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The (incomplete) zoo of Hermitian one-matrix models Boeiaion 78/

&l AND RIGIDITY

For A = diag(A1, ..., Ay) and V(M) = Y-P | &M, various measured on
Hy = {Hermitian N x N matrices} have been studied (dM is Lebesgue):
@ Original model dup v (M) = Le™ V(M) dM [Breézin, Itzykson, Parisi, Zuber 78]
o Generating function to enumerate maps
o TR for spectral curve x(z) = o+ v(z + 1) and y(z) ~ Wl(o)(x(z))
@ Kontsevich model dup v(M) = Le~ Tr(AM2+3 M%) g [Kontsevich 92]
e generates intersection numbers on M, ,, equivalent to @ ([Witten 91] conjecture)
o also an external field model dyp v (M) = %e’iT'(A2M+%M3)dM
1

o TR for spectral curve x(z) = z% and y(z) = —z + 221:1 0D
kK\Ak—Z

© Generalised Kontsevich model dyip (M) = Le= T(VIM=VIN=(M=MV(N) g\ [Belliard,
Charbonnier, Eynard, Garcia-Failde 21]
e generates r-spin intersection numbers where r = p — 1
o TR for spectral curve x(z) = z" and y(z) = z,
Q External field matrix model dyip (M) = e~ "(AM=V(M) g\ [Eynard-Orantin 08]
o TR for spectral curve x(z) = Q(z) and y(z) = z — Tr( grry—x) With Q built from V’

N
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K DEFORMATIONS

GEOMETRV:
&l AND RIGIDITY

Moments of the free Hermitian matrix model

Consider measure dup(M) = e~ T (AM?) dM on Hy.

o Correlators (O(M))a := [, dua(M) O(M) of polynomials in matrix entries given as

sum over pairings with covariance (M Mpn)a = %

@ (TrM" ... Tr M"™)A represented as sum over closed ribbon graphs:

e v vertices of valencies rq, ..., r,
o n faces labelled A, ,..\k,, at the end summation over k; =1,...; N
e edges given weight ﬁ if shared by faces with labels A, and )\,

A N 1)2
@ <TrMTrM3>/\—3ZkI* m %(Zkzl ’\%)

Observation
(TrM™ - Tr M™)a with all r; odd evaluate to polynomials in power sum symmetric functions
Poni1 = ZkN 1 L . Any presence of an even Tr M% gives much more complicated

2n+1 -
)‘k

expressions without apparent structure.

Raimar Wulkenhaar (Miinster) Intro Quartic model New functions Genus-0 Genus-1 Outlook 2/22
BTR of quartic matrix models 00000 00000 [eele} 000 00000 o



GEOMETRY:

Why should we look at expectation values involving Tr M7 [titvons

AND RIGIDITY

@ No interacting QFT-model in 4 dimensions is in sight. 4D models are either too difficult

(Yang-Mills, millenium prize problem), or trivial (¢} [Aizenman, Duminil-Copin 19]).

@ Quantum field theories on noncomutative geometries provide a new class of 4D

QFT-models to try. They violate symmetry axioms, but renormalisation is very similar.

@ The simplest one is the ®*-model on noncommutative Moyal space, which is
Fréchet-isomorphic to infinite matrices with rapidly decaying entries.

@ In Euclidean approach, have (formal) measure
o nl g 4 _(0\D/2
dpn(P)":= Ed,uo(d)) exp(— ZNTr(d) )) , N = <7) :
@ dpug is GauBian, defined by covariance. Simplest choice is

St
(DO ) — / diio(®) DDy — — k!

N()\k -+ )\/) ’
where A\, > 0 are the eigenvalues of a Laplacian in D dimensions.
A better knowledge of the even case would help to understand this QFT model.

Raimar Wulkenhaar (Miinster) Intro Quartic model New functions Genus-0 Genus-1 Outlook
BTR of quartic matrix models 0000 00000 [eele} 000 00000 o

3/22



) MM

-

Mg » moduli space of genus-g curves with n marked points  ftivons

&l AND RIGIDITY

@ Assigning positive numbers (b, ..., b,) to the marked points, we obtain the decorated
moduli space Mg , x R7.

o Strebel differentials give rise to cell decomposition Mg,n X R} 2 3 rc gy, Ri(r)/AUt(r)
with sum over genus g-ribbon graphs with n faces and e edges.

@ Restricting this homeomorphism to a fixed tuple (b1, ..., by) of b; € Z~q yields a space
homeomorphic to M, , decomposed into compact convex integral polytopes.

e Lattice count polynomial Ng »(b1, ..., by) = ZreRibg,,, Nr(b1, ..., bp)/Aut(T) [Norbury 10]
as weighted sum of the numbers Nr (b1, ..., b,) of lattice points in such a polytope.

Q@ Top degree of Ny , is a half of [Kontsevich 92] volume polynomial and expressible in
terms of intersection numbers of ¢-classes on M, ,. Only ribbon graphs with 3-valent
vertices contribute to top degree.

@ The orbifold Euler characteristic [Harer, Zagier 86] is x(Mg,n) = Ng.n(0, ..., 0) and needs
ribbon graphs with vertices of any valency.

Ribbon graphs with even-valent vertices are relevant and deserve a better understanding.
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BKP hierarchy [Date, Jimbo, Kashiwara, Miwa 82] Bocieianrions

&l AND RIGIDITY

Deform previous Hermitian matrix measure to dyup v(M) = Le~ T (AM> V(M) M, where

V =3F &M’ is any polynomial potential. Set (O(M))p v := fHN O(M)dpa v(M). Then:

Theorem [Borot]

TAv(tB) = (ezgo t2it1 Tr(MziH))/\,V is a 7-function of the BKP hierarchy, i.e. it satisfies

dZ 0o 241y o, — —
TA,V(tB)TA,V(SB) = ZR:eg [?ez,':oz T (tojq1 52'+1)7'/\,V(tB—2[Z I]B)TA,V(SB+2[Z I]B)]
— (A _1 1 )

identically in tg = (t1, t3, t5,...) and sg = (s1, 53, S5, ...), Where [z71] i e i ol

Gives hierarchy of quadratic equations between moments.

First BKP equation for even potential V(M) = V(—M)

0 =15((Tr M)A v ((Tr M)*)a v — 15((Tr M Tr M3)p v ((Tr M)A v
+ ((Tr M)®)a v — 5((Tr M) Tr M3)p v — 5((Tr M3 a vy + 9(Tr M Tr M®)p v .
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Statement of the challenge Bocomirions 1@

i AND RIGIDITY
We are interested in measures dyip v (M) = Le~ Tr(AM*+ V(M) 4] for Hermitian matrices
where V' contains even monomials.
@ Expanding V produces expectation values without apparent pattern.
o Nevertheless, moments of dua v involving only odd Tr M2"+1 satisfy BKP equations.

In a first step we focus on V(M) = : M*.

Programme

O Give definition of W& and identify a spectral curve (x,y : P! — P! wp2).

@ Turn Dyson-Schwinger equations of matrix model into linear & quadratic loop equations.

Without additional identities (patternless structure of correlators does not give them!), such
loop equations imply blobbed topological recursion [Borot, Shadrin 15].

@ First found in enumeration of stuffed maps [Borot 13]

@ Also in intermediate field rep. of tensor models [Bonzom, Dartois 16; Bonzom, Dubb 20]
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K| DEFORMATIONS | &)
i AND RIGIDITY

Blobbed topological recursion [Borot, Shadrin 15]
Set wf,g)(zl, ey Zp) =t W,Sg)(zl7 voosZn) [{jeq dx(2zk) and | = {z1, ..., zn}
Linear and quadratic loop equations

L& (xzin=Y w&en,

z2ex—x(2)}

GEOMETRY:

1,r A A
Ax@in=" Y (X wEEnWEL @B+ Wi E20),
2ex—1{x(z)} gﬁ-%z Ig
LYk

0 Ng 5g,00]1,
where Wl( )(z) = y(z) and V\/|(,f+§g)(z w,l) = WI(Ii)rZ(Z w, ) — (X(Zg)o_v‘;'(;’))z.
The w'®) obey blobbed TR if Lf,g_i_)l( (2); 1), n+1(x( z); 1) holomorphic at branch points of x.
They obey standard TR if ng) is constant for 2g + n—2 > 0.

(&)

Remark: BTR is just as good as TR and determines the w;’’ uniquely. More precisely:
o Part of w(g) with poles at ramification points of x from TR recursion formula.
(g)

o Knowledge of Lfi)p Qr(,ﬁ_)l near their poles implies recursion formula for the whole w;>’.
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Quartic potential Boeroramions &)

&l AND RIGIDITY

Consider the partition function 25 4 := fHN dMm e—’VTf(’\MzJF%’V"‘), define
(O(M))ns = 21 fyg, IM O(M)e M T,

Main definition [Branahl, Hock W 20]

W‘-,(lg E —[N2 28— "]( lg\a?__gii’\"‘—l—(/\fif(i\";)z+5g,05,,,1f()\al) for ai, ..., a, pairwise different

@ Procedure consists in deriving equations for the Wa(lg) .a, Which should extend to

complexified equations for W.&)(¢1, ..., &,) with W(g)()\al,... Aa) = W),

ai,...,a
1)0" (Mg M 1)0" (M M,
= )a,\a< 5’,\a/k>/\'4 nd & )8/\ < = 114 gl to CompleX|fy
1 n

o Non-linear equation for Gk, = [NTYMyMy)pa — G(O)(§1,§2) can be solved and
provides £ = x(z) for TR.
o Get y(z) = £ SN GO (x(z), \i) + F(x(2)) for TR.
—~—

@ Need auxiliary functions
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F] GEOMETRY: )
DEFORMATIONS h ‘.'%
&l AND RIGIDITY

The planar 2-point function

(A1, ..., Ag) — pairwise different eigenvalues with multiplicities (ry, ..., rq).

Theorem [Grosse, W 09]

Zi: GO\, n) = GO, n)

(C+n+ ZrdG()C/\k))G()Cn )=1+ Y

Theorem [Schiirmann, W 19]

A solution i be |mpI|citIy found in the form G (x(z), x(w)) =: GO (z, w) with

X( ) =z N k 1 gkg-l;-z and X(Ek) — )\k and X/(Ek)gk = e

P(x(2), x(w))
(x(2) ﬂhy(W))(X(W) (Y(( ))) Yo
O (x(2). x(w)) = Huex {xwp X2 — PO (x(w), x(=
P (@) x(w)) = g R (x(w). x(2)

where | y(z) = —x(—2) ‘ and

g(O)(Z, w) =
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[ DEFORMATIONS

GEOMETRV:
B AnD RIGIDITY

Contact with topological recursion

A lengthy calculation gives wéo)(zl,zz) = (flzi‘zz)z + %z and then

& ((ul—lﬁ,-)z + (ulfﬁf)z)((uz—lﬁi)z + (uzfﬁ;)z)dul dup dz

(0)
w3y (uy, up,2) = —
v 2) =) VB (Br)(z — Bi?
(0)
wy (uz, uy) dz
d, (=2 ’ N
+ o ( (&) (1) y'(u)(z+ u1)2) o )
w(l)(z) N i dz { B 1 N 2i4x17,- N (x2,i + yo,i — x1,iy1,i — X12,,- - %)
1= 2 BB\ 85 (2B 48z — 5
B dz . x"(0)dz
8(x’(0))2z3  16(x'(0))322
o . . (n+2) (3. (n+1)( 3.
where 3124 solve dx(;) = 0 (ramification points), x, ; := % Vi 1= %
Observation [Branahl, Hock, W 20]
The blue terms correspond to topological recursion for y(z) = —x(—z), the magenta terms
signal an extension to blobbed topological recursion.
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DEFORMATIONS &)

IGEOMETRV
AND RIGIDITY

Details: Dyson-Schwinger equations
We are guided by [Chekhov, Eynard, Orantin 06] who discovered for the 2-matrix model

(y(w) = y@)HERF (v (w)izi 1) + PEL TR (y(w)i x(2): 1)

TR TR TR

= = > W@ MR (whizi ) — S T w)i 2, 1)
From this and H,Ei)l R(y(w); z; 1) = v )Wﬁi)l (z,1) + O(y(w)~?) they proved TR.
Our situation is more complicated: We need extended loop equations for 7 families of
functions. Matrix model gives coupled system @, @, @ of DSdE's between (U(g), V,Sg), W,Sg)).

A=z

01,10
© Wi = g e *Onstes (10 5 )

|1l
( . (&=, .
NZ”UMH z,epl) Z@x(u, U‘ﬁ z, ui; N\ui) + \/ll‘fJrl (z,z; 1) .

o Here and below, | = {u1, ..., uy} collects spectator variables u; € P!,
o There are d + 1 preimages x 1(x(z)) = {z = 29,21, ..., 29} of x(=2).

New functions Genus-0 Genus-1 Outlook 11 / 22
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Auxiliary functions partially symmetric in preimages Bociommrions
Introducing " / e )
HE (x(v):z;1) := 6406 Z r’U\/Hl zenl i Uil (2w N\g)— ViE (2, 2:1)
11+ — 8000 Ty ) — x(e1) < Ox(uj)  x(v) = x(u)) x(v) = x(z) ~’
ME (x(v): z: 1) = — Vl(uil(z i ! 2": m) (.0 \w)  UF (2. z:1)
[7+1 N — x(v) — x(g/) Ox(uj)  x(v) —x(u;) x(v) —x(z) ’

then (sums below are >~/ = lew,r, giter—g, (g1,h)2£(0, @))

[2) HE  (x(v): 2 1) = (x(2) + y() U, (v, 2 1) + 3 WD (v, U (v, 23 b)
(g—-1)
% (v,z; 1)
-1) IS
+U |/\+2 (v,z;1U5S) :v-l- @ )
5 ML (x(v)i z: 1) = (x(v) + y (D) VEL (vo zi ) + W (v, i)VE (v, z: k)
U\(ﬁll(v’ z; 1)

+ vl 1)(v, z;1Us)

1]+2 +

s=v  x(z) = x(v)
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Auxiliary functions completely symmetric in preimages fo:roimtions

Set nHE  (x(v)ie 1) ! H(,A;D(RIG(IW;:UJ?/\UJ)
Pia(x():x(2): 1) 1= 00 0x(z NZ X2 Y ax?u» o)
9111,19¢,0 J
“rm-f—(smoago( NZ —X(gk )

d x(ie ) I 5 MEL (x(v); ui I\uy)

B |/|+1 [/]+1 v
QU (x(v): x(2): 1) Z x(@) (o) 2 0x(w) +(z)—x(w) ’
then B "
PIBA(0)X@): 1) = () 4 VDML + S Wi MG () 2:8)
Mme 1)
ME D(x(v)iz 1)
+ HI(IHQ)(X(V); z;1Us) T | l(v) @)’

QL (x(v), x(2); 1) = (x(2) + y()ME, (x(v) z: 1) + S WE (2, )M (x(v); z: k)
|/|+1(X( v); z;1)

1)
+ M 4+ ——
I/+2 ( ( s=z x(v) — x(2)
armar alkennaar unster ntro aarcircmoac ew Tunctions enus= enus= atioo
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| DEFORMATIONS .%

Solution for g =0

GEOMETRV:
& AND RIGIDITY

@ Loop insertion operators D, and Dy, .,y = Dy, -+ Dy, as convenient abbreviation
0
D,(x(2)) =0.  Duy(z) = WO(z,u), DWW (2.1) = W) (2, u 1),
andDF“H_l(v,z;l) |l|_~_2(vz IUu)for Fe{U,H,P,V,M,Q}.
e Equations for g = 0 turn into

Dylog PO (x(v), x(z)) = Dy log(x(v) + y(2)) + D log H (x(v); 2)

Proposition [Hock, W 23]

d
Dy log H®) (x ZD/ log(x(v) + y(2%)) + 7 (x(v); x(2): 1) ,
d 0
Dy log P{O) (x(v), x Z Dy log(x(v) + y(8%)) + F{), (x(v); x(2): 1)
k=
I
(0) 0 ! (0)

with F|,|+1( v); x(2); 1 Gx( ,\uj ()0 )y () (from @%eq. for H\Y))
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Linear and quadratic loop equations for g =0

F] GEOMETRY:
K DEFORMATIONS
i AND RIGIDITY

Comparing the obvious expansion of P|(,|3rl( (v),x(z); 1) at x(v) = oo with the one resulting

from the defining equation and H‘(”J)rl( (v);z; 1) = —3v )W‘(,‘J)rl(z, 1)+ O((x(v))~?) gives:

Proposition

The functions W

Wit satisfy for | # () the global linear Ioop equations

[1]
i 31,1 v
Z /|+1(Z ) ~ (x(2) = x(m)) Z 3X j<X(Z)+Y(“j)>

and the global quadratlc loop equations

2 Z ZW(O|+1(Ak h)w, Iz |+1(Ak7/2)

Ilulz—l k=0

. xw) y 1 wWiiaEe) | u. K0
Z 8X (u)) f(x(z)—i—y(uj)) N — x(z) — x(ex) Z 8X —x(uy)
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H H E] GEOMETRY:
DlSCUSS|On DEFORMATIONS X8
I AND RIGIDITY

@ With Alex Hock and Maciej Dotega we obtained these equations before in a combinatorial
approach which is a version of the x-y symmetry in TR. Alex Hock generalised it later.

@ The loop equations determine the w(g) uniquely if they are known not only near branch
points of x (where they are holomorphic), but also near all of their poles.

@ In applications, this extended knowledge of

(&) (g—1)r 5 ) 5 (&2) (5
ZWUTrH(Z?/) and Z(W\/ﬁﬂ #(2,2 Z W\/g\lﬂ Il)W|/f\2+1( /2))
sex—1({x(2)}) sex—1({x(2)}) hih=I
g1+82=g

should in principle be achievable whenever they are derived from some generating series.
This is the case for the considered quartic model.
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F] GEOMETRY:

p© (x(v),x(2);1) DEFORMAT'IONS ;‘\

QP (x(v). x(2): 1) = QL (x(v), x(2): 1) = L=
By a similar method applied to
0O ((v).x(2)) = - XW) +x(2) = 2x(0)) \/ PO (x(v), x(1)) P2 (x(2), x(2))
2(x(v) — x(2)2 (x(v) = x(0))(x(z) — x(0))

(found in [Schiirmann, W 19], here y(z) = —x(—2z) is essential) one finds:

|

Proposition
D1log A7 (x(v),x(2))
= 2 D11og PO(x(v), x(v)) + 5 D1 log P (x(2), x(2))

1 || (71)171 2l+1 1 1 )
) P / ((X(V)+X(Z)—2x(0))/ B (x(V)—x(0))! - (X(z)—x(O))’) ,1@2,12,,.11 Dj/x(0)
I, i #£0

where Dgx(O) is uniquely determined by holomorpicity of D, log O{O)(x(v),x(z)) at v=0.
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Theorem [Hock, W 23]: P|(,1|)+1( (v),x(z2); 1)
P (x(v), x(2)) Q% (x(v), x(2)) (©)reg
D + W5 u,u
(Pi°’(x(v)7x(z)) (x(v) - x(z))2P£°’(x(v),x(z))) . szm))(u, o)
N M@ 1§ W&, 24) L
B REOR R Z# ") + (@) (x(v) + y(29)) wr )
oy 1 d WO (2%, )
B Z ox(u) [(x(v) — x(u)) Z P ) 1y (@) (x(2) + y(u,-))z]
— 1 a (o] (0) v — 1 10 (0) X\(Z), X\w
(x(v)—x(z))wé()D(f"jP( (( ()) ;)))) Dy log P (x(2), x(w))) _
1 1 9%(Dy log x(w), x(z 1 1 0 1
- (Ix(v)—x(z))z(z Ox(w)ox(z Lt ()= 7)) 500 2 sE P
0 1 Wz reg(uhuj) o Wi (w))
’ Z Ox(u) [(x(v) — x(u)) Dn{ (x(2) +y(u)?  (x(2) + y(u))?
N 1 ? 1 }]
, 2(x(2) + y(u7)? O(x(u;))? EOX)‘Z) +y(w))
82 W2 (uivuj)
) = Z - Ox(ui)Ox(u;) (O (x(v)—x(um(x(v)—x(u,-»(x(z>+y<u,->>2(x(z)+y(uj))z]
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Linear and quadratic loop equations for g =1 Bocioramions 1@

& AND RIGIDITY

Proposition [Hock, W 23]

The genus-1 meromorphic functions wi) (z,1) satisfy the linear loop equation

)51
& 1
Ak 0
kz_% Wisa(#',1) = =0 8(x(2) — x(0))3
|11 0 1
. o0 W () WD ()
3X TL(x(2) +y(u))? (x(2) + y(u)))?
3 1 9? 1 }
2(x(2) + y(u;))? 0(x(u;))? (x(2) + y(uj))
and ...
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Linear and quadratic loop equations for g =1 Bocieimrions

& AND RIGIDITY

Proposition [Hock, W 23]

.. the quadratic loop equation

d
1 N 2 N 1 O)reg / sk -
> X S wiE e i) 2, b) + 5 30 W (2, 24 1)
g1+gz 1 k=0 k=
W=l

o

1 o2 1 o 1 D0 1
=5 2 a6 e O e y@r) ~ s xor O s o

” W5 (. WDy 1 92 1
Zuhw ) W) )

x(@)H+y(w))  (x(2)+y(w))? 20x(2)+y(4)? O(x(17))? (x(2)+y(y;))

d (e1, ) | 9 W(l)(l)
\/|+1 <
Z ) — x(&1) — Ox(uj) x(z) = x(u;)
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Main theorem [Hock, W 23]: recursion formula for g <1 Bocieimrions

I AND RIGIDITY
The linear and quadratic loop equations are equivalent to
1( dz dz
(z q z oi(q))

M = =3 R L (@ (e ) il e 0}
dz

|1] 1( dz )
2\z—q z+u; ;g — g
T L5, G > e 2 wf/utl(q;('l)w)/)ﬂﬂ(q’ =)
-1, (g—1) (dx(9))* & 1 (@]
+fl(ujf "'+3z()q’ w0+ =6 e (et |
A (q)2 Z_yz—q)z)dx(q){Z/w'(’il)“(q’ W)l (0, k) +wif (0 0.1)

(dx(q))? @ (dfw(,m’(q,m/)
2 ox(q) dx(q)

)

where [3; we denote the ramification points of x, o; is the Galois involution near ; and
wéo)(q, q) — Iimq/%q(wgo)(q, q)— %) is understood. >’ means (g;, ;) # (0,0).
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&l AND RIGIDITY

There is no principal problem which prevents pushing these structures to any genus g.

@ The terms which after expansion at x(v) = oo give ZZ:O W|(/ﬁ1( /) and

g 1)reg Ak k. (g sk. &: sk.

9 (W b Hl) (k. 25N+ Wi |1+1( ,ll)Vl/‘(,2|2+)1(z . 1>)) are always there.
There cannot be any contrlbutlon with poles at ;.

@ Hence, the linear and quadratic loop equation terms are locally, in neighbourhood of
ramification points, always holomorphic.

@ Thus, the quartic matrix model satisfies blobbed topological recursion in its original sense.

@ The stronger question, to establish the linear and quadratic loop equation for all g
globally, is a difficult combinatorial problem. The number of terms increases quickly with
g, we need Taylor expansions up to order 4g — 3.

@ Maybe it is realistic to reach g = 2 to check whether the recursion kernel representation
remains stable or needs additional g—2 contributions.
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