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Abstract

Let N be a transitive model of ZFC such that “N C N and P(R) C N.
Assume that both V and N satisfy “the core model K exists.” Then K% is
an iterate of K, i.e., there exists an iteration tree 7 on K such that 7 has
successor length and M7 = K. Moreover, if there exists an elementary
embedding 7: V — N then the iteration map associated to the main branch
of T equals 7 | K. (This answers a question of W.H. Woodin, M. Gitik, and
others.) The hypothesis that P(R) C N is not needed if there does not exist
a transitive model of ZFC with infinitely many Woodin cardinals.

MSC: 03E15; 03E45; 03Eb55.

Keywords: Set theory; Core models; Large cardinals

0 Introduction.

The present paper isolates a sufficient criterion for when a given premouse is an
iterate of the core model.

The condensation lemma for L says that 3; hulls taken inside initial segments
of L condense to initial segments of L; i.e., if m: M — J, is X elementary and M is
transitive then M = J; for some & < . Such a strong form of condensation need
not be true for the core model. Let Kp; denote the core model of Dodd and Jensen
(i.e., the core model below one measurable cardinal; cf. [1]). If x is Ramsey in Kpy,
say, then it is easy to construct a fully elementary m: M — Kpy||k such that M
is transitive but not an initial segment of Kpj (cf. [1, Sec. 17]; Kp;||x denotes the
initial segment of Kpjy of height k). Nevertheless, there are weaker variants of the
condensation lemma for L which still hold true for Kpyj.

If m: M — Kpjl|a is X1 elementary, where M is transitive (and hence an iterable
premouse), then M is in fact an iterate of Kpy; i.e., there is an iteration 7 of Kp;
with a last model M7 such that M is an initial segment of M7 . However, even
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this is no longer true if we allow an inner model with a measurable cardinal and
replace Kpy by the core model below 0f (cf. [2]). The appropriate substitute for
many purposes and at higher levels says that for every a there are stationarily
many submodels of K ||« of any given uncountable size smaller than the cardinality
of @ which condense to iterates of K. Here the letter K is supposed to denote the
core model. Let us make more precisely what we have in mind.

We build upon the core model theory of Steel’s papers [10] and [11]. Let us
assume that there is no inner model with a Woodin cardinal, and that €2 is a mea-
surable cardinal. Then the core model K of height 2 exists (cf. [10, §5]). Suppose
now we are given a premouse M. We may ask whether there is an iteration tree 7
on K with a last model M7 such that M is an initial segment of M7 . If this is
the case then we say that M is an iterate of K.

We shall prove that a premouse M is an iterate of K provided that M is the core
model of a transitive structure H which to a certain extent resembles V. (Basically,
we shall require that H be a coarse premouse in the sense of [4].) We shall in fact
prove this result without having to assume that there be no inner model with a
Woodin cardinal; cf. our Theorems 2.1 and 2.2.

Let us warn the unexperienced reader, though, that if an iteration tree 7 on K
witnesses that M is an iterate of K then there does not have to be an iteration map
from K to M being associated to 7; the reason for this is that 7 might involve
“drops.” If, however, H is a coarse premouse and there is an elementary embedding
m:V — H then, as we shall prove, 7 | K arises from an iteration tree on K (with no
drops on the main branch); cf. our Corollary 3.1. As a second warning, this result is
much less obvious than it might appear at first glance; if 7 is given by an iteration
tree U on V then the iteration tree 7 on K from which 7 [ K arises can have a tree
structure which is significantly more complicated than the one of U.

Let us add some historical background information. Jensen has shown (cf. [3,
§5.3 Lemma 6]) that every universal weasel is an iterate of K, provided that 0¥ does
not exist. His proof in fact shows that if there are no ordinals k < p such that

(1) K||p = “k is strong,” and K |= “u is measurable,”

then every universal weasel is an iterate of K. (In fact, the iteration trees on K
witnessing this will all be “almost linear” in the sense of [10, p. 83].) On the other
hand, Steel has shown (cf. [8, Lemma 8.21]) that if there are k < p such that (1)
holds then inside K¢°“<#) there is a universal weasel which is not an iterate of K.
Steel has also shown in general that K embeds into all universal weasels (cf. [10,
Theorem 8.10] for a precise statement).

It was open for many years whether the core model of an ultrapower Ult(V; U) of
V by a measure U witnessing that some cardinal is measurable has to be an iterate



of K. W.H. Woodin, M. Gitik, and others had asked this question. Our Corollary
3.1 gives an affirmative answer to this question.

The main bulk of work, however, which is necessary for proving this theorem is
provided by the paper [5].

The papers [5] and [9] provide examples of situations in which it appears nec-
essary to know that certain premice are iterates of K. In particular, the “covering
argument” (by which we mean the argument of [5] leading towards a proof of weak
covering for the core model K) is to a large extent a verification of the fact that
certain submodels of initial segments of K condense to iterates thereof. Specifically,
the paper [5] for example shows that if 3% < o < € then there are stationarily many
submodels of K||a of size 8% which condense to an iterate of K. Our Theorem 2.2,
when used as a black box, will also simplify the proof of [10, Theorem 3.1].

1 Preliminaries.

We need a word for transitive structures in which the core model can be built. We
picked “coarse premouse,” as ours will resemble the coarse premice of [4] to a large
extent (and we want to avoid an inflation of terminology). In this paper, by “coarse
premouse” we shall always mean a structure in the following sense.

Definition 1.1 A transitive structure H = (H;€,Q%,U™) is called a coarse pre-
mouse provided the following hold.

(1) " = ZFC~ (in the language {€}), where ZFC~ = ZFC— the power set aziom,
(2) H = “ U witnesses that Q* is a measurable cardinal,”

(3) H = “every premouse is tame, and () is excellent,” and
(4)“H C H.

A comment on “ ) is excellent” should be in order. Suppose that V = (V;€,Q,U)
is a coarse premouse. We can then define the K¢ of [11] of height Q. Let X be the
following strategy for iterating K°. (Cf. Definition 1.2 below.) If 7 is an iteration
tree on K€ of limit length A then we let X(7) = ¢, where c¢ is the unique cofinal
branch b through 7 such that there is a Q-structure P < M] for T, if such b
exists (otherwise we let X(7) being undefined). P is a Q-structure for 7 if P is a
premouse such that §(7) is a strong cutpoint of P, there is some k& < w such that P
kills the Woodin property (of 6(7)) at k, and countable submodels of P are w; + 1
iterable above §(7) (cf. [11, Definition 2.1]). The assertion that ) is excellent means
that ¥ is an iteration strategy for (stacks of) normal trees on K°. In particular,
the excellence of () (together with the measurability of Q) implies that the true core
model K of height Q can be isolated. (This is shown in [11]; cf. [11, Theorem 2.20].)
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As this paper will be based on the theory of [11], we invite the reader to consult
the first two sections of [11] for details. In particular, [11, Definition 2.14] provides
the definition of the concept of excellence. Any reader who does not know [11] (but
who knows [10]) may in what follows replace in his mind the assumption “ () is
excellent” by “there is no inner model with a Woodin cardinal;” all Q-structures
will then be of the form J,(M] [|6(T)).

Let H = (H;€,Q% U™) be a coarse premouse. We shall denote by K* the true
core model of height Q7 constructed inside H. We now aim to prove that any K*
is sufficiently iterable.

Definition 1.2 We define a partial function
X: T—V,

where T 1s the class of all iteration trees of limit length on a premouse or phalanz.
Let T € T. Then we let ¥(T) be the unique cofinal branch b through T such that
Q = Q(Mu(T)) emists (cf. [11, Definitions 2.1 and 2.2]) and Q < MJ . If no such
branch b exists then we let X(T) undefined.

We have that X (restricted to iteration trees on M) is a putative iteration strat-
egy for any premouse or phalanx M. [11, Section 2| provides important information
on this strategy.

Convention. Throughout this paper we shall assume that 2 and U are such that
V= (V;€,Q,U) is a coarse premouse. We shall write K for K.

The fact that () is excellent implies that X is an € iteration strategy for K and
therefore witnesses that K is {2 + 1 iterable. By abuse of language, we sometimes
refer to X as an iteration strategy, although it might not witness the iterability of a
given premouse M.

Definition 1.3 Let M and N be premice. We say that M and N are coiterable
via the iteration strategy ¥ if there are (padded) normal iteration trees T on M and
U on N of successor length 6 + 1 such that

(1) the pair ET, E4 constitutes the least disagreement between M7 and MY for all
a <,

(2) [0,\)7 =2(T T A) and [0,N)yy = Z(U [ A) for all limit ordinals A < 6, and

(8) M] and MY are lined up.

Lemma 1.4 Let H = (H;€,Q",U") be a coarse premouse with Q" < Q. Suppose
that P(R) C H. Then K™ is coiterable with K via the iteration strategy X.
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PROOF. Let 7 and U be the (padded) putative iteration trees on K and K*,
respectively, arising from the comparison of K with K* as being induced by the
iteration strategy . We let 6 be the least ordinal such that either € is a limit
ordinal and X(U | 6) is not defined, or else 6 is a successor ordinal and MY | is
ill-founded or M]_, and MY | are lined up. Standard arguments give that 6 =
Ih(T) = lh(U) < Q + 1. We have to show that 6 is a successor ordinal and M]_,
and MY_, are lined up.

Suppose not. Let us first assume that 6 is a limit ordinal. Let b = X(7). We
may let Q be the shortest initial segment of M] such that a counterexample to §(7)
being Woodin is definable over Q, i.e., @ = Q(b, T). Pick 0: V — Vi, such that V
is countable and transitive and such that {K, K*,T,U, Q} C ran(c). Notice that
{V,o | o71(K™)} C H.

For every limit ordinal A\ < o0~*(6) we have that [0, X),-1() is the unique cofinal
branch ¢ through o= ') | X such that Q(c,o *(U) | A) is wy + 1 iterable. This
fact relativizes down to H, as P(R) C H. As ¥ is an iteration strategy for K%
inside 4, we shall get that in H there is a cofinal branch b through o' (i) such
that Q(b,0~'(U)) is w; + 1 iterable. [Working inside H, we may copy o~ (U) onto
K*. Tt is straightforward to see that the copying construction goes through at limit
stages (!). In the end, this will also give us the desired object b.] The fact that
Q(b,o 1 (U)) is wy + 1 iterable will hold in V as well, as P(R) C H.

A standard comparison argument now shows that Q(b,c *(U)) = o 1(Q). We
may therefore define b inside / Collw.aH(3(T)) a5 the unique cofinal branch ¢ through
o~ Y(U) such that Q(c,0*(U)) = o071(Q). Thus b € V. Furthermore, in V we
have that b is the unique cofinal branch ¢ through 0=1(Q) such that Q(c,o™*(U)) =
o 1(Q).

But now we may just apply o: V — V., to deduce that there is a unique cofinal
branch d through U such that Q(d,U) = Q. Hence X(U) is well-defined after all.
Contradiction!

In the case that 6 is a successor cardinal an argument which is a simple variant
of the argument just given will yield that MY | is well-founded. Therefore M]_,
and MY | must be lined up.

O (1.4)

The reader will have noticed that the only use of P(R) C H in the proof of
Lemma 1.4 was that it implies that w; + 1 iterability of the relevant countable Q-
structures is absolute between V and H. The requirement that P(R) C # might
often be an overkill. If for example every premouse is w-small then R C H will
be enough to get the desired absoluteness. Of course, R C A follows from (4) of
Definition 1.1.



Lemma 1.5 Let H = (H; €,Q%) be a coarse premouse with Q* < Q. Suppose that
every premouse is w-small. Then K™ is coiterable with K via the iteration strateqy
3.

Below we shall frequently use the following notation. Let M be a premouse, and
let « < M N OR. Then M||a denotes M cut off at o with top extender EA* (if
EM £ 0; so M||a is active if and only if E # (). We shall also confuse M ||«
with its underlying universe.

The next section contains the proof of the main result of this paper. This proof
builds directly on the covering argument of [5]. The reader should have some ac-
quaintance with that paper.

2 The main result.

Theorem 2.1 LetH = (H; €,Q% U™) be a coarse premouse with Q™ < Q. Suppose
that P(R) C H. Then K* is a normal X-iterate of K.

PROOF. Let 7 and U denote the iteration trees on K and K7, respectively,
arising from the comparison of K with K* as being induced by the iteration strategy
Y. Lemma 1.4 tells us that we’ll get last models M7 and M% with M7 > MY
We aim to show that MY = K*.

For any ordinal v, we say that U is beyond v if and only if for all « + 1 < [h(U)
we have that

EY # 0 = IhEY) > v.

We aim to prove that U is beyond v for all v < Q*. Our proof will exploit many
of the key ideas of [5]; in fact, our proof will be parallel to the one of [5] to such an
extent that it will be possible to directly cite some of the lemmas appearing in [5].
It is worth emphasizing that [5] nowhere really uses the assumption that there is no
inner model with a Woodin cardinal; rather, it is enough for the arguments of [5] to
go through that (V;€,Q,U) be a coarse premouse (in our sense).

Let us suppose that there is some v < Q% such that I is not beyond v. Let ¢
denote the least v < Q% such that U is not beyond v. We shall eventually derive a
contradiction. Let W be the canonical very soundness witness for K||¢TY, and let
W* be the canonical very soundness witness for K*||(T# from the point of view
of # (cf. [10, Theorem 8.3]). Notice that we may construe iterations of W, W# as
iterations of K, K™, respectively; in particular, W and W% are coiterable via the
iteration strategy X by the proof of Lemma 1.4. Let ag + 1 < Ih(U) be such that
EY # 0 and [h(E¥ ) = (; we may and shall from now on construe 7 [ (ap + 1) and
U | (g + 1) as iteration trees on W and W, respectively.
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Let (k;:i < ) be the order preserving enumeration of the set of cardinals of

K*||¢ = WH||¢, and let
\; :IierHHC

for each ¢ < 7. (We understand that A\, = (.) Let, for ¢ < v, §(7) be the least 3 <
ap+1 such that x; < V(E’%l) if there is some such 3; if not, we let §(i) = ag+1. We let
P; be the longest initial segment P’ of M,y such that P(k;) NP’ = P(r;) N K*|C.
(Then P; either is a weasel with class projectum < k;, or else P; is a k;-sound
premouse with p,,(P;) < k;.) For any i < v we let P();) denote the phalanx

(Pj:j <)~ WM, (] <i)).

In the language of [5, Definition 2.4.5], P();) is a special phalanx for every i < 7.

We also want to emphasize that for any ¢ < v, if V is a putative iteration tree
on P();) arising from the comparison with W then V will be a special tree in the
sense of [5, Definition 2.4.6]. The only thing to notice here is that if Eg’ is least with
EY # 0 then EY = EX™.

As a matter of fact, [5, Lemma 3.15] now shows that if P(¢) is iterable then ¢
is beyond ( after all, giving a contradiction. Actually, in order to get the desired
contradiction it obviously suffices to have that P(¢) be coiterable with W,

Before proving that P(¢) is coiterable with W we note the following.

Claim 1. Let i < . If 75()\1) is coiterable with W via the iteration strategy %
then ((W* P;), \;) is iterable via X.

PROOF. Fix i <. Let V and W denote the (padded) iteration trees on P(\;)
and W, respectively, arising from the comparison of ’ﬁ(AZ) with W as being induced
by the iteration strategy . By standard arguments the main branch through V gives
us an elementary embedding p;: W* — W; such that p; | k; = id, Wi||\ = WH||\,,
and W; < M.

We'll of course have that W [ ag+1 = T | ap + 1. It is thus clear that
My = My, so that P; < My, Because the phalanx (MY, M), \;) is
iterable (cf. [5, Fact 3.19.1]), the phalanx ((W;, P;), \;) is now iterable as well. We
may then use the maps p; and id | P; and argue exactly as for [5, Lemma 3.16] to
show that ((W*,P;), \;) is iterable.

[We remind the informed reader that the proof of [5, Lemma 3.16] goes beyond
that of [10, Theorem 8.6] in that the slightly more sophisticated copying construction
from the proof of [10, Theorem 6.11] has to be built in.]

O (Claim 1)



We have argued that in order to finish the proof of 2.1 it suffices to show the
following.

Claim 2. For all i < v we have that P();) is a phalanx which is coiterable with
W via the iteration strategy .

PROOF. The proof is by induction on 7 < «. Fix ¢ < 7, and suppose that for all
J < i we have that P(};) is a phalanx which is coiterable with W via the iteration
strategy Y. Claim 1 therefore immediately gives the following.

Subclaim 1. For all j < i we have that (W%, P;), ;) is iterable.

We now write v = \;, and P = P(v). We let V and W be the (padded) putative
iteration trees on P and W, respectively, arising from the comparison of P with W
as being induced by the iteration strategy . We let # be the least ordinal such that
either @ is a limit ordinal and 3(V [ ) is not defined, or else 6 is a successor ordinal
and M} | is ill-founded or M) ; and M)}V, are lined up. Standard arguments give
that 0 = [h(V) = lh(W) < Q+ 1. We have to show that @ is a successor ordinal and
that M}_, and M}, are lined up.

Let 0:V — Vg,. be elementary, where V is countable and transitive, and
{P,W,V,W} C ran(c). If 6 is a limit ordinal then we may and shall also require
that @ = Q(X(W), W) € ran(o). It will be crucial that

(2) {(Vio o' (WH)} C H,

which holds true by “H C H.
Let j € iNran(o). Set P; = o~ '(P;), and let

Q; = Ult,(Pj,o | o (K™||)\)))

be the (long) ultrapower of ’Pj by the appropriate restriction of o, where n < w is

largest such that p,(P;) > k;. Let 0;: P; — Q; be the ultrapower map. (See [5,

§2.5].) There is a canonical embedding o;: @; — P; such that o; 0 g; = o [ P;. Set
- B o,

\j = sup ran(o [ o7 (X)) = sup(ran(o) N \;) = K

Unfortunately, Q; will be a protomouse (rather than a premouse) if and only if
p1(P;) < k; and P; has a top extender with critical point u < k; such that
cfY(ut%i) > w (in which case o, and hence ¢, will be discontinuous at o= (u*%7)).
(See [5, Lemma 2.5.2].) In this case we shall replace Q; by a premouse. (It is not
hard to verify that our replacement function P; — Q; is the same as the one which
is defined in [5], although [5] gives its definition in a different way.)
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Let still j € iNran(o). We aim to define R;.
Case 1. Q; is a premouse.

In this case we just set R; = Q;. Notice that we may use the maps id | W™ and
o; to see that (W™, R;), ),) is iterable by Subclaim 1.

Case 2. Q; is not a premouse.

Let 41 be the critical point of the top extender of P;, let n > sup(ran(c)Nu*%i) be
least such that p,(Q;||n) < p, let n < w be such that p,41(Q;|n) < p < pn(Q;lIn),
and let F' be the top extender fragment of Q;. Let us set

Rj =Ultn(Qjlln, F).
Let G be the top extender of P;. We may define an 7%, elementary embedding
i Rj — Ulto(Py; G)|lia(n)

by setting
[CL, f]%]H" = [Jj(a)v f]gj .

Of course, Ulty(P;; G)|lic(n) = Ulte(W™;G)|lic(n). Also, ¢; | A\j = id, because
0j r )‘j = 1id.
There is now a further case split. Let us denote by (x) the assertion that

EJi = Eé(ﬁ #0, 7(EJ) = p, and s(EY) = 0.
The object R; will be a premouse if and only if (x) does not hold.
Case 2A. (*) does not hold.

In this case we simply set
R; =R;.
Using the maps id | W and ¢; we may copy any iteration tree on the phalanx
(WH R;), ;) onto (W, Ulto(W#; G)|lic(n)), \;). But any iteration tree on this
latter phalanx may be construed as an iteration tree on ((W*,P;), \;). Subclaim 1
therefore implies that ((W?#,R;), );) is iterable.

Case 2B. (x) does hold.



Let us write H for the top extender of R;, which is the “stretch” of E,,Q I = Efﬂ
by F. In this case H does not satisfy the initial segment condition, and R; is thus
not a premouse. We hence have to define R; differently.

We set

Rj = Ulto(KH, H)

Let H denote the top extender of Ulty(P;; G)|lig(n). As ¢; is r¥, elementary, we
may define a fully elementary map
@i: Ry — Ulto(K™; H)
by setting .
H
la, fli = lpi(a), flg -

We'll have ¢; | 5\]- =@; | 5\]- = id. Using the maps id [ W™ and $j we may copy

any iteration tree on the phalanx (W#, R;), \;) onto (W™, Ult(K*; H)), ;). But
any iteration tree on this latter phalanx may be construed as an iteration tree on

(W™,P;),\;). Subclaim 1 therefore implies that (W™, R;), \;) is iterable.
This finishes the definition of R;. Notice that we have proved the following.
Subclaim 2. ((W*,R;), );) is iterable whenever j € i N ran(o).

Now because of (2) we have that {(P;: j € iNran(c)),o | o7} (W)} C H, and we
easily get that (Q,:j € iNran(o)) € H, and thus that (R;:j € iNran(o)) € H. (Of
course, H does not see all of o, but the set iNran(o) does exist in .) An argument
exactly as for Lemma 1.4 hence shows that Subclaim 2 implies the following.

Subclaim 3. H = “(W*,R;),);) is coiterable with W* via the iteration
strategy 3,” whenever j € i N ran(o).

Let R denote the phalanx

((R;:j € inran(o))” W, (A,:j € iNran(o))).

Subclaim 4. H = “R is iterable with respect to special iteration trees.”

PROOF. Let us work inside H. Let j € i N ran(o). By Subclaim 3, stan-
dard arguments yield an iterate W; of W* together with an elementary embedding
TjZRj — Wj such that Tj r )\j =1d.
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Let W denote the phalanx
(W;:j €inran(o))” W (\;:§ € iNran(o))).

We know that W is iterable with respect to special iteration trees by [5, Fact 3.19.1]
(applied inside H). But this readily implies Subclaim 4, due to the existence of the
sequence of maps (7;: j € i Nran(o))id | WH.

O (Subclaim 4)

Let O denote the phalanx
((Qj:7 € iNran(o))" W, (A:j € i Nran(0))).

By the proof of [5, Lemma 3.18] (run inside ) we see that Subclaim 4 implies the
following.

Subclaim 5. H = “J is iterable with respect to special iteration trees.”

We may now finish the proof of Claim 2 by an argument as for Lemma 1.4. Let
us work inside H until further notice. Recall that for each j € i N ran(o) we have
an embedding

0j: ,Pj — Qj,
and we have
ol o' (WH): o7t (WH) - W,
We have that 5; [ 07 (A\) = 0% [ 07 (\) =0 [ 07 () for k& < j € iNran(o),
so that we may now copy o~'(V) (being a tree on o~ (P)) onto G getting a special
iteration tree on Q
Let us now first assume that 6 is a limit ordinal. An argument exactly as in the

proof of Lemma 1.4 will then give us a unique cofinal branch b € V such that from
the point of view of V, Q(b,071(V)) = 071(Q). (Recall that @ = Q(Z(W),W).)
By finally stepping outside of H and applying o: V' — V., we may hence conclude
that (in V) there is a unique cofinal branch ¢ through V such that Q(c,V) = Q.
Hence (V) is well-defined after all.

Hence 6 cannot be a limit ordinal. A variant of the argument just given then
shows that M} | must be well-founded. Therefore, M} |, and M}”, are lined up.

This is what we were trying to show.

O (Claim 2)
0O (2.1)

The same proof (with the use of Lemma 1.4 replaced by the use of Lemma 1.5)
yields the following result.
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Theorem 2.2 Let H = (H;€,Q™) be a coarse premouse with Q" < Q. Suppose
that every premouse is w-small. Then K* is a normal X-iterate of K.

3 An application.

Corollary 3.1 Suppose that the measure U witnesses that §2 is a measurable cardi-
nal, every premouse is tame, and O is excellent. Let m : V — M be an elementary
embedding coming from a finite coarse iteration tree on V living on Vy (i.e., all
extenders used are elements of Vo and images thereof) such that M is transitive
and “M C M. Let K" = 7(K) be the core model of H, where K = KV:¢%U) and
H = (M;€,Q,7(U)). Then K* is a normal iterate of K, i.e., there is a normal
iteration tree T on K of successor length < Q+ 1 such that MT, = K*. Moreover,
we’ll have that i, =7 | K.

PROOF. This readily follows from Theorem 2.1 by the argument in the proof of
[10, Lemma 7.13]. The existence of T is given by Theorem 2.1. It remains to be
shown that 7y, =7 [ K.

Let W be a (linear) iterate of K such that € is thick in W and there is some
o: K — W with Def(W) = ¢” K (cf. [10, Lemmas 8.2 and 8.3]). For each z € K,
m(o(x)) = w(o)(w(x)), and hence mroo =7(o)om. Let i: W — Q and j:7(W) — @
arise from the comparison of W with w(W). Then for each term 7 and for each
vector & of fixed points under both i and 7, i(7"[5]) = 79[5] = jonr (7" [5]). Putting
these things together buys us that

(3) ioo=jom(o)om.
Now suppose that 7, (§) # 7(£) for some € < €. (3) would then imply that
(4) i00(€) # jom(0) om ().

However, both i o ¢ and j o 7(0) o w],, arise from iterations of K. (4) therefore

contradicts the Dodd-Jensen Lemma (cf. [6, Lemma 5.3]).
0 (3.1)

Ifr:V — M is an elementary embedding coming from an infinite coarse
iteration tree on V then M cannot be closed under countable sequences. We do not
know if Corollary 3.1 still holds true if in its statement the word “finite” is crossed
out and the hypothesis that “M C M is dropped. E. Schimmerling pointed out
that Corollary 3.1 still holds true if in its statement the word “finite” is replaced
by “countable,” the hypothesis that “M C M is dropped, but it is further assumed
that the tree on V' be p-maximal in the sense of Neeman’s paper [7].
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Corollary 3.2 (Schimmerling) Suppose that the measure U witnesses that ) is
a measurable cardinal, every premouse is tame, and () is excellent. Let w: V — M
be an elementary embedding coming from a countable coarse iteration tree U on V'
living on Vg (i.e., all extenders used are elements of Vo and images thereof) such
that M is transitive. Suppose that U is p-maximal. Let K™ = m(K) be the core
model of H, where K = KVi&%U) and H = (M;€,9Q,7(U)). Then K™ is a normal
iterate of K, i.e., there is a normal iteration tree T on K of successor length < Q+1
such that M1 = K*. Moreover, we’ll have that nl,, =7 | K.

PROOF skETCH. We have to run the proof of Theorem 2.1. The assumption that
“H C H was used there just in order to get (2), i.e., that {V,o | o7 *(W")} C H
(we borrow the notation from the proof of Theorem 2.1). In the situation of the
statement of Corollary 3.2, it might be false that “M C M. However, it’ll certainly
still be true that V € M (as R C M). The point is now that due to the fact that U
is countable and p-maximal it’ll also be true that the map o | o= (W™) is generic
over M (this is shown in [7]). This suffices for finishing off the argument which
shows that U is trivial (again, we borrow the notation from the proof of Theorem
2.1). The “Moreover” part is shown as in the proof of Corollary 3.1.

0 (3.2)
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