today: pg. 57: double sci + firm analyses.

Let: \(P \) is not proper.

\[\text{pg}: \text{ suppose that } x \in X \subseteq \mathbb{R}, \text{ etc.} \]

may find \(G \) so \(P \)-f.p. in \(V \) s.t.

\[X \cap G \cap H = X \cap H \]

where \(x = X \cap \eta \).

So if \[\eta \in \eta \]

\[N \cap G = X \cap G \subseteq H \cap \eta \cap \)

\[\eta \cap (H \cap \eta \cap \eta \cap \eta) \cap \eta \cap \eta \cap \eta \cap \eta \]

get by \(G \), then

\[M = \eta \cdot (H \cdot \eta \cdot \eta \cdot \eta \cdot \eta) \cap \eta \cap \eta \cap \eta \cap \eta \cap \eta \]

\[= (H \cdot \eta \cdot \eta \cdot \eta \cdot \eta) \cap \eta \cap \eta \cap \eta \cap \eta \cap \eta \]

so if \(H \) is ex., then \(H \) is in \(V \) and is unique to \(H \)

in \(V \) which is not in a boundary.
recall:

\[\text{THM (double-shRN)} \quad TFAE \]

1. \(N_{\mathbb{R}_1} \) is precipitous + \(\mathfrak{p} \) for \(\mathfrak{b} \), \(\mathfrak{p} \in \text{des-pmax} \)

2. \(\text{(*)} \)

proof: \((2) \Rightarrow (1) \) (magidor–foreman–melah)

let \(\mathcal{M} \) be an antichain in \((N_{\mathbb{R}_1})^+ / N_{\mathbb{R}_1} \), and let \(S = S(\mathcal{M}) \) be the corresponding scaling forcing.

in \(X \subseteq H_\alpha \)

in \(\mathcal{G} \subseteq X \), \(\mathcal{G} \) is \(\mathfrak{p} \)-preserving, and \(\mathcal{G} \) is \(S \)-preserving.

\[\chi_{\mathcal{G}} \prec H_\alpha \setminus \mathcal{G} \]

(also \(\chi_{\mathcal{G} \cap H_\alpha} \prec H_\alpha \)).

thus \(\alpha = X \cap \mathbb{R}_1 = \chi_{\mathcal{G} \cap \mathbb{R}_1} \).
let \((C, e: s_1 \rightarrow \alpha_1)\) be \(\pi^n\) be \(G\)

in \(CC_u\), is \(\alpha_1\), ad for all \(\beta \in C\),

there is some \(p < \beta\) s.t. \(\beta \in e(p)\).

hence \(\alpha \in C\), so \(\alpha \in e(p)\), for \(p < \alpha\).

so \(e(p) \subseteq X \subseteq e(p)\).

by absoluteness, in \(V\), there is some

\(Y \supset X\), \(X \times Y \not\subseteq H\), \(\forall\alpha \omega, x \in X\), \(\tau \alpha\),

\(e(p) \subseteq Y\), i.e.,

\(\exists s \in \alpha \forall y \in S\).

using this, we may build a tower of structures

whose union is Z

\[Z \subseteq H \omega, \quad \alpha = Z \omega_1 \]

so if \(\beta \in Z\) is an ordinal, then

\(\exists s \in \alpha \forall y \in S\), hence Z is "self generous," i.e., if
\[N \equiv 2 \times H_X \]

and \(u \) is the \(N \)-neighbor \(n \) such that \(u \in \cup_{v \in N}

\(\left(NS_m \right) \)

may be fixed \(S \in (NS_m)^+ \). As the outcome,

picked \(x \) s.t. \(x = x_n \in S \).

then can be had \(S \vdash \text{Un}(v, \xi) \) is ill-

\[v \]

\[S \vdash \text{Un}(N, \xi) \text{ ill-ref.} \]

\[\text{(2) } \Rightarrow (1) \]

\textbf{Remark:}

can step up the

the larger pie also shows that

\((+) \Rightarrow \{ x \times H_x : x \text{ is self-m.} \} \)

is stach.

it is easy to verify that this conclusion is

equivalent to the precipitation of \(N S_m \).

can be: \(N S_m \) or \((=) \{ \ldots, 3 \text{ is club} \). \)
\[y' \text{'s ends} \]

\textbf{General: TFAE}

1. \(\mathcal{N}_\omega \) is \{ \text{precession} \}

2. \(\{ x < \mathcal{H}_\omega : x \not\in y_{-\omega} \} \) is \{ \text{stationary} \}

\(\text{If } (1) \Rightarrow (2), \text{by double-nach : we need a stationary of chang's conjecture :} \)

\text{def. } \mathbf{CC}^{**}:

\(\forall \omega : \omega > \omega \geq \omega_2 , \text{ if} \)

\[x < \mathcal{H}_\omega + \alpha \in [\omega]^{\omega} \]

then there is some \(y, \)

\[x < y < \mathcal{H}_\omega \]

\(y \cap \omega = x \cap \omega \quad \text{and} \quad \exists \beta \in y \cap [\omega]^{\omega} \ni \beta > \alpha, \)
\[\text{Proof: } \forall \gamma = \omega_2, \forall \omega_1 \text{ is ordinal of } \mathbb{C}^* . \]

\[(1) \Rightarrow \mathbb{C}^{**} : \]

\[\text{fix } \Theta = \Theta \geq \omega_2, \text{ fix } X < H_\Theta, A \in \lambda \omega, \]

we have a supra for \(\gamma \) for adding \((M_i, \pi_i: i \leq \omega_1) \), given by \(G \).

So all \(h_i, i < \omega_1 \) are \(\text{clo} \), \(M_{\omega_1} = H_\Theta \).

In part, \(a \in M_{\omega_1} = \text{Hull}_{\mathcal{H}_\Theta}(\omega_1 \cup \text{ran}(\pi_{\omega_1})) \),

so \(a = t^{\mathcal{H}_\Theta}(\gamma_0, y), \quad \gamma_0 < \omega_1, \quad y \in \text{ran}(\pi_{\omega_1}) \).

Set \(b = \left(\bigcup \{ t^{H_\Theta}(\gamma, y) : \gamma < \omega_1, \quad t^{H_\Theta}(\gamma, y) \leq \gamma_1 \} \right) \)

\[\bar{b} \leq \gamma_1, \quad b \in \mathcal{V}_0 \text{ is a } \mathcal{V}_0 \text{-set. In fact,} \]

\[b \in \text{ran}(\pi_{\omega_1}), \quad a \text{ is defined for } \]

\[\text{far beyond } \text{ran}(\pi_{\omega_1}). \]
\[M = \{ x \in \mathbb{C}^n : x \neq 0 \} \subset \mathbb{C}^n. \]

If \(x \in X \), then by construction

\[b \in \mathbb{C}^n \subset \text{ran} (\pi_{\omega_1}). \]

Now by absolute, \(x \perp y \) there is \(\gamma \)

\[X \perp y \subset \mathbb{C}^n \quad \gamma \omega_1 = x \omega_1. \]

\[\exists \beta \in \mathbb{R}^\omega \setminus \{ 0 \}, \beta > \alpha. \]

Thus, when (1) \(\leftrightarrow \mathbb{C}^{\star \star} \).

def. \(S \subset \mathbb{C}^\omega \) is semi-infl. if

\[\left(\bigcup_{x \in S} \{ y \in \mathbb{C}^\omega : y \perp x \} \right) \text{ is stat. } \quad x = y. \]

\[SSR(\mathbb{C}[\mathbb{C}^\omega]) \equiv \text{semi-infl. rep}. \equiv \]

\[S \subset \mathbb{C}[\mathbb{C}^\omega] \text{ semi-infl.} \Rightarrow \exists w \in A (\mathbb{C} = N \land \]

\[S \cap \mathbb{C}^{\star \star} \text{ semi-infl. in } \mathbb{C}[\mathbb{C}^{\star \star}]. \]
\[
cc^* \rightarrow s_{\not\exists}(\exists^x) \forall \lambda \equiv \omega_2.
\]

Proof: Let \(S \subseteq \exists^\omega \) be \(\Delta^0_2 \).

\[T = \{ y \exists^x : y \in \exists^\omega, x \in S \} \text{ s.t.} \]

Suppose, f.a. \(w \in T \), \(\bar{w} = \eta \).

\[S_w = \{ y \exists^x : y \in \exists^\omega, x \in S \cap \exists^w \} \]

is not s.t. when \(y \exists^w \). \(f_w : \exists^w \rightarrow w \).

Let \(a \in \eta \). \(\exists \eta \) \(X < H_\eta \), \((f_w : w \in \exists^w, \bar{w} = \eta) \in X \)

s.t. \(X \cap \eta \in T \).

\(a = \omega \cup (X \cap \eta) \).

Then

\[X \lessdot \gamma < H_\eta, \quad \gamma \in X \]

s.t. \(\eta \in \gamma \) for some \(\gamma \in \exists^\omega \).

If the def. of \(T \), then is some \(x \in S \),

\[x \in X \cap \eta = \gamma \cup \eta \]
by the choice of $f_b : [b]^\omega \to b$,
\[\{ z \in [b]^\omega : z \text{ closed } \downarrow f_b \} \cap S_b = \emptyset. \]

Thus, $y_{nb} \in [b]^\omega$, $y_{nb} \supseteq x \in S$, $x \in [b]^\omega$

\[(y_{nb})_n \omega_1 = y_{n \omega_1} = x_\omega \omega_1 = 2^n \omega_1, \]
if $\exists x$, $\exists Xn\lambda$, so $\exists b > Xn\lambda$ and $\exists \epsilon \forall Y$

So $y_{nb} \in S_b$.

but also $f_b \in Y \ (a, b \in Y)$, so

y_{nb} is closed $\downarrow f_b$.

whence!

\[\text{cc}^{**} \Rightarrow \text{ssr} ([a]^\omega) \]

$h_e (\text{numb})$; $\forall \text{ ssr} ([a]^\omega) \Rightarrow (\dagger)$
\(\forall p \in P \) \exists \text{ winning strategy } s_t \ni

Fix \(s \). Assume the win \(X \) s.t.

\[X < V_n \]

and this is no \(q \leq p \) and is \(s_t \)-win. \(X \)

is stationary.

So \(\mu \) is a \(\mathcal{W} \in V_0 \) of the \(\lambda \) s.t. \(\mathcal{W} < V_n \)

the \(\sigma \) of \(X < V_n \), \(X = W \) s.t. \(\mu \) is

no \(q \leq p \) s.t. \(X \) is separated. in \([\mathcal{W}] \).

Let \(f : \omega \rightarrow W \) \mu, \(\text{ in } G \) be \(P \rightarrow P \) \mu V.

Pick \(\alpha \) s.t. \(f''_{\alpha} \mu = \alpha \),

\[f''_{\alpha} \subseteq X \], \(\text{ s.t. } X < V_n \), \(X \subseteq \mathcal{W} \),

\[\text{ no } q \leq p \text{ s.t. } X < \mathcal{W} \].

\[f''_{\alpha} \rightarrow f''_{\alpha} < \mathcal{W} \].

\[f''_{\alpha} [G] \mu = \alpha \]

but then for \(q \in G \) is \(X \) s.t. \(X < \mathcal{W} \).