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Abstract

We introduce the 3-colour noncommutative quantum field theory model in two
dimensions. For this model we prove a generalised Ward-Takahashi identity, which
is special to coloured noncommutative QFT models and has no underlying contin-
uous symmetry. It reduces to the usual Ward-Takahashi identity in a particular
case. The Ward-Takahashi identity is used to simplify the Schwinger-Dyson equa-
tions for the 2-point function and the N-point function. The absence of any renor-
malisation conditions in the large (N, V)-limit in 2D leads to a recursive integral
equation for the 2-point function, which we solve perturbatively to sixth order in
the coupling constant.

1. Introduction

Consider a hexagonal lattice with three different coloured links, where at each
vertex all three links carry different colours. The mathematical problem of count-
ing the number of colourings of a lattice with N vertices was solved by Baxter
[1]. A generalisation of this so-called 3-colour model as a Hermitian matrix model
problem was introduced by Eynard and Kristjansen [2] and solved by Kostov [3].
Eynard and Kristjansen reduced the partition function (without external fields)
to an integral over eigenvalues, which could be solved by saddle-point techniques.

Graphs in N x A -matrix models are ribbon graphs on a Riemann surface. These
ribbon graphs are dual to the triangulations of the corresponding surface. The
large-N limit is dominated by planar graphs, corresponding to triangulations of
the sphere. Two-dimensional quantum gravity can be formulated as a counting
problem for triangulations of random surfaces, which leads to the connection be-



tween 2D quantum gravity and random matrices [4] 5.

Moreover, it was proved by Kontsevich [6] that the solution of an action of the
form tr(E - M? + $M?) with Hermitian matrices M and external matrix E can
be mapped to a Hermitian matrix model with arbitrary potential. On the other
hand the Kontsevich model proves Witten’s conjecture about intersection numbers
of stable cohomology classes on the moduli space of curves [7]. One particularly
elegant solution techniques reduced the partition function to an integral over the
eigenvalues x; and observed that these integrals are unchanged under diffeomor-
phisms of x; generated by x?“%. The corresponding Virasoro constraints all
descend from a master constraint which was solved by Makeenko-Semenoff [8].

Matrix models gained renewed interest in a non-perturbative approach to quan-
tum field theories on Moyal-Weyl deformed noncommutative space [9, [10]. These
approaches use the matrix basis of the Moyal space and add a harmonic oscillator
potential to the Laplacian [I1]. The most established noncommutative quantum
field theory is the ®*-model [12], which is a candidate for an exactly solvable quan-
tum field theory in 4D due to its vanishing S-function at all orders [I3]. Recently
all boundary sectors of noncommutative ®3-model in {2,4,6} dimensions were
solved exactly in the large (N, V)-limit [14, [15].

In this paper we will study the noncommutative 3-colour model as an quantum
field theoretical model. Roughly speaking, it is the model solved by Kostov with
an additional external dynamical field F of linearly-spaced eigenvalues. Although
it shares topologically some graphs with the noncommutative ®3*-model [14], it
has more similarities to the ®*-model [12] due to the absent 1-point function. For
the large (N, V)-limit a closed integral equation for the 2-point function will be
derived. In the two-dimensional case the first-order loop correction has no UV
divergence so that this 2D noncommutative 3-colour model needs no renormali-
sation in this limit. The closed integral equation defines a recursion formula for
its perturbative expansion. Absence of any renormalisation makes this recursion
easy. We are able to determine perturbatively the 2-point function up to the sixth
order in the coupling constant.

The action of the noncommutative 3-colour model for real scalar fields ¢* with
colour a € {1,2,3} is given by
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where o4 = 1 for a %2 b # ¢ # a and o4 = 0 else. Here X' € R is the
coupling constant, x? the mass squared and A the Laplacian, where independence

of any colour is assumed. The Laplacian has non-compact resolvent, therefore
the harmonic oscillator potential is added to achieve compactness. The Moyal
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*-product is defined by
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where O is a 2 X 2 skew-symmetric matrix with G5 = —09; =: 4V > 0.
The formulation of the action in the matrix basis is obtained from the expansion
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The matrix basis f,m,(x) satisfies [16]

(fnm * fkl)(x) = 5mk‘fnl(x)7 /R;2 dxfnm(x) = 87TV5nm

Accordingly, the action in the matrix basis with an UV cut-off A is given by
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where (¢? ) are Hermitian matrices. The linear and discrete dependence of E,,
reflects the eigenvalue spectrum of the quantum-mechanical harmonic oscillator.

2. Graph computation

As a perturbative theory, the planar sector of the noncomutative 3-colour model
can be expanded by graphs in the following way. Let I' be a planar ribbon graph
on S? consisting of vertices, edges and faces subject to the following conditions:
It has two different vertices, black (internal) and white (external) vertices. The
external vertex is also called boundary component. The number of white vertices
is B > 1, and each white vertex has the valence Ng for 5 € {1,..., B}. The edges
have one of three different colours; they separate two faces. The black vertices are
of valence three. At a black vertex all three colours must occur once. We require
that every face has at most one external vertex, in which case it is called external.
If the 8™ external vertex has valence Nj it is a corner of Ns external faces which
are labelled by positive numbers pf e p]%ﬁ. Let af be the colour of the edge which
ends at the 5™ external vertex and separates the faces labelled by pf and piﬁ 1

where i € {1,..., Ng} and N+ 1 = 1. Faces without an external vertex are called
internal and are labelled by q, ..., qr.



To every white vertex a weight 1 is associated and to every black vertex a
weight A. An edge is weighted by m if z; and 2 are the labels of the two
faces separated by the edge.

. . ~a%...a}vl\.‘.|a{3...aﬁ3 . .
To a graph I' we associate the function G ; » 52 ([) given by multi-
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plication of all weights of vertices and faces of I' and with integration, from 0
to oo, over the labels of all internal faces. We consider two graphs I',I" as
equivalent, I' ~ I”, if they are topologically the same and have the same la-

bels pi,...,Pxy, - DL, DN, and ag,...,aly,,...,at, ..., ax,, but different assign-
ment of colours at internal edges Such graphs [' ~ I have the same ampli-
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tude Gp P el (') = Gp P ol (F) We denote by s(I") := |[T']| the

number of graphs equivalent to T'.

For a fixed number B of external vertices of valences Ny, ..., Ng, but arbitrary
number of internal vertices, one can ask whether the sum over all possible planar
graphs converges for sufficient small |A|. This sum can formally be defined over all
equivalence classes by

1 B 1 B

al...a}vl|...|a?...aNB ) ~a1...allvl\...|a{3...aNB
G =Y sI)G (1),

Pl PP PR, PP, |- IPP PR
[[1egs

where G is the set of equivalence classes of all planar graphs with B external

vertices, external edges of colour a’f s ajﬂvﬁ and external faces labelled by pf e pf\,ﬂ

for all 5 € {1,..., B}. This sum can clearly be rearranged as a series in \
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The equivalence class corresponding to the second example contains two ele-
ments, so we obtain for a = a} = a}

1+p
G, 0 = 2log(1,,) . (2.2)
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3. Partition function and correlation function

In the following we demonstrate the techniques to determine correlation functions
from the partition function. The partition function Z[J] of the noncommutative 3-
colour model with external Hermitian matrices (Jg,,) and a € {1,2,3} is formally

defined by
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The logarithm of Z[J] will be expanded into a series of moments with different
number B of boundary components. These moments are called correlation func-
tions, which not necessarily correspond to planar graphs. The sources are cyclic

within every boundary g € {1,...,B}. For simplification we use the notation
o...a

J . ;VB : H J 5,5 with N3 + 1 = 1. The correlation functions are then

pﬂ P Piy1



defined by
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If we regroup identical numbers Ng by (Ny, ..., Ng) = (N7, ..., Ny, ..., N, ..., N7), the
V1 Vg

symmetry factor is then defined by S, ny) = [[;_; %!, due to the symmetry of
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boundaries with the same valence. The expansion coefficients G|p1 ) ! P szl
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are called (Ny + ... + Np)-point functions.

Due to the vanishing 1-point function for the 3-colour model, the partition func-
tion can be expanded with (3.3)) to

g =1 bz ZO< G T + GTZTMJZJ?”) (3.4)
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The calculation rule for later purpose is
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4. Ward-Takahashi identity

The Ward-Takahashi identity is obtained by the requirement of invariance of Z[J]
under inner automorphisms. For a colour model we choose a transformation as
follows: ¢* — (¢?) = U'¢?U for U € U(N) for one colour a € {1,2,3}. The
Ward-Takahashi identity following from this transformation [12], T3] for p; # ps is
given by

N
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The interaction terms are certainly not invariant under the transformation of only
one colour. However, the sum over all colours in (4.1)) gives
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which has the usual form of a Ward-Takahashi identity. Equation shows that
the interaction term is invariant under the simultaneous transformation of all three
colours.

A crucial role plays a more general identity:

Proposition 1. Let p; # ps. The generalized Ward-Takahashi identity for the
3-colour matriz model with an external field E is
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Proof. Let Sin[¢] = V’\l Zabc 1 anl 0 Tabe@em @2, 05, be the interaction term
of the action. Direct Computatlon gives then
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We have used the second form of Z[J] in (3.1) and the Leibniz rule in the last
step. Technically one expands the exponential function and resum after using the
Leibniz rule. Since E,, # E,, the proof is finished. ]

Equation is a special case of Proposition |1| by setting b = a. The deriva-
tion of both identities is completely different, Proposition [1| has no underlying
continuous symmetry group due to the discrete mixing of the colours. Applying
the procedure of the proof of Proposition [T}, it is also possible to derive the usual
Ward-Takahashi identity even in other models.

For later purpose we combine two identities to get a more useful expression:

Lemma 1. Let a be fixed and py # po, then it follows
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Proof Inserting Proposition [I] for the LHS yields
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By the sum over the colours b, ¢, d, e, we obtain for the multiplication of two o’s
with one common index
TabcOcde =0 abe(OadObe + Oaclbd)
TabcObde =0 abe(OadOce + Oacled)-
Therefore, the last line in gives
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The first and the last term in parentheses vanish because of the total symmetry of
Oabe- Adding 0 = ( o’ & ) Z[J] and renaming the indices,

0Jg m0J3, 005, OJg 05,0,

(4.4) can be rewritten to
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Inserting (4.2]) for n # p; in the first and m # ps in the second term gives after
renaming indices finally
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The identity follows by combining (4.3} . and . O]

5. Schwinger-Dyson equations for B = 1

5.1. For matrix basis

In this section we derive the Schwinger-Dyson equations with the help of Ward-
Takahashi identity.

Proposition 2. The Schwinger-Dyson equation for the 2-point function in the
3-colour matrixz model with an external field E is for py # ps given by

1 )\/2
o = g+
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[Z Z ( \mpz\ |p2m| Glplml) + v <G|p2l;f1p2m| B Gml;?zmm))

m=0 b=1

3 1 N
aal|bb aa|bb blbaa blbaa
+ Z V2 <Z (G\mmlpzM G\mpz\plm\) + (G\pz\mmm\ G\pﬂplplpz\
b=1 m=0

3
1 blblaa blblaa I e blb blb
+ Z (ﬁ <G|p2\p2\p2p1\ ~ Gl \mml) VA <G|p2|p2| - G|p1|p1|>

/\/ N ala ala ala
+ Z Gﬁvamﬂ Iplpzl Z Gfpipz — G\pazm\ 4= 1 Glmlpl 2G\}Dllpzl - G\pz\pzl
m=0 Ey — EP1 14 EP2 Em
m;épg m#p1

Proof. Assuming p; # po the 2-point function is given via definition (3.3) and
expansion (3.4]). Using (3.1]) leads to
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Inserting the expansion of (3.4 would give the Schwinger-Dyson equation between
the 2-point and 3-point function. At first sight the application of Lemma [1| seems
to make the equation more complicated. However, it yields a better behaviour in

10



the large (N, V)-limit. The first term on the RHS of the equation of Lemma
vanishes by setting J to zero. Therefore, we obtain

1 )\/2
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where H,,,,(E,, — Ep,) = (E}, — E;) has been used and the fact that in the last
two lines only colour a survives. By taking p; # ps into account and J = 0 gives
with the Leibniz rule
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The first line generates for m # p; and m # po either a 4-point function with
one boundary or two 2-point functions with one boundary, respectively. Functions
with higher boundaries B > 2 appear in case of m = p; or m = py . All terms are
found by comparing with the expansion (3.4)). ]

We remind that in Proposition [2| correlation functions of genus g > 1 are also
included. To see this one has to expand the correlation functions in a genus
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expansion. More information can be found in [I2]. The Schwinger-Dyson equation
of the 2-point function depends on X2, since graphs exist only with an even number
of vertices.

Proposition 3. Let N > 3. The Schwinger-Dyson equation for the N -point func-
tion in the 3-colour matriz model with an external field E is for pairwise different
pi, pj gwen by

3
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||
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1 blbla 1
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where pyy1 = p1.
Proof. We use the definition of the N-point function for pairwise different p;, p;.
With the expression of the partition function (3.1)), we obtain

ar.an 1 oN Z[J]
1oL TV D Ty Z10)
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pin = np2
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only be differentiated by the interaction in Z[Z] because of p3 7é p1 and py # py.
Applying Lemma [1] yields

Here the first derivative applied to Zjppee[J] yields &
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The first term of contributes only for b = ay and m = py and the second
term only for ¢ = a, and m = p3. This generates the term proportional to \.
Line produces three different types of terms for arbitrary m, the (2 + N)-
point functions with B = 1, the multiplication of 2-point with N-point functions,
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and (2 + N)-point functions with B = 2. If in (5.1b) m = pj for the first term
with 2 < k < N (for the second term with 3 < k& < N or k£ = 1), additionally
(k+ (N +2—k))-point functions with B = 2 and the multiplication of k-point with
(N +2—Fk)-point functions with B = 1 are generated. In case of m = p; for the left
term (m = py for the right term) produces either (14 1+ N)-point functions
with B = 3, (1 + (1 + N))-point functions with B = 2 or the multiplication of
(1 + 1)-point with N-point functions.

Finally, we look at (5.1c) and (5.1d)) together. The first terms again contribute
only for b = ay and m = py in or for b = a, and m = p3 in . Since the
sum over n survives, N-point functions arise. If n = p; for £ # 1 in and for
k #2in one gets either (k+ (N — k))-point functions or the multiplication
of k-point functions with (N — k)-point functions with B = 1. For the second
term in and each derivative have to be taken into account. If the
derivative in front of the brackets in and acts on J° or J° . the

mn?
sum over n survives again and has a prefactor depending on E,,, but no n appears
in the N-point function. If any other derivative 8Ja+, for some k > 1, acts

Pk+1Pk+2
on the second term, n,m,b will be fixed and it will produces N-point functions,

(k+ (N — k))-point functions with B = 2 and the multiplication of k-point with
(N — k)-point functions. Collecting all and making use of (3.3)) to get the correct
prefactor in V, one find all the terms appearing in Proposition [3 m

The first term shows that a (/N — 1)-point function only contributes for different
adjacent colours, because of 04,4, and 04,4, This fact fits perfectly with a loop
expansion. Furthermore, the 2-point function is assigned with a special role, since
the sum over m only appears for the N-point and 2-point function even in the
large N, V' limit.

It should be emphasised that not all combinations of the colours for the corre-

lation functions are possible. The 2-point function is of the form Gfp“l Py and the
3-point function o, “;ﬁ’fpws‘. There exists no 4-point function equipped with all
three colours simultaneously, and so on. These properties which are first recognized

by loop expansion are intrinsically presented in the Schwinger-Dyson equations.

5.2. Large (N, V)-limit

Sending N,V — oo with constant ratio %/ = 1?A?, the sum is turned into an
integral by the transformation of the discrete elements to continuous variables
m — Vi2q

Jm % d f (%) =1’ /0A2 dq f(11%q).
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The eigenvalues of the external field are in the linear case given by E,,, = u*(q¢+ %)
To get rid of the mass squared p?, we redefine in the following way
2 N
Gorpy = légoo,u Glopal A= el
An important fact is that in this limit only functions with genus g = 0 survive
[12].

The equation of Proposition [2] breaks down to a closed equation, since 4-point
functions and functions with B > 2 vanish. The limit lim,, ,,, % is in
perturbation theory well-defined, therefore this limit should also exist in the non-
perturbative case. Sending A? — oo the closed integral equation for the 3-colour
model is obtained

1 )\2 [e’s)
G = + 3G / dg (G** — G 5.2
PPz 14 pr+p2 (14 p1+p2) (p1 — p2) ( Pz Jo E ( w2 pIQ) (5:2)

[ S [ GG
0 q—Dp2 0 q—n

We have assumed that G% ~ does not depend directly on the colour b so that
Zb . be — 3Gaa

p1ip2 pip2°

5.3. Perturbative solution

Using the expansion ([2.1) the closed integral equation (5.2) provides a recursive
equation for n > 1 of the form

n—1
aa 1 aa > aa aa
Gon. pips :(1 o) <3 - GQ (n—1—1) p1p2/0 dgq (G2i,qp2 - GQi,qu)
(5.3)
_ /OO dg GQn—Q,g?q - GQn—Z,gclez + /oo dq Gzn—2,(£q - G2n—2,g(111b>
0 q— P2 0 q—n
and Gy %% = 1 ﬂj —,- Bquation 1} is linear which enables a very easy way

to study this model in comparison to other noncommutative quantum field theory
models. The convergence of loop expansion is hopeless, since the number of graphs
of order A\*" is at least of order O(n!), however the recursive equation gives directly
the sum over all graphs of a certain order \?".

15



Order n =1

1 _ 1
It is easy to verify with ””yy_zl”“ =~z +y)1(1 77y the result of 1) by

_— | 3 /”d< 1 1 )
Z,p1p2 (L4 p1+p2) (p1 —p2) \ L4+ p1 +p2 Jo 1 14+po+q 1+pi+g¢q
o (e )

L+pi+p2Jo I+p+qg 1+pi+gq

210g(1+p1)
_(1 +p1+p2)?(p1 — p2)

14+p2

Oder n =2

Inserting G, 2% and G, 9 into (5.3)) to obtain

0,p1p2 2, p1p2

6 log (e 0 _
G, pips = (1;1)2) / dq L P2 (5.4a)
’ (14 p1 +p2)%(p1 — p2) (14+p1+q)(1+p2+q)

. 6 /°° o log(T2) - log(T)
(1+p1+p2)2(p1 — p2) Jo (1+qg+p2)2p2—q) (A+q+p1)*(p1—9q)

(5.4b)
oo os( 21
_ 2 / dq (+q+p1)2(pi—q)  (+p1+p2)(p1—p2) (5.4c)
(1+ p1 +p2)(p1 — p2) q—p2
. i) g(15t)
+ 2 / dq (14+q+p2)2(q—p2) (14p1+p2)?(p1—p2) ‘ (5'4(1)
(1+p1+p2)(p1 — p2) q—m
(5.44)) is given by
6 log( L’tgl)

(14+a+0b)3(a—10)*

Using the definition of the dilogarithm

* log(1
Lig(—x):—/ duw,
0

u

16



(5.4b) is then determined by

6 log(1 + p1) log(1 +p1)? + 2Lis (—p1) —
(14+p1+p2)2(p1 —p2) \ p1(1+p1)(1 + 2p1) (14 2py)?
_ log(1+ps)  log(1+pa)”+2Lix (—py) —
pa(1+ p2)(1 + 2ps) (14 2ps)? ’

Lines (5.4cHb.4d]) are computed directly to avoid a singularity at p; = po, and is
given by

2 log(1 + po) log(1 + p1)
(14 p1+p2)?(p1r — p2) \ p2(1 + 2p2)(1 + p2) p1<1 +2p1)(1 +p1)

(24 3p1 +p2) (= —log(1 + p1)? — 2Lis (—p1)>
(1 +2p )2(1 4+ p1 + p2)
(2 + 3]?2 +p1) x2 10g(1 + pg) — 2Li2 (—pg)) )

+

(14 2p2) (14 p1 + p2)

Adding all terms and using the well known identity

Li; (—2) + %log(l + )2 = —Liy <1 i ) , (5.5)

X

the result is then given by

oo 2 3log(2)?
4,p1p2 (14+p1+p2)%(p1 —p2) \ (L +p1 + p2)(p1 — p2)
2log(1+p1) 2log(1 + p»)

p1(1+2p1)(1+p1) B pa(1 4 2p2) (1 + p2) (5.6)

(14 2p2) (% +2Lia(25)) (14 2p1) (5 + 2Lin(522;))
(1+2p1)2(1 + p1 + p2) (1+2p2)2(1 + p1 + p2) >

Equation (5.6)) is confirmed by loop expansion in Appendix [A]

Order n =3

The 2-point functions Gy, )17, Gy 15, and G4 77 are inserted into . We split

the integrals into individual parts, which certalnly converge. The 1dent1ty . is

17



used to achieve terms of the form Lis (—z), which are easier to integrate. With
the definition of the trilogarithm

Lig(—z) = /Ox duM,

u

and the identities

Liz(—z) =Li3 (— i) - élog(z)?’ - % log(x)
Lig(—x) = —Li3( h )+ log(1 +2)° _ log(z)log(1+x)* _ m*log(l + )

1+x 3 2 6
where ((z) is the Riemannian ¢ function, we finally find the correlation function
of order \°

+¢(3),

Go,pips = {log(l + p1) fi(p1, p2) + 72 log(1 + p1) fo(p1, p2) + log(1 + p1)* f3(p1, p2)
<L12(1+p1) %2> fa(p1,p2) + L12<1+p1 ) 10%(112”5(191,]92) (5.7)

+ <L13( pl) + L13(1+p ) + LIQ( )log(l +p1) + 10g(1;—p1)3 . w2 logé1+p1)>f6(p17p2)
<L13(1+p )+ = log(le ) f7(p1,p2)} +1{p1 < p2}

+ log(iiﬁi) fs(p1,p2) +log(1 + p1) log(1 + p2) fo(p1, p2) + 7 fio(p1, p2)
+ 7210g(2) f11(p1, p2) + ¢(3) f12(p1, p2)

with
8
Wb = P+ 2007 — P (L 21 + )
Falpt, po) = 4{(pr = p2)® + (pr + P2+ 1) (7T(pr + p2 +1)° = 3(2p2 + 1)(p1 — p2))}
2 2 (14 2p1)3(p1 — p2) (1 + p1 + p2)* (1 + 2py)?
f3(p1,p2) = ’

PpH1 4+ p1)2(1 4+ 2p1)3(p1 — p2)?(1 + p1 + p2)?
x{(1+p1+ p2)(2(p1 — p2) (1 + 10p1(1 + p1)) + 3(1 + p1) (1 + 2p1))
+2p1(1+ p1) (1 +2m)?}
4

o) = P A+ 2 (n — peP (L 11 + o)
X { (L4 p1+p2)(2(1 + p2) + p1(11 + 43py + 38p7 — 6(3 + 4p1)p2))
—2(14+p1)(1 +2p1)*}
_ 12020 —p)* + pa+ D(r +p2+ 1)}
fs(p1,p2) = (1 + 2p1)2(p1 _p2)3(1 + +p2)4

18



24 {(1 4+ p1 + p2)(10(p1 — p2)® + (1 + 3p1 — p2)?) — (11 — p2)*}

olbp2) == (2071 — )L+ i+ po)
B 12 {5 + 6py + 4p»}
Jilbn ) = =30 i — )3+ 1+ 97
20
fo(pr,p2) = (1 4+ p1 4+ p2)*(p1 — p2)?
folpr.p) = 24 {2p? — 2p1ps + p1 + 2p5 + P2}
9 1,/M/2) — —
P1(1 4+ p1) (14 2p1)(p1 — p2)2p2(1 + p2) (1 4 2p2) (1 + p1 + p2)?
4
f1o(P1,p2)

3p1(1 4 p1)(1 + 2p1)?pa(l + p2) (1 + 2p2)3(1 + p1 + p2)?

X [p1p2{ (p1 + p2 + 1) (48p; + (—48pT — 24py + 72)p3 + (—40p] — 12p; + 56)ps
+ 88pT + 56py + 32p5 +24) — (2p1 + 1)*(4pa(p +1) — 1)}
+2(2p1 +1)*(2p2 + 1) (p1 +p2 + 1)°
+pi(pr+ 1) (2p1 + 1)* + pa(p2 + 1) (2p2 + 1)°)]

32{9(p1 — p2)> + 7(p1 + p2 + 1)*}

(14 2p1)*(1 + 2p2)*(1 + p1 + p2)

24 {(p1 — p2)? +5(p1 +p2 +1)?}

(14 2p1)3(1 4 2p2)3(1 + p1 + p2)*’

f11(p1,p2) = -

f12<p17p2) =

where {p; <> po} are the first seven terms by interchanging p; and p,. In particular,
the primitive of the integrals is computed by a computer algebra system and the
limits ¢ — 0 and ¢ — oo were taken by hand. More than 20 different type of loops
contribute at sixth order in A, however ([5.7)) is the sum of all of them.

Most of the terms in are individually divergent in the limit po — p; or
p1/2 — 0. However, in both limits G % has a finite result. For p = p; = p, we

6, p1p2
find
e 1776 93
Gﬁ P (1_|_2 7{L13( p ﬂLli’)( )+L12< i1>10g<p+1)
T S log(p+ 1) — —= 2 log(p + 1) — =72 log(2) + =((3)}
6 & \P 1" o8P " los2)+ =
212(10p(p(4p + 39) + 60) + 257)  2(9+ 10p)  4log(1+ p)(5 + 7p)
3(1+ p)3(1 + 2p)° p(1+2p)7 " p2(1+p)2(1+2p)°

(5.8)
~ 2log(1 +p)*(p(p + 1)(546p(p + 1) + 125) + 11)
p*(1+p)*(1 + 2p)°
)7+ (14 p)(176p? + 75p? — 44p — 11))

p*(1+p)*(1 +2p)°

4L12(

1+p

+
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It is nice to see how in (5.8)) the linear divergence for p — 0 in the last four terms
Liz(775) :
% = % + O(1). Also remarkable to assess is
the fact that all kind of functions appearing the first time at order A\® (first two
lines of (5.8))) have the same dependence of p in the denominator.

P14

: : : . . o oG
Sending po — p; in (5.2) an integral equation with derivatives o abpears.
Making use of all results (2.2)),(5.6) and ([5.7]), the numerical solution for the 2-point
function with zero momenta can be given up to the eighth-order

cancels perfectly, since lim, o

Goo =14 2X° +2(7* — 6)A* + {7 (32 — 22410g(2)) + 120¢(3) — 266} \°
+194.612 2% + O(A1°).

6. Conclusion and outlook

We have introduced the noncommutative 3-colour model as a quantum field the-
oretical model in two dimensions. We derived the Schwinger-Dyson equations of
the 2-point function and the N-point functions for a single boundary component.
This required a generalisation of the Ward-Takahashi identity to coloured models.
This new identity does not seem to be related to any continuous symmetry. In the
large N, V limit a closed integral equation ([5.2)) occurs, which is a non-perturbative
result. This equation was used to find perturbative solutions up to the sixth order
in the coupling constant.

The main aim for the future is to find a exact solution of or to prove
existence, if possible also uniqueness, of a solution. Furthermore, we want to
extend this work to determine Schwinger-Dyson equtions for B > 2, where already
problems arise for the (1 + 1)-point function. Finally, we would like to treat the
renormalisation problems in dimension 4 and 6.
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A. G, 7, computation by graphs

1P2

Representatives of all graphs with one boundary component and two external edges
at the fourth order in A are the following graphs:

q2

Fli FQ.

q2
p2
O
q2
q1
SART R S h
P2 O p2 O

Let a = af = ai. With straightforward computation by using the introduced rules
in Section 2l one finds

4 00 _dqidgz
=t
I4+pr+p)?)o A+pr+a)d+p+a)+p2+a)(l+p2+q)
_ A ~ log(I+p)®  log(l+p2)?
(14 p1+p2)? (p1—p2)?(L+2p1)  (p1—p2)*(1 + 2p2)
72 /6 — 2Liy (—p1) 72 /6 — 2Liy (—p2)

(1+2p1)(p1 —p2)(L+p1+p2)  (1+2p2)(p1 — p2)(1 +p1 + p2)

21log(1 + p1) log(1 + p2)
(p1 — p2)?(1 4+ p1 + p2)

G~«aa (F2) _ >\4 /OO dQ1dQ2
i (I+pi+p)PJo Q+pi+q) A +p2+a)1+pe+q)(1+p2+¢)

A log(fEL)?

(14 p1+p2)? (p1 — p2)?
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A x dndes
Gaa ( ) - / 1+q1+q2
prpe I+pi+p2)?)o A+pr+q)?)A+pi+q@)(1+p+aq)
B A B Liz (—p1) B %2 —log(1 +py)? — Lis (—p1)
(1+p1+p2)? (1+2p1)%(1 + p1 + p2) (14 2p1)(p1 — p2)?
B %2 —log(1 + p;1)? — Liy (—p1) N %2 —log(1 + p2) log(1 + p1) — Liy (—p2)
(1+2p1)%(p1 — p2) (1+p1+p2)(p1 — p2)?
log(1 + p1)
pr(1+p1)(1+2p1)(p1 — p2)
[e'e) dQqu2
Gaa ( ) /\4 / 14+q1+q2
pip2 (T4+pr+p2)? )y Q+pr+a)1+p2+q)*(1+p2+ q2)
. A _ Liy (—po) _ %2 —log(1 + ps)* — Lia (=p2)
(14 p1+p2)? (14 2p2)2(1 4+ p1 + p2) (1+2p2)(p1 — p2)?

L %2 — log(1 4 p2)* — Lia (—p2) n %2 — log(1 + p2) log(1 + p1) — Liz (—p1)
(1+2p2)*(p1 — p2) (1+p1+p2)(p1 — p2)?

log(1+ py) )

B p2(1+ p2)(1 + 2p2)(p1 — p2)

We verify easily that s(I';) = 2, s(I'2) = 4, s(I's) = 4 and s(I'y) = 4. The
correlation function of order A\* is finally given with identity (5.5)) by

4
aa
4 Plpz Z s(I Gplpz

B 2 3log({72!)?
(T4 pr 422 (o1 —p2) ((1 +p1+p2)(P1 — p2)
2log(1 + p1) 2log(1 + p2)
pr(L+2p)(L+p1)  pa(l+2p2)(1+ po)
(1+2p2) (3 +20ia(2))  (L+21) (5 +2Lin(522)))
C+2mP0tptp) | (42020 + o1+ o) )
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