Philippe Schindler.

recognizable sets of ordinals.

(joint with melvin calf)

 ordinal turing machines OTM

lim for x in state

1. p states \rightarrow states
2. content of the cell
3. head position : lin of

x \in x (OTM-) compute for x

(\rightarrow x) is an output of a computation which has x as an additional input.
\[
x \text{ complete } \iff x \in L.
\]

\[
x \text{ is recognizable if there is a program } P \text{ and some } \beta
\]

\[
\forall y \in x \\forall \gamma \in \beta \iff P(y, \beta) = 1 \iff x = y.
\]

Output of complete

\text{and input } y \text{ and } \beta \text{ as add. input}

without additional ordinal pair

\[
x \in w \text{ complete } \iff
\]

\[
x \text{ is } \beta \text{ recognizable } \iff
\]

\[
x \in L, \text{ where}
\]

\[
\gamma \text{ is least } \gamma \in L \leq \Sigma
\]

arises that \(M^\# \) exists.

\underline{Question}: is every recognizable \(\gamma \) of ordinals in \(L \)?
\(x \subset \alpha \) is in the recognizable closure if the \(x \nolimits \)
\(x = x_0, x_1, \ldots, x_n \) recognizable,
\(x \nolimits \) recognizable \(\Rightarrow x_{i+1} \).

Lem. Suppose that \(x \subset \alpha \). TFAE:

- \(x \) is constructible from \(y \subset \beta \)

1. \(y \) is recognizable.
2. There is an \(y \) such that \(y \subset \beta \)
 \(y \) is the unique subset \(z \) of \(\beta \) s.t.
 \(L(z) = \gamma(z, y) \).
3. \(y \) implicitly defines one \(L \)
 i.e. there is an \(y \) such that \(y \subset \beta \) s.t.
 \(y \) is the unique \(z \subset \beta \) s.t.
 \((L, z, e, z) = \gamma(z, y) \).

\[M^* = \text{the } \alpha^* \text{ chain of } M, \]
by the least witness cardinal
\(+ \text{ its images} \)
\[M^0 = \bigcap_{\alpha \in \omega} M^\alpha \]

lemma. if \(x \in x \) is recognizable, then \(x \in M^0 \), in \(\alpha < \omega \).

question. is every recognizable subset \(W \) in \(M_1 \)?

lemma. if \(P \) is homogenous, \(C \) is \(P \)-generic over \(V \), supp. that \(y \in C \) or is recognizable, \(y \in V \cup y \). then \(y \in V \).

lemma. supp. \(V \) ex. \(2F + \omega \) has, eg. \(X \in y \), is in \(L(y) \), then \(y \in w \).

lemma. if \(P \) be homogenous, \(TP \) doesn't contain \(w \), \(TP \) from choice, then \(y \) recognizes sum \(y \) is in \(M_1 \).
question. supp. that H_{ω_2} is closed in \mathcal{M}_1?

then is any rec. subset of ω_1 in \mathcal{M}_1?

queries: can we add recognizable sets by forcing using large cardinals?

less. (steel) supp. $\alpha < \omega_1$.

say $\rho_\omega(N) = \omega$, N has length α, N sound, N is $\in \mathcal{M}_1$, then $N = H_{\omega_1 \alpha}$.

less. supp. that $\alpha < \omega_1^{\omega_1}$,

$\rho_\omega(M_{\omega_1 \alpha}) = \omega$.

in $y \subset w$ be a can. code for $M_{\omega_1 \alpha}$, then y is recognizable.
then if \(x \in M_1 \parallel \alpha \),

\(x \) is constructible for \(y \).

\[\Rightarrow M_1 \parallel w_1^M \quad \text{is recognized in} \quad w_1^M. \]