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Quantum field theory
Quantum field theory (QFT) is defined in terms of axioms of
[Wightman 56], [Haag, Kastler 60], [Osterwalder, Schrader 74] or [Atiyah, Segal 89].
@ Maybe with exception of Atiyah-Segal, which has different target, all approaches agree
that quantum fields ® are distributions.

@ Non-linear constructs of quantum fields such as A®" not naively defined.

o Difficulties to construct them grow with dimension D of space(-time).

Example: Stochastic quantisation [Parisi, Wu 81], here of A®*-model

Euclidean QFT as equilibrium limit of statistical system coupled to thermal reservoir:
0:®(t,x) = (A — m?)d(t, x) — AP3(t, x): + £(t, x)

where t — fictitious time, A — Laplacian in D dimensions, £ — white noise.

@ For t — o0, stochastic averages provide Schwinger functions of Euclidean QFT.
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Quantum fields in dimension D =4

To construct :A®3:, need to replace RP by hypercubic lattice of length A and spacing a.
Then constuct sequence/net of distributions :A®":, A which in some sense converges to AD3:

Triviality [Aizenman, Duminil-Copin 19]
The A®*-QFT model in D = 4 does not exist; it is trivial.

@ :A®3:, A needs regulator-dependent coupling constant A(a, A) which converges to zero
for (a = 0,A — o0)
@ Already conjectured in early 80s [Aizenman 81; Frohlich 82].

@ Indication is positive S-function (understood as formal power series).

@ Physical arguments (perturbative 5-function is negative) support the conjecture that
quantum Yang-Mills theory should exist in D = 4. Difficulty is confinement.
@ Existence proof of YMy is one of the Millenium Prize problems.
It seems that non-linear D = 4 QFT examples tend to be trivial (e.g. pYOS QED4) or as
difficult as Yang-Mills.
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We relax rules of the game: Can we make sense of QFT on a noncommutative geometry?
@ Motivated by compactification of M-theory on nc torus [Connes, Douglas, Schwarz 97].

@ Also found in limiting regimes of String Theory [Schomerus 99; Seiberg, Witten 99].

We report on the considerable progress achieved since then.

@ We follow the Euclidean approach via measures on spaces of distributions; its moments
define candidate Schwinger functions.

@ We cannot expect that these Schwinger functions satisfy reasonable axioms.
@ Linear theory governed by spectral dimension of Laplace-type operator. Corresponding
distributions conjectured to be as singular as on manifold of same spectral dimension.

@ Aim is to learn how to build non-linear constructs of these distributions, defined by
product in operator algebra. Works better than on manifolds!
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(A, %) — Fréchet *-algebra, nuclear as vector space; A, its subspace of self-adjoint elements.

Theorem [Bochner 32; Minlos 59]

Let F: A, — R with 7(0) = 1 be continuous and of positive type:
Zﬁ-:l ciGjF(ai —aj) > 0 for any a; € A, ¢; € C.
Then 3! Borel measure dy on the dual A, with F(a) = [, e*@du(P).

For any inner product C : A, x A, — R, called covariance, F(a) := exp(—3C(a, a)) is of
positive type [Schur 1911] and (if continuous) defines dyic(P).

o Consider Fréchet algebras which contain matrix units ey *x €mn = Ojmexn, (ex)* = eik.

@ For increasing sequence (Ey) of positive reals and parameter A/, we take covariance
6kn5lm

C mn) — Y = . =\
£ (& €mn) N(Ex + E)
Below, dg(®) denotes Bochner-Minlos measure associated with F(a) := exp(—3 Cg(a, a)).
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Product of distributions

Regularity conjecture
It should be true that the support of dug(®) is not all of A’, but reduced to a subspace
determined by the spectral dimension D = inf{p| > ;2 Ek_p/2 < o0}

So far we haven't used the product x in A. This comes now, more precisely in the dual.
@ We want to make sense, for ® € A,, of
[o.¢]
Te(®7) “=" Y P(khy)P(kaks) - - Pk, 1) P(Ehrkr)

ki,...,kn=0
@ Since Zifk,, 0 Ekiks @ €loky @ -+ @ €y, k, is not Fréchet, Tr(®") will not exist naively.

Renormalisation strategy

o Introduce cut-off Y72 ;) — Zi\/:\/o in summation range and A-dependent parameters.
@ Consider the resulting regulated measure and its moments.

@ Adjust parameters so that dangerous moments are constant and others have a limit.
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Moments and 1/A -expansion
Let P(®) be a polynomial in previous sense and Trp the regularised trace. We consider
moments of G £(®) = 3 op(~NTin(P(@)))due (@)
@ Viewed as moments of the GauBian dpg(®), these factorise into products of pairs.
A pair is graphically represented as an edge; it contributes factor /%[ and Kronecker §'s.
@ N'Trp(®P) is graphically represented as p-valent vertex. Contributes factor \V.

o After resolving the Kronecker ¢'s, some summation over eg-matrix indices remain.
We take a factor A out of every summation. Graphically they represent faces.
Faces are labelled by matrix indices k, or better E.

Conclusion: 1/N -expansion
Every moment comes with a topological grading by the Euler characteristic x, , of a genus-g
Riemann surface (as formal power series in N =2) -

/A' dpp e(P) ®(a1) - d(an) = Zng’"<¢(31) -+ ®(an))g,n

+ o—0
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Dyson-Schwinger equations and recursion

Dyson-Schwinger equations are identities between moments/cumulants obtained by
integration by parts. They inherit the grading by the Euler characteristic.
@ Cumulants represented as genus-g Riemann surface with boundary.
@ Each boundary component carries external one-valent vertices which separate open faces
of labels Eg, E;. In an n-point function, in total n external vertices are distributed.
@ The equations permit an extension to face labels ¢ € P

Recursive structure

© Non-linear equation for highest Euler characteristic: disk-amplitude with least number of
one-valent vertices. Determines function y.

@ Algebraic recursion when increasing number of one-valent vertices at otherwise same
topology. Combinatorial problem possibly connected to free probability.

© Topological recursion [Eynard, Orantin 07] in decreasing Euler characteristic (for least
number of vertices) starting from y and ramified covering x : ¥ > z + ( = x(z) € PL.
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A®3-model and relation to Kontsevich model
Take P(®) = (ko + k1E + ko E2)® + ((Z — 1)E + Zpp)d? + 3203,
@ This is the [Kontsevich 92] model (matrix Airy function) with added counterterms.

@ For simplicity, we focus on original formulation: A = My(C), N = N and
ki=Z—1=mp =0, A =1 See e.g. [Eynard, Orantin 07, Eynard 16].

o Relates generating function for intersection numbers on moduli space M, , of stable
complex curves to matrix Airy function from which KdV integrable hierarchy is deduced.

Main definition

NE., -
</HN dlu’%¢3 E(q)) q)(ealal) o q)(eanan))C - 6'771 2)\ Z N2 2€ Wésf) ,an

)

g=0
as formal power series, all a; pairwise different, ( ). stands for “cumulant”.

@ Algebraic formula for more complicated cumulants, e.g.

[N2_2g_”](/Hd,ug¢37E(¢) ¢(eala2)¢(eaza3) e (D(eana1 ) Z Wa"g) H E2 —F2 E2
N

I=1,1#4k 3k
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Integration by parts establishes:

Dyson-Schwinger equations of Kontsevich model

N
2 Wk a,da1,..-,dn
N WEIWE) = E26, 00,0 — WIS o, — oY aea 2%
1 N E; — E;
/1@/2:{1,..., } k=1
81+82=8 (@) (@)
- zn: 0 Walg,---,a Wah »dj—1,8,3j+1;--,dn
2 P =
=i aEaj Eaj [E2
o Non-linear equation for Wi if g = n = 0; solved by [Makeenko, SemenofF 91]
0) _ 2 1N 1
W™ = Eftc+ § 2= VEZte(v/E2 ety /ER1o) where ¢ = Zk 1 \/ETrc
@ Counterterms in dimension 2 < D < 6 achieve convergent sums.
(g)

o Affine equation for Wa7' ., if 2g + n > 2 with known inhomogeneity.
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Set E2 — 22—, E;, 22—, ep = \/ Ef + ¢ and complexify DSE to system of equations

Z W gl) (2, I1)W(g2) (z,h) + Wsigl)(z, Z,21, s Zn)

|h|+1 1ARR!
I].Edlz—{zl,...7 }
Ei= N (g) (8)
. W+1(5k,21,.. zp) — n+1(z Z1, .y Zn)
=(z° - C)5n,05g,0 2
N g2 — 72
k=1 k
n (g) /(&)
0 W (Zlv---a )_ n (Zla-'-azj—lvzazj—‘rla"'azn)
2 2
Z zZr — Z
Jj=1 8 J
for meromorphic functions W,Sg)(z;l7 .., Zn) satisfying W;f’?”’an = W,Sg)(gal, vy Eap)-
0 1
o W (z2)=
4zzi(z + z1)
° W( )(zl 7,273) = ! where f3 = — L SN %
e 16(1 — #3)z32323 TN k=l g
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Linear and quadratic loop equations

The complexified DSE imply inductively for 2g + n > 3:
o WE)(z, ..., z,) has poles only at z; = 0

M Linear loop equation (2g + n > 3)
W,gg)(z,ZQ, vy Zn) + W,Sg)(—z,ZQ, wzp) =0

Use this and splitting of VAVl(O) and Wz(o) into parts with £z to rearrange DSE into

Quadratic loop equation (2g + n > 3)
Z w e (z, )W, w e (—z,h)+ W(g )(z, —Z,20, .0y Zn)

|h|+1 |h|+1
hWh={z,...,z4 N g n (g)
1 g21+{g22:g } - l W,S )(610227 ...,Zn) 4 Z 0 W 1(22,. ,Zn)
TN 2 _ 2 2 _ 2
et €, —Z = 8zJ 2

0
where Wl( ) — gl =2+ Zk 1 Ek(ei 2 W2( )(21,22) 742122(;1 =)
and W,Sg) = ,Sg) for2g +n>3
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[Eynard, Orantin 07] noticed that the non-linearity of many matrix models can be
disentangled into initial data called the spectral curve and a universal recursion for

meromorphic functions W,Sg) (or promoted to meromorphic differentials wgg))

Spectral curve

e Complex curve/Riemann surface ¥ and two ramified coverings x,y : ¥ — PL.
Polynomial equation P(x,y) = 0.

@ Bergman kernel B: symmetric bidifferential on X x ¥, with double pole on diagonal, no
other pole, normalised.

Soon later many important examples other than matrix models were identified:
@ Weil-Peterssen volumes of moduli spaces of bordered hyperbolic surfaces [Mirzakhani 07]
@ ELSV formula, expresses simple Hurwitz numbers as integral of - and A-classes over
Mg,n [Bouchard, Marifio 07; Eynard, Mulase, Safnuk 09]
@ Semisimple cohomological field theories [Dunin-Barkowski, Orantin, Shadrin, Spitz 14]
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Linear and quadratic loop equations

Theorem
@ Given a spectral curve (x,y : £ — P! B), with technical assumptions.

Q Set y =: Wl(o), B(z,w) = W( )(z, w)dx(z)dx(w), x 1(x(z)) = {£° = z, 1, ..., 29}.

© Assume that the foILowing are holomorphic at any branch point of x:

L(x(2); z2y .., 2n) := Z W,Sg)(fj,zz, ey Zn)
j=0

.
o
|
>
P
> @

d
Qx(2)i 22 2a) = 3 ( S wE (G )W) (5 h) + W25, 2, ))

J=0 “hwh={z,...,z;}
81+82=8

Then there is a formula which evaluates W\ € in terms of Wrs,gl) with 2g’+n" < 2g+n.

This formula is particularly simple under a projection property
W,Sg)(z, 22,0y 2p) = Zﬁ:ramif.pts Resq—g (j; W2(0)(Z, Jdx(.)) W,Sg)(q, 72,...,2p)dx(q)
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e Kontsevich model has ¢ = x(z) = z° — c and y(z) = VAVl(O)(—Z).

@ Laurent expansion of W,Sg)(zl7 ...y Zp) near an n-tupel of ramification points can be
expressed in terms of intersection numbers of ¢- and k-classes on M, , [Eynard 11].

@ Absence of projection property gives blobbed topological recursion [Borot, Shadrin 15].
The A®*-model discussed next is of this type [Branahl, Hock, W 20; Hock, W 23].

)

o Deformations of spectral curve express formal Baker-Akhiezer kernel in terms of W,Sg .
Gives rise to formal KP 7-function [Eynard, Orantin 07; Borot, Eynard 12].

@ Symplectic invariance of dy A dx: previously open x-y swap understood in
[Hock 22; Bychkov, Dunin-Barkowski, Kazarian, Shadrin 22].

@ Application to higher-order free cumulants in free probability
[Borot, Charbonnier, Garcia-Failde, Leid, Shadrin 21].
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The \d*-model

Take P(®) = 24, shift £, — E, + 2 M? where M depends on cut-off.
@ If Dspec is spectral dimension of {Ex}, then D := 2[%] €{0,2,4}.
@ Genus-expanded & ﬁeld—renormallsed 2-point function

68) = SV 1 [ il gan £(9) Dlean)Oens)

@ Dyson-Schwinger eq. for G|(a[3| extends to complexified G (¢, n) with GO(E,, Ep) =
Theorem [Grosse, W 09]
The planar two-point function satisfies the closed non-linear equation

AD/\/
N 26O (B, ) — Z6O(¢,n)
<C+77+M2 ZZG C’Ek)>ZG (Cn)_l+NZ Ex—¢

Alternatively, setting oo(t) = 7 Z (5(t — Eg), get non-linear integral equation

> Z(GO (¢, )-GO,
(SEms / dt 00()ZGO(¢, t))zc O(C,m) = 14+A / ot oo(£) 2LC f) : (C.m)
0 0 _
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Theorem [Panzer-W 18 for g = 1, Grosse-Hock-W 19a]

eHC[Tn(.)] sin T’n(C)

© Ansatz GO)(¢,n) = Helf] =1 J%Az d’;%(cp) finite Hilbert transf.

Zimoo(C)
@ 7,(¢) = limeyoImlog (7 — Rp(—m? — Ry (¢ + ie)) for m — renormalised mass

= d
Q Rp(z)=z- A(‘Z)D/2/(, (m? + t)Dt/ZQ(At(f m? + z)

@ o, is implicit solution of go(Rp (<)) = oxr(¢).
Then the non-linear integral equation for G(9)(¢, ) holds identically.

@ Proof: [Cauchy 1831] residue theorem, [Lagrange 1770] inversion theorem,
[Biirmann 1799] formula.

@ 0o(t) =1 (2D Moyal, m = 1) in terms of Lambert-W satisfying W(z)e"(?) = z.
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D = 4 Moyal space: go(t) =t [Grosse-Hock-W 19b]

o 0x(x) = 00(Ra(x)) = Ra(x) = x = M [§ Bt

o If pA(t) ~ oo(t) =t, then R4(x) bounded above. Consequently, R,
globally defined: triviality!

@ Fredholm equation perturbatively solved by iterated integrals:
Hyperlogarithms and ((2n) which can be summed to

arcsin(A) 1
_ ax,1—ay X i for [\ < 2
Ra(x) = ox(x) = x - 2F1( 5 77) oy = { %+iarCOS:(AW) foras 1

1 would not be

m?2

o Gives non-perturbative integral representation for G((¢, 7).

The planar part of the non-linearity reduces the spectral dimension to 4 — 2%(’”) and thus
avoids the triviality problem (in the planar sector).

All hope to construct the A®*-model in four dimension rests on this observation.
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-

All planar cumulants
Planar cumulants G§?2,7an = LN fA,* (fd/J,\q>47E(¢)¢(ealaz)¢(eaza3) : "(D(ea,,al))C,

— zn/2
extend to GOO(¢y, .., ¢n)
Theorem [de Jong, Hock, W 19]

) : 2032 (=02 172 69¢.6)
G (¢, -y Cn) is sum of n(é_l) terms of the form T2(c—0)

@ Pattern in bijection with nested Catalan tables

@ Graphically described in terms of non-crossing chords with a
pair of dual planar rooted trees in every pocket.

Link to free probability?

Expectation values of powers of large random matrices show freeness (crossings suppressed).

o Cumulants of A\®*-model are, analogously to free moments, given by non-crossing linear
combinations of (the only non-zero) free cumulants G(©(z;, z).

@ Is this more than an analogy?
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We thus succeeded in constructing the planar sector of the A®*-QFT model on a particular
4-dimensional noncommutative geometry.

Main message

Don't perturb the linear theory; this fails as in [Aizenman, Duminil-Copin 19].
Take it together with the planar part of the non-linearity! Only NCG can do this.

@ But we do not have quantitative estimates for error between full theory and planar sector.

@ One would expect that the difference is O(1/N?). There are refinements of
Dyson-Schwinger techniques [Guionnet 17] which could achieve this.

@ Alternatively, one can try to control the cumulants to any genus and establish Borel
summability of the genus expansion via resurgence.

Recent progress for A®3 in [Eynard, Garcia-Failde, Giacchetto, Gregori, Lewanski 23].

We describe some modest (but already difficult) steps in this direction. They concern an
N x N-matrix model where N can be large but finite. Limit N — oo is currently out of reach.
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Finite matrices

Consider the partition function Z(y /4)04 £ = fHN dd e NTHEP?+30%) o A — Mp(C).
Let (e1, ..., ) be the pairwise different eigenvalues of E with multiplicities (r1, ..., rg).

Theorem [Schiirmann, W 19]

A solution of the non-linear equation for G(O)(C,r]) can be implicitly found in the form
G(O)(x( ) ( )) = (0)(2 W) with X( ) — % ZLV:1 #, X(<€k) = ¢ and X/(?'fk)@k = rg:

& AND RIGIDITY

Oz, w) = 1 (X(Z)’X(W)) where | y(z) = —x(—2z) | an
Gz w) () O 4 (2 ()h) e = =) e
PV (x(2)ox(w)) = g T S = P (x(w). x(2)

k=1 €

Main definition [Branahl, Hock W 20]

e AT (g) 2 2g—m (Z1)"0"108 2z /0t e | 50002
For pairwise different a, ..., a5, set War! 4, :=[N ] 9, - BEa,, +(E31_Ea2)2

for 2g + n > 2, and complexify to wie )(21, ..+yZn). Moreover, W( )( ) =y(2).

Raimar Wulkenhaar (Miinster) QFT NCG 1/N-exp Ad>-model TR A®"-model Higher genus  Final 20 / 24
[e]

Quantum fields on NCG oo 000 0o 0000 000 0000 0@000



Linear and quadratic loop equations for g =0 Bocieimrions

& AND RIGIDITY

Extract from DSE (which relate W,Sg) to auxiliary functions) the lin./quad. loop equations:

Proposition [Hock, W 21; Hock, W 23]

The functions W‘(”J)rl satisfy for () £ | = {uy, ... u,,} the gIobaI linear loop equations

sk |/\ 1 ;
Z ’|+1( 1) (X(z — x(uy)) Z aX j(X(Z)+Y(“j)>

and the global quadratlc loop equations

0 (s © (s
2 Z ZW\/ (25 W)W, (25, )

Ilulz_l k=0

|/] d |
x(w) 1 f|+1(5k”) \II ()
z:: 8X (X(Z)—i—y(uj)) N < (z) — x(ex) Z 8X (uj) x(z) = x(u;) ’

for Dyyy,..uny= HJ 1Dy; and derivations D, W(g)(zl,...,zm) Wlsqg_zl(zl,...,zm,u), D,x(z)=0

Projection property does not hold: blobbed topological recursion
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Linear and quadratic loop equations for g =1

Proposition [Hock, W 23]

The genus-1 meromorphic functions W|(,|3L1

1

d
kz_;) Wm+1 Ak 1) D?8(x(z) —x(0))3

|11

GEOMETRY:
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(z,1) satisfy the linear loop equation

W (u))

1

WSO (uj, uj)
Z ax ’\“f{ (x(2) + y(u)))3

(x(2) + y(u)))?

and ...

2(x(2) + y(4)))? (x(y)))* (x(2) + y(Uj))}
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Proposition [Hock, W 23]

.. the quadratic loop equation

d
1 N 2 N 1 O)reg / sk -
> X S wiE e i) 2, b) + 5 30 W (2, 24 1)
g1+gz 1 k=0 k=
W=l

o

1 o2 1 o 1 D0 1
=5 2 a6 e O e y@r) ~ s xor O s o

” W5 (. WDy 1 92 1
Zuhw ) W) )

x(@)H+y(w))  (x(2)+y(w))? 20x(2)+y(4)? O(x(17))? (x(2)+y(y;))

d (e1, ) | 9 W(l)(l)
\/|+1 <
Z ) — x(&1) — Ox(uj) x(z) = x(u;)
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F] GEOMETRY:

Final remarks 3eroriions
@ The global linear and quadratic loop equations give explicit recursion formulae for W,Sg)
(so far for g < 1).
@ Original blobbed TR [Borot, Shadrin 15] defined for local curves; this leaves large
freedom (called ‘blobs’) in W,gg). Validity of local loop equations is clear.

e It would be interesting to know whether matricial QFT-models other than (A®3, A\d#)
admit a similar formulation. A hint:

Theorem [Borot, W 23]

Let P € C(R) such that e~Em*~P(x) has finite moments and dyg as before
Then Z(t) = [, due(®) exp (Tr(— P(P) + D22 tokr1P?*T1)) is a BKP 7-function.
@ In particular, 3 infinitely many quadratic relations between moments, e.g. (for P even)
0= ((Tx(®))®) + 15((Tr(®))*){(Tr(®))*) — 5((Tr(®))>Tr(d3))
— 15(Tr(®)Tr(9°))( (Tr(®))*) — 5((Tr(#?))) + 9(Tr(®°) Tr(®))
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