THE PERIODICITY OF THE FREE FERMIONS: A CONJECTURE

ANDRÉ G. HENRIQUES (TALK GIVEN AT MÜNSTER, ON THE 19TH OF JUNE 2010)

Collaborators: Arthur Bartels and Chris Douglas.

Let Fer denote the free chiral Majorana fermion in one dimension. It is a generally covariant net of $\mathbb{Z}/2$ -graded von Neumann algebras on the category of spin intervals. Given a spin interval I with real spinor bundle S, $S^{\otimes 2} \simeq T^*I$, the value Fer on I is the complexification of a completion of

$$\operatorname{Cliff}\left(\Gamma(I,S)\right):=\bigoplus_{i\geq 0}\Gamma(I,S)^{\otimes i}\left/\left.s\otimes s-\langle s,s\rangle,\right.\right.$$

where $\Gamma(I,S)$ is the space of sections of S, and the inner product is given by $\langle s,s\rangle=\int_I s^{\otimes 2}$, with $s^{\otimes 2}\in\Gamma(I,S^{\otimes 2})\simeq\Gamma(I,T^*I)=\Omega^1(I)$.

Our periodicity conjecture says that $Fer^{\otimes n} \equiv Fer^{\otimes (n+576)}$, where the symbol \equiv denotes an equivalence relation that I shall not define here. This conjecture is inspired by the speculations having to do with the generalized cohomology theory TMF, whose period is also 576. Here is a statement that is equivalent to the above one:

Conjecture. Let H be a separable $\mathbb{Z}/2$ -graded Hilbert space. There exists a net \mathcal{B} on [0,1] of $\mathbb{Z}/2$ -graded von Neumann algebras on H subject to the following conditions:

- The net \mathcal{B} is local in the $\mathbb{Z}/2$ -graded sense: If $I, J \subset [0, 1]$ are intervals with disjoint interiors, then $\mathcal{B}(I)$ and $\mathcal{B}(J)$ graded-commute. More explicitly, the odd elements of $\mathcal{B}(I)$ and $\mathcal{B}(J)$ anti-commute, while the even elements $\mathcal{B}(I)$ and $\mathcal{B}(J)$ commute with both even and odd elements of the other algebra.
- The net \mathcal{B} is additive:
 - If $I, J, K \subset [0, 1]$ are closed intervals satisfying $I \cup J = K$, then $\mathcal{B}(I) \vee \mathcal{B}(J) = \mathcal{B}(K)$. Here, the symbol \vee denotes the von Neumann algebra generated by the two subalgebras. Note that \mathcal{B} doesn't have to be regular at the end points: the algebra $\bigvee \mathcal{B}([\varepsilon, 1 \varepsilon])$ doesn't have to be isomorphic to $\mathcal{B}([0, 1])$, and actually it can't be.
- The restriction of \mathcal{B} to (0,1) is isomorphic to $Fer^{\otimes 576}$:

 There exists an isomorphism of $\mathbb{Z}/2$ -graded Hilbert space $H \simeq (\text{Fock Space})^{\otimes 576}$ such that for every closed interval $I \subset (0,1)$ it yields an identification between $\mathcal{B}(I)$ and $Fer^{\otimes 576}(I)$. Here, Fock Space refers to the vacuum Hilbert space of the conformal net Fer on \mathbb{R} .
- The net \mathcal{B} satisfies the split property: If $I, J \subset [0, 1]$ are closed intervals that do not intersect, then the algebra $\mathcal{B}(I) \vee \mathcal{B}(J)$ is isomorphic to the spacial tensor product $\mathcal{B}(I) \bar{\otimes} \mathcal{B}(J)$.
- The net \mathcal{B} is irreducible: $\mathcal{B}([0,1]) = B(H)$ is the algebra of all bounded operators on H.
- The net \mathcal{B} satisfies Haag duality for disjoint unions of intervals: if $0 = x_1 < x_2 < \ldots < x_n = 1$ are points delimiting intervals $I_i := [x_i, x_{i+1}]$, then we have

$$\mathcal{B}(I_1) \vee \mathcal{B}(I_3) \vee \ldots = (\mathcal{B}(I_2) \vee \mathcal{B}(I_4) \vee \ldots)',$$

where the prime denotes the graded commutant inside B(H).