Theorem 1. It is consistent, relative to a \((\Sigma_2^-)\) reflecting cardinal, that "BPFA + NS_{\omega_1} is \(\Pi_1\) definable in the parameter \(\omega_1\)" holds true.

Proof: We force over \(L\), assuming that
\(L \models \"\kappa\) is a reflecting cardinal.\) Let \(\mathbb{T}\) be the countable support iteration of proper forcings of length \(\kappa\) as in the proof of Theorem 2.11 of [GoSh], p. 65. Let \(g\) be \(\mathbb{T}\)-generic over \(L\). By Theorem 2.11 of [GoSh],
\[L[g] \models \text{BPFA}.
\]

We now aim to see that there is a \(\Sigma_1\) formula \(\varphi\) such that
\[L[g] \models \forall S (S \text{ is a stationary subset of } \omega_1 \longleftrightarrow \varphi(S, \omega_1)). \quad (*)\]
For every $\alpha < \kappa$, we may write

$$P \equiv P_\alpha * Q_\alpha,$$

where P_α denotes the initial segment of P of length α and if g^α is the P_α-generic filter over L induced by g, then $(Q_\alpha)^{g^\alpha} \equiv P / g^\alpha$ is the "tail end" of the iteration.

Fact 1. For each $\alpha < \kappa$, forcing with $(Q_\alpha)^{g^\alpha}$ over $L[g^{\geq \alpha}]$ preserves stationary subsets of ω_1.

Proof of Fact 1: Theorem 3.1 of [Mi], p.58.

This immediately implies, as P has the κ-ccc:

Fact 2. Let $S \in \mathcal{P}(\omega_1 \cap L[g])$. Then S is stationary in $L[g]$ iff for all/some $\alpha < \kappa$, if $S \subseteq L[g^{\geq \alpha}]$ (equivalently, $S \subseteq H^{L[g^{\geq \alpha}]}$), then $L[g^{\geq \alpha}] \models "S \text{ is stationary}"$ (equivalently, $H^{L[g^{\geq \alpha}]} \models "S \text{ is stationary}"$).
Let us now fix an inaccessible cardinal \(\kappa < \nu \) for a while, where
\[
\textrm{L}[g_{\kappa}] = \text{"} \kappa = \omega_2 \text{"}.
\]
Let \((C_\alpha : \alpha < \kappa^+)\) be the canonical \(D_\gamma \)-sequence of \(L \). Let \(D \in \textrm{L}[g] \) be club in \(\kappa^+ \) of order type \(\omega_1 \). We may define a tree \(T \) on \(D \) by setting \(\alpha < T \beta \) iff \(\alpha \) is a limit point of \(C_\beta \), for \(\alpha, \beta \in D \). As \(\text{MA}_{\omega_1} \) holds true in \(\textrm{L}[g] \), the tree \((D; \leq T)\) is special in \(\textrm{L}[g] \), i.e., there is a function \(f : D \to \omega \) in \(\textrm{L}[g] \) such that if \(\alpha, \beta \in D \), \(\alpha < T \beta \), then \(f(\alpha) \neq f(\beta) \). See [To], in particular the proof of Lemma 4 of [To], p. 136f. See also [To'A].

By [CaVe], \(H_{\omega_2} \) satisfies the theory \(T \) from the proof of Theorem 2 of [CaVe], p. 397, where we take the canonical ladder system of \(L \) as the relevant one. We have thus shown \((1) \implies (2)\) of the following.
Claim 1. The following are equivalent.

(1) \(S \in \mathcal{P}(\omega_1) \cap L[\mathcal{G}] \) is stationary in \(L[\mathcal{G}] \).

(2) Inside \(L[\mathcal{G}] \), there is a model \(L_\mathcal{G}[\mathcal{G}] \) such that
(a) \(\omega_1 = \omega_1^{L_\mathcal{G}[\mathcal{G}]} \),
(b) \(L_\mathcal{G}[\mathcal{G}] \models \text{"there is a largest cardinal, call it } \delta, \text{ such that } \delta \text{ is inaccessible in } L, \"} \)
(c) \(G \subseteq \delta \), and \(L_\delta[\mathcal{G}] = H_{\omega_2}^{L_\mathcal{G}[\mathcal{G}]} \),
(d) there is some \(D \) club in \(\mathcal{G} \), \(\text{otp}(D) = \omega_1 \), and the tree \((D, <_T) \) defined as above is special,
(e) \(L_\delta[\mathcal{G}] \models \text{"} T, \text{"} \) and
(f) \(S \in \mathcal{P}(\omega_1) \cap L_\delta[\mathcal{G}] \) and \(L_\delta[\mathcal{G}] \models \text{"} S \text{ is stationary. } \"

Let us verify (2) \(\Rightarrow \) (1) of Claim 1. By (d) (and (b)), \(\mathcal{G} = \delta^+ \). See [To]. Therefore, \(\mathcal{G} \) is an inaccessible cardinal of \(L \). By (a) (and) (e), \(H_{\omega_2}^{L_\mathcal{G}[\mathcal{G}]} = L_\delta[\mathcal{G} \upharpoonright \mathcal{G}] \), as any transitive model \(M \) containing the canonical ladder system from \(L \), \(M \models T \), is uniquely determined.
by its ordinal height, see [CaVe], p. 397.

Hence $L_\delta[g] = L_\delta[g \upharpoonright \delta]$. By (f) and Fact 2, S is then stationary in $L[g]$.

It is now easy to see that (2) of Claim 1 may be written in a Σ_1 fashion with parameter ω_1, so that for this Σ_1 formula, (6) on p. 1 holds true.

\[\text{Recall the weak proper forcing axiom WPFA from [BaGiSch], see Definition 6.2 of [BaGiSch].} \]

The above proof may easily be amalgamated with the proof of Theorem 6.3 of [BaGiSch] to produce the following.

Theorem 2. It is consistent, relative to a remarkable cardinal, that "WPFA + $\forall \omega \exists \delta$ $\exists \omega_1$ is Π_1 definable in the parameter $\omega_1"$ holds true.
References.

