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Introduction

The Standard Model is a perturbatively renormalisable
quantum field theory.

Scattering amplitudes can be computed as formal power
series in coupling constants such as e2 ≈ 1

137 .
The first terms agree to high precision with experiment.

The radius of convergence in e2 is zero!
We are far away from understanding the Standard Model
(see e.g. confinement).
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Refined summation techniques (e.g. Borel) may establish
reasonable domains of analyticity.

Unfortunately, this also fails for QED due to the Landau
ghost problem.

It is expected to work for non-Abelian gauge theories
because of asymptotic freedom.

But these theories are too complicated.

QFT’s on noncommutative geometries may provide toy models
for non-perturbative renormalisation in four dimensions.

Raimar Wulkenhaar (Münster) The two-point function of noncommutative φ4
4-theory



Introduction Ward identity + Schwinger-Dyson Integral representation Perturbation theory Beyond perturbation

φ4
4-theory on Moyal space with oscillator potential

action functional

S[φ] =

∫
d4x

(1
2
φ ?
(
−∆+Ω2x̃2 + µ2)φ+

λ

4
φ ? φ ? φ ? φ

)
(x)

Moyal product ? defined by Θ and x̃ := 2Θ−1 · x
parameters: µ2, λ ∈ R+, Ω ∈ [0,1], redef’n φ 7→ Z

1
2φ, Z ∈ R+

renormalisable as formal power series in λ [Grosse-W.]
means: well-defined perturbative quantum field theory
β-function vanishes to all orders in λ for Ω = 1
[Disertori-Gurau-Magnen-Rivasseau]
means: model is believed to exist non-perturbatively

Up to the sign of µ2, this model arises from a spectral triple.

Raimar Wulkenhaar (Münster) The two-point function of noncommutative φ4
4-theory



Introduction Ward identity + Schwinger-Dyson Integral representation Perturbation theory Beyond perturbation

The matrix basis of noncommutative Moyal space

(f ? g)(x) =

∫
Rd×Rd

dy dk
(2π)d f (x+1

2Θ·k) g(x+y) eiky

central observation (in 2D):
f00 := 2e−

1
θ

(x2
1 +x2

2 ) ⇒ f00 ? f00 = f00

left and right creation operators applied to f00 lead to

fmn(ρ, ϕ) = 2(−1)m
√

m!
n! eiϕ(n−m)

(√
2
θρ
)n−m

e−
ρ2

θ Ln−m
m (2

θρ
2)

?-product becomes simple matrix product:

fmn ? fkl = δnk fml ,

∫
d2x fmn(x) =

√
det(2πΘ) δmn

(−∆ + Ω2x̃2 + µ2)fmn
=
(
µ2+2

θ (1+Ω2)(m+n+1)
)
fmn(x)

−2
θ (1−Ω2)

(√
mn fm−1,n−1 +

√
(m+1)(n+1) fm+1,n+1

)
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The 4D-action functional for Ω = 1

expand φ(x) =
∑

m1,m2,n1,n2
φmn fm1n1(x1, x2)fm2n2(x3, x4)

matrices (φmn)m,n∈N2
Λ
∈ MΛ with cut-off Λ in matrix size

correlation functions generated by partition function

Z[J] = N
∫ (∏

m,n∈N2
Λ

dφmn

)
exp

(
− S[φ] + tr(φJ)

)
We are interested in N2

Λ → N2. Correlation functions ill-defined
unless S[φ] is a suitably divergent function of Λ:

S[φ] =
∑

m,n∈N2
Λ

1
2
φmnHmnφnm + V (φ)

Hmn = Z
(
µ2

bare+|m|+|n|
)
, V (φ) =

Z 2λ

4

∑
m,n,k ,l∈N2

Λ

φmnφnkφklφlm

with |m| = m1 + m2 and divergent µbare[Λ, λ],Z [Λ, λ].
There is no separate Λ-dependence in λ!
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Ward identity
inner automorphism φ 7→ UφU† of MΛ

infinitesimally φmn 7→ φmn + i
∑

k∈N2
Λ
(Bmkφkn − φmkBkn)

not a symmetry of the action, but translation invariance of
the measure Dφ =

∏
m,n∈N2

Λ
dφmn gives

0 =
δW

iδBab
=

1
Z

∫
Dφ

(
− δS

iδBab
+

δ

iδBab

(
tr(φJ)

))
e−S+tr(φJ)

=
1
Z

∫
Dφ

∑
n

(
(Hnb − Han)φbnφna + (φbnJna − Jbnφna)

)
e−S+tr(φJ)

where W [J] = lnZ[J] generates connected functions

perturbation trick φmn 7→ δ
δJnm

0 =
{∑

n

(
(Hnb − Han) δ2

δJnb δJan
+
(

Jna
δ

δJnb
− Jbn

δ
δJan

))
×exp

(
− V

(
δ
δJ

))
e

1
2
∑

p,q JpqH−1
pq Jqp

}
c
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Interpretation

The insertion of a special vertex V ins
ab :=

∑
n

(Han − Hnb)φbnφna

into an external face of a ribbon graph is the same as the
difference between the exchanges of external sources
Jnb 7→ Jna and Jan 7→ Jbn

Z (|a| − |b|)

�� ??

aa!!

.
.
.
.
.

		 UU
a

b

a

b

=

�� ??

aa!!

.
.
.
.
.

b

b

−

�� ??

aa!!

.
.
.
.
.

a

a

Z (|a| − |b|)Gins
[ab]... = Gb... − Ga...
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Two-point Schwinger-Dyson equation

Γab = //oo oo//
a

b

a

b
= //oo

OO��b a

a q

b
+ //oo

�� OO
baa

b p
+ //oo oo//

a
b

a

bp

vertex is Z 2λ, connected two-point function is Gab:
first graph equals Z 2λ

∑
q Gaq

in other two graphs we open the p-face and compare with
insertion into connected two-point function; it inserts

1 either into one-particle reducible line
2 or into 1PI function:

Gins
[ap]b =

|| <<

cc##

		 UU
a

p

a
b

p
b

=

oo//

oo//

		 UU
a

p

a

b

p

b
+

oo//

oo//

		 UU
a

p

a

b

p

b

amputation of Gab:
last two graphs together equal Z 2λ

∑
p G−1

ab Gins
[ap]b
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Result (using G−1
ab = Hab − Γab):

Γab = Z 2λ
∑

p

(
Gap + G−1

ab Gins
[ap]b

)
= Z 2λ

∑
p

(
Gap −G−1

ab
Gbp −Gba

Z (|p| − |a|)

)
= Z 2λ

∑
p

( 1
Hbp − Γbp

+
1

Hap − Γap
− 1

Hbp − Γbp

(Γbp−Γab)

Z (|p|−|a|)

)
This is a self-consistent functional equation for Γab.
It is non-linear and singular. Its singular part at (a,b = 0)
already appeared in [Disertori-Gurau-Magnen-Rivasseau].

We perform the renormalisation directly in the SD-equation
for Γab. The Z -factors are essential for that.

Taylor: Γab = Zµ2
bare − µ

2 + (Z−1)(|a|+|b|) + Γren
ab

⇒ G−1
ab = Hab − Γab = |a|+ |b|+ µ2 − Γren

ab

Γren
00 = 0 and (∂Γren)00 = 0 determine µ2

bare and Z .
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Integral representation

We replace discrete indices a,b,p ∈ N2 by continuous
indices a,b,p ∈ (R+)2, and sums by integrals.

This captures the Λ→∞ behaviour of the discrete version
(or defines another interesting field theory).

The mass-renormalised Schwinger-Dyson equation
depends only on the length |a| = a1 + a2. Partial
derivatives ∂

∂ai
needed to extract Z are equal.

Therefore, Γren
ab depends only on |a| and |b|.

Hence,
∫ (Λ)

(R+)2
dp1 dp2 f (|p|) =

∫ Λ

0
|p|d |p| f (|p|)
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Mass renormalisation = subtraction at 0:

(Z − 1)(|a|+ |b|) + Γren
ab

= λ

∫ Λ

0
|p|d |p|

( Z
|b|+|p|+µ2−Γren

bp
+

Z 2

|a|+|p|+µ2−Γren
ap
− Z 2 + Z
|p|+µ2−Γren

0p

− Z
|b|+|p|+µ2−Γren

bp

Γren
bp − Γren

ab

|p| − |a|
+

Z
p+µ2−Γren

0p

Γren
0p

|p|

)
perturbative solution depends on combination a

1+a and Λ
1+Λ

change of variables

|a| =: µ2 α

1− α
, |b| =: µ2 β

1− β
, |p| =: µ2 ρ

1− ρ
,

Γren
ab =: µ2 1− αβ

(1− α)(1− β)

(
1− 1

Gαβ

)
, Λ =: µ2 ξ

1− ξ
∂
∂ai

∣∣
a=0 = ∂

∂α

∣∣
α=0 to extract Z
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Theorem [Grosse-W., 2009]
The renormalised planar connected two-point function Gαβ of
self-dual n.c. φ4

4-theory satisfies (and is determined by)

Gαβ = 1 + λ

(
1−α

1−αβ
(
Mβ−Lβ−βY

)
+

1−β
1−αβ

(
Mα−Lα−αY

)
+

(1−α)(1−β)

1−αβ
(Gαβ − 1)Y − α(1−β)

1−αβ
(
Lβ+Nαβ−Nα0

)
+

1−β
1−αβ

(Gαβ

G0α
− 1
)(
Mα−Lα+αNα0

))
with α, β ∈ [0,1) and

Lα :=

∫ 1

0
dρ

Gαρ −G0ρ

1− ρ
Mα :=

∫ 1

0
dρ

αGαρ

1− αρ

Nαβ :=

∫ 1

0
dρ

Gρβ −Gαβ

ρ− α
Y = lim

α→0

Mα − Lα
α

Raimar Wulkenhaar (Münster) The two-point function of noncommutative φ4
4-theory



Introduction Ward identity + Schwinger-Dyson Integral representation Perturbation theory Beyond perturbation

Discussion

The previous integral equation for Gαβ is non-perturbatively
defined. It is non-linear and singular (at 1).

Nonlinearity and singularity can be resolved in perturbation
theory. Then: Is the perturbation series analytic at λ = 0?

Non-perturbative approach:
There are methods for singular but linear integral
equations (Riemann-Hilbert problem).
Non-linearity treatable by implicit function theorem (or
Nash-Moser theorem), but singularity is problematic.

If we could solve the equation for Gαβ, then all other n-point
function should result from a hierarchy of Ward-identities and
Schwinger-Dyson equations which are linear (and
inhomogeneous) in the highest-order function.
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Theorem
The renormalised planar 1PI four-point function Γαβγδ of
self-dual n.c. φ4

4-theory satisfies (and is determined by)

Γαβγδ = λ ·

(
1−

(1−α)(1−γδ)(Gαδ−Gγδ)

Gγδ(1−δ)(α−γ)

+

∫ 1

0
ρdρ

(1−β)(1−αδ)GβρGδρ

(1−βρ)(1−δρ)

Γρβγδ−Γαβγδ
ρ−α

)
Gαδ+λ

(
(Mβ−Lβ−Y)Gαδ+

∫ 1

0
dρ

GαδGβρ(1−β)

(1−δρ)(1−βρ)

+

∫ 1

0
ρdρ

(1−β)(1−αδ)Gβρ

(1−βρ)(1−δρ)

(Gρδ−Gαδ)

(ρ−α)

)
Corollary
Γαβγδ = 0 is not a solution!
We have a non-trivial (interacting) QFT in four dimensions!
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Perturbative solution

We look for an iterative solution Gαβ =
∑∞

n=0 λ
nG(n)

αβ .
This involves iterated integrals labelled by rooted trees.

Up to O(λ3) we need

Iα :=

∫ 1

0
dx

α

1− αx
= − ln(1− α) ,

Iα
•

:=

∫ 1

0
dx

α Ix
1− αx

= Li2(α) +
1
2
(

ln(1− α)
)2

I α
• •

=

∫ 1

0
dx

α Ix · Ix
1− αx

= −2 Li3
(
− α

1− α

)
I α•
•

=

∫ 1

0
dx

α I x
•

1− αx
= −2Li3

(
− α

1− α

)
− 2Li3(α)− ln(1− α)ζ(2)

+ ln(1− α)Li2(α) +
1
6
(

ln(1− α)
)3
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In terms of It and A := 1−α
1−αβ , B := 1−β

1−αβ :

Gαβ = 1 + λ
{

A(Iβ − β) + B(Iα − α)
}

+ λ2
{

A
(
βIβ

•
− βIβ

)
− αAB

(
(Iβ)2 − 2βIβ + Iβ

)
+ B

(
αIα

•
− αIα

)
− βBA

(
(Iα)2 − 2αIα + Iα

)
+ AB

(
(Iα

•
− α) + (Iβ

•
− β) + (Iα − α)(Iβ − β) + αβ(ζ(2) + 1)

)}
+ λ3

{
AWβ + αAB

(
− Uβ + IαIβ + Iα

•
Iβ
)

+ αA2BVβ

+ BWα + βBA
(
− Uα + IβIα + Iβ

•
Iα
)

+ βB2AVα

+ AB
(
Tβ + Tα − Iβ(Iα)2 − Iα(Iβ)2 − 6IαIβ

)
+ AB2((1− α)(Iα

•
− α) + 3IαIβ + Iβ

•
Iα + Iβ(Iα)2)

+ BA2((1− β)(Iβ
•
− β) + 3IαIβ + Iα

•
Iβ + Iα(Iβ)2)}+O(λ4)
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where

Tβ := βIβ
•
− βIβ + (Iβ − β) ,

Uβ := −βI β
• •
− (Iβ)3 + βIβ

•
Iβ + 2Iβ

•
Iβ + βζ(2)Iβ − 2βζ(3)

− 2(Iβ)2 + β(Iβ)2 + Iβ
•

+ βIβ
•

+ 2Iβ − β2 ,

Vβ := βI β
•
•

− β2I β
• •
− 2β2ζ(3) + 2βIβ

•
Iβ − I3

β + 2βIβζ(2)− 3β2ζ(2)

+ (1− β)
(
2βIβ

•
− 3I2

β + 3βIβ − 3Iβ + β
)
,

Wβ := (I β
•
•

−βζ(2))− 1
2

Iβ
Iβ−β
β

+
1
2

(Iβ)2 − (Iβ
•
−β)− 1

2
(Iβ−β)− 1

2
β2

Remark: Iβ−β
β =

∫ 1

0
dx

βx
1− βx

(optimal family of iterated integrals not yet determined)
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Beyond perturbation

Ansatz (suggested by perturbation, but consistent in general)

Gαβ = 1 +
( 1−α

1−αβ
)
β2Gβ +

( 1−β
1−αβ

)
α2Gα +

( 1−α
1−αβ

)( 1−β
1−αβ

)
αβGαβ

coupled system of integral equations for Gα,Gαβ

The 1 inserted intoMα produces λ ln(1− α) in Gα which
spreads everywhere

1
G0α

= 1
1+α2Gα becomes singular at some 0 < α(λ) < 1 for

any λ < 0.

This could be cancelled by a common zero of
Mα−Lα+αNα0, which is hard to control.
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New strategy

To avoid ln(1−α) we need Gα = −1+Sα with lim
α→1
Sα = 0

This additional condition distinguishes one special value of
λ = λ0 at which we want to prove existence of the theory.

ansatz Gαβ = −2− αGα − βGβ + Tαβ with limα→1 Tαβ = 0

limα→1 Sα = 0 equivalent to

−1 =
λ

1 + λ
2

(∫ 1

0
dρ

ρ2Sρ
1− ρ

− 3
∫ 1

0
dρ ρ2Sρ +

∫ 1

0
dρ ρT0ρ

)
(*)

(*) is intrinsically non-perturbative
insert (*) back into equation for Gα = −1 + Sα:
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Sα +
λ

1 + λ
2

∫ 1

0
dρ K (α, ρ)Sρ

=
λ

1 + λ
2

(
− (1− α)Y + (1− α)SαY

−
∫ 1

0
dρ

1
α

( (1− α)2

(1− αρ)3 ρTαρ − ρ(1− α)T0ρ

))
with

K (α, ρ) =
1

1− ρ
ρ5(1− α)3

(1− αρ)3 +
(1− α)(1− ρ)2

(1− αρ)3 ρ2 − 3
(1− α)

1− αρ
ρ2

Y = 1 + 3
∫ 1

0
dρ ρ2Sρ −

∫ 1

0
dρ ρT0ρ

integral operator K is unbounded, rhs non-linear
but K is bounded on functions vanishing polynomially at 1:∣∣∣ ∫ 1

0
dρ K (α, ρ)(1− ρ)ν

∣∣∣ ≤ Kν(1− α)ν , 0 < ν ≤ 1
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We put Sα = (1− α)g(α) and K̃ (α, ρ) = (1−ρ)
(1−α)K (α, ρ)

Lemma

(id + λ
1+λ

2
K̃ ) : C([0,1])→ C([0,1]) is invertible for |λ| < 3

7 , with

∥∥∥ λ

1 + λ
2

(
id +

λ

1 + λ
2

K̃
)−1∥∥∥ ≤ |λ|

1− 7
3 |λ|

We put Tαρ = 0 and define recursively g0 = 0

gn+1 =
λ

1+λ
2

(
id +

λK̃
1+λ

2

)−1(
`gn − 1

)(
1 + 3

∫ 1

0
dρ ρ2(1− ρ)gn(ρ)

)
with `(α) = 1− α
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Proposition

Let Tαρ = 0 and |λ| < 12
55 = 0.218. Then:

1 The sequence (gn) is uniformly convergent to
g = limn→∞ gn ∈ C([0,1]).

2 Sα = (1− α)g(α) ∈ C0([0,1]) is the unique solution of our
integral equation, with

|Sα| ≤
12−43|λ|−

√
(12−55|λ|)(12−31|λ|)

6|λ|
(1−α)≤ 55

6
|λ|(1− α)

3 G0α ≥ (1− α)(1 + α− 55
6 |λ|α

2) > 0 for all α ∈ [0,1[.

Equation for Tαβ is regular in first approximation!

With careful discussion of signs, this extends to − 6
17 < λ ≤ 6

5 .
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The next steps

1 establish differentiability of Sα to control
∫ 1

0
dρ
Sρ − Sα
ρ− α

2 interpret equation for T as recursion T n+1(T n,Sn) with
T 0 = 0 and S0 from Proposition

3 compute T 1 and re-iterate (gn) for smaller |λ|
4 iterate the procedure

Vision
The resulting function Gαβ solves the original problem only for
1
λ

= −1
2
−
∫ 1

0
dρ

ρ2Sρ
1− ρ

+ 3
∫ 1

0
dρ ρ2Sρ −

∫ 1

0
dρ ρT0ρ

This equation defines the value of λ at which there is a realistic
chance to prove non-perturbative existence of the theory.

Raimar Wulkenhaar (Münster) The two-point function of noncommutative φ4
4-theory


	TITLE
	Main Part
	Introduction
	Ward identity + Schwinger-Dyson
	Integral representation
	Perturbation theory
	Beyond perturbation


