ACA₀, π₁¹-CA₀, and the semantics of arithmetic, and
BG, BG + Σ₁¹-Ind, and the semantics of set theory

Ralf Schindler

Institut für Formale Logik, Universität Wien, 1090 Wien, Austria

Mathematics Subject Classification. [...] .
Keywords: [...].

Abstract

The truth predicate for the language of first order arithmetic is definable in
the language of second order arithmetic. Whereas ACA₀ proves the Tarski
schema, ACA₀ does not prove the Tarski rule of negation. However, π₁¹-CA₀
does prove all the Tarski rules. In particular, π₁¹-CA₀ proves the consistency
of ACA₀.

Analogous results hold for set theory. The truth predicate for the language of
ZF is definable in the language of BG. Whereas BG proves the Tarski schema,
BG does not prove the Tarski rule of negation. However, BG + Σ₁¹Ind does
prove all the Tarski rules. In particular, BG + Σ₁¹Ind proves the consistency of
ZF.

These results must all be pretty old. The author does not know
whom to give the credit, though. In any event, he doesn’t claim
credit for anything exposed in this note.

Let us commence with set theory. The intended model of ZF, (V; ∈), has a class
rather than a set as its underlying universe. This paper discusses the semantics of
ZF.

We let ŁZF denote the language of ZF. We may enrich ŁZF by adding a class
of constants, {x | x ∈ V}, where x is intended to denote x. We let Ł̂ZF denote the
enriched language. A formula of Ł̂ZF comes from a formula of ŁZF by replacing free
occurrences of variables by constants. If ϕ is a formula, if v is a variable, and if
x ∈ V, then by ϕ̂x we denote the result of replacing all free occurrences of v by x.

We shall also use notations like ϕ(0), ϕ(n), and ϕ(n + 1). The reader will easily
figure out how these are to be understood.

If Ŵ is a model, ϕ is a formula in which each free variable is in \{v₀, · · · , vₙ\}, and
if \{y₀, y₁, · · · , yₙ\} ⊆ |Ŵ| (the underlying universe of Ŵ) then we write

Ŵ |= ϕ(y₀, y₁, · · · , yₙ)

to express that ϕ holds true in Ŵ with an assignment that maps vₖ to yₖ for k ≤ n.
In what follows we tacitly make use of the fact that we can in ZF represent the relevant syntactical concepts of ŁZF and of ŁZF. If \(\varphi \) is a formula of ŁZF then we shall write \(\Gamma \varphi \) for its Gödel number.

The language of ŁBG of BG has two sorts of variables, lower case ones for sets and upper case ones for classes. If \(\varphi \) is a formula of ŁBG then we say that \(\varphi \) is 1n, where \(n \in \omega \), if and only if \(\varphi \) is provably in BG equivalent to a formula of the form

\[
\exists X_1 \forall X_2 \cdots Q X_n \psi,
\]

where \(Q = \exists / \forall \) if and only if \(n \) is even / odd and \(\psi \) does not contain any class quantifiers.

Definition 0.1 We abbreviate by \(t(n, X) \) the following \(\Sigma^1_0 \) formula of ŁZF.

\[
n \in \omega \land \forall x \in X (x \text{ is a sentence of } \mathcal{L}_ZF \text{ of rank at most } n) \land \\
\forall x \forall y (\Gamma x \in y \land x \leftrightarrow y) \land \\
\forall \text{ sentences } \Gamma \varphi \text{ of } \mathcal{L}_ZF \text{ of rank at most } n - 1 \\
\forall \text{ sentences } \Gamma \psi \text{ of } \mathcal{L}_ZF \text{ of rank at most } n - 1 \\
\forall \text{ variables } v \\
[(\Gamma \neg \varphi \in X \leftrightarrow \Gamma \varphi \notin X) \land \\
(\Gamma \varphi \land \psi \in X \leftrightarrow \Gamma \varphi \in X \land \Gamma \psi \in X) \land \\
(\forall v \varphi \in X \leftrightarrow \forall x \Gamma \varphi_x \in X)].
\]

Definition 0.2 We abbreviate by \(T(x) \) the following \(\Sigma^1_1 \) formula of ŁZF.

\[
\exists n \exists X (t(n, X) \land x \in X).
\]

Lemma 0.3 BG \(\vdash \exists X t(0, X) \).

Lemma 0.4 BG \(\vdash \forall n \in \omega (\exists X t(n, X) \rightarrow \exists X t(n + 1, X)) \).

Corollary 0.5 BG \(\vdash \forall \varphi \in \mathcal{L}_ZF \forall \psi \in \mathcal{L}_ZF (T(\Gamma \varphi \land \psi) \leftrightarrow T(\Gamma \varphi \land T(\Gamma \psi))) \).

Corollary 0.6 BG \(\vdash \forall \varphi \in \mathcal{L}_ZF \forall \psi (T(\Gamma \forall \psi \land \varphi) \leftrightarrow \forall x T(\Gamma \forall \psi \land \varphi)) \).

Lemma 0.7 For all \(n \in \omega \), BG \(\vdash \exists X t(n, X) \).

Lemma 0.8 BG \(\vdash \forall n \forall X \forall Y (t(n, X) \land t(n, Y) \rightarrow X = Y) \).

2
Lemma 0.9 For all sentences φ of L_{ZF}, $BG \vdash T(\Gamma \varphi) \leftrightarrow \varphi$.

Lemma 0.10 BG $\nvdash \forall n \in \omega \exists t(n, X)$, unless ZF is inconsistent.

Proof. Suppose ZF to be consistent, and let $M = (M; E)$ be a model of ZF where M is a set and $E \subseteq M \times M$. Let the well-founded part of M be transitive. We may and shall assume that M contains non-standard integers, in other words that E restricted to the integers in the sense of M is ill-founded. That is, $\omega \not\subseteq \omega^M$.

Let K denote the set of all $\{x \in M \mid M \models \varphi(x, y_1, \ldots, y_n)\}$, where φ is a formula of L_{ZF} in which each free variable is in $\{v_0, \ldots, v_n\}$ and where $\{y_1, \ldots, y_n\} \subseteq M$. I.e., K is the set of all subsets of M which are boldface definable over M by a formula of L_{ZF}. Then $M = (M, K; E)$ is a model of BG.

Let $n \in M$ and $X \in K$ be such that $M \models t(n, X)$.

Let $m \in \omega$ be least such that X is boldface definable over M by a Σ_m formula of L_{ZF}. It is easy to see that we must have

$$M \models n \leq m.$$

That is, n must be a standard integer.

Now let $n \in \omega^M \setminus \omega$ be a non-standard integer of M. We have shown that

$$M \models \neg \exists t(n, X).$$

\[\square \]

Corollary 0.11 BG $\nvdash \forall \varphi \in L_{ZF}(T(\Gamma \neg \varphi) \leftrightarrow \neg T(\Gamma \varphi))$, unless ZF is inconsistent.

Definition 0.12 We let $\Sigma_1^1 \text{Ind}$ denote the schema which asserts that for every Σ_1^1 formula Φ of L_{BG} with free variables in $\{v_0, v_1, \ldots, v_n\}^a$,

$$\forall v_1 \cdots \forall v_n[(\Phi(0) \land \forall n \in \omega(\Phi(n) \rightarrow \Phi(n + 1)) \rightarrow \forall n \in \omega \Phi(n)].$$

Lemma 0.13 BG $+ \Sigma_1^1 \text{Ind} \vdash \forall n \in \omega \exists t(n, X)$.

\[^a \text{In particular, all free variables are set variables.} \]
Corollary 0.14 $\text{BG} + \Sigma_1^1\text{Ind} \vdash \forall \varphi \neg \in \mathcal{L}_\text{ZF}(T(\neg \varphi) \leftrightarrow \neg T(\varphi))$.

If T is a (recursively enumerable) theory then Bew_T denotes the formal representation of the provability predicate.

Lemma 0.15 $\text{BG} + \Sigma_1^1\text{Ind} \vdash \forall \varphi \neg \in \mathcal{L}_\text{ZF}(\text{Bew}_\text{ZF}(\varphi) \rightarrow T(\varphi))$.

Proof. Let us work in $\text{BG} + \Sigma_1^1\text{Ind}$.

Let us first prove that every axiom of ZF satisfies T. Let us consider an instance of the separation schema as a typical example where (for notational convenience) the separating formula φ doesn’t allow parameters. As we have the Tarski rules at hand (cf. Corollaries 0.5, 0.6, and 0.14), our task quickly reduces to having to show:

$$\exists y \forall z (z \in y \leftrightarrow z \in x \land T(\varphi))$$

Let n be the rank of φ, and let X be unique such that $t(n, X)$. Then

$$T(e) \leftrightarrow e \in X$$

for all e of rank $\leq n$. However,

$$\exists y \forall z (z \in y \leftrightarrow z \in x \land \varphi)$$

holds by the separation axiom of BG.

Now let $(\varphi_n | n \leq N)$ be a proof in ZF. By $\Sigma_1^1\text{Ind}$ we may assume that $T(\varphi_n)$ for every $n < N$. If φ_N is an axiom of ZF then $T(\varphi_N)$ holds by the preceding paragraph. Otherwise there are $j, k \leq n - 1$ such that

$$\varphi_k \equiv \varphi_j \rightarrow \varphi_N.$$

But then an application of the Tarski rules given by Corollaries 0.5 and 0.14 readily implies that $T(\varphi_N)$ holds.

Corollary 0.16 $\text{BG} + \Sigma_1^1\text{Ind} \vdash \text{Con}(\text{ZF})$.

We finally want to study the relation of $\text{BG} + \Sigma_1^1\text{Ind}$ with “$\text{Tr}(\text{ZF})$.” We consider the Feferman-style “ordinary truth theory” for ZF which we call $\text{Tr}(\text{ZF})$. To get $\text{Tr}(\text{ZF})$, we extend the language \mathcal{L}_ZF by adding constants for all elements of V, plus we add a primitive truth predicate $\bar{T}(\varphi)$ governed by Tarski’s four axioms:

$$\begin{align*}
\text{T}_{\text{Atom}} & \quad \forall x \in y \neg \in \mathcal{L}_\text{ZF}(\bar{T}(\varphi) \in x \in y), \\
\text{T}_{\text{Neg}} & \quad \forall \varphi \neg \in \mathcal{L}_\text{ZF}(T(\neg \varphi) \leftrightarrow \neg T(\varphi)).
\end{align*}$$
\(T_{\text{ Conj}} \forall \varphi \gamma \in L_{ZF} \forall \psi \gamma \in L_{ZF} (T(\gamma \varphi \land \psi \gamma) \leftrightarrow T(\gamma \varphi \gamma) \land T(\gamma \psi \gamma)), \)

\(T_{\text{ Quant}} \forall \varphi \gamma \in L_{ZF} \forall \psi (T(\gamma \forall \psi \varphi \gamma) \leftrightarrow \forall x T(\gamma \varphi x \gamma)) \)

(cf. Corollaries 0.5, 0.6, and 0.14), and we replace the separation and replacement schemas of \(ZF \) by the following separation and replacement axioms:

\(T_{\text{ Sep}} \forall \varphi \gamma \in L_{ZF} \forall x \{y \in x \mid T(\gamma \varphi y \gamma)\} \text{ is a set, and} \)

\(T_{\text{ Repl}} \forall \varphi \gamma \in L_{ZF} , \text{ if } T(\gamma \varphi \gamma) \text{ defines a function then} \)

\(\forall x \exists y \exists u \in x \exists u' \in y T(\gamma (\varphi u) u' \gamma) . \)

Lemma 0.17 \(BG + \Sigma^1_1 \text{ Ind} \) and \(\text{ Tr}(ZF) \) prove the same sentences in the language \(L_{ZF} \).

Proof. The above results clearly imply that if \(\text{ Tr}(ZF) \vdash \varphi \), where \(\varphi \) is a sentence of the language \(L_{ZF} \), then \(BG + \Sigma^1_1 \text{ Ind} \vdash \varphi \) as well.

To prove the converse, let \(\mathcal{M} = (M; \in, T) \) be a model of \(\text{ Tr}(ZF) \). Let \(K \) denote the set of all \(X \subseteq M \) such that for some \(\gamma \varphi \gamma \in M , \)

\[\forall x \in M (x \in X \leftrightarrow \mathcal{M} \models T(\gamma \varphi x \gamma)). \]

It is straightforward to verify that \(\mathcal{M} = (M, K; \in) \) is then a model of \(BG + \Sigma^1_1 \text{ Ind} \). \(\square \)

Let us now turn to arithmetic. The situation here is entirely analogous. We may leave the details to the reader. We may define predicates \(t(n, X) \) (saying that \(X \) is a set of integers containing exactly the G"odel numbers of true first order statements of arithmetic which have rank at most \(n \)) and \(T(x) \) (saying that \(\exists n \exists X (t(n, X) \land x \in X) \)) in much the same way as in the case of set theory. Let \(L_{PA} \) denote the language of first order arithmetic. We get:

Lemma 0.18 \(ACA_0 \vdash \exists X t(0, X). \)

Lemma 0.19 \(ACA_0 \vdash \forall n \in \omega (\exists X t(n, X) \rightarrow \exists X t(n + 1, X)). \)

Corollary 0.20 \(ACA_0 \vdash \forall \varphi \gamma \in L_{PA} \forall \psi \gamma \in L_{PA} (T(\gamma \varphi \land \psi \gamma) \leftrightarrow T(\gamma \varphi \gamma) \land T(\gamma \psi \gamma)). \)

Corollary 0.21 \(ACA_0 \vdash \forall \varphi \gamma \in L_{PA} \forall v (T(\gamma \forall \varphi \gamma) \leftrightarrow \forall x T(\gamma \varphi x \gamma)). \)

Lemma 0.22 For all \(n \in \omega , ACA_0 \vdash \exists X t(n, X). \)

Lemma 0.23 \(ACA_0 \vdash \forall n \forall X \forall Y (t(n, X) \land t(n, Y) \rightarrow X = Y). \)

Lemma 0.24 For all sentences \(\varphi \) of \(L_{PA} \), \(ACA_0 \vdash T(\gamma \varphi \gamma) \leftrightarrow \varphi. \)
Lemma 0.25 \(\text{ACA}_0 \not\vdash \forall n \in \omega \exists X \neg t(n, X) \), unless \(\text{PA} \) is inconsistent.

Corollary 0.26 \(\text{ACA}_0 \not\vdash \forall \varphi \in \mathcal{L}_{\text{PA}}(T(\neg \neg \varphi) \leftrightarrow \neg T(\neg \varphi)), \) unless \(\text{PA} \) is inconsistent.

Lemma 0.27 \(\Pi_1^1 \text{-CA}_0 \vdash \forall n \in \omega \exists X \neg t(n, X) \).

Corollary 0.28 \(\Pi_1^1 \text{-CA}_0 \vdash \forall \varphi \in \mathcal{L}_{\text{PA}}(T(\neg \neg \varphi) \leftrightarrow \neg T(\neg \varphi)) \).

Lemma 0.29 \(\Pi_1^1 \text{-CA}_0 \vdash \forall \varphi \in \mathcal{L}_{\text{PA}}(\text{Bew}_{\text{PA}}(\neg \neg \varphi) \rightarrow T(\neg \varphi)) \).

Corollary 0.30 \(\Pi_1^1 \text{-CA}_0 \vdash \text{Con}(\text{PA}) \).

Finally, let \(\text{Tr}(\text{PA}) \) denote the theory which comes from \(\text{PA} \) in exactly the same way as \(\text{Tr}(\text{ZF}) \) comes from \(\text{ZF} \).

Lemma 0.31 \(\Pi_1^1 \text{-CA}_0 \) and \(\text{Tr}(\text{PA}) \) prove the same sentences in the language \(\mathcal{L}_{\text{PA}} \).

Acknowledgement. The author thanks Volker Halbach, Vladimir Kanovei, Jeff Ketland, and Michael Möllerfeld for discussions on this topic.