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Definition: The four-dimensional Moyal plane is the algebra of
(rapidly decaying) functions over the four-dimensional euclidean

space, multiplied with the x-product

4
(axb)(x)= /d‘ly(;lﬁl; a(z+10-k)b(a+y) e

with =—01c My (R).

e x-product 1s associative, but noncommutative

e x-product is non-local

e construction of field theories with non-local interaction
e This non-locality has serious consequences for the renormalisation

of the resulting quantum field theory



Theorem. The quantum field theory defined by the action

S = /d4x(%¢* (A + Q%2 + p*) ¢ + %gb*cb*cb*ﬁb)(fl?)

with
o 7 =20"1.1
e ¢ —real

e cuclidean metric

is perturbatively renormalisable to all orders in ).

The additional oscillator potential {2 7*
e implements the mixing between large and small distance scales
e results from the renormalisation proof

For the time being, this 1s the only renormalisable noncommutative

quantum field theory with quadratic divergences



Langmann-Szabo duality between position and momentum space:

T +— D )
. > + Fourier transformation

B(2) — o)

e lecaves /d4x (p* p*@*@)(x)and /d4x (¢ * ¢)(x) invariant
e transforms /d4x (¢ *x Ag)(x) into /d4x (6% T2) ()
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e thus, also the LS-dual of = m

e with also its Langmann-Szabo dual 1s divergent

........... < 1S leefg ent

= renormalisation requires / d*z (¢ * T2¢)(x) in initial action



e cxact renormalisation group equation 1n matrix base
[H. Grosse, R.W. (2004)]

— simple interaction, complicated propagator
— numerical determination of propagator asymptotics

— power-counting from decay rate and ribbon graph topology

e multi-scale analysis in matrix base
[V. Rivasseau, F. Vignes-Tourneret, R.W. (2005)]

— rigorous bounds for the propagator (requires large €2)

e multi-scale analysis 1n position space
[R. Gurau, J. Magnen, V. Rivasseau, F. Vignes-Tourneret (2006)]

— simple propagator (Mehler kernel), oscillating vertex

— distinction between sum and difference of propagator ends



representation ¢(x Z Pmnbmn () in basis { by (T) Fry nene:

(bynn, * by ) () = 5nkbml(a:) / d* by (z) = +/det(270) Gymn

e non-local x-product becomes simple matrix product:

~ A
:\/det(Zﬂ-H) L (%¢mnAmn;kl¢kl + Igbmnqbnk’qbklgblm)

m,n,k,|EN2

e kinetic term A, ., and propagator G = A~! complicated!
calculation of G,k leads to Meixner polynomials:
® Gyn:k 18 finite sum over hypergeometric functions

e all matrix elements G,k are non-negative

o Gmn:ki 7 0 only for m — [ = n — k due to angular momentum
conservation from SO(2) x SO(2)-symmetry



QFT defined via partition function Z[.J] = / D] - Siél-tr(67)

e Wilson’s strategy: integration of field om (A)
modes ¢,,,, with indices > §A? yields 1¢ .
effective action L|¢p, A i O{‘@% %’%

e variation of cut-off function y(A) with i féj? V(é(ym
A modifies the effective action: 0 OAZ  20A°

= exact renormalisation group equation [Polchinski equation]

OL|p,A] 1 OL[p,A] OL[p,A] 1 90°L[p, Al
A oA Z Ean;kl(A)< Obmn  Obrr Vo Odmn 5%1)

with Qi (A) = Aa(Gmn;klgj\mn;kl(A)) V, = \/det(27n9)

e renormalisation = proof that there exists a regular solution which

depends on only a finite number of initial data



we solve the Polchinski equation iteratively by ribbon graphs

A2 .
oA\ .
with V vertices m:j;:..:j::j:’fk (iteration start), I edges 5 — = Qun; el (A)
7n "N

e leads to F' faces, B of them with external legs
e ribbon graph can be drawn on Riemann surface of genus
g=1—3(F— I+ V) with B holes

e amplitudes of the graphs L%f{f’,),_;m vnn (V)

integration of the Polchinski equation from oo to A, if bounded,

otherwise from renormalisation scale Ar to A (requires initial value)
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All non-planar graphs (B > 1 and/or g > 0) and all S &

planar graphs with /N > 4 are irrelevant!



Problem: as planar 2- and 4-leg graphs are integrated from Ag to A,
we seem to need infinitely many initial data

Solution: discrete Taylor expansion about reference graphs with

vanishing indices:

n 4/ n 4/
L(2,1,O) _/ d\’ ) W\\Z om mz (A')
mn;nk;kl;lm ] m// v\\k m/’\()\\—//o\\k
pEN 2 AN AN
m 2,1,0)
+ / @ I + Li50000:00/ A8

o cﬁifference of graphs can be expressed 1n terms of
difference of propagators Qp:pm () — Qopipo(A)
e this difference decays with A=* = first integral converges

e second integral requires a single 1nitial condition



accordingly: mixed boundary conditions for

° L%’lﬁ) 1 .1 (2 conditions: quadratic+logarithmic divergence)

m2 n2 ' n2 1 m2

® L(V7170)
m?2 n2_n2 k2_k2 l2,l2 m2
ml nlnl 1ol 1571 51

(V,1,0) (V1,0 :
— Lm1+1 nli1l nl ml = L m2  n2  n2 m2 (symmetry in 6)
— n2 'm2 m?2 mlitlnlerinl ml

with same index dependence as in 1nitial action

The model 1s renormalisable by normalisation conditions for

® mass

e field amplitude

e coupling constant
e oscillator frequency




one-loop calculation: A[A]

A[A] = const 0.81
QQ[A] — COIlsS 0.6
Q2[A] S 1 0.4 -

0.2 -
(A[A] diverges in commutative

case)

e perturbation theory remains valid at all scales!

e non-perturbative construction of the model seems possible!

The presented model 1s an example where

noncommutative quantum field theories are better behaved

than commutative ones (in contrast to the public opinion)!




propagator cut into slices: Gk =

0< G < KM

mn;kl

Zzl

et M (Imll il +HIRIHID 5

mn kl’

Z( max Gmn kl) <K2M— —co M ™ 7JHWLH

n(l), k(1)

estimations:

—(k—n)

induces scale attribution 75 € N for each edge ¢ of the graph

SO(2) x SO(2)
symmeltry

implemented by
dual graphs

(vertices < faces)
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conserved angular momentum =

index difference




index assignment in dual graphs:

— given external indices
— reference indices at each internal vertex
— 1ndex differences between opposite sides of propagators in the

complement of a maximal tree

—i
= D i dex differences — factor M/ " preserved

— factor M2 from Y o e M ™l

Zreferenee indices

e estimation of (sub)graphs by #(edges) — 2 #(inner vertices) for

appropriate choice of reference points
e amounts to choice of maximal tree according to scale attribution

— plan 1s to continue this approach to a constructive

renormalisation of the noncommutative ¢;-model



propagator given by Mehler kernel:

G(x7 y) —
/O 0029772 SSZ 1?2?5(2975) o 55 coth(Qt) [z —y|12— 55 tanh(Qt) || a+y||2— 201
— multi-scale approach:

devide integral into slices M <t < M —2(i—1) M >1

S 0< Gz, y) < KMo o=yl + M~ z+y])

vertex

A 21 Sy (01 % st
V(le, « 0. ,334) — W§(Qj1—x2—|—$3—$4) e Zl§z<j§4 ) ( )H g

integration over short (x — y) and long (x + y) distance variables

possible divergence for ¢ — oo, 1.e.t — 0



e first approximation: ignore vertex phases

— short variables bring M ~*¢, long distances cost M*!
— eliminate most dangerous (Gallavotti-Nicolo algorithm) long

distances using vertex 0’s
— orientable graphs: (V' — 1) J-functions

[[]M™ w=4(V —1)—(4V — N) classical power-counting
— non-orientable graphs: V d-functions

[[M™ w =4V — (4V — N) > 0 always convergent!

e consideration of vertex phases only for orientable graphs

— total phase from contraction to rosette
— Intersecting lines (non-planarity) yield phase iy, al uw Y5 1n long

variables which overcompensates the cost M#

e renormalisation of planar graphs by Taylor expansion in external

variables connected by short variables



