A note on the $\lt \kappa$ mantle

If $\tau \subset \mathcal{O} \times \mathcal{O}$, then we write $\tau^{\{\xi\}}$ for $\{\xi : (\xi, \eta) \in \tau\}$; we call τ λ-small if $\tau^{\{\xi\}} \leq \lambda$ for all ξ, λ a cardinal.

Lemma 1. Let $V = W[G]$, where g is \mathcal{P}-generic over W, $\mathcal{P} \in W$ and \mathcal{P} has the λ^+-c.c.

Every λ-small $\tau \subset \theta \times \mathcal{O}$ in V is covered by a λ-small $\tau \subset \theta \times \mathcal{O}$ in W.

Proof: For each $\xi \in \theta$, pick $a_\xi \in [\mathcal{O}]^\lambda \cap N$, $a_\xi \supset \tau^{\{\xi\}}$. Then pick $R \subset \theta \times ([\mathcal{O}]^\lambda \cap N)$, $R \in W$, such that $a_\xi \in R^{\{\xi\}}$ and $R^{\{\xi\}} \leq \lambda$ for all ξ. Let $s \subset \theta \times \mathcal{O}$ be s.t. $s^{\{\xi\}} = \bigcup R^{\{\xi\}}$ for $\xi \in \theta$.

Let κ be a cardinal, the $\lt \kappa$ mantle (of V) is the intersection of all W, where...
$W[g] = V$, some g which is P-generic over W for a $P \in W \cap V$.

Theorem 1. Let κ be inaccessible. The κ mantle contains a inner model W, such that every $X \in V$ is P-generic over W for some P which has the κ^+-c.c.

Proof: Every κ ground P is identified by the witnessing TP, g and a rank initial segment of P of height κ, so that there are at most $\kappa \cdot \kappa^+$ grounds P of V. Let

$$\left(P_i : i < \kappa \right)$$

be a list of all of them.

Let $f : \Theta \rightarrow OR$. We claim that there is some $r \in \Theta \times OR$ in the κ mantle such that $r \supset f$ and r is κ-small.

In order to show this, let us construct sequences $\left(r_{ij} : i < \kappa, j \leq i \right)$, $\left(\lambda_i : i < \kappa \right)$,
as follows.

For each \(i \leq \lambda \), let \(\tau_i \) be the least regular cardinal \((\leq \lambda) \) such that each \(W_j \), \(j+1 \leq i \), is a \(\leq \lambda \) ground via a forcing which has the \(\lambda_i \)-c.c. We shall maintain that \(\tau_{ij} \) is \(\lambda_i \)-small.

Suppose \(\tau_{ij} \) has been chosen to be \(\lambda_i \)-small, \(i \leq \lambda \), \(j+1 \leq i \). Using Lemma 1, we then pick \(\tau_{ij+1} \in W_j \), \(\tau_{ij+1} \supset \tau_{ij} \), \(\tau_{ij+1} \cap \Theta \times \Theta \).

If \(j \leq i \) is a limit ordinal, \(i \leq \lambda \), and \(\tau_{ij} \) has been chosen for all \(j < i \), then we set \(\tau_{ij} = U \{ \tau_{ij} : j < i \} \).

If \(\tau_i \) has been chosen, \(i \leq \lambda \), we set \(\tau_{i+1,0} = \tau_i \).

If \(i \leq \lambda \) is a limit ordinal and \(\tau_{ij} \) has been chosen for all \(j \leq i < \lambda \), then we set \(\tau_{i,0} = U \{ \tau_{ij} : j \leq i < \lambda \} \).
This finishes the construction. We finally set
\[\tau = \bigcup \{ \tau_{i,j} : j \leq i < \kappa \} \, . \]

Of course, \(\tau \subset \Theta \times OR, \) and \(\tau \) is \(\kappa \)-small.

Also, \(f \in \tau. \) We need to verify that \(\tau \) is in the \(\kappa \)-mantle.

Let \(i < \kappa. \) To show that \(\tau \in W_i, \) it suffices to show that if \(A \subset \Theta \times OR, \ A \in W_i, \)

\(\bar{A} \leq \gamma_i, \) then \(\tau \cap A \in W_i. \) (This follows by approximation.) But \(\tau \cap A = \tau_{i*, j*} \cap A \) for a tail end of \(j* \leq i* < \kappa; \) in particular, there is some \(i* \geq i+1 \) s.t. \(\tau \cap A = \tau_{i*, i+1} \cap A; \)

as \(\tau_{i*, i+1} \in W_i, \) \(\tau \cap A \in W_i. \)

Theorem 1 now follows by well-known arguments.

In fact, we may finish off the proof of Theorem 1 as follows.

For each \(\lambda, \) there is some \(\Theta_{\lambda} \) and some \(\kappa\)-small \(\tau_{\lambda} \subset \Theta_{\lambda} \times OR \) such that \(\tau_{\lambda} \in \) the \(\kappa \)-mantle and if \(f \in H_{\lambda} \) is a function from a
ordinal to the ordinals, then there is some \(r \in L[\mathcal{E}] \) such that \(r \) is \(\kappa \)-small, \(r \supset f \).

There is a proper class \(X \) s.t. for all \(\lambda, \lambda' \in X \),
\[
\left(\frac{H}{(2^{2^{\lambda'}})^+} \right)^{L[\mathcal{E}]} = \left(\frac{H}{(2^{2^{\lambda}})^+} \right)^{L[\mathcal{E}]}.
\]

By Bukovsky's theorem and the folklore result, Theorem 2.2 of "The long extendible algebra," \(H^\lambda \) is generic over \(L[\mathcal{E}] \) for some forcing of size \(2^{2^\kappa} \) which has the \(\kappa^+-\text{c.c.} \), all \(\lambda \in X \), and we may assume that \(X \) was chosen in a way that this forcing is always the same.

Then \(W = \bigcup \{ H^\lambda_{\mathcal{E}} : \lambda \in X \} \) is as desired.

Theorem 2. Let \(W \) be as in Theorem 1.

Then \(H^{\kappa^+} \) is \(P \)-generic on \(W \) for some forcing of size \(2^{\kappa} \) which has the \(\kappa^+-\text{c.c.} \),
and \(W[H_{k+}^+] = V \).

Proof: We just need to see that \(PP(\kappa) \subset W[H_{k+}^+] \). Trivially, \(P(\kappa) \subset W[H_{k+}^+] \).

\(PP(\kappa) \) is \(\mathcal{P} \)-generic over \(W[H_{k+}^+] \) for some \(\mathcal{P} \) which has the \(\kappa^+ \)-c.c., by Bukowsky.

Let \(g \) be \(\mathcal{P} \)-gen. with \(PP(\kappa) \subset W[H_{k+}^+]g \), and let \(\tau^g = PP(\kappa) \).

Assume there is no \(p \in g \) which decides "\(\exists \tau \in T \) for all \(X \subset \kappa \), \(X \in W[H_{k+}^+] \) (\(\exists \tau \in V \)).

We may then produce \(\mathcal{Q} \) an antichain \(\{q_i : i < \kappa^+\} \) in \(\mathcal{P} \) as usual. Contradiction!

Theorem 3. Let \(\kappa \) be a measurable cardinal.

The \(< \kappa \) mantle is a model of \(ZFC \).

Proof: Let \(P \) be a \(< \kappa \) ground of \(V \), say \(P[g] = V \), \(g \) \(\mathcal{P} \)-generic over \(P \) for some
There exists a cardinal \(\kappa \) such that \(\mathcal{P} \subseteq \kappa \). Let \(j : V \rightarrow M = \text{ul}(V; \mathcal{P}) \) where \(\mathcal{P} \) is a fixed measure on \(\kappa \) witnessing \(\kappa \) is a measurable cardinal.

We have that \(\mathcal{U} \cap \mathcal{P} \subseteq \mathcal{P} \) whenever \(\kappa \) is a measurable cardinal in \(\mathcal{P} \), and \(j(\mathcal{P}) = \text{ul}(\mathcal{P}; \mathcal{U} \cap \mathcal{P}) \) and \(j^\mathcal{P} \mathcal{P} \) is the ultrapower embedding. [E.g., this is an elementary embedding from \(\text{ul}(\mathcal{P}; \mathcal{U} \cap \mathcal{P}) \mathcal{E}_0 \) to \(j(\mathcal{P})[\mathcal{E}_0] = M \) given by \((j^\mathcal{P} \mathcal{P} \mathcal{E}_0 (x)) \mapsto j^\mathcal{P} \mathcal{P} \mathcal{E}_0 (x) \) which is onto, etc.]

\(j(\mathcal{P}) \) is a \(\kappa \)-ground of \(M \). By Theorem 2, there is an inner model \(W \subseteq \bigcap \{ j(\mathcal{P}) : \mathcal{P} \text{ is a } \kappa \text{-ground of } V \} \) such that \(W \) is a \(\kappa^+ \)-ground of \(M \).

Let \(\widehat{W} = W[j^\mathcal{P} \mathcal{P} \mathcal{R}] \), (we may think of \(W = L[A], A \subseteq \kappa^+, \text{ and then } \widehat{W} = L[A, j^\mathcal{P} \mathcal{P} \mathcal{R}] \).)

Also write \(W^* \) for the \(\kappa \)-mantle of \(V \).
We have that \(W \subset \cap \{ \text{ult}(p; \text{uup}) : P \text{ is a } <k \text{ ground of } V \} \subset \cap \{ P : P \text{ is a } <k \text{ ground of } V \} = W^* \).

Also, \(j \) is amenable to every \(<k \) ground \(P \) of \(V \), so that

\[
(1) \quad \tilde{W} = W[\mathcal{J}^{\forall} \mathcal{O}^R] \subset W^*.
\]

Let \(X \) be a set of ordinals in \(W^* \). Then \(j(X) \) is in every \(<j(x) \) ground of \(M \), in particular, \(j(X) \in W \) (as \(W \) is a \(k^+ \) ground of \(M \)). But then \(X = \{ \exists \tilde{y} : j(\tilde{y}) \in j(X) \} \in W[\mathcal{J}^{\forall} \mathcal{O}^R] \). This shows that

\[
(2) \quad \mathcal{P}(\mathcal{O}^R) \cap W^* \subset \tilde{W}.
\]

Therefore, \(W^* \), the \(<k \) mantle of \(V \), is equal to \(\tilde{W} \) and hence a model of \(ZFC \).

*) using a theorem of Vopěnka and Balcar