Quantum fields on noncommutative geometries

Raimar Wulkenhaar
living.knowledge

Quantum field theory (QFT) is defined in terms of axioms of
[Wightman 56], [Haag, Kastler 60], [Osterwalder, Schrader 74] or [Atiyah, Segal 89].

- Maybe with exception of Atiyah-Segal, which has different target, all approaches agree that quantum fields Φ are distributions.
- Non-linear constructs of quantum fields such as $\lambda \phi^{n}$ not naïvely defined.
- Difficulties to construct them grow with dimension D of space(-time).

Example: Stochastic quantisation [Parisi, Wu 81], here of $\lambda \phi^{4}$-model

Euclidean QFT as equilibrium limit of statistical system coupled to thermal reservoir:

$$
\partial_{t} \Phi(t, x)=\left(\Delta-m^{2}\right) \Phi(t, x)-: \lambda \Phi^{3}(t, x):+\xi(t, x)
$$

where t - fictitious time, Δ - Laplacian in D dimensions, ξ - white noise.

- For $t \rightarrow \infty$, stochastic averages provide Schwinger functions of Euclidean QFT.

Raimar Wulkenhar (Münster)	QFT	NCG	$1 / \mathrm{N}-\exp$	$\lambda \phi^{3}$-model	TR	$\lambda \phi^{4}$-model	Higher genus	Final	$1 / 24$
Quantum fields on NCG	$\bullet 0$	000	00	0000	000	0000	00000	0	

To construct : $\lambda \Phi^{3}$:, need to replace \mathbb{R}^{D} by hypercubic lattice of length Λ and spacing a. Then constuct sequence/net of distributions : $\lambda \Phi^{n}:_{a, \Lambda}$ which in some sense converges to $: \lambda \Phi^{3}$:

Triviality [Aizenman, Duminil-Copin 19]

The $\lambda \Phi^{4}$-QFT model in $D=4$ does not exist; it is trivial.

- : $\lambda \Phi^{3}:_{a, \wedge}$ needs regulator-dependent coupling constant $\lambda(a, \Lambda)$ which converges to zero for $(a \rightarrow 0, \Lambda \rightarrow \infty)$
- Already conjectured in early 80s [Aizenman 81; Fröhlich 82].
- Indication is positive β-function (understood as formal power series).
- Physical arguments (perturbative β-function is negative) support the conjecture that quantum Yang-Mills theory should exist in $D=4$. Difficulty is confinement.
- Existence proof of YM_{4} is one of the Millenium Prize problems.

It seems that non-linear $D=4$ QFT examples tend to be trivial (e.g. $\lambda \Phi_{4}^{4}$, QED $_{4}$) or as difficult as Yang-Mills.

Raimar Wulkenhaar (Münster)	QFT	NCG	$1 /$ N-exp	$\lambda \phi^{3}-$ model	TR	$\lambda \phi^{4}-$ model	Higher genus	Final
Quantum fields on NCG	0	000	00	0000	000	0000	00000	0

Quantum fields on non-commutative geometries

We relax rules of the game: Can we make sense of QFT on a noncommutative geometry?

- Motivated by compactification of M-theory on nc torus [Connes, Douglas, Schwarz 97].
- Also found in limiting regimes of String Theory [Schomerus 99; Seiberg, Witten 99].

We report on the considerable progress achieved since then.

Plan

- We follow the Euclidean approach via measures on spaces of distributions; its moments define candidate Schwinger functions.
- We cannot expect that these Schwinger functions satisfy reasonable axioms.
- Linear theory governed by spectral dimension of Laplace-type operator. Corresponding distributions conjectured to be as singular as on manifold of same spectral dimension.
- Aim is to learn how to build non-linear constructs of these distributions, defined by product in operator algebra. Works better than on manifolds!

Raimar Wulkenhaar (Münster)	QFT	NCG	$1 / N-\exp$	$\lambda \phi^{3}-$ model	TR	$\lambda \phi^{4}-$ model	Higher genus	Final
Quantum fields on NCG	00	$\bullet 00$	00	0000	000	0000	0000	000

The free Euclidean quantum field

(\mathcal{A}, \star) - Fréchet $*$-algebra, nuclear as vector space; \mathcal{A}_{*} its subspace of self-adjoint elements.

Theorem [Bochner 32; Minlos 59]

Let $\mathcal{F}: \mathcal{A}_{*} \rightarrow \mathbb{R}$ with $\mathcal{F}(0)=1$ be continuous and of positive type:

$$
\sum_{i, j=1}^{K} c_{i} \bar{c}_{j} \mathcal{F}\left(a_{i}-a_{j}\right) \geq 0 \text { for any } a_{i} \in \mathcal{A}_{*}, c_{i} \in \mathbb{C} .
$$

Then \exists ! Borel measure $d \mu$ on the dual \mathcal{A}_{*}^{\prime} with $\mathcal{F}(a)=\int_{\mathcal{A}_{*}^{\prime}} e^{\mathrm{i} \Phi(a)} d \mu(\Phi)$.
For any inner product $C: \mathcal{A}_{*} \times \mathcal{A}_{*} \rightarrow \mathbb{R}$, called covariance, $\mathcal{F}(a):=\exp \left(-\frac{1}{2} C(a, a)\right)$ is of positive type [Schur 1911] and (if continuous) defines $d \mu_{C}(\Phi)$.

- Consider Fréchet algebras which contain matrix units $e_{k l} \star e_{m n}=\delta_{l m} e_{k n},\left(e_{k l}\right)^{*}=e_{l k}$.
- For increasing sequence $\left(E_{k}\right)$ of positive reals and parameter \mathcal{N}, we take covariance

$$
C_{E}\left(e_{k l}, e_{m n}\right)=\frac{\delta_{k n} \delta_{l m}}{\mathcal{N}\left(E_{k}+E_{l}\right)}
$$

Below, $d \mu_{E}(\Phi)$ denotes Bochner-Minlos measure associated with $\mathcal{F}(a):=\exp \left(-\frac{1}{2} C_{E}(a, a)\right)$.

Raimar Wulkenhaar (Münster)	QFT	NCG	$1 / N-\exp$	$\lambda \phi^{3}-$ model	TR	$\lambda \phi^{4}-$ model	Higher genus	Final
Quantum fields on NCG	00	000	00	0000	000	0000	0000	0

Product of distributions

Regularity conjecture

It should be true that the support of $d \mu_{E}(\Phi)$ is not all of \mathcal{A}_{*}^{\prime}, but reduced to a subspace determined by the spectral dimension $D=\inf \left\{p \mid \sum_{k=0}^{\infty} E_{k}^{-p / 2}<\infty\right\}$.

So far we haven't used the product \star in \mathcal{A}. This comes now, more precisely in the dual.

- We want to make sense, for $\Phi_{\infty} \in \mathcal{A}_{*}^{\prime}$, of

$$
\operatorname{Tr}\left(\phi^{n}\right) "=" \sum_{k_{1}, \ldots, k_{n}=0}^{\infty} \Phi\left(e_{k_{1} k_{2}}\right) \Phi\left(e_{k_{2} k_{3}}\right) \cdots \phi\left(e_{k_{n-1} k_{n}}\right) \Phi\left(e_{k_{n} k_{1}}\right)
$$

- Since $\sum_{k_{1}, \ldots, k_{n}=0}^{\infty} e_{k_{1} k_{2}} \otimes e_{k_{2} k_{3}} \otimes \cdots \otimes e_{k_{n} k_{1}}$ is not Fréchet, $\operatorname{Tr}\left(\Phi^{n}\right)$ will not exist naïvely.

Renormalisation strategy

- Introduce cut-off $\sum_{k=0}^{\infty} \mapsto \sum_{k=0}^{\mathcal{N}}$ in summation range and Λ-dependent parameters.
- Consider the resulting regulated measure and its moments.
- Adjust parameters so that dangerous moments are constant and others have a limit.
$00 \quad 00$ 0

0000
000

Moments and $1 / \mathcal{N}$-expansion

Let $P(\Phi)$ be a polynomial in previous sense and $\operatorname{Tr}_{\wedge}$ the regularised trace. We consider moments of

$$
d \mu_{P, E}(\Phi)=\frac{1}{\mathcal{Z}} \exp \left(-\mathcal{N} \operatorname{Tr}_{\Lambda}(P(\Phi))\right) d \mu_{E}(\Phi)
$$

- Viewed as moments of the Gaußian $d \mu_{E}(\Phi)$, these factorise into products of pairs. A pair is graphically represented as an edge; it contributes factor $\frac{1}{\mathcal{N}}$ and Kronecker δ 's.
- $\mathcal{N} \operatorname{Tr}_{\Lambda}\left(\Phi^{p}\right)$ is graphically represented as p-valent vertex. Contributes factor \mathcal{N}.
- After resolving the Kronecker δ 's, some summation over $e_{k l}$-matrix indices remain. We take a factor \mathcal{N} out of every summation. Graphically they represent faces. Faces are labelled by matrix indices k, or better E_{k}.

Conclusion: $1 / \mathcal{N}$-expansion

Every moment comes with a topological grading by the Euler characteristic $\chi_{g, n}$ of a genus- g Riemann surface (as formal power series in \mathcal{N}^{-2})

$$
\int_{\mathcal{A}_{*}^{\prime}} d \mu_{P, E}(\Phi) \Phi\left(a_{1}\right) \cdots \Phi\left(a_{n}\right)=\sum_{\rho=0}^{\infty} \mathcal{N}^{\chi_{g, n}}\left\langle\Phi\left(a_{1}\right) \cdots \Phi\left(a_{n}\right)\right\rangle_{g, n}
$$

Dyson-Schwinger equations are identities between moments/cumulants obtained by integration by parts. They inherit the grading by the Euler characteristic.

- Cumulants represented as genus- g Riemann surface with boundary.
- Each boundary component carries external one-valent vertices which separate open faces of labels E_{k}, E_{l}. In an n-point function, in total n external vertices are distributed.
- The equations permit an extension to face labels $\zeta \in \mathbb{P}^{1}$.

Recursive structure

(1) Non-linear equation for highest Euler characteristic: disk-amplitude with least number of one-valent vertices. Determines function y.
(2) Algebraic recursion when increasing number of one-valent vertices at otherwise same topology. Combinatorial problem possibly connected to free probability.
(3) Topological recursion [Eynard, Orantin 07] in decreasing Euler characteristic (for least number of vertices) starting from y and ramified covering $x: \Sigma \ni z \mapsto \zeta=x(z) \in \mathbb{P}^{1}$.

Raimar Wulkenhaar (Münster)	QFT	NCG	$1 / N-\exp$	$\lambda \phi^{3}$-model	TR	$\lambda \phi^{4}$-model	Higher genus	Final
Quantum fields on NCG	00	000	0	0000	000	0000	00000	0

$\lambda \phi^{3}$-model and relation to Kontsevich model

Take $P(\Phi)=\left(\kappa_{0}+\kappa_{1} E+\kappa_{2} E^{2}\right) \Phi+\left((Z-1) E+Z \mu_{b}\right) \Phi^{2}+\frac{\lambda}{3} Z \Phi^{3}$.

- This is the [Kontsevich 92] model (matrix Airy function) with added counterterms.
- For simplicity, we focus on original formulation: $\mathcal{A}=M_{N}(\mathbb{C}), \mathcal{N}=N$ and $\kappa_{i}=Z-1=m_{b}=0, \lambda=$ i. See e.g. [Eynard, Orantin 07, Eynard 16].
- Relates generating function for intersection numbers on moduli space $\overline{\mathcal{M}}_{g, n}$ of stable complex curves to matrix Airy function from which KdV integrable hierarchy is deduced.

Main definition

$$
\left(\int_{H_{N}} d \mu_{\frac{\lambda}{3} \phi^{3}, E}(\Phi) \Phi\left(e_{a_{1} a_{1}}\right) \cdots \Phi\left(e_{a_{n} a_{n}}\right)\right)_{c}-\delta_{n, 1} \frac{N E_{a_{1}}}{2 \lambda}:=\sum_{g=0}^{\infty} N^{2-n-2 g} W_{a_{1} \ldots, a_{n}}^{(g)}
$$

as formal power series, all a_{i} pairwise different, ()$_{c}$ stands for "cumulant".
(2) Algebraic formula for more complicated cumulants, e.g.

$$
\left[N^{2-2 g-n}\right]\left(\int_{H_{N}} d \mu_{\frac{\lambda}{3} \Phi^{3}, E}(\Phi) \Phi\left(e_{a_{1} a_{2}}\right) \Phi\left(e_{a_{2} a_{3}}\right) \cdots \Phi\left(e_{a_{n} a_{1}}\right)\right)_{c}=\sum_{k=1}^{n} W_{a_{k}}^{(g)} \prod_{I=1, l \neq k}^{n} \frac{1}{E_{a_{k}}^{2}-E_{a_{l}}^{2}}
$$

Raimar Wulkenhaar (Münster)	QFT	NCG	$1 / N-\exp$	$\lambda \phi^{3}$-model	TR	$\lambda \phi^{4}$-model	Higher genus	Final	$8 / 24$
Quantum fields on NCG	00	000	00	$\bullet 000$	000	0000	00000	0	

Dyson-Schwinger equations

Integration by parts establishes:

Dyson-Schwinger equations of Kontsevich model

$$
\begin{aligned}
\sum_{\substack{l_{1} \uplus l_{2}=\{1, \ldots, n\} \\
g_{1}+g_{2}=g}} W_{a, l_{1}}^{\left(g_{1}\right)} W_{a, l_{2}}^{\left(g_{2}\right)} & =E_{a}^{2} \delta_{n, 0} \delta_{g, 0}-W_{a, a, a_{1}, \ldots, a_{n}}^{(g-1)}-\frac{2}{N} \sum_{k=1}^{N} \frac{W_{k, a_{1}, \ldots, a_{n}}^{(g)}-W_{a, a_{1}, \ldots, a_{n}}^{(g)}}{E_{k}^{2}-E_{a}^{2}} \\
& -\sum_{j=1}^{n} \frac{\partial}{\partial E_{a_{j}}^{2}} \frac{W_{a_{1}, \ldots, a_{n}}^{(g)}-W_{a_{1}, \ldots, a_{j-1}, a, a_{j+1}, . ., a_{n}}^{(g)}}{E_{a_{j}}^{2}-E_{a}^{2}}
\end{aligned}
$$

- Non-linear equation for $W_{a}^{(0)}$ if $g=n=0$; solved by [Makeenko, Semenoff 91]

$$
W_{a}^{(0)}=-\sqrt{E_{a}^{2}+c}+\frac{1}{N} \sum_{l=1}^{N} \frac{1}{\sqrt{E_{l}^{2}+c}\left(\sqrt{E_{a}^{2}+c}+\sqrt{E_{l}^{2}+c}\right)} \text { where } c=\frac{2}{N} \sum_{k=1}^{N} \frac{1}{\sqrt{E_{k}^{2}+c}}
$$

- Counterterms in dimension $2 \leq D \leq 6$ achieve convergent sums.
- Affine equation for $W_{a_{1}, \ldots, a_{n}}^{(g)}$ if $2 g+n \geq 2$ with known inhomogeneity.
$00 \quad 000 \quad 00$

Complexification

Set $E_{a}^{2} \mapsto z^{2}-c, E_{a_{i}}^{2} \mapsto z_{i}^{2}-c, \varepsilon_{k}:=\sqrt{E_{k}^{2}+c}$ and complexify DSE to system of equations

$$
\begin{aligned}
& \sum_{\substack{I_{1} \uplus I_{2}=\left\{z_{1}, \ldots, z_{n}\right\} \\
g_{1}+g_{2}=g}} \hat{W}_{\left|l_{1}\right|+1}^{\left(g_{1}\right)}\left(z, I_{1}\right) \\
= & \hat{W}_{\left|I_{2}\right|+1}^{\left(g_{2}\right)}\left(z, l_{2}\right)+\hat{W}_{n+2}^{(g-1)}\left(z, z, z_{1}, \ldots, z_{n}\right) \\
= & \left(z^{2}-c\right) \delta_{n, 0} \delta_{g, 0}-\frac{2}{N} \sum_{k=1}^{N} \frac{\hat{W}_{n+1}^{(g)}\left(\varepsilon_{k}, z_{1}, \ldots, z_{n}\right)-\hat{W}_{n+1}^{(g)}\left(z, z_{1}, \ldots, z_{n}\right)}{\varepsilon_{k}^{2}-z^{2}} \\
- & \sum_{j=1}^{n} \frac{\partial}{\partial z_{j}^{2}} \frac{\hat{W}_{n}^{(g)}\left(z_{1}, \ldots, z_{n}\right)-\hat{W}_{n}^{(g)}\left(z_{1}, \ldots, z_{j-1}, z, z_{j+1}, \ldots, z_{n}\right)}{z_{j}^{2}-z^{2}}
\end{aligned}
$$

for meromorphic functions $\hat{W}_{n}^{(g)}\left(z_{1}, . ., z_{n}\right)$ satisfying $W_{a_{1}, \ldots, a_{n}}^{(g)} \equiv \hat{W}_{n}^{(g)}\left(\varepsilon_{a_{1}}, \ldots, \varepsilon_{a_{n}}\right)$.

- $\hat{W}_{2}^{(0)}\left(z, z_{1}\right)=\frac{1}{4 z z_{1}\left(z+z_{1}\right)^{2}}$
- $\hat{W}_{3}^{(0)}\left(z_{1}, z_{2}, z_{3}\right)=\frac{1}{16\left(1-\hat{t}_{3}\right) z_{1}^{3} z_{2}^{3} z_{3}^{3}}$ where $\hat{t}_{3}=-\frac{1}{N} \sum_{k=1}^{N} \frac{1}{\varepsilon_{k}^{3}}$

Linear and quadratic loop equations

The complexified DSE imply inductively for $2 g+n \geq 3$:

- $W_{n}^{(g)}\left(z_{1}, \ldots, z_{n}\right)$ has poles only at $z_{i}=0$
- Linear loop equation $(2 g+n \geq 3)$

$$
W_{n}^{(g)}\left(z, z_{2}, \ldots, z_{n}\right)+W_{n}^{(g)}\left(-z, z_{2}, \ldots, z_{n}\right)=0
$$

Use this and splitting of $\hat{W}_{1}^{(0)}$ and $\hat{W}_{2}^{(0)}$ into parts with $\pm z$ to rearrange DSE into
Quadratic loop equation $(2 g+n \geq 3)$
where $W_{1}^{(0)} \equiv y(z):=z+\frac{1}{N} \sum_{k=1}^{N} \frac{1}{\varepsilon_{k}\left(\varepsilon_{k}-z\right)}$,

$$
W_{2}^{(0)}\left(z_{1}, z_{2}\right)=\frac{1}{4 z_{1} z_{2}\left(z_{1}-z_{2}\right)^{2}}
$$

$$
\text { and } W_{n}^{(g)}=\hat{W}_{n}^{(g)} \text { for } 2 g+n \geq 3
$$

000

$$
\begin{aligned}
& \sum \quad W_{\left|l_{1}\right|+1}^{\left(g_{1}\right)}\left(z, l_{1}\right) W_{\left|\left.\right|_{2}\right|+1}^{\left(g_{2}\right)}\left(-z, l_{2}\right)+W_{n+1}^{(g-1)}\left(z,-z, z_{2}, \ldots, z_{n}\right) \\
& \underset{\substack{I_{1} \uplus l_{2}=\left\{z_{2}, \ldots, z_{n}\right\} \\
g_{1}+g_{2}=g}}{ }=\frac{1}{N} \sum_{k=1}^{N} \frac{W_{n}^{(g)}\left(\varepsilon_{k}, z_{2}, \ldots, z_{n}\right)}{\varepsilon_{k}^{2}-z^{2}}+\sum_{j=2}^{n} \frac{\partial}{\partial z_{j}^{2}}\left(\frac{W_{n-1}^{(g)}\left(z_{2}, \ldots, z_{n}\right)}{z_{j}^{2}-z^{2}}\right)
\end{aligned}
$$

Topological recursion

[Eynard, Orantin 07] noticed that the non-linearity of many matrix models can be disentangled into initial data called the spectral curve and a universal recursion for meromorphic functions $W_{n}^{(g)}$ (or promoted to meromorphic differentials $\omega_{n}^{(g)}$)

Spectral curve

- Complex curve/Riemann surface Σ and two ramified coverings $x, y: \Sigma \rightarrow \mathbb{P}^{1}$. Polynomial equation $P(x, y)=0$.
- Bergman kernel B : symmetric bidifferential on $\Sigma \times \Sigma$, with double pole on diagonal, no other pole, normalised.

Soon later many important examples other than matrix models were identified:

- Weil-Peterssen volumes of moduli spaces of bordered hyperbolic surfaces [Mirzakhani 07]
- ELSV formula, expresses simple Hurwitz numbers as integral of ψ - and λ-classes over $\overline{\mathcal{M}}_{g, n}$ [Bouchard, Mariño 07; Eynard, Mulase, Safnuk 09]
- Semisimple cohomological field theories [Dunin-Barkowski, Orantin, Shadrin, Spitz 14]

Raimar Wulkenhaar (Münster)	QFT	NCG	$1 /$ N-exp	$\lambda \phi^{3}$-model	TR	$\lambda \phi^{4}$-model	Higher genus	Final
Quantum fields on NCG	00	000	00	0000	000	0000	00000	

Theorem

(1) Given a spectral curve $\left(x, y: \Sigma \rightarrow \mathbb{P}^{1}, B\right)$, with technical assumptions.
(2) Set $y=: W_{1}^{(0)}, B(z, w)=: W_{2}^{(0)}(z, w) d x(z) d x(w), x^{-1}(x(z))=\left\{\hat{z}^{0}=z, \hat{z}^{1}, \ldots, \hat{z}^{d}\right\}$.
(3) Assume that the following are holomorphic at any branch point of x :

$$
L\left(x(z) ; z_{2}, \ldots, z_{n}\right):=\sum_{\substack{j=0}}^{d} W_{n}^{(g)}\left(\hat{z}^{j}, z_{2}, \ldots, z_{n}\right)
$$

$$
Q\left(x(z) ; z_{2}, \ldots, z_{n}\right)=\sum_{j=0}^{d}\left(\sum_{\substack{\left.I_{1} \uplus\right|_{2}=\left\{z_{2}, \ldots, z_{n}\right\} \\ g_{1}+g_{2}=g}} W_{\left|l_{1}\right|+1}^{\left(g_{1}\right)}\left(\hat{z}^{j}, l_{1}\right) W_{\left|l_{2}\right|+1}^{\left(g_{2}\right)}\left(\hat{z}^{j}, l_{2}\right)+W_{n+1, r e g}^{(g-1)}\left(\hat{z}^{j}, \hat{z}^{j}, z_{2}, \ldots, z_{n}\right)\right)
$$

Then there is a formula which evaluates $W_{n}^{(g)}$ in terms of $W_{n^{\prime}}^{\left(g^{\prime}\right)}$ with $2 g^{\prime}+n^{\prime}<2 g+n$.
This formula is particularly simple under a projection property

$$
W_{n}^{(g)}\left(z, z_{2}, \ldots, z_{n}\right)=\sum_{\beta=\text { ramif.pts }} \operatorname{Res}_{q=\beta}\left(\int_{\beta}^{q} W_{2}^{(0)}(z, .) d x(.)\right) W_{n}^{(g)}\left(q, z_{2}, \ldots, z_{n}\right) d x(q)
$$

Raimar Wulkenhaar (Münster) \quad QFT NCG $1 / N-\exp \quad \lambda \phi^{3}$-model \quad TR $\quad \lambda \phi^{4}$-model \quad Higher genus Final $13 / 24$

00	000	00	000

- Kontsevich model has $\zeta=x(z)=z^{2}-c$ and $y(z)=\hat{W}_{1}^{(0)}(-z)$.
- Laurent expansion of $W_{n}^{(g)}\left(z_{1}, \ldots, z_{n}\right)$ near an n-tupel of ramification points can be expressed in terms of intersection numbers of ψ - and κ-classes on $\overline{\mathcal{M}}_{g, n}$ [Eynard 11].
- Absence of projection property gives blobbed topological recursion [Borot, Shadrin 15]. The $\lambda \Phi^{4}$-model discussed next is of this type [Branahl, Hock, W 20; Hock, W 23].
- Deformations of spectral curve express formal Baker-Akhiezer kernel in terms of $W_{n}^{(g)}$. Gives rise to formal KP τ-function [Eynard, Orantin 07; Borot, Eynard 12].
- Symplectic invariance of $d y \wedge d x$: previously open $x-y$ swap understood in [Hock 22; Bychkov, Dunin-Barkowski, Kazarian, Shadrin 22].
- Application to higher-order free cumulants in free probability [Borot, Charbonnier, Garcia-Failde, Leid, Shadrin 21].

The $\lambda \Phi^{4}$-model

Take $P(\Phi)=\frac{\lambda}{4} \Phi^{4}$, shift $E_{a} \mapsto E_{a}+\frac{1}{2} M^{2}$ where M depends on cut-off.

- If $D_{\text {spec }}$ is spectral dimension of $\left\{E_{k}\right\}$, then $D:=2\left[\frac{D_{\text {spec }}}{2}\right] \in\{0,2,4\}$.
- Genus-expanded \& field-renormalised 2-point function

$$
G_{|a b|}^{(g)}=\frac{1}{Z(\Lambda)}\left[\mathcal{N}^{-1-2 g}\right] \int d \mu_{(\lambda / 4) \Phi^{4}, E}^{\Lambda}(\Phi) \Phi\left(e_{a b}\right) \Phi\left(e_{b a}\right)
$$

- Dyson-Schwinger eq. for $G_{|a b|}^{(0)}$ extends to complexified $G^{(0)}(\zeta, \eta)$ with $G^{(0)}\left(E_{a}, E_{b}\right)=G_{|a b|}^{(0)}$

Theorem [Grosse, W 09]

The planar two-point function satisfies the closed non-linear equation

$$
\left(\zeta+\eta+M^{2}+\frac{\lambda}{\mathcal{N}} \sum_{k=0}^{\Lambda^{D} \mathcal{N}} Z G^{(0)}\left(\zeta, E_{k}\right)\right) Z G^{(0)}(\zeta, \eta)=1+\frac{\lambda}{\mathcal{N}} \sum_{k=0}^{\Lambda^{D} \mathcal{N}} \frac{Z G^{(0)}\left(E_{k}, \eta\right)-Z G^{(0)}(\zeta, \eta)}{E_{k}-\zeta}
$$

Alternatively, setting $\varrho_{0}(t)=\frac{\lambda}{\mathcal{N}} \sum_{k=0}^{\Lambda^{D} \mathcal{N}} \delta\left(t-E_{k}\right)$, get non-linear integral equation
$\left(\zeta+\eta+M^{2}+\lambda \int_{0}^{\infty} d t \varrho_{0}(t) Z G^{(0)}(\zeta, t)\right) Z G^{(0)}(\zeta, \eta)=1+\lambda \int_{0}^{\infty} d t \varrho_{0}(t) \frac{Z\left(G^{(0)}(t, \eta)-G^{(0)}(\zeta, \eta)\right)}{t-\zeta}$

Theorem [Panzer-W 18 for $\varrho_{0}=1$, Grosse-Hock-W 19a]

(1) Ansatz $G^{(0)}(\zeta, \eta)=\frac{e^{\mathcal{H}_{\zeta}\left[\tau_{\eta}(\bullet)\right]} \sin \tau_{\eta}(\zeta)}{Z \lambda \pi \varrho_{0}(\zeta)}$, $\mathcal{H}_{\zeta}[f]:=\frac{1}{\pi} f_{0}^{\Lambda^{2}} \frac{d p f(p)}{p-\zeta}$ finite Hilbert transf.
(2) $\tau_{\eta}(\zeta)=\lim _{\epsilon \searrow 0} \operatorname{Im} \log \left(\eta-R_{D}\left(-m^{2}-R_{D}^{-1}(\zeta+\mathrm{i} \epsilon)\right)\right.$ for m - renormalised mass

$$
\text { (3) } R_{D}(z)=z-\lambda(-z)^{D / 2} \int_{0}^{\infty} \frac{d t \varrho_{\lambda}(t)}{\left(m^{2}+t\right)^{D / 2}\left(t+m^{2}+z\right)}
$$

(9) ϱ_{λ} is implicit solution of $\varrho_{0}\left(R_{D}(\zeta)\right)=\varrho_{\lambda}(\zeta)$.

Then the non-linear integral equation for $G^{(0)}(\zeta, \eta)$ holds identically.

- Proof: [Cauchy 1831] residue theorem, [Lagrange 1770] inversion theorem, [Bürmann 1799] formula.
- $\varrho_{0}(t) \equiv 1(2 D$ Moyal, $m=1)$ in terms of Lambert-W satisfying $W(z) e^{W(z)}=z$.

Raimar Wulkenhaar (Münster)	QFT	NCG	$1 / \mathrm{N}$-exp	$\lambda \phi^{3}$-model	TR	$\lambda \phi^{4}$-model	Higher genus	Final
Quantum fields on NCG	00	000	00	0000	000	0000	00000	

- $\varrho_{\lambda}(x) \equiv \varrho_{0}\left(R_{4}(x)\right)=R_{4}(x)=x-\lambda x^{2} \int_{0}^{\infty} \frac{d t \varrho_{\lambda}(t)}{\left(m^{2}+t\right)^{2}(t+x)}$
- If $\varrho_{\lambda}(t) \sim \varrho_{0}(t)=t$, then $R_{4}(x)$ bounded above. Consequently, R_{4}^{-1} would not be globally defined: triviality!
- Fredholm equation perturbatively solved by iterated integrals: Hyperlogarithms and $\zeta(2 n)$ which can be summed to

$$
R_{4}(x) \equiv \varrho_{\lambda}(x)=x \cdot{ }_{2} F_{1}\left(\left.\begin{array}{c}
\alpha_{\lambda}, 1-\alpha_{\lambda} \\
2
\end{array} \right\rvert\,-\frac{x}{m^{2}}\right) \quad \alpha_{\lambda}=\left\{\begin{array}{cl}
\frac{\arcsin (\lambda \pi)}{\pi} & \text { for }|\lambda| \leq \frac{1}{\pi} \\
\frac{1}{2}+\mathrm{i} \frac{\operatorname{arcosh}(\lambda \pi)}{\pi} & \text { for } \lambda \geq \frac{1}{\pi}
\end{array}\right.
$$

- Gives non-perturbative integral representation for $G^{(0)}(\xi, \eta)$.

Corollary

The planar part of the non-linearity reduces the spectral dimension to $4-2 \frac{\arcsin (\lambda \pi)}{\pi}$ and thus avoids the triviality problem (in the planar sector).

All hope to construct the $\lambda \Phi^{4}$-model in four dimension rests on this observation.

QFT	NCG	$1 / N$-exp	$\lambda \Phi^{3}$-model	TR	$\lambda \Phi^{4}$-model	Higher genus	Final
00	000	00	0000	000	$00 \bullet 0$	00000	0

All planar cumulants

Planar cumulants $G_{a_{1} \ldots, a_{n}}^{(0)}=\frac{1}{Z^{n / 2}}\left[\mathcal{N}^{1-n}\right] \int_{\mathcal{A}_{*}^{\prime}}\left(\int d \mu_{\lambda \Phi^{4}, E}(\Phi) \Phi\left(e_{a_{1} a_{2}}\right) \Phi\left(e_{a_{2} a_{3}}\right) \cdots \Phi\left(e_{a_{n} a_{1}}\right)\right)_{c^{\prime}}$, extend to $G^{(0)}\left(\zeta_{1}, . ., \zeta_{n}\right)$

Theorem [de Jong, Hock, W 19]

$G^{(0)}\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ is sum of $\frac{2}{n}\binom{\frac{3 n}{2}-2}{\frac{n}{2}-1}$ terms of the form $\frac{(-\lambda)^{n / 2-1} \prod_{1}^{n / 2} G^{(0)}\left(\zeta_{i}, \zeta_{j}\right)}{\prod_{1}^{n-2}\left(\zeta_{k}-\zeta_{l}\right)}$

- Pattern in bijection with nested Catalan tables
- Graphically described in terms of non-crossing chords with a pair of dual planar rooted trees in every pocket.

Link to free probability?

Expectation values of powers of large random matrices show freeness (crossings suppressed).

- Cumulants of $\lambda \Phi^{4}$-model are, analogously to free moments, given by non-crossing linear combinations of (the only non-zero) free cumulants $G^{(0)}\left(z_{i}, z_{j}\right)$.
- Is this more than an analogy?

The genus expansion

We thus succeeded in constructing the planar sector of the $\lambda \Phi^{4}$-QFT model on a particular 4-dimensional noncommutative geometry.

Main message

Don't perturb the linear theory; this fails as in [Aizenman, Duminil-Copin 19].
Take it together with the planar part of the non-linearity! Only NCG can do this.

- But we do not have quantitative estimates for error between full theory and planar sector.
- One would expect that the difference is $\mathcal{O}\left(1 / \mathcal{N}^{2}\right)$. There are refinements of Dyson-Schwinger techniques [Guionnet 17] which could achieve this.
- Alternatively, one can try to control the cumulants to any genus and establish Borel summability of the genus expansion via resurgence.
Recent progress for $\lambda \Phi^{3}$ in [Eynard, Garcia-Failde, Giacchetto, Gregori, Lewański 23].
We describe some modest (but already difficult) steps in this dírection. They concern an $N \times N$-matrix model where N can be large but finite. Limit $N \rightarrow \infty$ is currently out of reach.

Raimar Wulkenhaar (Münster)	QFT	NCG	$1 / \mathrm{N}-\exp$	$\lambda \Phi^{3}$-model	TR	$\lambda \Phi^{4}$-model	Higher genus	Final
Quantum fields on NCG	00	000	00	0000	000	0000	00000	000

Finite matrices

Consider the partition function $\mathcal{Z}_{(\lambda / 4) \Phi^{4}, E}:=\int_{H_{N}} d \Phi e^{-N \operatorname{Tr}\left(E \Phi^{2}+\frac{\lambda}{4} \phi^{4}\right)}$ on $\mathcal{A}=M_{N}(\mathbb{C})$.
Let $\left(e_{1}, \ldots, e_{d}\right)$ be the pairwise different eigenvalues of E with multiplicities $\left(r_{1}, \ldots, r_{d}\right)$.

Theorem [Schürmann, W 19]

A solution of the non-linear equation for $G^{(0)}(\zeta, \eta)$ can be implicitly found in the form $G^{(0)}(x(z), x(w))=: \mathcal{G}^{(0)}(z, w)$ with $x(z)=z-\frac{1}{N} \sum_{k=1}^{N} \frac{\varrho_{k}}{\varepsilon_{k}+z}, x\left(\varepsilon_{k}\right)=e_{k}$ and $x^{\prime}\left(\varepsilon_{k}\right) \varrho_{k}=r_{k}$: $\mathcal{G}^{(0)}(z, w)=\frac{P_{1}^{(0)}(x(z), x(w))}{(x(z)+y(w))(x(w)+y(z))} \quad$ where $y(z)=-x(-z)$ and
$P_{1}^{(0)}(x(z), x(w))=\frac{\prod_{u \in x^{-1}(\{x(w)\})}(x(z)+y(u))}{\prod_{k=1}^{d}\left(x(z)-x\left(\varepsilon_{k}\right)\right)} \equiv P_{1}^{(0)}(x(w), x(z))$

Main definition [Branahl, Hock W 20]

For pairwise different a_{1}, \ldots, a_{n}, set $W_{a_{1}, \ldots, a_{n}}^{(g)}:=\left[N^{2-2 g-n}\right] \frac{(-1)^{n} \partial^{n} \log \mathcal{Z}_{(\lambda / 4) \Phi^{4}, E}}{\partial E_{a_{1}} \ldots \partial E_{a_{n}}}+\frac{\delta_{g, 0} \delta_{n, 2}}{\left(E_{a_{1}}-E_{a_{2}}\right)^{2}}$ for $2 g+n \geq 2$, and complexify to $W_{n}^{(g)}\left(z_{1}, \ldots, z_{n}\right)$. Moreover, $W_{1}^{(0)}(z)=y(z)$.

Raimar Wulkenhaar (Münster)	QFT	NCG	$1 / \mathrm{N}-\mathrm{exp}$	$\lambda \Phi^{3}-$ model	TR	$\lambda \phi^{4}-$ model	Higher genus	Final
Quantum fields on NCG	00	000	00	0000	000	0000	00000	0

Linear and quadratic loop equations for $g=0$
Extract from DSE (which relate $W_{n}^{(g)}$ to auxiliary functions) the lin./quad. loop equations:

Proposition [Hock, W 21; Hock, W 23]

The functions $W_{|| |+1}^{(0)}$ satisfy for $\emptyset \neq I=\left\{u_{1}, \ldots, u_{n}\right\}$ the global linear loop equations

$$
\sum_{k=0}^{d} W_{|| |+1}^{(0)}\left(\hat{z}^{k}, l\right)=\frac{\delta_{|| |, 1}}{\left(x(z)-x\left(u_{1}\right)\right)^{2}}-\sum_{j=1}^{|| |} \frac{\partial}{\partial x\left(u_{j}\right)} D_{\mid \backslash u_{j}}\left(\frac{1}{x(z)+y\left(u_{j}\right)}\right)
$$

and the global quadratic loop equations

$$
\begin{aligned}
& \frac{1}{2} \sum_{I_{1} \uplus l_{2}=\mid} \sum_{k=0}^{d} W_{\left|l_{1}\right|+1}^{(0)}\left(\hat{z}^{k}, I_{1}\right) W_{\left|\left.\right|_{2}\right|+1}^{(0)}\left(\hat{z}^{k}, I_{2}\right) \\
& =\sum_{j=1}^{|I|} \frac{\partial}{\partial x\left(u_{j}\right)} D_{\mid \backslash u_{j}}\left(\frac{x\left(u_{j}\right)}{x(z)+y\left(u_{j}\right)}\right)-\frac{1}{N} \sum_{k=1}^{d} \frac{r_{k} W_{|I|+1}^{(0)}\left(\varepsilon_{k}, I\right)}{x(z)-x\left(\varepsilon_{k}\right)}+\sum_{j=1}^{|| |} \frac{\partial}{\partial x\left(u_{j}\right)} \frac{W_{|| |}^{(0)}(I)}{x(z)-x\left(u_{j}\right)},
\end{aligned}
$$

for $D_{\left\{u_{1}, \ldots, u_{n}\right\}}=\prod_{j=1}^{n} D_{u_{j}}$ and derivations $D_{u} W_{m}^{(g)}\left(z_{1}, \ldots, z_{m}\right)=W_{m+1}^{j=1}\left(z_{1}^{(g)}, \ldots, z_{m}, u\right), D_{u} x(z)=0$

Projection property does not hold: blobbed topological recursion

Raimar Wulkenhaar (Münster) QFT NCG $1 / N$-exp $\lambda \phi^{3}$-model TR $\lambda \phi^{4}$-model Higher genus Final $21 / 24$
$00 \quad 000 \quad 00$
$0000 \quad 000 \quad 0000$
$00000 \quad 0$

Proposition [Hock, W 23]

The genus-1 meromorphic functions $W_{|I|+1}^{(1)}(z, l)$ satisfy the linear loop equation

$$
\begin{aligned}
\sum_{k=0}^{d} W_{|| |+1}^{(1)}\left(\hat{z}^{k}, I\right)= & -D_{I}^{0} \frac{1}{8(x(z)-x(0))^{3}} \\
- & \sum_{j=1}^{|I|} \frac{\partial}{\partial x\left(u_{j}\right)} D_{I \backslash u_{j}}\left\{\frac{W_{2}^{(0) r e g}\left(u_{j}, u_{j}\right)}{\left(x(z)+y\left(u_{j}\right)\right)^{3}}-\frac{W_{1}^{(1)}\left(u_{j}\right)}{\left(x(z)+y\left(u_{j}\right)\right)^{2}}\right. \\
& \left.\quad-\frac{1}{2\left(x(z)+y\left(u_{j}\right)\right)^{2}} \frac{\partial^{2}}{\partial\left(x\left(u_{j}\right)\right)^{2}} \frac{1}{\left(x(z)+y\left(u_{j}\right)\right)}\right\}
\end{aligned}
$$

and ...

Proposition [Hock, W 23]

... the quadratic loop equation

$$
\begin{aligned}
& \frac{1}{2} \sum_{\substack{g_{1}+g_{2}=1 \\
l_{1} \nmid I_{2}=I}} \sum_{k=0}^{d} W_{|I|+1}^{\left(g_{1}\right)}\left(\hat{z}^{k}, I_{1}\right) W_{|I|+1}^{\left(g_{2}\right)}\left(\hat{z}^{k}, I_{2}\right)+\frac{1}{2} \sum_{k=0}^{d} W_{2}^{(0) r e g}\left(\hat{z}^{k}, \hat{z}^{k}, I\right) \\
& =\frac{1}{6} \sum_{j=1}^{|I|} \frac{\partial^{2}}{\partial\left(x\left(u_{j}\right)\right)^{2}}\left(D_{l \backslash u_{j}} \frac{1}{\left(x(z)+y\left(u_{j}\right)\right)^{3}}\right)-D_{l}^{0} \frac{1}{8(x(z)-x(0))^{2}}+x(z) D_{l}^{0} \frac{1}{8(x(z)-x(0))^{3}} \\
& +\sum_{j=1}^{|I|} \frac{\partial}{\partial x\left(u_{j}\right)}\left[x\left(u_{j}\right) D_{I \backslash u_{j}}\left\{\frac{W_{2}^{(0) r e g}\left(u_{j}, u_{j}\right)}{\left(x(z)+y\left(u_{j}\right)\right)^{3}}-\frac{W_{1}^{(1)}\left(u_{j}\right)}{\left(x(z)+y\left(u_{j}\right)\right)^{2}}-\frac{1}{2\left(x(z)+y\left(u_{j}\right)\right)^{2}} \frac{\partial^{2}}{\partial\left(x\left(u_{j}\right)\right)^{2}} \frac{1}{\left(x(z)+y\left(u_{j}\right)\right)}\right\}\right] \\
& -\frac{1}{N} \sum_{l=1}^{d} \frac{W_{|l|+1}^{(1)}\left(\varepsilon_{l}, I\right)}{x(z)-x\left(\varepsilon_{l}\right)}+\sum_{j=1}^{|I|} \frac{\partial}{\partial x\left(u_{j}\right)} \frac{W_{|l|}^{(1)}(I)}{x(z)-x\left(u_{j}\right)} .
\end{aligned}
$$

- The global linear and quadratic loop equations give explicit recursion formulae for $W_{n}^{(g)}$ (so far for $g \leq 1$).
- Original blobbed TR [Borot, Shadrin 15] defined for local curves; this leaves large freedom (called 'blobs') in $W_{n}^{(g)}$. Validity of local loop equations is clear.
- It would be interesting to know whether matricial QFT-models other than $\left(\lambda \Phi^{3}, \lambda \Phi^{4}\right)$ admit a similar formulation. A hint:

Theorem [Borot, W 23]

Let $P \in \mathbb{C}(\mathbb{R})$ such that $e^{-E_{\min } x^{2}-P(x)}$ has finite moments and $d \mu_{E}$ as before . Then $\mathcal{Z}(\boldsymbol{t})=\int_{H_{N}} d \mu_{E}(\Phi) \exp \left(\operatorname{Tr}\left(-P(\Phi)+\sum_{k=0}^{\infty} t_{2 k+1} \Phi^{2 k+1}\right)\right)$ is a BKP τ-function.

- In particular, \exists infinitely many quadratic relations between moments, e.g. (for P even)

$$
\begin{aligned}
0 & =\left\langle(\operatorname{Tr}(\Phi))^{6}\right\rangle+15\left\langle(\operatorname{Tr}(\Phi))^{4}\right\rangle\left\langle(\operatorname{Tr}(\Phi))^{2}\right\rangle-5\left\langle(\operatorname{Tr}(\Phi))^{3} \operatorname{Tr}\left(\Phi^{3}\right)\right\rangle \\
& -15\left\langle\operatorname{Tr}(\Phi) \operatorname{Tr}\left(\Phi^{3}\right)\right\rangle\left\langle(\operatorname{Tr}(\Phi))^{2}\right\rangle-5\left\langle\left(\operatorname{Tr}\left(\Phi^{3}\right)\right)^{2}\right\rangle+9\left\langle\operatorname{Tr}\left(\Phi^{5}\right) \operatorname{Tr}(\Phi)\right\rangle
\end{aligned}
$$

