Matrix models and topological recursion

Raimar Wulkenhaar

Matrix models are a common topic e.g. in

- enumerative geometry and combinatorics,
- quantum gravity in two dimensions,
- complex algebraic geometry,
- quantum fields on noncommutative geometry.

In form of random matrix theory, they are important in

- stochastics,
- free probability.

They are examples for a universal structure called topological recursion.

Consider a planet of genus g on which all countries are (possibly degenerate) polygons neighbouring each other.

We are interested in world maps of

- n_{3} triangle countries, n_{4} quadrangle countries, etc.

We admit a fixed number of oceans:

- I_{3} of them triangles, I_{4} of them quadrangles, etc.

How many different world maps are there?

William Tutte (1963) counted these numbers in the case of a spherical planet (genus 0) with one ocean (rooted planar maps).

- For special case that all countries and the ocean form $n=n_{4}+1$ quadrangles, there are $\frac{2 \cdot 3^{n}}{(n+2)} C_{n}$ different world maps, where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is the n-th Catalan number.

Hermitian 1-matrix model

(Formal) matrix integral [Brézin, Itzykson, Parisi, Zuber 78] as generating function of maps:

$$
\begin{aligned}
\mathcal{Z}\left(t_{3}, \ldots, t_{d} ; t\right) & :=\int_{H_{N}} d M \exp \left(-N \operatorname{Tr}\left(\frac{M^{2}}{2 t}\right)\right) \exp \left(\frac{N}{t} \operatorname{Tr}\left(\frac{t_{3}}{3} M^{3}+\cdots+\frac{t_{d}}{d} M^{d}\right)\right) \\
& =\sum_{\Sigma \in \begin{array}{c}
\text { disconn.maps } \\
\text { no ocean }
\end{array}}\left(\frac{N}{t}\right)^{\chi(\Sigma)} t_{3}^{n_{3}(\Sigma)} t_{4}^{n_{4}(\Sigma)} \cdots t_{d}^{n_{d}(\Sigma)} \cdot \frac{t^{v(\Sigma)}}{\# \operatorname{Aut}(\Sigma)}
\end{aligned}
$$

where

- integral is over self-adjoint $N \times N$-matrices M, with $d M$ normalised Lebesgue measure,
- $\chi(\Sigma)$ is the Euler characteristic of Σ,
- Σ has $n_{3}(\Sigma)$ triangles, $\ldots, n_{d}(\Sigma) d$-gons and in total $v(\Sigma)$ vertices.

Quantum gravity

- Challenge: make sense of $\sum_{\text {topologies }} \int_{\text {metrics }} d g e^{-\int_{M_{g}} \frac{\kappa}{2}(\text { scal }(g)-2 \Lambda) d v o l(g)}$
- In $D=2$ dimensions, Gauß-Bonnet reduces this to Euler characteristic and volume.
- Substitute for g-integral is sum over world maps where each country has unit weight.

$$
\exp \left(\frac{N}{t} \operatorname{Tr}\left(\sum_{i=3}^{d} \frac{t_{i}}{i} M^{i}\right)\right)=\sum_{n_{3}, \ldots, n_{d}=0}^{\infty} \frac{1}{n_{3}!\cdots n_{d}!}\left(\frac{N}{t}\right)^{n_{3}+\cdots+n_{d}}\left(\frac{t_{3}}{3} \operatorname{Tr}\left(M^{3}\right)\right)^{n_{3}} \cdots\left(\frac{t_{d}}{d} \operatorname{Tr}\left(M^{d}\right)\right)^{n_{d}}
$$

- Gaußian integral

$$
\int_{H_{N}} d M \exp \left(-N \operatorname{Tr}\left(\frac{M^{2}}{2 t}\right)\right) \prod_{i=1}^{v} M_{k_{i} l_{i}}=\left\{\begin{array}{c}
\sum_{\text {pairings pairs }(\mathrm{i}, \mathrm{j})} \prod_{0 \text { if }} \frac{t}{N} \delta_{k_{i} l_{j}} \delta_{l_{i} k_{j}} \\
0 \text { is odd }
\end{array}\right.
$$

gives sum over closed ribbon graphs with n_{3} trivalent vertices, $\ldots, n_{d} d$-valent vertices.

- Factorials and $\left(\frac{1}{k}\right)^{n_{k}}$ combine to $\frac{1}{\text { \#Aut(} \Sigma)}$
- Each such ribbon graph Γ comes with prefactor $\left(\frac{N}{t}\right)^{\chi(\Gamma)}$, where $\chi(\Gamma)=v(\Gamma)-e(\Gamma)+f(\Gamma)$ is Euler characteristic.
- Ribbon graphs Γ and maps Σ are dual to each other:

Oceans which are $\left(l_{1}, \ldots, l_{s}\right)$-gons are generated by

$$
\frac{\int_{H_{N}} d M \operatorname{Tr}\left(M^{/_{1}}\right) \cdots \operatorname{Tr}\left(M^{/_{s}}\right) e^{-N \operatorname{Tr}\left(\frac{M^{2}}{2 t}\right)} e^{\frac{N}{t} \operatorname{Tr}\left(\frac{t_{3}}{3} M^{3}+\frac{t_{4}}{4} M^{4}+\cdots+\frac{t_{d}}{d} M^{d}\right)}}{\int_{H_{N}} d M e^{-N \operatorname{Tr}\left(\frac{M^{2}}{2 t}\right)} e^{\frac{N}{t} \operatorname{Tr}\left(\frac{t_{3}}{3} M^{3}+\frac{t_{4}}{4} M^{4}+\cdots+\frac{t_{d}}{d} M^{d}\right)}}
$$

They can formally be collected into resolvents $W(x)=\operatorname{Tr}\left((x-M)^{-1}\right)$, for $x \notin \mathbb{R}$.

- Integration by parts gives identities between derivatives of $\mathcal{Z}\left(t_{3}, \ldots, t_{d}\right)$:

$$
0=\left(\sum_{j=1}^{\infty}(k+j) t_{j} \frac{\partial}{\partial t_{k+j}}+\frac{t^{2}}{N^{2}} \sum_{l=1}^{k-1} I(k-l) \frac{\partial^{2}}{\partial t_{l} \partial t_{k-1}}+2 t_{k} \frac{\partial}{\partial t_{k}}\right) \mathcal{Z}
$$

- Up to conjugation, these differential operators become generators L_{k} of the Witt/Virasoro algebra, $\left[L_{k}, L_{l}\right]=(k-l) L_{k+1}$.
- Identifies KdV integrable hierarchy in Hermitian 1-matrix model.

The moduli space of complex curves

- Any two tori (of genus 1) are homotopic, but not necessarily (complex-) diffeomorphic.
- The equivalence classes of tori with marked point 0 are parametrised by points in the fundamental domain

- Compactified by adding the unique sphere with three marked points, two of them glued to a pinched torus.
In general, the moduli space $\mathcal{M}_{g, n}$ of genus- g curves with n marked points is a space of complex dimension $3 g+n-3$. It is an orbifold, similar to a manifold, but with corners.

Deligne-Mumford compactification to moduli space $\overline{\mathcal{M}}_{g, n}$ of stable complex curves.

Consider on $\overline{\mathcal{M}}_{g, n}$ a family $\left\{\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}\right\}$ of line bundles:

- Fibre of \mathcal{L}_{i} over $x \in \overline{\mathcal{M}}_{g, n}$, which is a (nodal) curve $x=\mathcal{C}$, is the cotangent space of \mathcal{C} at the i-th marked point.
- These bundles are classified by their first Chern class $\psi_{i}=c_{1}\left(\mathcal{L}_{i}\right) \in H^{2}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)$.
- Intersection numbers $\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{d_{1}} \cdots \psi_{n}^{d_{n}} \in \mathbb{Q}$, non-zero iff $d_{1}+\ldots+d_{n}=3 g-3+n$

Collect them to generating function $\mathcal{F}_{g}\left(t_{0}, t_{1}, \ldots\right)=\sum_{\substack{n=1 \\ 2 g+n \geq 3}}^{\infty} \frac{1}{n!} \sum_{\substack{d_{1}, \ldots, d_{n}=0}}^{\infty} \int_{\overline{\mathcal{M}}_{g}, n} \psi_{1}^{d_{1}} \cdots \psi_{n}^{d_{n}} \prod_{i=1}^{n} t_{d_{i}}$

Conjecture [Witten 91]

$\tau\left(t_{0}, t_{1}, ..\right):=\exp \left(\sum_{g=0}^{\infty} N^{2-2 g} \mathcal{F}_{g}\left(t_{0}, t_{1}, \ldots\right)\right)$ is a $\mathrm{KdV} \tau$-function, thus equivalent to partition function of the 1-matrix model

The Kontsevich matrix model

Theorem [Kontsevich 92]

The generating function of intersection numbers is the $1 / N$-expansion of a matrix integral

$$
\sum_{g=0}^{\infty} N^{2-2 g} \mathcal{F}_{g}\left(t_{0}, t_{1}, \ldots\right)=\log \left(\frac{\int_{H_{N}} d M e^{-\frac{N}{2} \operatorname{Tr}\left(\wedge M^{2}\right)+\frac{i N}{6} \operatorname{Tr}\left(M^{3}\right)}}{\int_{H_{N}} d M e^{-\frac{N}{2} \operatorname{Tr}\left(\Lambda M^{2}\right)}}\right)
$$

where $t_{i}:=-(2 i-1)!!\operatorname{Tr}\left(\wedge^{-2 i-1}\right)$. In particular, $\exp \left(\sum_{g=0}^{\infty} N^{2-2 g} \mathcal{F}_{g}\right)$ is a $\mathrm{KdV} \tau$-function.

- The Kontsevich matrix model was understood later [Eynard, Orantin 07] as the simplest example of topological recursion (TR).
- Historically, TR was discovered in approach [Chekhov, Eynard, Orantin 06] to the 2-matrix model. Shortly later it was also found in the 1-matrix model.
We sketch the main ideas of TR for the Kontsevich model.

Cumulants of the Kontsevich matrix model

Similar to the generating functions including oceans, consider

$$
\left\langle M_{a_{1} a_{1}} \cdots M_{a_{n} a_{n}}\right\rangle_{c}:=\log \left(\frac{\mathrm{i}^{n} \int_{H_{N}} d M M_{a_{1} a_{1}} \cdots M_{a_{n} a_{n}} e^{-\frac{N}{2} \operatorname{Tr}\left(\Lambda M^{2}\right)+\frac{\mathrm{i} N}{6} \operatorname{Tr}\left(M^{3}\right)}}{\int_{H_{N}} d M e^{-\frac{N}{2} \operatorname{Tr}\left(\Lambda M^{2}\right)+\frac{\mathrm{i} N}{6} \operatorname{Tr}\left(M^{3}\right)}}\right)
$$

- Expanding $\exp \left(\frac{i N}{6} \operatorname{Tr}\left(M^{3}\right)\right)$ produces ribbon graphs with n marked faces each containing one 1 -valent vertex and any number of unmarked faces. All other vertices are 3-valent.
- Forgetting the marking gives in algebraic geometry rise to κ-classes:

$$
\begin{aligned}
& {\left[N^{2-2 g-2 n}\right]\left\langle M_{a_{1} a_{1}} \cdots M_{a_{n} a_{n}}\right\rangle_{c}} \\
& =\sum_{k=0}^{\infty} \frac{1}{\left(1-t_{0}\right)^{2 g+n-2} k!} \sum_{\substack{d_{1}+\cdots+d_{n}+\\
+I_{1}+\ldots+l_{k}=3 g-3+n}} \int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{d_{1}} \cdots \psi_{n}^{d_{n}} \kappa_{l_{1}} \cdots \kappa_{l_{k}} \prod_{i=1}^{n} \frac{\left(2 d_{i}+1\right)!!}{\lambda_{a_{i}}^{2 d_{i}+3}} \prod_{j=1}^{k} s l_{j}
\end{aligned}
$$

where $2 g+n \geq 3, d_{j} \geq 0, l_{j} \geq 1$ and for $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, renormalised to $\sum_{k=1}^{N} \frac{1}{\lambda_{k}}=0$, $s_{l}=-\left[x^{\prime}\right] \log \left(1-\sum_{m=0}^{\infty} t_{m} x^{m}\right)$ if $t_{m}=-(2 m-1)!!\frac{1}{N} \sum_{k=1}^{N} \frac{1}{\lambda_{k}^{2 m+3}}$

Integration by parts

...gives relations between cumulants: loop equations, Dyson-Schwinger equations (DSE)
Expanding $\left\langle M_{a_{1} a_{1}} \cdots M_{a_{n} a_{n}}\right\rangle_{c}-\lambda_{a_{1}} \delta_{n, 1}=: \sum_{g=0}^{\infty}(N / 2)^{2-2 g-2 n} W_{a_{1}, \ldots, a_{n}}^{(g)}$, these equations read

Dyson-Schwinger equations of Kontsevich model

$$
\begin{aligned}
\sum_{\substack{I_{1} \uplus l_{2}=\{1, \ldots, n\} \\
g_{1}+g_{2}=g}} W_{a, l_{1}}^{\left(g_{1}\right)} W_{a, l_{2}}^{\left(g_{2}\right)} & =\lambda_{a}^{2} \delta_{n, 0} \delta_{g, 0}-W_{a, a, a_{1}, \ldots, a_{n}}^{(g-1)}-\frac{2}{N} \sum_{k=1}^{N} \frac{W_{k, a_{1}, \ldots, a_{n}}^{(g)}-W_{a, a_{1}, \ldots, a_{n}}^{(g)}}{\lambda_{k}^{2}-\lambda_{a}^{2}} \\
& -\sum_{j=1}^{n} \frac{\partial}{\partial \lambda_{a_{j}}^{2}} \frac{W_{a_{1}, \ldots, a_{n}}^{(g)}-W_{a_{1}, \ldots, a_{j-1}, a, a_{j+1}, . ., a_{n}}^{(g)}}{\lambda_{a_{j}}^{2}-\lambda_{a}^{2}}
\end{aligned}
$$

- Non-linear equation for $W_{a}^{(0)}$ if $g=n=0$; solved by [Makeenko, Semenoff 91]

$$
\left.W_{a}^{(0)}=-\sqrt{\lambda_{a}^{2}+c}+\frac{1}{N} \sum_{l=1}^{N} \frac{1}{\sqrt{\lambda_{l}^{2}+c}\left(\sqrt{\lambda_{a}^{2}+c}+\sqrt{\lambda_{l}^{2}+c}\right.}\right) \text { where } c=\frac{2}{N} \sum_{k=1}^{N} \frac{1}{\sqrt{\lambda_{k}^{2}+c}}
$$

- otherwise affine with known inhomogeneity

Complexification

Complexify DSE to system of equations

$$
\begin{aligned}
& \sum_{\substack{I_{1} \uplus I_{2}=\left\{z_{1}, \ldots, z_{n}\right\} \\
g_{1}+g_{2}=g}} \hat{W}_{\left|I_{1}\right|+1}^{\left(g_{1}\right)}\left(z, I_{1}\right) \hat{W}_{\left|I_{2}\right|+1}^{\left(g_{2}\right)}\left(z, I_{2}\right)+\hat{W}_{n+2}^{(g-1)}\left(z, z, z_{1}, \ldots, z_{n}\right) \\
= & \left(z^{2}-c\right) \delta_{n, 0} \delta_{g, 0}-\frac{2}{N} \sum_{k=1}^{N} \frac{\hat{W}_{n+1}^{(g)}\left(\hat{\lambda}_{k}, z_{1}, \ldots, z_{n}\right)-\hat{W}_{n+1}^{(g)}\left(z, z_{1}, \ldots, z_{n}\right)}{\hat{\lambda}_{k}^{2}-z^{2}} \\
- & \sum_{j=1}^{n} \frac{\partial}{\partial z_{j}^{2}} \frac{\hat{W}_{n}^{(g)}\left(z_{1}, \ldots, z_{n}\right)-\hat{W}_{n}^{(g)}\left(z_{1}, \ldots, z_{j-1}, z, z_{j+1}, \ldots, z_{n}\right)}{z_{j}^{2}-z^{2}}
\end{aligned}
$$

for complex functions $\hat{W}_{n}^{(g)}$ satisfying $W_{a_{1}, \ldots, a_{n}}^{(g)} \equiv \hat{W}_{n}^{(g)}\left(\hat{\lambda}_{a_{1}}, \ldots, \hat{\lambda}_{a_{n}}\right)$, where $\hat{\lambda}_{k}:=\sqrt{\lambda_{k}^{2}+c}$

- $\hat{W}_{2}^{(0)}\left(z, z_{1}\right)=\frac{1}{4 z z_{1}\left(z+z_{1}\right)^{2}}$
- $\hat{W}_{3}^{(0)}\left(z_{1}, z_{2}, z_{3}\right)=\frac{1}{16\left(1-\hat{t}_{3}\right) z_{1}^{3} z_{2}^{3} z_{3}^{3}}$ where $\hat{t}_{3}=-\frac{1}{N} \sum_{k=1}^{N} \frac{1}{\hat{\lambda}_{k}^{3}}$

Linear and quadratic loop equations

The complexified DSE imply inductively for $2 g+n \geq 3$:

- $W_{n}^{(g)}\left(z_{1}, \ldots, z_{n}\right)$ has poles only at $z_{i}=0$
- Linear loop equation $(2 g+n \geq 3)$

$$
W_{n}^{(g)}\left(z, z_{2}, \ldots, z_{n}\right)+W_{n}^{(g)}\left(-z, z_{2}, \ldots, z_{n}\right)=0
$$

Use this and splitting of $\hat{W}_{1}^{(0)}$ and $\hat{W}_{2}^{(0)}$ into parts with $\pm z$ to rearrange DSE into
Quadratic loop equation $(2 g+n \geq 3)$

$$
\begin{aligned}
& \sum_{\substack{l_{1} \uplus \|_{2}=\left\{z_{2}, \ldots, z_{n}\right\} \\
g_{1}+g_{2}=g}} W_{\left|I_{1}\right|+1}^{\left(g_{1}\right)}\left(z, I_{1}\right) W_{\left|\left.\right|_{2}\right|+1}^{\left(g_{2}\right)}\left(-z, l_{2}\right)+W_{n+1}^{(g-1)}\left(z,-z, z_{2}, \ldots, z_{n}\right) \\
& =\frac{1}{N} \sum_{k=1}^{N} \frac{W_{n}^{(g)}\left(\hat{\lambda}_{k}, z_{2}, \ldots, z_{n}\right)}{\hat{\lambda}_{k}^{2}-z^{2}}+\sum_{j=2}^{n} \frac{\partial}{\partial z_{j}^{2}}\left(\frac{W_{n-1}^{(g)}\left(z_{2}, . ., z_{n}\right)}{z_{j}^{2}-z^{2}}\right)
\end{aligned}
$$

where $W_{1}^{(0)} \equiv y(z):=-z+\frac{1}{N} \sum_{k=1}^{N} \frac{1}{\hat{\lambda}_{k}\left(\hat{\lambda}_{k}-z\right)}, \quad W_{2}^{(0)}\left(z_{1}, z_{2}\right)=\frac{1}{4 z_{1} z_{2}\left(z_{1}-z_{2}\right)^{2}}$ and $W_{n}^{(g)}=\hat{W}_{n}^{(g)}$ for $2 g+n \geq 3$

Topological recursion

- [Eynard, Orantin 07] noticed that many matrix models admit such recursive structures for meromorphic functions $W_{n}^{(g)}$
- Only the choice of initial data, called the spectral curve, was specific to the model, the recursion itself was universal.

Spectral curve

- Complex curve/Riemann surface Σ and two ramified coverings $x, y: \Sigma \rightarrow \mathbb{P}^{1}$
- Bergman kernel B : symmetric bidifferential on $\Sigma \times \Sigma$, with double pole on diagonal, no other pole, normalised

Soon later many important examples other than matrix models were identified:

- Weil-Peterssen volumes of moduli spaces of bordered hyperbolic surfaces [Mirzakhani 07]
- ELSV formula, expresses simple Hurwitz numbers as integral of ψ - and λ-classes over $\overline{\mathcal{M}}_{g, n}$ [Bouchard, Mariño 07; Eynard, Mulase, Safnuk 09]
- semisimple cohomological field theories [Dunin-Barkowski, Orantin, Shadrin, Spitz 14]

The setting

Given a spectral curve $\left(x, y: \Sigma \rightarrow \mathbb{P}^{1}, B\right)$ where

- x has simple ramification points $\beta_{1}, \ldots, \beta_{r}$ (which solve $d x\left(\beta_{i}\right)=0$),
- y is holomorphic and non-zero at β_{i},
- there is a family $W_{n}^{(g)}$ of meromorphic functions, extending $W_{1}^{(0)}(z)=y(z)$ and

$$
B(z, w)=: W_{2}^{(0)}(z, w) d x(z) d x(w) .
$$

These data specify:

- the local Galois involution σ_{i} near β_{i} with fixed point β_{i} and $x\left(\sigma_{i}(z)\right)=x(z)$,
- the list $\left\{\hat{z}^{0}=z, \hat{z}^{1}, \ldots, \hat{z}^{d}\right\}=x^{-1}(x(z))$ of preimages of $x(z)$ under x,
- meromorphic differentials $\omega_{n}^{(g)}\left(z_{1}, \ldots, z_{n}\right)=W_{n}^{(g)}\left(z_{1}, \ldots, z_{n}\right) \prod_{i=1}^{n} d x\left(z_{i}\right)$

Kontsevich: $\Sigma=\mathbb{C}, x(z)=z^{2}, \beta_{1}=0, \sigma_{1}(z)=-z,\left\{\hat{z}^{0}=z, \hat{z}^{1}=-z\right\}, B(z, w)=\frac{d z d w}{(z-w)^{2}}$

Theorem [Borot-Eynard-Orantin 15]

The previous setting satisfies topological recursion if for $2 g+n \geq 3$ the functions

$$
\begin{aligned}
& L\left(x(z) ; z_{2}, \ldots, z_{n}\right):=\sum_{j=0}^{d} W_{n}^{(g)}\left(\hat{z}^{j}, z_{2}, \ldots, z_{n}\right) \\
& Q\left(x(z) ; z_{2}, \ldots, z_{n}\right)=\sum_{j=0}^{d}\left(\sum_{\substack{\left.I_{1} \uplus\right|_{2}=\left\{z_{2}, \ldots, z_{n}\right\} \\
g_{1}+g_{2}=g}} W_{\substack{\left|z_{1}\right|+1}\left(g_{1}\right)}\left(\hat{z}^{j}, I_{1}\right) W_{\left|\left.\right|_{2}\right|+1}^{\left(g_{2}\right)}\left(\hat{z}^{j}, I_{2}\right)+W_{n+1, r e g}^{(g-1)}\left(\hat{z}^{j}, \hat{z}^{j}, z_{2}, \ldots, z_{n}\right)\right)
\end{aligned}
$$

are holomorphic at any branch point $x(z)=x\left(\beta_{i}\right)$. If in addition a projection property

$$
\omega_{g, n}\left(z, z_{2}, \ldots, z_{n}\right)=\sum_{i=1}^{r} \operatorname{Res}_{q=\beta_{i}} \int_{\beta_{i}}^{q} \omega_{0,2}(z, .) \omega_{g, n}\left(q, z_{2}, \ldots, z_{n}\right)
$$

holds, then the $\omega_{n}^{(g)}$ are recursively evaluated by

$$
\begin{aligned}
& \omega_{n}^{(g)}\left(z, z_{2}, \ldots, z_{n}\right) \\
& =\sum_{i=1}^{r} \operatorname{Res}_{q=\beta_{i}}^{r} \frac{\frac{1}{2} \int_{\sigma_{i}(q)}^{q} B(z, .)}{\omega_{1}^{(0)}(q)-\omega_{1}^{(0)}\left(\sigma_{i}(q)\right)}\left(\sum_{l_{1} \uplus \|_{2}=\left\{z_{2}, \ldots, z_{n}\right\}} \omega_{\mid+1}^{\left(g_{1}\right)}\left(q, l_{1}\right) \omega_{\left|\left.\right|_{2}\right|+1}^{\left(g_{2}\right)}\left(\sigma_{i}(q), l_{2}\right)+\omega_{n+1}^{(g-1)}\left(q, \sigma_{i}(q), z_{2}, \ldots, z_{n}\right)\right)
\end{aligned}
$$

- Laurent expansion of $\omega_{n}^{(g)}\left(z_{1}, \ldots, z_{n}\right)$ near an n-tupel of ramification points can be expressed in terms of intersection numbers of ψ - and κ-classes on $\overline{\mathcal{M}}_{g, n}$ [Eynard 11] (generalised by [Dunin-Barkowski, Orantin, Shadrin, Spitz 14] to CohFT).
- Absence of projection property gives blobbed topological recursion [Borot, Shadrin 15].
- Deformations of spectral curve express formal Baker-Akhiezer kernel in terms of $\omega_{n}^{(g)}$. Gives rise to formal KP τ-function [Eynard, Orantin 07; Borot, Eynard 12].
- Symplectic invariance of $d y \wedge d x$: previously open $x-y$ swap understood in [Hock 22; Bychkov, Dunin-Barkowski, Kazarian, Shadrin 22].
- Application to higher-order free cumulants in free probability [Borot, Charbonnier, Garcia-Failde, Leid, Shadrin 21].
- No interacting QFT-model in 4 dimensions is in sight. 4D models are either too difficult (Yang-Mills, millenium prize problem), or trivial (ϕ_{4}^{4} [Aizenman, Duminil-Copin 19]).
- Quantum field theories on noncomutative geometries provide a new class of 4D QFT-models to try. They violate symmetry axioms, but renormalisation is very similar.
- The simplest one is the Φ^{4}-model on noncommutative Moyal space, which is Fréchet-isomorphic to infinite matrices with rapidly decaying entries.
- In Euclidean approach, have (formal) measure

$$
d \mu_{\lambda}(\Phi)^{"}:=" \frac{1}{\mathcal{Z}} d \mu_{0}(\Phi) \exp \left(-\frac{g}{4} \mathcal{N} \operatorname{Tr}\left(\Phi^{4}\right)\right), \quad \mathcal{N}:=\left(\frac{\theta}{4}\right)^{D / 2}
$$

- $d \mu_{0}$ is Gaußian, defined by covariance. Simplest choice is

$$
\left\langle\Phi_{k l} \Phi_{m n}\right\rangle=\int d \mu_{0}(\Phi) \Phi_{k l} \Phi_{m n}=\frac{\delta_{k n} \delta_{l m}}{\mathcal{N}\left(\lambda_{k}+\lambda_{l}\right)}
$$

where $\lambda_{k}>0$ are the eigenvalues of a Laplacian in D dimensions.

Meromorphic functions for quartic Kontsevich model

Consider the partition function $\mathcal{Z}_{\Lambda, 4}:=\int_{H_{N}} d M e^{-N \operatorname{Tr}\left(\Lambda M^{2}+\frac{1}{4} M^{4}\right)}$, where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$. Define $\langle\mathcal{O}(M)\rangle_{\Lambda, 4}=\frac{1}{\mathcal{Z}_{\Lambda, 4}} \int_{H_{N}} d M \mathcal{O}(M) e^{-N \operatorname{Tr}\left(\Lambda M^{2}+\frac{1}{4} M^{4}\right)}$.

Main definition [Branahl, Hock W 20]

$$
W_{a_{1}, \ldots, a_{n}}^{(g)}:=\left[N^{2-2 g-n}\right] \frac{(-1)^{n} \partial^{n} \log \mathcal{Z}_{\Lambda, 4}}{\partial \lambda_{a_{1}} \cdots \partial \lambda_{a_{n}}}+\frac{\delta_{g, 0} \delta_{n, 2}}{\left(\lambda_{a_{1}}-\lambda_{a_{2}}\right)^{2}}+\delta_{g, 0} \delta_{n, 1} f\left(\lambda_{a_{1}}\right) \text { for } a_{1}, \ldots, a_{n} \text { pairwise different }
$$

- Procedure consists in deriving equations for the $W_{a_{1}, \ldots, a_{n}}^{(g)}$ which should extend to complexified equations for $\tilde{W}_{n}^{(g)}\left(\xi_{1}, \ldots, \xi_{n}\right)$ with $\tilde{W}_{n}^{(g)}\left(\lambda_{a_{1}}, \ldots, \lambda_{a_{n}}\right)=W_{a_{1}, \ldots, a_{n}}^{(g)}$.
- Need auxiliary functions $\frac{(-1)^{n} \partial^{n}\left\langle M_{k} M_{k k}\right\rangle_{\Lambda, 4}}{\partial \lambda_{a_{1}} \cdots \partial \lambda_{a_{n}}}$ and $\frac{(-1)^{n} \partial^{n}\left\langle M_{k k} M_{1}\right\rangle_{\Lambda, 4}}{\partial \lambda_{a_{1}} \cdots \partial \lambda_{a_{n}}}$ also to complexify.
- Non-linear equation for $G_{k l}^{(0)}:=\left[N^{-1}\right]\left\langle M_{k l} M_{I k}\right\rangle_{\wedge, 4} \mapsto G^{(0)}\left(\xi_{1}, \xi_{2}\right)$ can be solved and provides $\xi \equiv x(z)$ and $y(z)$ for TR.

The planar 2-point function

$\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ - pairwise different eigenvalues with multiplicities $\left(r_{1}, \ldots, r_{d}\right)$.

Theorem [Grosse, W 09]

$$
\left(\zeta+\eta+\frac{1}{N} \sum_{k=1}^{d} r_{d} G^{(0)}\left(\zeta, \lambda_{k}\right)\right) G^{(0)}(\zeta, \eta)=1+\frac{1}{N} \sum_{k=1}^{d} r_{d} \frac{G^{(0)}\left(\lambda_{k}, \eta\right)-G^{(0)}(\zeta, \eta)}{\lambda_{k}-\zeta}
$$

Theorem [Schürmann, W 19]

A solution can be implicitly found in the form $G^{(0)}(x(z), x(w))=: \mathcal{G}^{(0)}(z, w)$ with $x(z)=z-\frac{1}{N} \sum_{k=1}^{N} \frac{\varrho_{k}}{\varepsilon_{k}+z}$ and $x\left(\varepsilon_{k}\right)=\lambda_{k}$ and $x^{\prime}\left(\varepsilon_{k}\right) \varrho_{k}=r_{k}$:

$$
\begin{aligned}
& \mathcal{G}^{(0)}(z, w)=\frac{P_{1}^{(0)}(x(z), x(w))}{(x(z)+y(w))(x(w)+y(z))} \quad \text { where } y(z)=-x(-z) \text { and } \\
& P_{1}^{(0)}(x(z), x(w))=\frac{\prod_{u \in x^{-1}(\{x(w)\})}(x(z)+y(u))}{\prod_{k=1}^{d}\left(x(z)-x\left(\varepsilon_{k}\right)\right)} \equiv P_{1}^{(0)}(x(w), x(z))
\end{aligned}
$$

Linear and quadratic loop equations for $g=0$
Extract from DSE (which relate $W_{n}^{(g)}$ to auxiliary functions) the lin./quad. loop equations:

Proposition [Hock, W 21; Hock, W 23]

The functions $W_{|| |+1}^{(0)}$ satisfy for $\emptyset \neq I=\left\{u_{1}, \ldots, u_{n}\right\}$ the global linear loop equations

$$
\sum_{k=0}^{d} W_{|| |+1}^{(0)}\left(\hat{z}^{k}, l\right)=\frac{\delta_{|| |, 1}}{\left(x(z)-x\left(u_{1}\right)\right)^{2}}-\sum_{j=1}^{|| |} \frac{\partial}{\partial x\left(u_{j}\right)} D_{\mid \backslash u_{j}}\left(\frac{1}{x(z)+y\left(u_{j}\right)}\right)
$$

and the global quadratic loop equations

$$
\begin{aligned}
& \frac{1}{2} \sum_{I_{1} \uplus I_{2}=\mid l} \sum_{k=0}^{d} W_{\left|I_{1}\right|+1}^{(0)}\left(\hat{z}^{k}, I_{1}\right) W_{\left|\left.\right|_{2}\right|+1}^{(0)}\left(\hat{z}^{k}, I_{2}\right) \\
& =\sum_{j=1}^{|I|} \frac{\partial}{\partial x\left(u_{j}\right)} D_{\mid \backslash u_{j}}\left(\frac{x\left(u_{j}\right)}{x(z)+y\left(u_{j}\right)}\right)-\frac{1}{N} \sum_{k=1}^{d} \frac{r_{k} W_{|I|+1}^{(0)}\left(\varepsilon_{k}, I\right)}{x(z)-x\left(\varepsilon_{k}\right)}+\sum_{j=1}^{|| |} \frac{\partial}{\partial x\left(u_{j}\right)} \frac{W_{|l|}^{(0)}(I)}{x(z)-x\left(u_{j}\right)},
\end{aligned}
$$

where $D_{\left\{u_{1}, \ldots, u_{n}\right\}}=\prod_{j=1}^{n} D_{u_{j}}$ for derivations $D_{u} W_{m}^{(g)}\left(z_{1}, \ldots, z_{m}\right)=W_{m}^{(g)}\left(z_{1}, \ldots, z_{m}, u\right), D_{u} x(z)=0$
Projection property does not hold: blobbed topological recursion

Proposition [Hock, W 23]

The genus-1 meromorphic functions $W_{|| |+1}^{(1)}(z, I)$ satisfy the linear loop equation

$$
\begin{aligned}
\sum_{k=0}^{d} W_{|| |+1}^{(1)}\left(\hat{z}^{k}, I\right)= & -D_{I}^{0} \frac{1}{8(x(z)-x(0))^{3}} \\
- & \sum_{j=1}^{|I|} \frac{\partial}{\partial x\left(u_{j}\right)} D_{I \backslash u_{j}}\left\{\frac{W_{2}^{(0) r e g}\left(u_{j}, u_{j}\right)}{\left(x(z)+y\left(u_{j}\right)\right)^{3}}-\frac{W_{1}^{(1)}\left(u_{j}\right)}{\left(x(z)+y\left(u_{j}\right)\right)^{2}}\right. \\
& \left.\quad-\frac{1}{2\left(x(z)+y\left(u_{j}\right)\right)^{2}} \frac{\partial^{2}}{\partial\left(x\left(u_{j}\right)\right)^{2}} \frac{1}{\left(x(z)+y\left(u_{j}\right)\right)}\right\}
\end{aligned}
$$

and...

Proposition [Hock, W 23]

.... the quadratic loop equation

$$
\begin{aligned}
& \frac{1}{2} \sum_{\substack{g_{1}+g_{2}=1 \\
I_{1}+1 /=1 \\
|l|}} \sum_{k=0}^{d} W_{|I|+1}^{\left(g_{1}\right)}\left(\hat{z}^{k}, I_{1}\right) W_{|I|+1}^{\left(g_{2}\right)}\left(\hat{z}^{k}, I_{2}\right)+\frac{1}{2} \sum_{k=0}^{d} W_{2}^{(0) r e g}\left(\hat{z}^{k}, \hat{z}^{k}, l\right) \\
& =\frac{1}{6} \sum_{j=1}^{1 /} \frac{\partial^{2}}{\partial\left(x\left(u_{j}\right)\right)^{2}}\left(D_{l \backslash u_{j}} \frac{1}{\left(x(z)+y\left(u_{j}\right)\right)^{3}}\right)-D_{l}^{0} \frac{1}{8(x(z)-x(0))^{2}}+x(z) D_{l}^{0} \frac{1}{8(x(z)-x(0))^{3}} \\
& +\sum_{j=1}^{|I|} \frac{\partial}{\partial x\left(u_{j}\right)}\left[x\left(u_{j}\right) D_{I \backslash u_{j}}\left\{\frac{W_{2}^{(0) r e g}\left(u_{j}, u_{j}\right)}{\left(x(z)+y\left(u_{j}\right)\right)^{3}}-\frac{W_{1}^{(1)}\left(u_{j}\right)}{\left(x(z)+y\left(u_{j}\right)\right)^{2}}-\frac{1}{2\left(x(z)+y\left(u_{j}\right)\right)^{2}} \frac{\partial^{2}}{\partial\left(x\left(u_{j}\right)\right)^{2}} \frac{1}{\left(x(z)+y\left(u_{j}\right)\right)}\right\}\right] \\
& -\frac{1}{N} \sum_{l=1}^{d} \frac{W_{|I|+1}^{(1)}\left(\varepsilon_{l}, l\right)}{x(z)-x\left(\varepsilon_{l}\right)}+\sum_{j=1}^{|I|} \frac{\partial}{\partial x\left(u_{j}\right)} \frac{W_{|I|}^{(1)}(I)}{x(z)-x\left(u_{j}\right)} .
\end{aligned}
$$

- The global linear and quadratic loop equations give explicit recursion formulae for $\omega_{n}^{(g)}$ (so far for $g \leq 1$).
- Original blobbed TR [Borot, Shadrin 15] defined for local curves; this leaves large freedom (called 'blobs') in $\omega_{n}^{(g)}$. Validy of local loop equations is clear.
- $\mathcal{Z}(\boldsymbol{t})=\int_{H_{N}} d \mu_{\Lambda}(M) \exp \left(\operatorname{Tr}\left(-\frac{1}{4} M^{4}+\sum_{k=0}^{\infty} t_{2 k+1} M^{2 k+1}\right)\right)$ is a BKP τ-function (in fact for any potential; with $d \mu_{\Lambda}(M)=\frac{1}{Z} \exp \left(-\frac{1}{2} \operatorname{Tr}\left(\Lambda M^{2}\right)\right) d M$) [Borot, W 23]
- $\lambda \Phi^{4}$ on 4D noncommutative Moyal space leads to

$$
x(z)=z \cdot{ }_{2} F_{1}\left(\left.\begin{array}{cl}
\alpha_{\lambda}, 1-\alpha_{\lambda} \\
2
\end{array} \right\rvert\,-\frac{z}{m^{2}}\right) \quad \alpha_{\lambda}=\left\{\begin{array}{cl}
\frac{\arcsin (\lambda \pi)}{\pi} & \text { for }|\lambda| \leq \frac{1}{\pi} \\
\frac{1}{2}+\mathrm{i} \frac{\operatorname{arcosh}(\lambda \pi)}{\pi} & \text { for } \lambda \geq \frac{1}{\pi}
\end{array}\right.
$$

The effective spectral dimension of $x(z)$ is $D_{\lambda}=4-\frac{2}{\pi} \arcsin (\lambda \pi)$ [Grosse, Hock, W 19]. This dimension drop avoids the triviality problem of the usual $\lambda \phi^{4}$-model.

