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Quantum field theory

Quantum field theory (QFT) is defined in terms of axioms of
[Wightman 56], [Haag, Kastler 60], [Osterwalder, Schrader 74] or [Atiyah, Segal 89].

Maybe with exception of Atiyah-Segal, which has different target, all approaches agree
that quantum fields Φ are distributions.

Non-linear constructs of quantum fields such as λΦn not naïvely defined.

Difficulties to construct them grow with dimension D of space(-time).

Example: Stochastic quantisation [Parisi, Wu 81], here of λΦ4-model
Euclidean QFT as equilibrium limit of statistical system coupled to thermal reservoir:

∂tΦ(t, x) = (∆−m2)Φ(t, x)− :λΦ3(t, x): + ξ(t, x)

where t – fictitious time, ∆ – Laplacian in D dimensions, ξ – white noise.
For t →∞, stochastic averages provide Schwinger functions of Euclidean QFT.
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Quantum fields in dimension D = 4

To construct :λΦ3:, need to replace RD by hypercubic lattice of length Λ and spacing a.
Then constuct sequence/net of distributions :λΦn:a,Λ which in some sense converges to :λΦ3:

Triviality [Aizenman, Duminil-Copin 19]

The λΦ4-QFT model in D = 4 does not exist; it is trivial.
:λΦ3:a,Λ needs regulator-dependent coupling constant λ(a,Λ) which converges to zero
for (a→ 0,Λ→∞)

Already conjectured in early 80s [Aizenman 81; Fröhlich 82].
Indication is positive β-function (understood as formal power series).

Physical arguments (perturbative β-function is negative) support the conjecture that
quantum Yang-Mills theory should exist in D = 4. Difficulty is confinement.
Existence proof of YM4 is one of the Millenium Prize problems.

It seems that non-linear D = 4 QFT examples tend to be trivial (e.g. λΦ4
4, QED4) or as

difficult as Yang-Mills.
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Quantum fields on non-commutative geometries

We relax rules of the game: Can we make sense of QFT on a noncommutative geometry?
Motivated by compactification of M-theory on nc torus [Connes, Douglas, Schwarz 97].

Also found in limiting regimes of String Theory [Schomerus 99; Seiberg, Witten 99].

We report on the considerable progress achieved since then.

Plan
We follow the Euclidean approach via measures on spaces of distributions; its moments
define candidate Schwinger functions.
We cannot expect that these Schwinger functions satisfy reasonable axioms.
Linear theory governed by spectral dimension of Laplace-type operator. Corresponding
distributions conjectured to be as singular as on manifold of same spectral dimension.
Aim is to learn how to build non-linear constructs of these distributions, defined by
product in operator algebra. Works better than on manifolds!
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The free Euclidean quantum field

(A, ?) – Fréchet ∗-algebra, nuclear as vector space; A∗ its subspace of self-adjoint elements.

Theorem [Bochner 32; Minlos 59]
Let F : A∗ → R with F(0) = 1 be continuous and of positive type:∑K

i ,j=1 ci c̄jF(ai − aj) ≥ 0 for any ai ∈ A∗, ci ∈ C.

Then ∃! Borel measure dµ on the dual A′∗ with F(a) =
∫
A′∗

e iΦ(a)dµ(Φ).

For any inner product C : A∗ ×A∗ → R, called covariance, F(a) := exp(−1
2C (a, a)) is of

positive type [Schur 1911] and (if continuous) defines dµC (Φ).

Consider Fréchet algebras which contain matrix units ekl ? emn = δlmekn, (ekl)
∗ = elk .

For increasing sequence (Ek) of positive reals and parameter N , we take covariance

CE (ekl , emn) =
δknδlm

N (Ek + El)

Below, dµE (Φ) denotes Bochner-Minlos measure associated with F(a) := exp(−1
2CE (a, a)).
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Product of distributions

Regularity conjecture
It should be true that the support of dµE (Φ) is not all of A′∗, but reduced to a subspace
determined by the spectral dimension D = inf{p|

∑∞
k=0 E

−p/2
k <∞}.

So far we haven’t used the product ? in A. This comes now, more precisely in the dual.
We want to make sense, for Φ ∈ A′∗, of

Tr(Φn) “=”
∞∑

k1,...,kn=0

Φ(ek1k2)Φ(ek2k3) · · ·Φ(ekn−1kn)Φ(eknk1)

Since
∑∞

k1,...,kn=0 ek1k2 ⊗ ek2k3 ⊗ · · · ⊗ eknk1 is not Fréchet, Tr(Φn) will not exist naïvely.

Renormalisation strategy

Introduce cut-off
∑∞

k=0 7→
∑ΛN

k=0 in summation range and Λ-dependent parameters.
Consider the resulting regulated measure and its moments.
Adjust parameters so that dangerous moments are constant and others have a limit.

Raimar Wulkenhaar (Münster)
Quantum fields on NCG

QFT NCG 1/N-exp λΦ3-model TR λΦ4-model Higher genus Final 5 / 24



Moments and 1/N -expansion

Let P(Φ) be a polynomial in previous sense and TrΛ the regularised trace. We consider
moments of

dµP,E (Φ) =
1
Z

exp(−NTrΛ(P(Φ)))dµE (Φ)

Viewed as moments of the Gaußian dµE (Φ), these factorise into products of pairs.
A pair is graphically represented as an edge; it contributes factor 1

N and Kronecker δ’s.

NTrΛ(Φp) is graphically represented as p-valent vertex. Contributes factor N .

After resolving the Kronecker δ’s, some summation over ekl -matrix indices remain.
We take a factor N out of every summation. Graphically they represent faces.
Faces are labelled by matrix indices k , or better Ek .

Conclusion: 1/N -expansion
Every moment comes with a topological grading by the Euler characteristic χg ,n of a genus-g
Riemann surface (as formal power series in N−2)∫

A′∗
dµP,E (Φ) Φ(a1) · · ·Φ(an) =

∞∑
g=0

N χg,n〈Φ(a1) · · ·Φ(an)〉g ,n
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Dyson-Schwinger equations and recursion

Dyson-Schwinger equations are identities between moments/cumulants obtained by
integration by parts. They inherit the grading by the Euler characteristic.

Cumulants represented as genus-g Riemann surface with boundary.
Each boundary component carries external one-valent vertices which separate open faces
of labels Ek ,El . In an n-point function, in total n external vertices are distributed.
The equations permit an extension to face labels ζ ∈ P1.

Recursive structure
1 Non-linear equation for highest Euler characteristic: disk-amplitude with least number of

one-valent vertices. Determines function y .
2 Algebraic recursion when increasing number of one-valent vertices at otherwise same

topology. Combinatorial problem possibly connected to free probability.
3 Topological recursion [Eynard, Orantin 07] in decreasing Euler characteristic (for least

number of vertices) starting from y and ramified covering x : Σ 3 z 7→ ζ = x(z) ∈ P1.
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λΦ3-model and relation to Kontsevich model

Take P(Φ) = (κ0 + κ1E + κ2E
2)Φ + ((Z − 1)E + Zµb)Φ2 + λ

3ZΦ3.
This is the [Kontsevich 92] model (matrix Airy function) with added counterterms.
For simplicity, we focus on original formulation: A = MN(C), N = N and
κi = Z − 1 = mb = 0, λ = i. See e.g. [Eynard, Orantin 07, Eynard 16].
Relates generating function for intersection numbers on moduli spaceMg ,n of stable
complex curves to matrix Airy function from which KdV integrable hierarchy is deduced.

Main definition(∫
HN

dµλ
3 Φ3,E (Φ) Φ(ea1a1) · · ·Φ(eanan)

)
c
− δn,1

NEa1

2λ
:=

∞∑
g=0

N2−n−2gW
(g)
a1...,an

as formal power series, all ai pairwise different, ( )c stands for “cumulant”.

2 Algebraic formula for more complicated cumulants, e.g.

[N2−2g−n]
(∫

HN

dµλ
3 Φ3,E (Φ) Φ(ea1a2)Φ(ea2a3) · · ·Φ(eana1)

)
c

=
n∑

k=1

W
(g)
ak

n∏
l=1,l 6=k

1
E 2
ak
− E 2

al
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Dyson-Schwinger equations

Integration by parts establishes:

Dyson-Schwinger equations of Kontsevich model∑
I1]I2={1,...,n}

g1+g2=g

W
(g1)
a,I1

W
(g2)
a,I2

= E 2
a δn,0δg ,0 −W

(g−1)
a,a,a1,...,an −

2
N

N∑
k=1

W
(g)
k,a1,...,an

−W
(g)
a,a1,...,an

E 2
k − E 2

a

−
n∑

j=1

∂

∂E 2
aj

W
(g)
a1,...,an −W

(g)
a1,...,aj−1,a,aj+1,..,an

E 2
aj
− E 2

a

Non-linear equation for W (0)
a if g = n = 0; solved by [Makeenko, Semenoff 91]

W
(0)
a = −

√
E 2
a +c + 1

N

∑N
l=1

1√
E2
l +c(
√

E2
a +c+

√
E2
l +c)

where c = 2
N

∑N
k=1

1√
E2
k +c

.

Counterterms in dimension 2 ≤ D ≤ 6 achieve convergent sums.

Affine equation for W (g)
a1,...,an if 2g + n ≥ 2 with known inhomogeneity.
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Complexification

Set E 2
a 7→ z2 − c , E 2

ai
7→ z2

i − c , εk :=
√

E 2
k + c and complexify DSE to system of equations

∑
I1]I2={z1,...,zn}

g1+g2=g

Ŵ
(g1)
|I1|+1(z , I1)Ŵ

(g2)
|I2|+1(z , I2) + Ŵ

(g−1)
n+2 (z , z , z1, ..., zn)

= (z2 − c)δn,0δg ,0 −
2
N

N∑
k=1

Ŵ
(g)
n+1(εk , z1, ..., zn)− Ŵ

(g)
n+1(z , z1, ..., zn)

ε2k − z2

−
n∑

j=1

∂

∂z2
j

Ŵ
(g)
n (z1, ..., zn)− Ŵ

(g)
n (z1, ..., zj−1, z , zj+1, ..., zn)

z2
j − z2

for meromorphic functions Ŵ (g)
n (z1, .., zn) satisfying W

(g)
a1,...,an ≡ Ŵ

(g)
n (εa1 , ..., εan).

Ŵ
(0)
2 (z , z1) =

1
4zz1(z + z1)2

Ŵ
(0)
3 (z1, z2, z3) =

1
16(1− t̂3)z3

1 z
3
2 z

3
3
where t̂3 = − 1

N

∑N
k=1

1
ε3k
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Linear and quadratic loop equations
The complexified DSE imply inductively for 2g + n ≥ 3:

W
(g)
n (z1, ..., zn) has poles only at zi = 0

Linear loop equation (2g + n ≥ 3)

W
(g)
n (z , z2, ..., zn) + W

(g)
n (−z , z2, ..., zn) = 0

Use this and splitting of Ŵ (0)
1 and Ŵ

(0)
2 into parts with ±z to rearrange DSE into

Quadratic loop equation (2g + n ≥ 3)∑
I1]I2={z2,...,zn}

g1+g2=g

W
(g1)
|I1|+1(z , I1)W

(g2)
|I2|+1(−z , I2) + W

(g−1)
n+1 (z ,−z , z2, ..., zn)

=
1
N

N∑
k=1

W
(g)
n (εk , z2, ..., zn)

ε2k − z2 +
n∑

j=2

∂

∂z2
j

(W (g)
n−1(z2, .., zn)

z2
j − z2

)
where W

(0)
1 ≡ y(z) := z + 1

N

∑N
k=1

1
εk (εk−z) , W

(0)
2 (z1, z2) = 1

4z1z2(z1−z2)2

and W
(g)
n = Ŵ

(g)
n for 2g + n ≥ 3
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Topological recursion

[Eynard, Orantin 07] noticed that the non-linearity of many matrix models can be
disentangled into initial data called the spectral curve and a universal recursion for
meromorphic functions W (g)

n (or promoted to meromorphic differentials ω(g)
n )

Spectral curve
Complex curve/Riemann surface Σ and two ramified coverings x , y : Σ→ P1.
Polynomial equation P(x , y) = 0.
Bergman kernel B : symmetric bidifferential on Σ× Σ, with double pole on diagonal, no
other pole, normalised.

Soon later many important examples other than matrix models were identified:
Weil-Peterssen volumes of moduli spaces of bordered hyperbolic surfaces [Mirzakhani 07]
ELSV formula, expresses simple Hurwitz numbers as integral of ψ- and λ-classes over
Mg ,n [Bouchard, Mariño 07; Eynard, Mulase, Safnuk 09]
Semisimple cohomological field theories [Dunin-Barkowski, Orantin, Shadrin, Spitz 14]
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Linear and quadratic loop equations

Theorem
1 Given a spectral curve (x , y : Σ→ P1,B), with technical assumptions.

2 Set y =: W
(0)
1 , B(z ,w) =: W

(0)
2 (z ,w)dx(z)dx(w), x−1(x(z)) = {ẑ0 = z , ẑ1, ...., ẑd}.

3 Assume that the following are holomorphic at any branch point of x :

L(x(z); z2, ..., zn) :=
d∑

j=0

W
(g)
n (ẑ j , z2, ..., zn)

Q(x(z); z2, ..., zn) =
d∑

j=0

( ∑
I1]I2={z2,...,zn}

g1+g2=g

W
(g1)
|I1|+1(ẑ j , I1)W

(g2)
|I2|+1(ẑ j , I2) + W

(g−1)
n+1,reg (ẑ j , ẑ j , z2, ..., zn)

)

Then there is a formula which evaluates W (g)
n in terms of W (g ′)

n′ with 2g ′+n′ < 2g+n.

This formula is particularly simple under a projection property
W

(g)
n (z , z2, ..., zn) =

∑
β=ramif.pts Resq=β

( ∫ q
β W

(0)
2 (z , .)dx(.)

)
W

(g)
n (q, z2, ..., zn)dx(q)
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Remarks

Kontsevich model has ζ = x(z) = z2 − c and y(z) = Ŵ
(0)
1 (−z).

Laurent expansion of W (g)
n (z1, ..., zn) near an n-tupel of ramification points can be

expressed in terms of intersection numbers of ψ- and κ-classes onMg ,n [Eynard 11].

Absence of projection property gives blobbed topological recursion [Borot, Shadrin 15].
The λΦ4-model discussed next is of this type [Branahl, Hock, W 20; Hock, W 23].

Deformations of spectral curve express formal Baker-Akhiezer kernel in terms of W (g)
n .

Gives rise to formal KP τ -function [Eynard, Orantin 07; Borot, Eynard 12].

Symplectic invariance of dy ∧ dx : previously open x-y swap understood in
[Hock 22; Bychkov, Dunin-Barkowski, Kazarian, Shadrin 22].

Application to higher-order free cumulants in free probability
[Borot, Charbonnier, Garcia-Failde, Leid, Shadrin 21].
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The λΦ4-model
Take P(Φ) = λ

4 Φ4, shift Ea 7→ Ea + 1
2M

2 where M depends on cut-off.
If Dspec is spectral dimension of {Ek}, then D := 2[

Dspec

2 ] ∈ {0, 2, 4}.
Genus-expanded & field-renormalised 2-point function

G
(g)
|ab| =

1
Z (Λ)

[N−1−2g ]

∫
dµΛ

(λ/4)Φ4,E (Φ) Φ(eab)Φ(eba)

Dyson-Schwinger eq. for G (0)
|ab| extends to complexified G (0)(ζ, η) with G (0)(Ea,Eb) = G

(0)
|ab|:

Theorem [Grosse, W 09]
The planar two-point function satisfies the closed non-linear equation(
ζ + η + M2 +

λ

N

ΛDN∑
k=0

ZG (0)(ζ,Ek)
)
ZG (0)(ζ, η) = 1 +

λ

N

ΛDN∑
k=0

ZG (0)(Ek , η)− ZG (0)(ζ, η)

Ek − ζ

Alternatively, setting %0(t) = λ
N
∑ΛDN

k=0 δ(t − Ek), get non-linear integral equation(
ζ+η+M2+λ

∫ ∞
0
dt %0(t)ZG (0)(ζ, t)

)
ZG (0)(ζ, η) = 1+λ

∫ ∞
0
dt %0(t)

Z (G (0)(t, η)−G (0)(ζ, η))

t − ζ
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Solution

Theorem [Panzer-W 18 for %0 = 1, Grosse-Hock-W 19a]

1 Ansatz G (0)(ζ, η) =
eHζ [τη(•)] sin τη(ζ)

Zλπ%0(ζ)
, Hζ [f ] := 1

π −
∫ Λ2

0
dp f (p)
p−ζ finite Hilbert transf.

2 τη(ζ) = limε↘0 Im log
(
η − RD(−m2 − R−1

D (ζ + iε)) for m – renormalised mass

3 RD(z) = z − λ(−z)D/2
∫ ∞

0

dt %λ(t)

(m2 + t)D/2(t + m2 + z)

4 %λ is implicit solution of %0(RD(ζ)) = %λ(ζ).
Then the non-linear integral equation for G (0)(ζ, η) holds identically.

Proof: [Cauchy 1831] residue theorem, [Lagrange 1770] inversion theorem,
[Bürmann 1799] formula.
%0(t) ≡ 1 (2D Moyal, m = 1) in terms of Lambert-W satisfying W (z)eW (z) = z .
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D = 4 Moyal space: %0(t) = t [Grosse-Hock-W 19b]

%λ(x) ≡ %0(R4(x)) = R4(x) = x − λx2 ∫∞
0

dt %λ(t)
(m2+t)2(t+x)

If %λ(t) ∼ %0(t) = t, then R4(x) bounded above. Consequently, R−1
4 would not be

globally defined: triviality!
Fredholm equation perturbatively solved by iterated integrals:
Hyperlogarithms and ζ(2n) which can be summed to

R4(x) ≡ %λ(x) = x · 2F1

(αλ, 1− αλ
2

∣∣∣− x

m2

)
αλ =

{
arcsin(λπ)

π for |λ| ≤ 1
π

1
2 + i arcosh(λπ)

π f or λ ≥ 1
π

Gives non-perturbative integral representation for G (0)(ξ, η).

Corollary

The planar part of the non-linearity reduces the spectral dimension to 4− 2arcsin(λπ)
π and thus

avoids the triviality problem (in the planar sector).

All hope to construct the λΦ4-model in four dimension rests on this observation.
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All planar cumulants
Planar cumulants G (0)

a1...,an = 1
Zn/2 [N 1−n]

∫
A′∗

( ∫
dµλΦ4,E (Φ)Φ(ea1a2)Φ(ea2a3) · · ·Φ(eana1)

)
c
,

extend to G (0)(ζ1, .., ζn)

Theorem [de Jong, Hock, W 19]

G (0)(ζ1, ..., ζn) is sum of 2
n

( 3n
2 −2
n
2−1

)
terms of the form (−λ)n/2−1

∏n/2
1 G (0)(ζi ,ζj )∏n−2

1 (ζk−ζl )

Pattern in bijection with nested Catalan tables
Graphically described in terms of non-crossing chords with a
pair of dual planar rooted trees in every pocket.

+

n = 12

Link to free probability?
Expectation values of powers of large random matrices show freeness (crossings suppressed).

Cumulants of λΦ4-model are, analogously to free moments, given by non-crossing linear
combinations of (the only non-zero) free cumulants G (0)(zi , zj).
Is this more than an analogy?
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The genus expansion

We thus succeeded in constructing the planar sector of the λΦ4-QFT model on a particular
4-dimensional noncommutative geometry.

Main message
Don’t perturb the linear theory; this fails as in [Aizenman, Duminil-Copin 19].
Take it together with the planar part of the non-linearity! Only NCG can do this.

But we do not have quantitative estimates for error between full theory and planar sector.

One would expect that the difference is O(1/N 2). There are refinements of
Dyson-Schwinger techniques [Guionnet 17] which could achieve this.

Alternatively, one can try to control the cumulants to any genus and establish Borel
summability of the genus expansion via resurgence.
Recent progress for λΦ3 in [Eynard, Garcia-Failde, Giacchetto, Gregori, Lewański 23].

We describe some modest (but already difficult) steps in this dírection. They concern an
N × N-matrix model where N can be large but finite. Limit N →∞ is currently out of reach.
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Finite matrices

Consider the partition function Z(λ/4)Φ4,E :=
∫
HN

dΦ e−N Tr(EΦ2+λ
4 Φ4) on A = MN(C).

Let (e1, ..., ed) be the pairwise different eigenvalues of E with multiplicities (r1, ..., rd).

Theorem [Schürmann, W 19]

A solution of the non-linear equation for G (0)(ζ, η) can be implicitly found in the form
G (0)(x(z), x(w)) =: G(0)(z ,w) with x(z) = z − 1

N

∑N
k=1

%k
εk+z , x(εk) = ek and x ′(εk)%k = rk :

G(0)(z ,w) =
P

(0)
1 (x(z), x(w))

(x(z) + y(w))(x(w) + y(z))
where y(z) = −x(−z) and

P
(0)
1 (x(z), x(w)) =

∏
u∈x−1({x(w)})(x(z) + y(u))∏d

k=1(x(z)− x(εk))
≡ P

(0)
1 (x(w), x(z))

Main definition [Branahl, Hock W 20]

For pairwise different a1, ..., an, set W
(g)
a1,...,an :=[N2−2g−n]

(−1)n∂n logZ(λ/4)Φ4,E
∂Ea1 ···∂Ean

+
δg,0δn,2

(Ea1−Ea2 )2

for 2g + n ≥ 2, and complexify to W
(g)
n (z1, ..., zn). Moreover, W (0)

1 (z) = y(z).
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Linear and quadratic loop equations for g = 0

Extract from DSE (which relate W
(g)
n to auxiliary functions) the lin./quad. loop equations:

Proposition [Hock, W 21; Hock, W 23]

The functions W (0)
|I |+1 satisfy for ∅ 6= I = {u1, ..., un} the global linear loop equations

d∑
k=0

W
(0)
|I |+1(ẑk , I ) =

δ|I |,1

(x(z)− x(u1))2 −
|I |∑
j=1

∂

∂x(uj)
DI\uj

( 1
x(z) + y(uj)

)
and the global quadratic loop equations

1
2

∑
I1]I2=I

d∑
k=0

W
(0)
|I1|+1(ẑk , I1)W

(0)
|I2|+1(ẑk , I2)

=

|I |∑
j=1

∂

∂x(uj)
DI\uj

( x(uj)

x(z)+y(uj)

)
− 1

N

d∑
k=1

rkW
(0)
|I |+1(εk , I )

x(z)− x(εk)
+

|I |∑
j=1

∂

∂x(uj)

W
(0)
|I | (I )

x(z)− x(uj)
,

for D{u1,...,un}=
∏n

j=1Duj and derivations DuW
(g)
m (z1, ..., zm)=W

(g)
m+1(z1, ..., zm, u), Dux(z)=0

Projection property does not hold: blobbed topological recursion
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Linear and quadratic loop equations for g = 1

Proposition [Hock, W 23]

The genus-1 meromorphic functions W (1)
|I |+1(z , I ) satisfy the linear loop equation

d∑
k=0

W
(1)
|I |+1(ẑk , I ) = −D0

I

1
8(x(z)− x(0))3

−
|I |∑
j=1

∂

∂x(uj)
DI\uj

{ W
(0)reg
2 (uj , uj)

(x(z) + y(uj))3 −
W

(1)
1 (uj)

(x(z) + y(uj))2

− 1
2(x(z) + y(uj))2

∂2

∂(x(uj))2
1

(x(z) + y(uj))

}
and . . .
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Linear and quadratic loop equations for g = 1

Proposition [Hock, W 23]
. . . the quadratic loop equation

1
2

∑
g1+g2=1
I1]I2=I

d∑
k=0

W
(g1)
|I |+1(ẑk , I1)W

(g2)
|I |+1(ẑk , I2) +

1
2

d∑
k=0

W
(0)reg
2 (ẑk , ẑk , I )

=
1
6

|I |∑
j=1

∂2

∂(x(uj))2

(
DI\uj

1
(x(z) + y(uj))3

)
− D0

I

1
8(x(z)− x(0))2 + x(z)D0

I

1
8(x(z)− x(0))3

+

|I |∑
j=1

∂

∂x(uj)

[
x(uj)DI\uj

{W (0)reg
2 (uj , uj)

(x(z)+y(uj))3−
W

(1)
1 (uj)

(x(z)+y(uj))2−
1

2(x(z)+y(uj))2
∂2

∂(x(uj))2
1

(x(z)+y(uj))

}]

− 1
N

d∑
l=1

W
(1)
|I |+1(εl , I )

x(z)− x(εl)
+

|I |∑
j=1

∂

∂x(uj)

W
(1)
|I | (I )

x(z)− x(uj)
.
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Final remarks

The global linear and quadratic loop equations give explicit recursion formulae for W (g)
n

(so far for g ≤ 1).

Original blobbed TR [Borot, Shadrin 15] defined for local curves; this leaves large
freedom (called ‘blobs’) in W

(g)
n . Validity of local loop equations is clear.

It would be interesting to know whether matricial QFT-models other than (λΦ3, λΦ4)
admit a similar formulation. A hint:

Theorem [Borot, W 23]

Let P ∈ C(R) such that e−Eminx
2−P(x) has finite moments and dµE as before .

Then Z(t) =
∫
HN

dµE (Φ) exp
(
Tr
(
− P(Φ) +

∑∞
k=0 t2k+1Φ2k+1)) is a BKP τ -function.

In particular, ∃ infinitely many quadratic relations between moments, e.g. (for P even)

0 =
〈(

Tr(Φ)
)6〉

+ 15
〈(

Tr(Φ)
)4〉〈(Tr(Φ)

)2〉− 5
〈(

Tr(Φ)
)3Tr(Φ3)

〉
− 15

〈
Tr(Φ)Tr(Φ3)

〉〈(
Tr(Φ)

)2〉− 5
〈(

Tr(Φ3)
)2〉

+ 9
〈
Tr(Φ5)Tr(Φ)

〉
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