# The matrix base of the Moyal space and interesting results obtained with it 

Raimar Wulkenhaar

Mathematisches Institut der Westfälischen Wilhelms-Universität
Münster, Germany


## Introduction

- Classical field theories for fundamental interactions (electroweak, strong, gravitational) of geometrical origin
- Quantum field theory for standard model (electroweak+strong) is renormalisable
- Gravity is not renormalisable


## Renormalisation group interpretation

- space-time being smooth manifold $\Rightarrow$ gravity scaled away
- weakness of gravity determines Planck scale where geometry is something different
promising approach: noncommutative geometry (unifies standard model with gravity [as classical field theories])


## Can we make sense of renormalisation in NCG?

First step: construct quantum field theories on simple noncommutative geometries, e.g. the Moyal space

## Moyal space

algebra of rapidly decaying functions over $D$-dimensional Euclidean space with $\star$-product

$$
(a \star b)(x)=\int d^{D} y \frac{d^{D} k}{(2 \pi)^{D}} a\left(x+\frac{1}{2} \Theta \cdot k\right) b(x+y) \mathrm{e}^{\mathrm{i} k y}
$$

where $\Theta=-\Theta^{T} \in M_{D}(\mathbb{R})$

- *-product is associative, noncommutative, and most importantly: non-local
- construction of field theories with non-local interaction
- This non-locality has serious consequences for the renormalisation of the resulting quantum field theory


## The UV/IR-mixing problem and its solution

- observation: euclidean quantum field theories on Moyal space suffer from UV/IR mixing problem which destroys renormalisability if quadratic divergences are present


## Theorem

The quantum field theory defined by the action

$$
S=\int d^{4} x\left(\frac{1}{2} \phi \star\left(\Delta+\Omega^{2} \tilde{x}^{2}+\mu^{2}\right) \phi+\frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi\right)(x)
$$

with $\tilde{x}=2 \Theta^{-1} \cdot x, \phi-$ real, Euclidean metric is perturbatively renormalisable to all orders in $\lambda$.

The additional oscillator potential $\Omega^{2} \tilde{\chi}^{2}$

- implements mixing between large and small distance scales
- results from the renormalisation proof


## Intuitive renormalisation "proof"

## Langmann-Szabo duality

$\left.\begin{array}{rl}\tilde{x} & \longmapsto \\ \phi(x) & \longmapsto \frac{1}{\sqrt{|\operatorname{det} \pi \Theta|}} \hat{\phi}(p)\end{array}\right\}+$ Fourier transformation

- leaves $\int d^{4} x(\phi \star \phi \star \phi \star \phi)(x)$ and $\int d^{4} x(\phi \star \phi)(x)$ invariant
- transforms $\int d^{4} x(\phi \star \Delta \phi)(x)$ into $\int d^{4} x\left(\phi \star \tilde{x}^{2} \phi\right)(x)$
- with

- also the LS-dual of also its LS-dual is divergent

renormalisation requires $\int d^{4} x\left(\phi \star \tilde{x}^{2} \phi\right)(x)$ in initial action


## History of the renormalisation proof

- exact renormalisation group equation in matrix base [H. Grosse, R.W. (2004)]
- simple interaction, complicated propagator
- power-counting from decay rate and ribbon graph topology
- multi-scale analysis in matrix base
[V. Rivasseau, F. Vignes-Tourneret, R.W. (2005)]
- rigorous bounds for the propagator (requires large $\Omega$ )
- multi-scale analysis in position space
[R. Gurau, J. Magnen, V. Rivasseau, F. Vignes-Tourneret (2006)]
- simple propagator (Mehler kernel), oscillating vertex
- distinction between sum and difference of propagator ends
- Schwinger parametric representation
[R. Gurau, V. Rivasseau (2006)]
- reduction to Symanzik type hyperbolic polynomials


## The matrix base of the Moyal plane

- central observation (in 2D):

$$
f_{00}:=2 \mathrm{e}^{-\frac{1}{\theta}\left(x_{1}^{2}+x_{2}^{2}\right)} \quad \Rightarrow \quad f_{00} \star f_{00}=f_{00}
$$

- left and right creation operators:

$$
\begin{aligned}
f_{m n}\left(x_{1}, x_{2}\right) & =\frac{\left(x_{1}+\mathrm{i} x_{2}\right)^{\star m}}{\sqrt{m!(2 \theta)^{m}}} \star\left(2 \mathrm{e}^{-\frac{1}{\theta}\left(x_{1}^{2}+x_{2}^{2}\right)}\right) \star \frac{\left(x_{1}-i x_{2}\right)^{\star n}}{\sqrt{n!(2 \theta)^{n}}} \\
f_{m n}(\rho, \varphi) & =2(-1)^{m} \sqrt{\frac{m!}{n!}} \mathrm{e}^{\mathrm{i} \varphi(n-m)}\left(\sqrt{\frac{2}{\theta}} \rho\right)^{n-m} \mathrm{e}^{-\frac{\rho^{2}}{\theta}} L_{m}^{n-m}\left(\frac{2}{\theta} \rho^{2}\right)
\end{aligned}
$$

- satisfies: $\left(f_{m n} \star f_{k l}\right)(x)=\delta_{n k} f_{m /}(x)$

$$
\int d^{2} x f_{m n}(x)=\sqrt{\operatorname{det}(2 \pi \Theta)} \delta_{m n}
$$

- Fourier transformation has the same structure


## Extension to four dimensions

(non-vanishing components: $\theta=\Theta_{12}=-\Theta_{21}=\Theta_{34}=-\Theta_{43}$ )

$$
\phi(x)=\sum_{m_{i}, n_{i} \in \mathbb{N}} \phi m_{m_{1} n_{2}}^{m_{1} n_{1}} b_{m_{1}} m_{m_{1}}(x), \quad b_{m_{2} n_{2}}\left(x n_{m_{1}}(x)=f_{m_{1} n_{1}}\left(x^{1}, x^{2}\right) f_{m_{2} n_{2}}\left(x^{3}, x^{4}\right)\right.
$$

## non-local *-product becomes simple matrix product

$$
S[\phi]=\sqrt{\operatorname{det}(2 \pi \Theta)} \sum_{m, n, k, l \in \mathbb{N}^{2}}\left(\frac{1}{2} \phi_{m n} \Delta_{m n ; k l \mid} \phi_{k l}+\frac{\lambda}{4!} \phi_{m n} \phi_{n k} \phi_{k \mid} \phi_{m}\right)
$$

$$
\begin{aligned}
& \Delta_{m n ; k l}=\left(\mu^{2}+\frac{2}{\bar{k}}\left(1+\Omega^{2}\right)\left(m_{1}+n_{1}+m_{2}+n_{2}+2\right)\right) \delta_{n_{1} k_{1}} \delta_{m_{1} 1_{1}} \delta_{n_{2} k_{2}} \delta_{m_{2} / 2} \\
& -\frac{2}{\theta}\left(1-\Omega^{2}\right)\left(\sqrt{k_{1} l_{1}} \delta_{n_{1}+1, k_{1}} \delta_{m_{1}+1, l_{1}}+\sqrt{m_{1} n_{1}} \delta_{n_{1}-1, k_{1}} \delta_{m_{1}-1, l_{1}}\right) \delta_{n_{2} k_{2}} \delta_{m_{2} l_{2}} \\
& -\frac{2}{\theta}\left(1-\Omega^{2}\right)\left(\sqrt{k_{2} I_{2}} \delta_{n_{2}+1, k_{2}} \delta_{m_{2}+1, l_{2}}+\sqrt{m_{2} n_{2}} \delta_{n_{2}-1, k_{2}} \delta_{m_{2}-1, l_{2}}\right) \delta_{n_{1} k_{1}} \delta_{m_{1} / 1}
\end{aligned}
$$

important: $\Delta_{m n ; k l}=0$ unless $m-I=n-k$
$(S O(2) \times S O(2)$ angular momentum conservation)

- $\Delta_{m, m+h ; l+h, l}=\Delta_{m l}^{(h)}$ is band matrix (Jacobi matrix)
- diagonalisation of $\Delta^{(h)}$ yields recursion relation for Meixner polynomials $M_{n}(x ; \beta, c)={ }_{2} F_{1}\left(\underset{\beta}{-n_{n}-x} \mid 1-c\right)$
$\Delta_{m_{1} m_{1}+h_{1} ; \eta_{1}+h_{1} h_{1}}$
$m_{2} m_{2}+h_{2}^{\prime} l_{2}+h_{2} l_{2}$
$=\sum_{y_{1}, y_{2}=0}^{\infty} U_{m_{1} y_{1}}^{\left(h_{1}\right)} U_{m_{2} y_{2}}^{\left(h_{2}\right)}\left(\mu^{2}+\frac{4 \Omega}{\theta}\left(2 y_{1}+2 y_{2}+h_{1}+h_{2}+2\right)\right) U_{y_{1} 1_{1}}^{\left(h_{1}\right)} U_{y_{2} l_{2}}^{\left(h_{2}\right)}$
with

$$
U_{n y}^{(h)}=\sqrt{\binom{n+n}{n}\binom{n+y}{y}}\left(\frac{1-\Omega}{1+\Omega}\right)^{n+y}\left(\frac{2 \sqrt{\Omega}}{1+\Omega}\right)^{h+1}{ }_{2} F_{1}\left(\left.\begin{array}{c}
-n,-y \\
1+h
\end{array} \right\rvert\, \frac{4 \Omega}{(1+\Omega)^{2}}\right)
$$

- closed formula for propagator $G^{(h)}=\left(\Delta^{(h)}\right)^{-1}$ thanks to

$$
\begin{aligned}
\sum_{x=0}^{\infty} \frac{(h+x)!}{x!h!} & a^{x}{ }_{2} F_{1}\left(\left.\begin{array}{c}
-m,-x \\
1+h
\end{array} \right\rvert\, b\right){ }_{2} F_{1}\left(\left.\begin{array}{c}
-l,-x \\
1+h
\end{array} \right\rvert\, b\right) \\
& =\frac{(1-(1-b) a)^{m+l}}{(1-a)^{h+m+l+1}}{ }_{2} F_{1}\left(\left.\begin{array}{c}
-m,-l \\
1+h
\end{array} \right\rvert\, \frac{a b^{2}}{(1-(1-b) a)^{2}}\right), \quad a<1
\end{aligned}
$$

## The propagator

$$
\begin{aligned}
& G_{m_{1}}^{m_{2} m_{2}+m_{2}+h_{2}, h_{2}, h_{2}+h_{2} h_{2}^{\prime}},=\frac{\theta}{8 \Omega} \sum_{u_{1}=0}^{\min \left(m_{1}, h_{1}\right)} \sum_{u_{2}=0}^{\min \left(m_{2}, l\right)} \int_{0}^{1} d t \frac{t^{\frac{t^{2} \theta}{82}+\alpha}(1-t)^{\beta}}{\left(1-\frac{(1-\Omega)^{2}}{(1+\Omega)^{2}} t\right)^{2+2 \alpha+\beta}} \\
& \times\left(\frac{1-\Omega}{1+\Omega}\right)^{\beta}\left(\frac{4 \Omega}{(1+\Omega)^{2}}\right)^{2+2 \alpha} \prod_{i=1}^{2} \frac{\sqrt{m_{i}!l_{i}!\left(m_{i}+h_{i}\right)!\left(l_{i}+h_{i}\right)!}}{\left(m_{i}-u_{i}\right)!\left(l_{i}-u_{i}\right)!\left(h_{i}+u_{i}\right)!u!} \\
& =\frac{\theta}{2(1+\Omega)^{2}} \sum_{u_{1}=0}^{\min \left(m_{1}, h_{1}\right)} \sum_{u_{2}=0}^{\min \left(m_{2},(2)\right.}{ }_{2} F_{1}\left(\left.\begin{array}{c}
1+\beta, \mu^{2} \theta-\alpha \\
2+\frac{\mu^{2} \theta}{8 \Omega}+\alpha+\beta
\end{array} \right\rvert\, \frac{(1-\Omega)^{2}}{(1+\Omega)^{2}}\right) \\
& \times\left(\frac{1-\Omega}{1+\Omega}\right)^{\beta} B\left(1+\frac{\mu^{2} \theta}{8 \Omega}+\alpha, 1+\beta\right) \prod_{i=1}^{2} \frac{\sqrt{m_{i}!l_{i}!}\left(m_{i}+h_{i}\right)!\left(l_{i}+h_{i}\right)!}{\left(m_{i}-u_{i}\right)!\left(l_{i}-u_{i}\right)!\left(h_{i}+u_{i}\right)!u!} \\
& \text { with } \alpha=\frac{1}{2} \sum_{i=1}^{2}\left(h_{i}+2 u_{i}\right) \geq 0 \quad \beta=\sum_{i=1}^{2}\left(m_{i}+l_{i}-2 u_{i}\right) \geq 0
\end{aligned}
$$

- all matrix elements $G_{m n ; k l}$ non-negative, all sums finite


$$
\mathrm{G}_{\substack{m_{1} m_{1} ; 00 \\ m_{2} m_{2} ; 00}}^{(\mu=0)}=\frac{\theta}{2(1+\Omega)^{2}\left(m_{1}+m_{2}+1\right)}\left(\frac{1-\Omega}{1+\Omega}\right)^{m_{1}+m_{2}}
$$

## Ribbon graphs

Feynman graphs are ribbon graphs with $V$ vertices

- leads to $F$ faces, $B$ of them with external legs
- ribbon graph can be drawn on Riemann surface of genus $g=1-\frac{1}{2}(F-I+V)$ with $B$ holes


$$
\begin{array}{rl}
F=1 & g=1 \\
I=3 & B=1 \\
V=2 & N=2
\end{array}
$$



$$
\begin{array}{rl}
L=2 & g=0 \\
I=3 & B=2 \\
V=3 & N=6
\end{array}
$$

## First proof: exact renormalisation group equations

QFT defined via partition function $Z[J]=\int \mathcal{D}[\phi] \mathrm{e}^{-S[\phi]-\operatorname{tr}(\phi J)}$

- Wilson's strategy: integration of field modes $\phi_{m n}$ with indices $\geq \theta \Lambda^{2}$ yields effective action $L[\phi, \Lambda]$
- variation of cut-off function $\chi(\wedge)$ with $\wedge$ modifies effective action:

exact renormalisation group equation [Polchinski equation]

$$
\Lambda \frac{\partial L[\phi, \Lambda]}{\partial \Lambda}=\sum_{m, n, k, l} \frac{1}{2} Q_{m n ; k l}(\Lambda)\left(\frac{\partial L[\phi, \Lambda]}{\partial \phi_{m n}} \frac{\partial L[\phi, \Lambda]}{\partial \phi_{k l}}-\frac{1}{V_{\Theta}} \frac{\partial^{2} L[\phi, \Lambda]}{\partial \phi_{m n} \partial \phi_{k l}}\right)
$$

$$
\text { with } Q_{m n ; k l}(\Lambda)=\Lambda \frac{\partial\left(G_{m n ; k l} \chi_{m n ; k l}(\Lambda)\right)}{\partial \Lambda} \quad V_{\Theta}=\sqrt{\operatorname{det}(2 \pi \Theta)}
$$

- renormalisation $=$ proof that there exists a regular solution which depends on only a finite number of initial data


## Second proof: multi-scale analysis

- propagator cut into slices: $G_{m n ; k l}=\sum_{i=1}^{\infty} G_{m n ; k l}^{j}$ estimations:

$$
\begin{aligned}
& 0 \leq G_{m n ; k l}^{i} \leq K_{1} M^{-i} \mathrm{e}^{-c_{1} M^{-i}(\|m\|+\|n\|+\|k\|+\| \| \|)} \delta_{m-l,-(k-n)} \\
& \sum_{l}\left(\max _{n(l), k(l)} G_{m n ; k l}^{i}\right) \leq K_{2} M^{-i} \mathrm{e}^{-c_{2} M^{-i}\|m\|}
\end{aligned}
$$

- induces scale attribution $i_{\delta} \in \mathbb{N}^{+}$for each edge $\delta$ of the graph
- $S O(2) \times S O(2)$ symmetry implemented by dual graphs (vertices $\Leftrightarrow$ faces)

- index-difference (= angular momentum) conserved at propagators and vertices


## index assignment in dual graphs

- given external indices
- reference indices at each internal vertex
- index differences between opposite sides of propagators in the complement of a maximal tree
$\Rightarrow \quad \sum_{\text {index differences }} \rightarrow$ factor $M^{-i}$ preserved

$$
\sum_{\text {reference indices }} \rightarrow \text { factor } M^{2 i} \text { from } \sum_{m \in \mathbb{N}^{2}} \mathrm{e}^{-M^{-i}\|m\|}
$$

- power-counting degree of divergence for dual subgraphs 2 \#(inner vertices) - \#(edges)
$=2(F-B)-I=4-4 g-2 V+I-2 B=\left(2-\frac{N}{2}\right)-2(2 g+B-1)$


## Conclusion

All non-planar graphs and all planar graphs with $\geq 4$ external legs are convergent

## Renormalisation

Problem: infinitely many planar 2- and 4-leg graphs diverge Solution: discrete Taylor expansion about reference graphs:

difference expressed in terms of
$\left|G_{n p ; p n}-G_{0 p ; p 0}\right| \leq K_{3} M^{-i} \frac{\|n\|}{M^{i}} \mathrm{e}^{-c_{3}\|p\|}$

$=1$

$$
\begin{aligned}
& A_{m n ; n m}^{\text {planar }} \\
& \text { and } A^{\text {planar }} \\
& A_{m n ; n k ; k l ; / m}^{\text {planar }} A_{m n ; n m} \text { and } A_{m^{1}+1 n^{1}+1 . n^{1} m^{1}} \\
& m^{2} \quad n^{2} ; n^{2} m^{2}
\end{aligned}
$$

Renormalisation of noncommutative $\phi_{4}^{4}$-model to all orders
by normalisation conditions for mass, field amplitude, coupling constant and oscillator frequency

## The $\beta$-function

one-loop calculation

$$
\begin{aligned}
& \frac{\lambda[\Lambda]}{\Omega^{2}[\Lambda]}=\text { const } \\
& \Omega^{2}[\Lambda] \leq 1
\end{aligned}
$$

( $\lambda[\Lambda]$ diverges in commutative case)


- perturbation theory remains valid at all scales!
- non-perturbative construction of the model seems possible!

How does this work?

- four-point function renormalisation with usual sign
- $\exists$ one-loop wavefunction renormalisation which compensates four-point function renormalisation for $\Omega \rightarrow 1$


## The self-dual model

- $\Omega=1$ leads to constant matrix indices for each face
- angular momentum $\ell$ is zero exponential decay in $|\ell|$ for general case $\Rightarrow$ self-dual model also captures general behaviour
- powerful techniques from matrix models available
- exactly solvable complex scalar model [E. Langmann, R. Szabo, K. Zarembo, 2003]
- renormalisation of $\phi_{6}^{3}$ by relation to Kontsevich model [H. Grosse, H. Steinacker, 2006]


## ingenious idea [M. Disertori, V. Rivasseau (2006)]

compute $\beta$-function for $\Omega=1$
$\rightarrow$ model is asymptotically safe up to three loops
(cancellations established by formidable graph calculation)

## Asymptotic safety to all orders

[M. Disertorti, R. Gurau, J. Magnen, V. Rivasseau (2006)]

## Theorem

$\Gamma^{4}(0,0,0,0)=\lambda(1-(\partial \Sigma)(0,0))^{2}$ to all orders in $\lambda$ (up to irr.) where $(\partial \Sigma)(0,0):=\Sigma(1,0)-\Sigma(0,0)$ Taylor subtraction

Ward identity: (a-b)




Dyson equation




## Summary

- Renormalisation is compatible with noncommutative geometry
- We can renormalise models with new types of degrees of freedom, such as dynamical matrix models
- Equivalence of renormalisation schemes is confirmed
- Important tools (multi-scale analysis) are worked out
- Rigorous construction of noncommutative quantum field theories is promising
- Other models

1) Gross-Neveu model [F. Vignes-Tourneret (2006)]
2) induced Yang-Mills theory
[A. de Goursac, J.-C. Wallet, R.W.; H. Grosse, M. Wohlgenannt (2007)]
