F. Schlutzenberg observed that the methods from [We] could be used to strengthen said theorem. Let $M^#$ denote the sharp for an inner model with a proper class of measurable cardinals. Let $D < w_1$ be a club such that each $\alpha \in D$ is an $M^#_\alpha$-admissible. Chan-Jackson-Trang had basically shown that $L_{w_1}[D] \models 2FC + GCH$.

We here show that this is an iterate, M, of $M^#$ together with a Prikry generic, C, over M such that $L_{w_1}[D] = M/\omega_1[C]$.

Let $(\alpha_i : i < w_1)$ be the monotone enumeration of D. Let M' denote the iterate of $M^#$ obtained by hitting the top measure of $M^#$ and its images w_1 times, so that w_1 is the critical point of the top measure of M'.

Ralf Schindler

A remark on a theorem of Chan-Jackson-Trang
Let $E = w_1$ be the set of critical points used in the iteration from $M^\#$ to M'. So E is club, and as every $\alpha \in D$ is $M^\#$-admissible, $E \cap \alpha$ is club in α for every $\alpha \in D$.

We may then iterate M' below w_1 and normally in such a fashion that if M denotes the iterate, then $\kappa_{w_i + w}$ is the ith measurable cardinal of M, $i < w_1$. If \mathcal{I} denotes the (linear) iteration from M' to M, then for all $i < w_1$ and all $n < w$, $n > 0$,

$$\pi^\mathcal{I}_{w_i + n, w_i + w}(\kappa_{w_i + n}) = \kappa_{w_i + w}$$

and $\kappa_{w_i + n} = \text{crit}(\pi^\mathcal{I}_{w_i + n, w_i + w})$, so that

$$\kappa_{w_i + n} : 0 < n < w$$

is Prikry-generic over M w.r.t. the (unique) measure of M on $\kappa_{w_i + w}$. Moreover,
\[C = \{ w_i : i < w, 0 < n < w \} \]

is Parry generic over \(M \), cf. [We].

\(C \) consists exactly of the successor points of \(D \), so that \(L_{w_i}[C] = L_{w_i}[D] \). \(C \) is class generic over \(M_{1w_i} \). We claim that

\[(*) \quad L_{w_i}[D] = M_{1w_i}[C]. \]

"C" is trivial, so let us verify that "D" holds true. By "C" and \(M^\# \not\in M_{1w_i}[C], \)
\(M^\# \not\in L_{w_i}[C] \), so that \(K^{L_{w_i}[D]} \) exists and is "\(M^\# \)-small," i.e., \(M^\# \not\in K^{L_{w_i}[D]} \). Moreover,
\[K^{M_{1w_i}[C]} = K^{M_{1w_i}} \] (tail ends of \(C \) don't add new bounded sets, \(K \) doesn't change by set forcing, and \(K \) is locally definable), so that
by \(K^{M_{1w_i}} = M_{1w_i} \), \(M_{1w_i} \) is the core model of \(M_{1w_i}[C] \).

By "C", \(K^{L_{w_i}[D]} \leq^* M_{1w_i} \) then in the
mouse order.

Suppose that $K^{L_{w_1}[C^D]} \prec M\hat{w}_1$, so that a proper initial segment of $M\hat{w}_1$ iterates past $K^{L_{w_1}[C^D]}$. The witnessing station, U, on the $M\hat{w}_1$-side must then use a single measure and its images U^β times, which implies that the collection of total measures in $K^{L_{w_1}[C^D]}$ is bounded below w_1. Let U be the station on $K^{L_{w_1}[C^D]}$ arising in this comparison.

By $K^{L_{w_1}[C^D]} \prec M\hat{w}_1 \prec M^*$ and the fact that D only consists of M^*-admissibles, every $\alpha \in D$ is a fixed point of $\Pi_0^U\beta$, hence of $\Pi_0^{U_0\beta}$ for all sufficiently big $\alpha \in D$. Also, the set \[\{ (\pi_{\beta^0}^\beta)^{-1}(w^\beta_1) : w^\beta_1 \in \text{ran} (\pi_{\beta^0}^\beta) \land (\pi_{\beta^0}^\beta)^{-1}(w^\beta_1) \in \text{crit} (\pi_{\beta^0}^\beta) \} \], which is the set of all critical points of the single measure and
its image which is used on a tail end of T, covers a tail end of D.

We may then pick $i < w_1$ such that
\[
\pi_{\omega_1} (\kappa_{\omega_1 + w}) = \kappa_{\omega_1 + w} \quad \text{and} \quad \kappa_{\omega_1 + w} = \text{crit} (\pi_{\omega_1 + w}, \omega_1) = (\pi_{\omega_1 + w}, \omega_1)^{-1} (\omega_1).
\]
\(\kappa_{\omega_1 + w}\) is then inaccessible in \(M_{\omega_1}\), hence in \(K^{L_{\nu_1}[D]}\), but \((\kappa_{\omega_1 + n} : n < \omega) \in L_{\nu_1}[D]\)

witnesses that \(\kappa_{\omega_1 + w}\) is of cardinality \(\nu_1\) in \(L_{\nu_1}[D]\). By the Dodd-Jensen covering lemma, then, \(\kappa_{\omega_1 + w}\) must be measurable in \(K^{L_{\nu_1}[D]}\).

But we could have chosen \(\kappa_{\omega_1 + w}\) above the \(\text{sup of the measurable of } K^{L_{\nu_1}[D]}\). Contradiction!

Hence \(K^{L_{\nu_1}[D]} = M_{\nu_1}\) in the mouse order and \(K^{L_{\nu_1}[D]}\) has unboundedly many measurable cardinals in \(\nu_1\), in fact by a theorem of Jensen's there is an elementary embedding
\[\pi : M^{L_{\omega_1}} \rightarrow K^{L_{\omega_1}[\mathcal{D}]} \] resulting from a
normal situation, call it \(\mathcal{I} \), on \(M^{L_{\omega_1}} \)
\((K^{L_{\omega_1}[\mathcal{D}]}\) was just shown to be a universal
measurable in \(M^{L_{\omega_1}[\mathcal{C}]} \).)

Let us now prove that \(M^{L_{\omega_1}} = K^{L_{\omega_1}[\mathcal{D}]} \),
which will finish the proof of (\(\ast \)), as then
\(M^{L_{\omega_1}} \subseteq L_{\omega_1}[\mathcal{D}] \).

It obviously suffices to verify that the \(\kappa_{\omega_i + w} \),
i.e. the measurable cardinals of \(K^{L_{\omega_1}[\mathcal{D}]} \).

Fix \(\kappa_{\omega_j} \) ad suppose that that's true for all
\(\kappa_{\omega_j} \), \(j < i \). Then \(\kappa_{\omega_i + w} \) is the next measurable
of \(M^{L_{\omega_1}} \), so the next measurable of \(K^{L_{\omega_1}[\mathcal{D}]} \)
must be \(\geq \kappa_{\omega_i + w} \). We have that \(P(\kappa_{\omega_i + w}) \cap K^{L_{\omega_1}[\mathcal{D}]} \)
\(= P(\kappa_{\omega_i + w}) \cap M^{L_{\omega_1}} \) and \((\kappa_{\omega_i + n} : 0 < n < w) \in K^{L_{\omega_1}[\mathcal{D}]} \)
generates the (unique) measure in
\(M \) on \(\kappa_{\omega_i + w} \). But then this measure is
in $L_{\omega_1}^{\mathbb{D}_J}$ as well and in fact it will be on the $L_{\omega_1}^{\mathbb{D}_J}$-sequence.

References.

[We] Philip Welch, paper on $L[\text{Card}]$.

William Chan, talk at UC Berkeley, July 2019.