Kap. 1 Modelle der Mengenlehre

Die Sprache der Mengenlehre hat den (2-stelligen) ε als einziger nichtlogische Zeichen; demnach haben Modelle der Sprache der Mengenlehre die Form $(M; \varepsilon)$, wobei M eine Menge ist und $\varepsilon \subseteq M^2$ ein interpretiert. Wir reden sprich auch Modelle betrachten, deren Trägermenge eine echte Klasse ist.

Def. 1.1 A heißt transz. gen., für alle x, für alle y, $y \in x \land x \in A \Rightarrow y \in A$.

Konvention. Wenn M transz. ist und Σ eine Menge von Sätzen (d. Sprache d. Mengenlehre) ist, dann schreiben wir auch kurz $M \models \Sigma$ für $(M; \varepsilon, \Gamma) \models \Sigma$ (wobei $\Gamma = \varepsilon \cap M^2 = \{(x,y) : x \varepsilon y \land y \in M\}$); entsprechend schreiben wir $M \models \Sigma(\beta)$ für $(M; \varepsilon, \Gamma) \models \Sigma[\beta]$, wobei

Σ lebiglich eine Menge von Formeln und β eine M-Belegung ist.

Def. 1.2 Eine Formel γ heißt Σ_0 gültig, $\gamma \in \Gamma$ für jede Menge Γ, für die folgende gilt:
(a) alle atomaren Formeln sind in Γ,
(b) wenn $\varphi, \psi \in \Gamma$, dann ist auch jede binäre logische Verknüpfung von φ und ψ in Γ,
und (c) wenn $\varphi \in \Gamma$ und x, y Variablen sind, dann sind auch $\forall x (x \varepsilon y \rightarrow \varphi)$ und $\exists x (x \varepsilon y \land \varphi)$ in Γ.

Konvention. Wir schreiben $\forall x \varepsilon y \varphi$ für $\forall x (x \varepsilon y \rightarrow \varphi)$ und $\exists x \varepsilon y \varphi$ für $\exists x (x \varepsilon y \land \varphi)$.

Lemma 1.3 Sei M transz., sei $\gamma \in \Sigma_0$ und sei β eine M-Belegung. Dann gilt

$M \models \gamma[\beta] \iff V \models \gamma[\beta]$

Beweis durch Induktion und der Formulkomp.-Hin.: Wir behandeln nur den Fall $\gamma = \exists x \varepsilon y \varphi$.

"$\models" : Mym., $V \models \gamma[\beta]$. Sei $a \in \beta$ def. $V \models x \varepsilon y \land \varphi[\beta(x,a)]$. Sei $b = \beta(y)$. Da
\[\beta \text{ eine } \Sigma_1 \text{-Belegung ist, gilt } b \in M, \text{ also und } a \in M \text{ wegen } V \models x \in \beta(x(1a)) \text{. } \beta(x(1a)) \text{ ist also eine } \Sigma_1 \text{-Belegung und es gilt nach Inv. Vor. } M \models x \in y \iff \exists \beta \exists \gamma \exists \beta \forall \gamma \forall \beta \gamma \beta, \text{ und damit auch } M \models y \in \beta. \]

\[\therefore : \text{ Einfacher.} \]

\[\text{Def. 1.8: Jede } \Sigma_0 \text{-Formel heißt auch } \Sigma_0. \text{ Sei } \bar{\gamma} \in \text{ dom. } \text{ Die } \Sigma_0 \text{-Formel } \gamma \text{ heißt } \Sigma_0 \text{-ganz.} \]

\[\gamma \equiv \exists x_1 \ldots \exists x_m \bar{\gamma}, \text{ wobei } x_1, \ldots, x_m \text{ Variablen sind und } \bar{\gamma} \text{ ist eine } \Sigma_0 \text{-Formel. \ } \]

\[\text{Kor. 1.6: } M \models "\text{Extensivitätsaxiom" für jede transitive } M. \]

\[\text{Beweis: Das Extensivitätsaxiom ist } \Sigma_0 \text{ (und gilt in } V): V x V y (V z \in x \exists y \in y \land V z \in y z \in x \rightarrow x = y). \]

\[\text{Kor. 1.7: } M \models "\text{Fundierungsaxiom" für jede transitive } M. \]

\[\text{Beweis: Das Fundierungsaxiom ist } \Sigma_1 \text{ : es sagt } V x (x \neq \emptyset \rightarrow \exists y \in x \ y n x = \emptyset). \text{ } x \neq \emptyset \text{ kam geschrieben werden als } \exists z \in x z = z, \text{ und } y n x = \emptyset \text{ kam geschrieben werden als } \exists \exists z e y z e z. \]

\[\text{Kor. 1.8: } \text{Sei } M \text{ transitive und } w \in M. \text{ Dann gilt } M \models "\text{Unendlichkeitsaxiom".} \]

\[\text{Beweis: Das Unendlichkeitsaxiom ist } \Sigma_0 ; \text{ es hat } } \]
die Gestalt $\exists x \overline{y}$, wobei $\overline{y} \equiv \emptyset \in x$.

$\forall x \exists y (y \in x \land \emptyset \in x)$ kann geschrieben werden als $\exists y \in x : y \in x$ kann geschrieben werden als $\exists y \in (x \cup y \cup \emptyset \cup \{x \cup y\})$. \overline{y} ist also Σ_0.

Sei nun β eine Δ_1-Belegung mit $\beta(x) = w$. Dann ist $M \models \overline{y}[\beta]$ wegen Lemma 1.3, also $M \models \exists x \overline{y}$.

Kor. 1.5 Sei M transitiv und abgeschlossen beze.

$x, y \mapsto \{x, y\}$, d.h.: für alle $x, y \in M$ ist $\{x, y\} \in M$. Dann gilt $M \models \text{"Paarmenageraxion".}

Beweis: Das Paarmenageraxion hat die Gestalt

$\forall x \forall y \exists z \in \{x, y\} \forall z \in x \cup y \cup \{x \cup y\} \forall z \in x \cup y$.

Kor. 1.11 Sei α eine Linienordinalzahl mit $\alpha > w$. Dann gilt $V_\alpha \models \text{ZC}.

Beweis: Mit $x \in V_\alpha$ gilt auch $y \in V_\alpha$, woraus das Auswahlaxiom in V_α folgt (für beliebig x); mit $x \in V_\alpha$ gilt als auch $\beta(x) \in V_{\alpha+1}$, woraus das Potenzaxiom in V_α folgt (für Linienordinalzahlen α).

Mit $x \in V_\alpha$ ist jede Wellordnung von x Element in $V_{\alpha+3}$. Dies kann leicht bewiesen werden, um zu zeigen, dass für Linienordinalzahlen α der Wellordungssatz in V_α gilt.

Der Rest ergibt sich mit Hilfe von Kor. 1.6-10.

Kor. 1.12 $\text{ZC} \models \text{"Ersetzungsschema".}

Beweis: Sei $\alpha > w$. Dann gilt $V_\alpha \models \text{ZC}$ mit Satz 1.11. In V_α gilt abw. nicht das Ersetzungsschema (!).
Satz 1.13 \(V_w = \Sigma FC \) "Unendlichkeitsaxiom".

Def. 1.14 Sei \(\Gamma \) eine Menge von Formeln, und sei \(\gamma \in \Gamma \). Eine Formel \(\phi \) heißt \(\Sigma \Gamma \)-gesagt, es eine \(\Sigma \)-Formel \(\phi \) gilt mit \(\Gamma \models \gamma \leftrightarrow \phi \). Eine Formel \(\phi \) heißt \(\Pi \Gamma \)-gesagt, es eine \(\Pi \)-Formel \(\phi \) gilt mit \(\Gamma \models \gamma \leftrightarrow \phi \).

Eine Formel \(\phi \) heißt \(\Delta \Gamma \)-gesagt, \(\gamma \) sowohl \(\Sigma \)-als auch \(\Pi \)-Minimal ist.

Satz 1.14 Seien \(M \) und \(N \) beide transitiv mit \(M \subseteq N \). Sei \(\Gamma \) eine Menge von Formeln, und gebe für jede \(M \)-Belegung \(\beta \) sowohl \(M \models \Gamma \beta \) als auch \(N \models \Gamma \beta \). Sei \(\gamma \Delta \Gamma \). Dann gilt für jede \(M \)-Belegung \(\beta \)

\[M \models \gamma \beta \iff N \models \gamma \beta. \]

Beweis: Sei \(\gamma \Sigma \) und sei \(\gamma \Pi \), mit \(\Gamma \models \gamma \leftrightarrow \phi \) und \(\Gamma \models \gamma \leftrightarrow \phi \).

Sei \(M \models \gamma \beta \). Dann gilt \(M \models \gamma \beta \), da \(M \models \gamma \beta \). Also gilt \(N \models \gamma \beta \) wegen Lemma 1.5. Damit gilt \(N \models \gamma \beta \) wegen \(N \models \Gamma \beta \).

Sei umgekehrt \(N \models \gamma \beta \). Dann gilt \(N \models \gamma \beta \) wegen \(N \models \Gamma \beta \), also auch \(M \models \gamma \beta \) wegen Lemma 1.5. Damit gilt auch \(M \models \gamma \beta \) wegen \(M \models \Gamma \beta \).

Def. 1.15 Sei \(R \) eine 2-Stellige Relation auf der Menge \(x \). \(R \) heißt "findet" genau, für alle \(y \subseteq x \) mit \(y \neq \emptyset \) ein \(z \subseteq y \) existiert, so daß für alle \(u \) mit \((u,z) \in R \) gilt: \(u \subseteq y \) (a.d.: \(z \) ist \(R \)-minimal in \(y \)).

Satz 1.16 Die Formel "\(y \) ist eine finden Relation auf \(x \)" ist \(\Delta^2 FC \).

Beweis: "\(y \) ist eine Relation auf \(x \)" kann geschrieben werden als \(\forall z \subseteq y \exists u \subseteq x \exists v \subseteq x \ z = (u,v) \).

\(z = (u,v) \) ist \(\Sigma \) (vgl. Beweis im 1.9), womit auch "\(y \) ist Relation auf \(x \)" \(\Sigma \) ist.

"\(y \) ist findet" hat die Gestalt \(\forall z \ (z \subseteq x \wedge z \neq \emptyset \rightarrow \exists u \subseteq x \forall v \subseteq x \ z = (v,u) \subseteq y \), ist also \(\Pi \). Wir zeigen nun, daß diese Formel \(\Sigma^2 FC \) ist.
Sei x eine Menge, und sei R eine fundierte Relation auf x. Dann existiert die \textit{Rangfunktion} R, d.h.: es existiert eine Ordinalzahl α und es existiert eine Funktion $p : D \to \alpha$ mit Urbildbereich \(D = \{ y \in x : \exists z \in x \ (y, z) \in R \lor (z, y) \in R \} \), die rekursiv definiert ist durch
\[
p(y) = 0, \text{ falls } \neg \exists z \ (z, y) \in R, \quad \text{und}
p(y) = \sup \{ p(z) + 1 : (z, y) \in R \}, \text{ sonst}.
\]

Die Existenz einer solchen Funktion ist in ZFC mit Hilfe des Rekursionsatzes beweisbar.

Wir können also "y ist fundiert" durch die folgende in ZFC äquivalente Formel wiedergeben:

\[
\exists ! z (\exists ! z (z \text{ ist eine Ordinalzahl} \land
\exists f (f \text{ ist eine Funktion}, f : x \to z \land
f(u) < f(v) \iff (u, v) \in y \text{ für } u, v \in x))
\]

"z ist eine Ordinalzahl" kann geschrieben werden als

\[
\forall u \in z \ (u \in z \iff u \in x).
\]

"$f : x \to z$" kann geschrieben werden als

\[
\forall u \in x \ (\forall v \ (v \in x \iff v \in z)) \land
\forall u \in x \exists ! v (u \in z \iff f(u) = v).
\]

Die Matrix der so genannten Formel ist also Σ_0.

Danach ist "y ist fundierte Relation auf x" Δ_1.

\textbf{Kor. 1.17:} Sei M ein transitives Modell in ZFC, und seien $x, R \subseteq M$. Dann gilt:

$M \models "R$ ist fundierte Relation auf x".

\textbf{Def. 1.18:} Sei x eine transitive Menge. Dann bezeichnet $Def(x)$ die Menge aller $y \subseteq x$, für die eine Formel y und eine x-Belegung β existieren mit

\[
y = \{ z \in x : \exists ! \beta (\beta (y, z)) \}.
\]

\textbf{Def. 1.19:} Sei x eine transitive Menge, $y \subseteq x$. Dann heißt (x, y) \textit{f"ugsam} in x, wenn $z \in y \cap x$ für alle $z \in x$.

\textbf{Lemma 1.20:} Sei M eine transitive Menge, und sei (M, y) f"ugsam für jedes $y \in Def(M)$. Dann gilt $M \models "Ansonderungsschema."

Beweis: Sei \(x \in M \), und sei \(\gamma \) eine Formel, in der \(x \) nicht (frei) vorkommt. Sei \(\beta \) eine \(M \)-Belegung, \(\gamma = \{ \gamma \in \mathbb{M} : \mathbb{M} \models \beta(\gamma(x)) \} \).

Dann ist \(y \cap x = \{ \gamma \in \mathbb{M} : \mathbb{M} \models \beta(\gamma(x)) \} \) \(\in \mathbb{M} \), da \((\mathbb{M}, y)\) ist, \(y \cap x \) bezeichnet also, daß \(\mathbb{M} \models \exists x \forall \gamma \in \gamma(x) \beta(\gamma(x)) \).

Satz 1.21 Sei \(M \) ein transitives Modell von \(ZFC \) mit \(\omega \subseteq M \). Sei \(\gamma \) ein \(\Sigma_1 \)-Satz. Dann gilt:

\[\mathbb{V} \models \gamma \Rightarrow M \models \gamma. \]

Beweis: Wir erreichen zunächst die Sprache der Mengenlehre durch Hinzunahme von Konstanten \(\bar{c}_0, \bar{c}_1, \bar{c}_2, \ldots \). Sei \((\gamma_i : i \in \omega) \) eine rekursive Aufzählung aller Sätze der endlichen Sprache. Wir bezeichnen mit \(S \) die Menge aller Folgen \((\gamma_i, \beta_i : i < N) \), wobei

- \(N < \omega \),
- \(\gamma_i \equiv \gamma_i \) oder \(\gamma_i \equiv \bar{c}_i \),
- wenn \(\gamma_i \equiv \exists \bar{x} \psi \) für eine Variable \(\bar{x} \) und eine Formel \(\psi \), dann existiert eine Konstante \(\bar{c}_i \)
mit \(\beta_i \equiv \psi \bar{c}_i \), (die ist \(\bar{c}_i \) das Resultat der Ersatzung aller freien Vorkommnisse von \(\bar{x} \) in \(\psi \) durch \(\bar{c}_i \)); wenn \(\gamma_i \) nicht in diese Form ist, dann ist \(\beta_i \equiv \exists \bar{x} \beta_i = \beta_i \), und für \((\bar{x} \gamma) \) ist konsistent.
- \(\{ \gamma \} \cup \{ \gamma_i : i < N \} \cup \{ \beta_i : i < N \} \) ist konsistent.

Wir bezeichnen mit \(S^* \) die Menge aller Paare \((s, f) \) mit

- \(s \in S \), ohne \(s = (\gamma_0, \beta_0 : i < N) \),
- \(f : \{ \bar{c}_0, \bar{c}_1, \ldots, \bar{c}_{N-1} \} \rightarrow \omega \), und
- \(\overline{\gamma_i} \models \overline{\gamma_j} \) für \(\gamma_i \in \gamma_j \) in der Menge \(\{ \gamma_i i < N \} \cup \{ \beta_i : i < N \} \) liegt, dann ist \(f(\bar{c}_i) < f(\bar{c}_k) \) für \(i, k < N \).

Für \((s, f), (\dot{s}, \dot{f}) \in S^* \) mit \(s = (\gamma_i, \beta_i : i < N) \) und \(\dot{s} = (\dot{\gamma}_i, \dot{\beta}_i : i < \overline{N}) \) setzen wir \((s, f) \mathrel{R} (\dot{s}, \dot{f}) \) definiert. \(N = N+1 \), \(\gamma_i = \dot{\gamma}_i \) für \(i < N \), \(\beta_i = \dot{\beta}_i \) für \(i < N \) und \(\dot{f}(\bar{c}_i) = \overline{\dot{f}(\bar{c}_i)} \) für \(i < N \). Offensichtlich ist
R eine Relation auf S^*. Man nehme, daß sowohl $S^* \subseteq M$ als auch $R \subseteq M$ (wir nehmen hin für o.B.d.A. an, daß die [Gödel-]
nummern von] Sätzen natürliche Zahlen sind; wir bemerken $\omega \in M$.
Wir nehmen nun an, daß $\mathcal{V} \models \psi$.

Beh. 1 $\mathcal{V} \models R$ ist nicht fundiert.

ψ ist von der Gestalt $\exists y_1 \ldots \exists y_k \psi$, wobei $\psi \epsilon_0$

ist. Sei β eine \mathcal{V}-Belegung mit $\mathcal{V} \models \psi[\beta]$.

Sei α so, daß $\{\beta(y_1), \ldots, \beta(y_k)\} \subseteq \mathcal{V}_\alpha$. Aufgrund

des Satzes von Mostowski existiert dann ein abzähl-

bares elementares Submodell $X < \mathcal{V}_\alpha$ mit

$\{\beta(x_1), \ldots, \beta(x_k)\} \subseteq X$ und ein transitives \tilde{M} mit

$(\tilde{M}; e) \cong (X; e)$. Damit gilt $\tilde{M} \models \psi$, wobei \tilde{M}

abzählbar und transitiv ist. Sei nun $\tilde{M} = \{a_\gamma : \gamma \in \omega\}$,
und sei $\tilde{\beta}(a_\gamma)$ das kleinste β mit $a_\gamma \in \mathcal{V}_\beta$ (i.e.,

der Rang von a_γ).

Wir setzen $\gamma_i \equiv \gamma_{i+1}$, falls $\tilde{M} \models \gamma_i$ (wobei die

Konstanten γ_i durch $a_{\gamma_i} \in \tilde{M}$ (unabhängig voneinander)),

andernfalls setzen wir $\gamma_i \equiv -\gamma_i$. Falls $\gamma_i \equiv \exists \gamma \gamma$
dann setzen wir $\rho_i \equiv \gamma \cdot \gamma$ für ein γ mit

$\tilde{M} \models \psi[\beta(\gamma)]$ (für beliebiges β); andern-

falls setzen wir $\rho_i \equiv \exists \gamma \gamma \equiv \phi$. Damit ist für jedes $N \in \omega (\gamma_i, \rho_i : \gamma \in \omega) \subseteq \tilde{M}$.
Es gilt aber sogar für jedes $N \in \omega$

$(\gamma_i, \rho_i : \gamma \in \omega) \subseteq \{\tilde{\beta}(\gamma_0), \ldots, \gamma_{N-1}\}$ $\subseteq \tilde{M}$,

wobei $\tilde{\beta}(\gamma_i) = \tilde{\beta}(\gamma_j)$: wenn nämlich $\gamma_i \equiv \gamma_j$ in

$\tilde{M} = \{a_\gamma : \gamma \in \omega\} \cup \{\gamma_{\gamma_i} : \gamma \in \omega\}$ liegt, dann ist

$\tilde{M} \equiv \gamma_j \in \tilde{\beta}(\gamma_i)$, i.e. $\gamma_j \epsilon \omega_i$, und damit $\tilde{\beta}(\gamma_j) < \tilde{\beta}(\gamma_i)$,

also $\tilde{\beta}(\gamma_j) < \tilde{\beta}(\gamma_i)$.

Beh. 2 $M \models \psi$.

Aufgrund des Satzes 1.16 ist R nicht fundiert in M. Wir erachten damit eine Folge $(s_k, f_k : k \in \omega)$

wobei $(s_k, f_k) R (s_{k+1}, f_{k+1})$ für $k > 0$, und

$(s_k, f_k) : k \in \omega) \subseteq M$ wie im Beweis des Gödel-

schen Vollständigkeitssatzes bilden wir nun aus

Äquivalenzklassen von Konstanten ein Modell \tilde{M}.

Sei $s_k = (\gamma_k, \rho_k : k \in \omega)$. Sei $\gamma_k = \gamma_k$ für $k > \gamma$ und

$\rho_k = \rho_k$ für $k > \gamma$. Dann gilt

$\tilde{M} \models \{\gamma\} \cup \{\gamma_k : k \in \omega\} \cup \{\rho_k : k \in \omega\}$.
Sei \(f(c_j) = f_k(c_j) \) für \(k > j \), und sei \\
\(\bar{f}(c_j) = \bar{f}(c_j) \) (wobei \(\bar{c}_j \) die Äquivalenzklasse von \(c_j \) bezeichnet).

Wenn \(\bar{M} = c_j \in \bar{c}_k \), dann ist \(\bar{f}(\bar{c}_j) = \bar{f}(\bar{c}_k) \).

Damit ist \(\bar{M} \) fundiert und es gibt ein transitives \(\bar{M} \) mit \((\bar{M}; \in) \simeq (\bar{M}; \bar{c}_j^{\bar{c}_k}) \) aufgrund des Satzes von Mostowski.\(^\ast\) Da \((c_k, f_k): k < \omega \in M \), gilt auch \(\bar{M} \in M \), und somit auch \(\bar{M} \in M \).

Daraus folgt, haben wir \(\bar{M} \models \varphi \). Wir können endlich Lemma 1.5 in \(M \) anwenden und erhalten \(M \models \varphi \).

\(-\text{Csd. 2}-\)

Bemerkung: Eine Variante der angegebenen Beweise zeigt das folgende: Wenn \(\varphi \) eine \(\Sigma_1 \)-Formel ist und wenn \(\beta \) eine \(M \)-Belegung ist, wobei \(\beta(c_k) \) erreichbar in \(M \) ist für jeden \(k \) (und \(M \models \varphi \) ist transitive mit \(W \subset M \)), dann gilt \(V \models \gamma \exists x \beta(x) \Rightarrow M \models \gamma \exists x \beta(x) \). Diese Aussage wird aber (nachweislich) falsch, wenn man nicht mehr verlangt, daß alle \(\beta(c_k) \) erreichbar in \(M \) sind!

\(^{\ast}\) In \(\bar{M} \) gilt das Existentialisierung!