2<λ)+, P(γ) ∩ V ⊂ W .

Now let f : 2<λ → OR, f ∈ V . Using the fact that W uniformly λ–covers V , let
g ∈ W be a function with dom(g) = 2<λ such that g(ξ) is a set of ordinals, f(ξ) ∈
g(ξ), and Card(g(ξ)) < λ for all ξ < 2<λ. Let e : γ ∼=

⋃
ran(g) be the (inverse of the)

transitive collapse of
⋃

ran(g), so that e ∈ W and γ < (2<λ)+. As P(γ) ∩ V ⊂ W ,
the function e−1 ◦ f : 2<λ → γ is in W , which gives that f = e ◦ (e−1 ◦ f) ∈ W . We
showed (1).
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Assume that A : α→ 2, for some ordinal α, is such that A ∈ V \W . Let us write
F for the collection of all functions a such that there is some x ⊂ α of size < λ such
that a : x → 2. Using again the fact that W uniformly λ–covers V ,2 we may pick a
function g in W such that if Γ ⊂ F is an antichain with Γ ∈ W , then

(i) g(Γ) ∈ W is a subset of Γ of size < λ, and

(ii) if there is some (unique!) a ∈ Γ with a = A � dom(a), then a ∈ g(Γ).

We call a ∈ F legal iff for no antichain Γ ∈ W , a ∈ Γ \ g(Γ). Notice that being legal
is defined inside W (from the parameter g ∈ W ).

Every A � x, where x ⊂ α has size < λ, is legal.
If Γ ⊂ F is an antichain with Γ ∈ W , and if every a ∈ Γ is legal, then we must

have g(Γ) = Γ, from which it follows that Γ has size < λ.
Let θ >> α be such that θ<λ = θ. Let

X ≺ (Hθ;∈, {A},F , g,Hθ ∩W )

be such that <λX ⊂ X and Card(X) = 2<λ. By (1), X ∩W ∈ W , and of course

X ∩W ≺ (Hθ ∩W ;∈,F , g) ∈ W. (2)

Write σ : W̄ ∼= X ∩W for the (inverse of the) transitive collapse of X ∩W , so
that σ ∈ W . σ extends to σ̃ : H ∼= X, the (inverse of the) transitive collapse of X.

Notice that P(2<λ) ∩ V ⊂ W gives that Ā = σ̃−1(A) ∈ W , which in turn yields
that

A � (X ∩ α) = σ”Ā ∈ W. (3)

We are now going to derive a contradiction from (3).
Using (3), we may work inside W and define a sequence (ai : i < λ) of elements

of F such that ai ∈ X and dom(ai) ⊃ dom(aj) for all j < i < λ as follows.
Assume (aj : j < i) has already been chosen. Notice that (aj : j < i) ∈ X by
<λX ⊂ X. Write x =

⋃
j<i dom(aj), so that x ∈ X. Clearly, for every ξ < α there

is some legal a ∈ F such that x ∪ {ξ} ⊂ dom(a) and a = A � dom(a) (just pick
A � (x ∪ {ξ})). There must then be some ξ < α such that there are legal a and b in
F with x ∪ {ξ} ⊂ dom(a) ∩ dom(b) and a(ξ) 6= b(ξ), as otherwise A would be the
union of all legal a ∈ F with a ⊃ A � x and thus A would be in W .

By (2) we must then have inside X some ξ < α and some legal a and b in F with
x∪{ξ} ⊂ dom(a)∩ dom(b) and a(ξ) 6= b(ξ). By (3), we may then choose in W some

2This use is now substantial, in contrast to the previous one.
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ξ ∈ α∩X and some a ∈ F∩X such that x∪{ξ} ⊂ dom(a), a � x = (A � (X∩α)) � x
(= A � x), and a(ξ) 6= (A � (X ∩ α))(ξ) (= A(ξ)). Let ai = a.

Writing Γ = {ai : i < λ}, Γ ∈ W , and Γ is an antichain consisting of legal
functions. But this is a contradiction! �

3 Bukowsky’s theorem.

Let us fix W ⊂ V , an inner model, and let λ and µ be infinite cardinals, λ ≤ µ. We
aim to define a poset in W which will be a candidate for generically adding a given
subset of µ.

Working in W , let L be the infinitary language with atomic fomulae “ξ̌ ∈ ȧ,”
for ξ < µ, and such that the set of formulae is closed under negation and infinite
disjunctions of the form

∨∨
Γ for all well–ordered sets Γ of fomulae with Card(Γ) < λ.

Writing µ<λ = (µ<λ)W , L has size µ<λ.
For A ⊂ µ, A ∈ V Col(ω,µ<λ), and ϕ ∈ L, we may define the meaning of “A � ϕ”

in the obvious recursive fashion: A � “ξ̌ ∈ ȧ” iff ξ ∈ A, A � ¬ϕ iff A 6� ϕ, and
A �

∨∨
Γ iff A � ϕ for some ϕ ∈ Γ. Inside V Col(ω,µ<λ), the relation “A � ϕ” is Borel

in the codes. For Γ ⊂ L, A � Γ means A � ϕ for all ϕ ∈ Γ. For Γ∪{ϕ} ∈ P(L)∩W ,
we write

Γ ` ϕ (4)

iff in WCol(ω,µ<λ), for all A ⊂ µ, if A � Γ, then A � ϕ. (4) is thus defined over W , and
inside WCol(ω,µ<λ), (4) is Π1

1 in the codes. By absoluteness, (4) is thus equivalent with
the fact that in V Col(ω,µ<λ), for all A ⊂ µ, if A � Γ, then A � ϕ. For Γ ∈ P(L) ∩W ,
Γ is called consistent iff there is no ϕ ∈ L such that Γ ` ϕ and Γ ` ¬ϕ, which in
turn is easily seen to be equivalent with the fact that in WCol(ω,µ<λ) (equivalently, in
V Col(ω,µ<λ)) there is some A ⊂ µ with A � Γ.

Now let
g : [L]λ ∩W → [L]<λ ∩W , g ∈ W

be a function such that

(i) g(Γ) ⊂ Γ, and

(ii) Card(g(Γ)) < λ

for all Γ ∈ [L]λ ∩W . Let us call ϕ ∈ L illegal iff there is some Γ ∈ [L]λ ∩W such
that ϕ ∈ Γ \ g(Γ), and let us write T g for the set of all formulae of the form3

ϕ→
∨∨

g(Γ), (5)

3ϕ→ ϕ′ is short for
∨∨
{¬ϕ,ϕ′}.
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where ϕ is illegal, Γ ∈ [L]λ ∩W , and ϕ ∈ Γ \ g(Γ).
Let us write Pg for the set of all ϕ ∈ L such that T g ∪ {ϕ} is consistent. We also

write

ϕ ≤Pg ϕ
′ (6)

for T g ∪ {ϕ} ` ϕ′.

Claim 3.1 Pg has the λ–c.c. inside W .

Proof. Let Γ ∈ [Pg]λ ∩W . Let ϕ ∈ Γ \ g(Γ). By (5), ϕ ≤Pg
∨∨

g(Γ), so that Γ
cannot be an antichain. �

For an arbitrary choice of g, we might have that Pg is quite trivial, or even Pg = ∅.
Let A ⊂ µ, A ∈ V . We set

GA = {ϕ ∈ Pg : A � ϕ}.

Claim 3.2 Assume that A � T g. Then GA ⊂ Pg is a Pg–generic filter over W and

A = {ξ < µ : “ξ̌ ∈ ȧ” ∈ GA} ∈ W [GA].

Proof. If ϕ, ϕ′ ∈ Pg, A � ϕ, and ϕ ≤Pg ϕ
′, then A � ϕ′ using absoluteness. If ϕ,

ϕ′ ∈ Pg, A � ϕ, and A � ϕ′, then A � ϕ ∧ ϕ′,4 ϕ ∧ ϕ′ ∈ Pg by A � T g, and clearly
ϕ ∧ ϕ′ ≤Pg ϕ and ϕ ∧ ϕ′ ≤Pg ϕ

′. Hence GA is a filter.
Now let Γ ∈ W be a maximal antichain in Pg. By Claim 3.1, Γ ∈ [Pg]<λ. If

GA ∩ Γ = ∅, then A � ¬
∨∨

Γ. By A � T g, ¬
∨∨

Γ ∈ Pg, and

Γ ∪ {¬
∨∨

Γ} ) Γ

is an antichain. Contradiction!
The rest is easy. �

Theorem 3.3 (Lev Bukowský) Let W ⊂ V be an inner model, and let λ be an
infinite regular cardinal such that W uniformly λ–covers V . Let e : 22<λ → P(2<λ)
be a bijection, and let

A = {2<λ · η + ξ : η < 22<λ ∧ ξ ∈ e(η)}.

There is then some poset P ∈ W such that

4ϕ ∧ ϕ′ is short for ¬
∨∨
{¬ϕ,¬ϕ′}.
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(a) P has the λ–c.c. in W ,

(b) P has size 22<λ in W ,

(c) A is P–generic over W , and

(d) V = W [A].

Proof. Let us write
µ = 22<λ ,

as being computed in V .
By the fact that W uniformly λ–covers V , we may find a function

g : [L]λ → [L]<λ, g ∈ W

such that for all Γ ∈ [L]λ ∩W ,

(i) g(Γ) ⊂ Γ,

(ii) Card(g(Γ)) < λ, and

(iii) if A � ϕ for some ϕ ∈ Γ, then A �
∨∨

g(Γ).

For this choice of g, A � T g. Hence by Claim 3.2, GA is Pg–generic over W , and
A ∈ W [GA]. This gives (a), (b), and (c). Clearly, W [GA] inherits from W the fact
that it uniformly λ–covers V , so that (d) is given by Theorem 2.2. �

Recall that for a regular cardinal λ and an ordinal α ≥ λ a set C ⊂ [α]<λ is called
club iff

(a) for all γ < λ and all {Xi : i < γ} ⊂ C we have
⋃
{Xi : i < γ} ∈ C, and

(b) for all x ∈ [α]<λ there is some X ∈ C with x ⊂ X.

Theorem 3.3 immediately leads to the following characterization.

Corollary 3.4 Let W ⊂ V be an inner model, and let λ be an infinite regular
cardinal. The following are equivalent.

(a) W uniformly λ–covers V .

(b) For every α ≥ λ, if C ∈ P([α]<λ) ∩ V is club in V , then there is some D ∈
P([α]<λ) ∩W with D ⊂ C and D is club in W .
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(c) There is some poset P ∈ W such that P has the λ–c.c. in W , P has size 22<λ

in W , and V = W [g] for some g which is P–generic over W .

Proof. (a) =⇒ (c) is given by Theorem 3.3.
To show (c) =⇒ (b), fix α ≥ λ and C ∈ P([α]<λ) ∩ V which is club in V . Let

P and g be as in (c), let θ >> max(α, 22<λ), and let τ ∈ W P ∩ HW
θ be a name of

a function f : <ωα → α, f ∈ V , such that if Z ∈ [α]<λ, f”<ωZ ⊂ Z, then Z ∈ C.
Inside W , there is some D∗ ∈ P([HW

θ ]<λ) ∩ W which is club in W , such that if
X ∈ D∗, then

(i) X ∈ [HW
θ ]<λ,

(ii) X ≺ (HW
θ ;∈,P, τ), and

(iii) if A ∈ P(P) ∩X is an antichain in P, then A ⊂ X.

and D = {X ∩ α : X ∈ D∗} ⊂ [α]<λ is club in W . If X ∈ D∗, then f”<ω(X ∩ α) ⊂
X[g] ∩ α = X ∩ α, i.e., X ∩ α ∈ C.

To show (b) ⇒ (a), let f : θ → α, f ∈ V . Let C ∈ P([α]<λ) ∩ V be is club in
V such that if X ∈ C and ξ ∈ X ∩ θ, then f(ξ) ∈ X. Let D ∈ P([α]<λ) ∩W be
such that D ⊂ C and D is club in W . Working inside W , pick for each ξ < θ some
X ∈ D such that ξ ∈ X, and call it Xξ. Define g with dom(g) = θ inside W by
g(ξ) = X ∩ α. �

4 From Bukowský to Woodin and beyond.

As in the previous section, let us fix W ⊂ V , an inner model, and let λ and µ
be infinite cardinals, λ ≤ µ. We are going to use some of the terminology of [7,
Definitions 10.45, 10.55, 10.57]. If E is a (κ, ν)–extender over V (cf. [7, Definition
10.45]), then we shall write

(i) crit(E) for the critical point κ of E,

(ii) lh(E) for the length ν of E,

(iii) σ(E) for the space5 sup{µa + 1: a ∈ [lh(E)]<ω} of E, and

5µa is the ordinal µ̄ such that the measure Ea of E lives on [µ̄]Card(a), cf. [7, Definition 10.45
(1)].

7



(iv) ρ(E) for the strength of E, i.e., for the largest β such that6 Vβ ⊂ ult(V ;E).

We shall write πE : V → ult(V ;E) for the ultrapower embedding. If E is an extender
over W , then we write πWE for the ultrapower map induced by forming the ultrapower
of W by E inside W .

Let us work entirely inside W until further notice. As before, we let L be the
infinitary language with atomic fomulae “ξ̌ ∈ ȧ,” for ξ < µ, and such that the set of
formulae is closed under negation and infinite disjunctions of the form

∨∨
Γ for all

well–ordered sets Γ of fomulae with Card(Γ) < λ.
Let E be a class of (short or long) extenders such that crit(E) < σ(E) < λ. We

let T E be the collection of all sentences of L of the form

ϕ→
∨∨

πE”Γ, (7)

where E ∈ E , Γ ∈ [L]crit(E) ∩ Vσ(E), and ϕ ∈ πE(Γ) ∩ Vρ(E).

We may define PE in much the same way as Pg was defined above. To be explicit,
we write PE for the set of all ϕ ∈ L such that T E ∪ {ϕ} is consistent. We also write

ϕ ≤PE ϕ′ (8)

for T E ∪ {ϕ} ` ϕ′.
It is easy to see that if µ = λ and E ⊂ Vλ is a class of short extenders, then

PE is exactly W. Hugh Woodin’s extender algebra associated with E , cf. e.g. [8, pp.
1657ff.] or [2].

We say that E is rich iff for every Γ ∈ [L]λ there is some (κ, ν)–extender E ∈ E
such that

(i) κ < σ(E) < λ,

(ii) πE(κ) = λ ≤ µ ≤ ρ(E),

(iii) Γ ∈ ran(πE) ∩ Vρ(E), and

(iv) (πE)−1(Γ) ∈ Vσ(E).

For future references, cf. Theorem 4.5, let us also refer to E as “(λ, µ)–rich.”
If λ is a supercompact cardinal, then by exploiting Magidor’s characterization of

“supercompactness,” cf. e.g. [7, Problems 4.29 and 10.21], there is some rich E . This
follows immediately from the argument for [7, Problem 4.29].

6We assume here and in what follows that ult(V ;E) is always well–founded, so that we may
identify it with its own transitive collapse.
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If E is rich, then we may define a function g : [L]λ → [L]<λ as follows. For Γ ∈ [L]λ

let us pick some E ∈ E with properties (i) through (iv) above, and then define

g(Γ) = Γ ∩ ran(πE).

This gives a function g with properties (i) and (ii) as on p. 4.
The following is immediate.

Claim 4.1 Suppose that E is rich. Then T E ` ψ for every ψ ∈ T g.

Proof. Let ϕ be illegal and ϕ ∈ Γ \ g(Γ) for some Γ ∈ [L]λ. Let E ∈ E be the
extender which was used to define g(Γ).

Write Γ̄ = (πE)−1(Γ). We have that Γ̄ ∈ [L]crit(E) and∨∨
πE”Γ̄ =

∨∨
ran(πE) ∩ Γ =

∨∨
g(Γ),

and therefore
ϕ→

∨∨
g(Γ)

by an instance of (7). We showed the relevant instance of T g. �

We immediately get from Claims 3.1 and 4.1:

Claim 4.2 Suppose that E is rich. Then PE has the λ–c.c.

Let us now step out of W . Let A ⊂ µ, A ∈ V . We set

G′A = {ϕ ∈ PE : A � ϕ}.

Virtually the same proof as the one of Claim 3.2 combined with Claim 4.1 shows:

Claim 4.3 Suppose that E ∈ W is rich inside W . Assume also that A � T E . Then
G′A ⊂ PE is a PE–generic filter over W and

A = {ξ < µ : “ξ̌ ∈ ȧ” ∈ G′A} ∈ W [G′A],

and GA as defined on p. 5 is a Pg–generic filter over W and

A = {ξ < µ : “ξ̌ ∈ ȧ” ∈ GA} ∈ W [GA].
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Our next theorem produces a sufficient criterion for A ⊂ µ, A ∈ V , to be generic
over W which seems more useful than Claim 4.3.

This theorem suggests a way of making sets of ordinals generic over iterates of
models with supercompact cardinals. However, the existence of iterable models with
supercompact cardinals is a key problem of contemporary set theory.

Theorem 4.4 Let W ⊂ V be an inner model, let λ be a regular cardinal, and let
µ ≥ µ be a cardinal. Let E ∈ W be a class of W–extenders which is rich inside W .

Let A ⊂ µ, A ∈ V , and suppose that for every E ∈ E there is some elementary
embedding π̃ ⊃ πWE such that

π̃ : V →M

and A ∈ ran(π̃).
Then G′A is PE–generic over W , GA is Pg–generic over W , and

A ∈ W [GA] ∩W [G′A].

Proof. By Claim 4.3, we only need to verify that A � T E . Let E ∈ E , and let

πWE : W → ult(W ;E)

be the associated embedding as being formed inside W . By our hypotheses, there is
some elementary embedding π̃ ⊃ πWE such that

π̃ : V →M

and A ∈ ran(π̃). Write Ā = π̃−1(A). Let κ = crit(E).
Let Γ ∈ [L]κ ∩ V W

σ(E) and ϕ ∈ πWE (Γ) ∩ V W
ρ(E), where σ(E) and ρ(E) are defined

inside W .
Let us assume that A � ϕ. Then

M � “∃ϕ′ ∈ π̃(Γ)A � ϕ′,”

so that

V � “∃ϕ′ ∈ Γ Ā � ϕ′.” (9)

Let ϕ′ be a witness to (9). Then

V � “Ā � ϕ′,”

hence
M∗ � “A � π̃(ϕ′),”
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which implies that

A �
∨∨

πWE ”Γ.

We have verified that A satisfies an arbitrary instance of T E . �

The attentive reader might now be tempted to use Theorem 4.4 to formulate a
criterion for when V is generic over a given weak extender model W for λ being su-
percompact via some forcing with the λ–c.c. (cf. [10]), but any such criterion we were
able to come up with gives its conclusion from its hypothesis already via Bukowský’s
Theorem 3.3, cf. Corollary 3.4. By a theorem of Woodin, cf. [11], it is consistent that
V = HOD and if W is any weak extender model for the supercompactness of some
λ which is Σ2–definable from some α < λ, then necessarily W = V . (But cf. [10,
Theorem 174].)

We do have:

Theorem 4.5 Let W ⊂ V be an inner model, and let λ be a cardinal such that λ is
supercompact inside W . The following are equivalent.

(a) For every a ∈ V there is some poset P ∈ W such that P has the λ–c.c. in W
and there is some g which is P–generic over W such that a ∈ W [g].

(b) V = W [g], where g is generic over W for the long extender algebra PE , where
E ∈ W is (λ, 2λ)–rich inside W .

Proof. (b) ⇒ (a) is trivial.
Let us show (a) ⇒ (b). Write µ = 2λ, and let A ⊂ µ code P(λ) ∩ V as in the

statement of Theorem 3.3. Inside V , let C ∈ [Hµ+ ]<λ be club such that if X ∈ C,
then

X ≺ (Hµ+ ;∈, A).

By (a) and Corollary 3.4, there is some D ∈ [HW
µ+ ]<λ ∩ W such that D ⊂ {X ∩

HW
µ+ : X ∈ C} and D is club in W . Inside W , let E be the set of all extenders E

with ρ(E) = µ+ 1 and ran(πWE ) ∩HW
µ+ ∈ D.

As λ is supercompact in W , E is rich inside W , via Magidor’s characterization
of “supercompactness,” cf. e.g. [7, Problems 4.29 and 10.21]. It is easy to see that
the hypotheses of Theorem 4.4 are satisfied. We then get (b) by the conclusion of
Theorem 4.4. �

11



References

[1] Lev Bukovský, Characterization of generic extensions of models of set theory,
Fundamenta Mathematica 83 (1973), pp. 35–46.

[2] Philipp Doebler and Ralf Schindler, The extender algebra and vagaries of Σ2
1

absoluteness, Münster Journal of Mathematics 6 (2013), pp. 117–166.
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