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Abstract. We consider an external gauge potential minimally coupled to a renormalisable scalar theory on
4-dimensional Moyal space and compute in position space the one-loop Yang–Mills-type effective theory
generated from the integration over the scalar field. We find that the gauge-invariant effective action in-
volves, beyond the expected noncommutative version of the pure Yang–Mills action, additional terms that
may be interpreted as the gauge theory counterpart of the harmonic oscillator term, which for the noncom-
mutative ϕ4-theory on Moyal space ensures renormalisability. The expression of a possible candidate for
a renormalisable action for a gauge theory defined on Moyal space is conjectured and discussed.

1 Introduction

In the past few years, there has been intense activity in
the study of various classes of field theories defined on
Moyal spaces (see e.g. [1, 2]). These prototypes of noncom-
mutative field theories involve numerous features stem-
ming from noncommutative geometry [3–5] and are thus
interesting in themselves. This interest was further in-
creased by the observation that similar noncommutative
field theories seem to emerge rather naturally from limit-
ing regimes of string theory and matrix theory in magnetic
backgrounds [6, 7]. See also [8, 9] for connections between
noncommutative geometry and string theory. Recall that
in noncommutative geometry the commutative algebras
of functions defined on differentiable manifolds (roughly
speaking the coordinates spaces) are replaced by associa-
tive but noncommutative algebras further interpreted as
algebras of functions on “noncommutative spaces.”Within
this algebraic framework, natural noncommutative ana-
logues of the main geometrical objects usually involved in
field theories can be algebraically defined (such as connec-
tions, curvatures, vector bundles) so that the construction
of various noncommutative analogues of field theories can
be undertaken (see e.g. [10]). The relevant configuration
spaces to start from for the noncommutative field theories
are modules over the associative algebras, which are nat-
urally viewed as noncommutative analogues for the set of
sections of vector bundles. One example of an associative
algebra among many others is provided by the associative
Moyal algebras [11, 12], therefore playing the role of “non-
commutative Moyal spaces.”
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The simplest generalisations of scalar theories to Moyal
space were shown to suffer from the so-called UV/IR-
mixing [13, 14], a phenomenon that makes the renormal-
isability very unlikely. Basically, UV/IR-mixing results
from the existence of potentially dangerous non-planar di-
agrams, which, albeit they are UV finite, become singular
at exceptional (low) external momenta. This triggers the
occurrence of UV divergences in higher order diagrams
in which they are involved as subdiagrams. This signals
that UV and IR scales are related in a non-trivial way,
which should in principle invalidate a Wilson-type renor-
malisation scheme [15, 16]. An appealing solution to the
UV/IR-mixing problem has recently been proposed by
Grosse and Wulkenhaar [17, 18] within the noncommuta-
tive ϕ4-model on the 4-dimensional Moyal space, where
ϕ is real-valued. They showed that UV/IR-mixing can be
suppressed by supplementing the initial action with a har-
monic oscillator term leading to a renormalisable non-
commutative quantum field theory. The initial proof [17]
was performed within the matrix-base formalism, roughly
speaking a basis for the (Schwartz class) functions for
which the associative product of theMoyal algebra is a sim-
ple matrix product. This cumbersome proof was simplified
through a reformulation into the (position) x-space for-
malism in [19], which exhibits some advantages compared
to the matrix-base formulation. For instance, the propa-
gator in x-space can be explicitly computed (as a Mehler
kernel [20, 21]) and actually used in calculations. Besides,
it makes the comparison of the renormalisation group for
noncommutative theories and their commutative counter-
part easier.
Other renormalisable noncommutative matter field

theories on Moyal spaces have been obtained. One is the
complex-valued scalar theory studied in [19], which can be
viewed as a modified version of the LSZ model [22, 23] (the
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scalar theory in [24] is super-renormalisable). Note that
interesting solvable noncommutative scalar field theories
have also been considered in [25–27]. As far as fermionic
theories are concerned, a Moyal space version of the Gross–
Neveu model [28] (see also [29, 30]), called the orientable
noncommutative Gross–Neveu model, has recently been
shown to be renormalisable to all orders [31–33]. It is
worth mentioning that this noncommutative field theory
still exhibits some UV/IR-mixing, even in the presence of
the fermionic version of the harmonic oscillator quadratic
term introduced in [17], which, however, does not prevent
the theory from being renormalisable. Note that in [34]
(see also [35]) the large-N limit of the noncommutative
Gross–Neveu model, however with a restricted interac-
tion, has been studied; renormalisability is shown at this
limit together with asymptotic freedom. One should keep
in mind that the fact that the orientable Gross–Neveu
model is renormalisable in spite of some remaining UV/IR-
mixing [31, 32] indicates that further investigations are
needed to actually clarify the role of various generalisa-
tions of the above-mentioned harmonic oscillator term, of
the related covariance under Langmann–Szabo duality [36]
and of their impact on the control of UV/IR-mixing and
renormalisability.
So far, the problem of the construction of a renor-

malisable gauge theory on noncommutative Moyal spaces
remains still unsolved. The naive noncommutative exten-
sion of the pure Yang–Mills action on the Moyal space
exhibits UV/IR-mixing [37, 38], which makes its renormal-
isability quite unlikely unless it is suitably modified. It
can easily be realised that the initial solution proposed
in [17] within the real-valued ϕ4-model cannot be merely
extended to gauge theories on Moyal spaces. In the ab-
sence of a clear guideline, one reasonable way to follow
is to assume that Langmann–Szabo duality may appear
as a necessary ingredient in the construction of a renor-
malisable gauge theory as has been the case for the real-
valued ϕ4-model. Then, any attempt to adapt the solution
given in [17] to gauge theories would presumably amount
to a reconciliation within a modified action of its invari-
ance under gauge transformations with some covariance
under Langmann–Szabo duality. More technically, one
has to determine whether or not the naive noncommuta-
tive Yang–Mills action can be supplemented by additional
terms that preserve gauge invariance while making pos-
sible the appearance of covariance under Langmann–Szabo
duality. A convenient way to actually determine all the
above-mentioned additional gauge-invariant terms can be
achieved by computing, at least at one-loop order, the
noncommutative effective gauge theory stemming from
a matter field theory coupled to an external gauge poten-
tial in a gauge-invariant way. This is the main purpose of
the present paper.
The paper is organised as follows. We start from

a renormalisable scalar (Euclidean) field theory extending
to complex-valued fields φ the renormalisable noncommu-
tative ϕ4-model with a harmonic oscillator term, studied
in [17, 19]. This is presented in Sect. 2, where we also
collect the main technical tools. The above action is min-
imally coupled to an external gauge potential giving rise

to a gauge-invariant action S(φ,A). The analysis is based
consistently on the usual algebraic definition of noncom-
mutative connections for which the modules of the Moyal
algebra play the role of the set of sections of vector bun-
dles of the ordinary geometry, while the noncommutative
analogues of gauge transformations are naturally associ-
ated with automorphisms of (Hermitian) modules. This
is presented in detail in the second part of Sect. 2. From
S(φ,A), we compute the one-loop effective action Γ (A)
obtained as usual by formally integrating out the scalar
field. The corresponding calculation of the various con-
tributions relevant to the effective action is presented in
Sect. 3. All the computations are performed within the
x-space formalism. The resulting action is further ana-
lysed and discussed in Sect. 4. The implications of the
non-vanishing of the 1-point (tadpole) contribution are
outlined. This non-vanishing triggers automatically the
occurrence of gauge-invariant terms supplementing the
noncommutative version of the pure Yang–Mills term in
the effective action. This suggests a possible expression
of a candidate for a renormalisable action for a gauge
theory defined on Moyal spaces in which these addi-
tional terms would be the gauge theory counterpart of
the harmonic term ensuring the renormalisability of the
ϕ4-theory.
After the completion of the present work, we became

aware of a recent paper by Grosse and Wohlgenannt [39],
in which a similar investigation has been carried out with,
however, gauge transformations for the matter fields that
are different from ours. Our results for the effective action
and the corresponding conclusions agree with those pre-
sented in [39].

2 External gauge potentials coupled to scalar
models

2.1 The 4-dimensional complex scalar model

We first collect the mathematical tools entering the defin-
ition of the Moyal algebra that will be relevant for the
ensuing analysis. A more mathematical presentation can
be found in [11, 12]. In the following, the “�” symbol de-
notes the associative Moyal–Groenewald product. It can
be first defined on S(R4) (denoted in short by S in the fol-
lowing), the space of complex-valued Schwartz functions
on R4 with fast decay at infinity, by

(f �h)(x) =
1

(2π)4

∫
d4yd4kf

(
x+
1

2
Θ.k

)
h(x+y)eik.y ,

∀f, h ∈ S , (1)

such that (f �h) ∈ S, where Θ.k ≡ Θµνkν . Moreover, Θµν
is an invertible constant skew-symmetric matrix, which in
4D can be chosen as Θ = θΣ with

Σ =

(
J 0
0 J

)
, (2)
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where1 the 2×2 matrix J is given by J =

(
0 −1
1 0

)
and

the parameter θ has mass dimension −2. Let S′ denote
the space of tempered distributions. Then, the �-product
is further extended to S′×S upon using duality of lin-
ear spaces: 〈T � f, h〉 = 〈T, f � h〉, ∀T ∈ S′, ∀f, h ∈ S. In
a similar way, (1) can be extended to S ×S′. Owing to the
smoothening properties of (1) together with

∫
d4x(f �h)(x) =

∫
d4xf(x).h(x) , (3)

where the symbol “.” denotes the (commutative) usual
pointwise product, one can show that T �f and f �T are
smooth functions [11, 12]. Now, let L (respectively R) de-
note the subspace of S′ whose multiplication from right
(respectively left) by any Schwartz functions is a subspace
of S, namely

L= {T ∈ S′ : T �f ∈ S, ∀f ∈ S} ,

R= {T ∈ S′ : f �T ∈ S, ∀f ∈ S} . (4)

The Moyal algebra, hereafter denoted by M, is then de-
fined as

M= L∩R . (5)

The Moyal algebra is a unital algebra, which involves,
in particular, the “coordinate” functions xµ satisfying
[xµ, xν ]� = iΘµν , where this last relation is well defined on
M ([a, b]� ≡ a� b− b �a). Other relevant properties of the
�-product that hold onM are

∂µ(f �h) = ∂µf �h+f �∂µh, (f �h)
† = h† �f†,

[xµ, f ]� = iΘµν∂νf , (6a)

xµ �f = (xµ.f)+
i

2
Θµν∂νf,

xµ(f �h) = (xµ.f)�h−
i

2
Θµνf �∂νh , (6b)

for any f, h ∈M, where in (6a) the symbol † denotes the
complex conjugation, which permits one to turnM into an
involutive algebra.
The action for the (Euclidean) scalar model defined on

M that will be considered in this paper is given by

S(φ) =

∫
d4x
(
∂µφ

† �∂µφ+Ω
2(x̃µφ)

† � (x̃µφ)

+m2φ† �φ
)
(x)+Sint , (7)

where φ is a complex scalar field with mass m, Sint de-
notes the interaction terms to be discussed below, and we
have set x̃µ = 2Θ

−1x. The parameters Ω and λ are di-
mensionless. At this point, some comments are in order.
This model cannot be viewed as related to some LSZ-type

1 Theabovechoice forΘµν simplifiesnoticeably thecalculation
of theeffectiveaction.Althoughthischoicebreaksapparently the
SO(4) “Lorentz” invariance, it turns out that the calculation can
be actually performed in a Lorentz-covariant way.

model [22, 23], since in the latter case the corresponding
action would have been of the form

SLSZ(φ) =

∫
d4x
(
(∂µφ+ iΩx̃µφ)

† � (∂µφ+ iΩx̃µφ)

+m2φ† �φ
)
(x)+Sint . (8)

It can easily be realised that the quadratic terms in (8) do
not coincide with those involved in (7), giving rise there-
fore to different propagators for these actions (as well as,
anticipating the discussion of the next subsection, differ-
ent minimal coupling prescriptions). Notice, however, that
both actions are covariant under Langmann–Szabo dual-
ity [36]. It turns out, as will be shown in a while, that the
operator ∂µ+iΩx̃µ can actually be related to a connection
∇ζµ with ζ =−

Ω
1+Ω x̃µ. In (7), the term involving Ω can be

viewed as the (complex-valued) scalar counterpart of the
harmonic oscillator term first introduced in [17], leading
to the construction of a renormalisable noncommutative
(real-valued) ϕ44-model.
Although our one-loop computation of effective actions

will not depend on the explicit form of the interaction, it
is instructive to discuss it more closely in view of the cor-
responding consequences on the renormalisability of the
models. The most general interaction can be written as

Sint = S
O
int+S

NO
int

=

∫
λ(φ† �φ�φ† �φ)(x)+κ(φ† �φ† �φ�φ)(x) .

(9)

We point out that the only diagrams that can be oriented
are those occurring in the loopwise expansion obtained
from SOint, while S

NO
int yields diagrams in the loopwise ex-

pansion that cannot be oriented. Recall now that the proof
of the renormalisability of the noncommutative version of
the Gross–Neveu model studied in [31] (whose interaction
term is the fermionic counterpart of SOint) relies heavily on
the orientability of the diagrams. It turns out [19] that (7)
restricted to SOint is renormalisable for any value of Ω. Be-
sides, a similar conclusion applies for the LSZ-type model
(8) restricted to SOint. The proof, as sketched in [19], is
somehow similar to the one given in [31] for the noncommu-
tative Gross–Neveu model. At the present time, the actual
impact of interaction terms as given by SNOint on the renor-
malisability of the above models is not known.
The Feynman graphs can be computed from the prop-

agator and interaction vertex derived from (7). In the fol-
lowing, we will work within the x-space formalism [19],
which proves particularly convenient as it simplifies the
calculations. The scalar propagator C(x, y) ≡ 〈φ(x)φ†(y)〉

in x-space obtained by solving (∆x+ Ω̃
2x2+m2)C(x, y) =

δ(x−y) is given by

C(x, y) =
Ω2

π2θ2

∫ ∞
0

dt

sinh2(2Ω̃t)

×exp

(
−
Ω̃

4
coth(Ω̃t)(x−y)2−

Ω̃

4
tanh(Ω̃t)(x+y)2−m2t

)
,

(10)
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Fig. 1. Graphical representation for the ver-
tex in the x-space, obtained from (11). The
plus-sign (respectively minus-sign) appearing
in the rhombus corresponds to incoming (re-
spectively outgoing) external line associated
with φ† (resp. φ)

where we have defined Ω̃ ≡ 2Ω
θ
. The interaction vertices

can be read off from the RHS of∫
d4x(φ† �φ�φ† �φ)(x)

=
1

π4θ4

∫ 4∏
i=1

d4xiφ
†(x1)φ(x2)φ

†(x3)φ(x4) (11a)

× δ(x1−x2+x3−x4)e
−i
∑
i<j(−1)

i+j+1xi∧xj .

We will denote the vertex kernel as

V (x1, x2, x3, x4) =

δ(x1−x2+x3−x4)e
−i
∑
i<j(−1)

i+j+1xi∧xj , (11b)

in which x∧y ≡ 2xµΘ−1µν yν . The generic graphical repre-
sentation of the vertex is depicted on Fig. 1. The non-
locality of the interaction is conveniently represented by
the rhombus, appearing on Fig. 1, whose vertices corres-
pond to the xi occurring in (11). It is useful to represent
the alternate signs in the delta function of (11) by plus-
and minus-signs, as depicted on the figure. By convention,
a plus-sign (respectively minus-sign) corresponds to an in-
coming field φ† (respectively outgoing field φ). This per-
mits one to define an orientation on the diagrams obtained
from the loop expansion.

2.2 Gauge connections on Moyal space

It is necessary to define clearly the mathematical status [4,
5, 10, 40] of the various objects that will be involved in
the minimal coupling prescription. Recall thatM is a uni-
tal involutive algebra. Let H be a right M-module with
Hermitian structure h, that is, a sesquilinear map h :H×
H→M such that h(m1 �f1,m2 �f2) = f

†
1 �h(m1,m2)�f2,

for any f1, f2 ∈M, and m1,m2 ∈ H. The algebra M is
assumed to be endowed with a differential calculus based
on the derivations ∂µ. The usual concept of connections
defined on vector bundles in ordinary geometry can be con-
sistently generalised in noncommutative geometry to con-
nections on projective modules (over an associative alge-
bra). Namely, a connection can be defined (algebraically)
by a linear map∇µ :H→H verifying the Leibnitz rule:

∇µ(m�f) =∇µ(m)�f+m�∂µf ,

∀m ∈H, ∀f ∈M (12)

and preserving the Hermitian structure, that is

∂µh(m1,m2) = h(∇µm1,m2)+h(m1,∇µm2),

∀m1,m2 ∈H . (13)

When H =M, which we assume from now on, it follows
from (12) that the connection is entirely determined by its
action∇µ(I) on the unit I ∈M, denoted by

∇Aµ (I)≡−iAµ , (14)

since one has obviously ∇Aµ (I � f) = ∇
A
µ (I) � f + ∂µf ≡

∂µf − iAµ �f . This therefore represents the gauge poten-
tial Aµ inM. Observe that forH=M, a Hermitian struc-
ture is provided by h(f1, f2) = f

†
1 � f2, ensuring that the

above connections are Hermitian whenever Aµ =A
†
µ.

Gauge transformations, hereafter denoted by γ, are de-
termined by automorphisms of the module M (keeping
in mind that M =H is considered as a Hermitian mod-
ule over itself) preserving the Hermitian structure h, γ ∈
Auth(M). One has

2

γ(f) = γ(I�f) = γ(I)�f , ∀f ∈M ,

h (γ(f1), γ(f2)) = h(f1, f2) ∀f1, f2 ∈M

γ(I)† �γ(I) = I , (15)

so that gauge transformations are entirely determined by
γ(I) ∈ U(M), where U(M) is the group of unitary elem-
ents ofM. From now on, we set γ(I)≡ g. Then, according
to (15), the action of the gauge group on any matter field
φ ∈M can be defined by

φg = g �φ (16)

for any g ∈ U(M), which may be viewed, in more physical
words, as the noncommutative analogue of the transform-
ation of the matter fields under the “fundamental represen-
tation of the gauge group.” Note that one has g† � g = g �
g† = I.
The action of U(M) on the connection∇Aµ is given by(

∇Aµ
)γ
(φ) = γ

(
∇Aµ (γ

−1φ)
)
, ∀φ ∈M . (17)

By further using γ(φ) = γ(I�φ) = g �φ together with the
expression of the covariant derivative

∇Aµ (φ) = ∂µφ− iAµ �φ (18)

and the fact that (∇Aµ )
g ≡ ∂µ− iAgµ, one obtains the follow-

ing gauge transformation for the gauge potential:

Agµ = g �Aµ � g
†+ ig �∂µg

† . (19)

In the present noncommutative (algebraic) framework, the
space of gauge potentials Aµ ∈M is a linear space (this
comes basically from the fact thatM, as a module, is a lin-
ear space). Note that any one-form can be used to define
a connection so that if some Aµ defines a connection, then
λAµ, ∀λ ∈ R, defines another connection. There is a sub-
tlety here that must be pointed out. The gauge transform-
ations do not preserve the structure of the linear space of
gauge potentials, since

(λAµ)
g−λ

(
Agµ
)
= i(1−λ)g �∂µg

† . (20)

2 When H �=M, recall that γ, as a morphism of module, sat-
isfies γ(m�f) = γ(m)�f , ∀m ∈ H, ∀f ∈M.
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This is easily obtained by comparing how the gauge trans-
formations as given by (17) operate on ∇λAµ and ∇Aµ ac-
cording to (18) and express the fact that multiplication of
a gauge potential by a scalar and gauge transformation are
two noncommuting operations. The same discussion ap-
plies to the sum of two gauge potentials A1+A2.
It is useful to exhibit a special reference connection that

will play a salient role in the following. It turns out that

ξµ ≡−
1

2
x̃µ (21)

defines a connection invariant under gauge transform-
ations. Note that the occurrence of gauge-invariant con-
nections is not new in noncommutative geometry and has
already been mentioned in earlier studies focused in par-
ticular on matrix-valued field theories [40–43]. Indeed,
according to (18), the connection∇ξµ associated to ξµ veri-
fies

∇ξµφ= ∂µφ− iξµ �φ=−iφ� ξµ , (22)

where the second equality stems from the following rela-
tion:

∂µφ= [iξµ, φ]� , (23)

which simply expresses the fact that the derivative ∂µ inM
is an inner derivative. Then, as∇ξµ given by right multipli-
cation commutes with the gauge transformation (17) given
by left multiplication, it is easy to realise that

(
∇ξµ
)g
(φ) = g �

(
∇ξµ(g

† �φ)
)
=−iφ� ξµ =∇

ξ
µφ .

(24)

The second equality stems from (22), which shows that
the connection∇ξµ is invariant under the gauge transform-
ations, from which it follows that

ξgµ = ξµ , (25)

as could have been checked directly by combining the ac-
tual expression for ξµ with (19) and (23). In the present
Moyal framework, the existence of the above invariant con-
nection seems to be an unavoidable consequence of the
existence of inner derivations3 as defined by (23) (it turns
out that all derivations on the Moyal algebra are inner
derivations).
Let us introduce now

∇Aµ −∇
ξ
µ =−i(Aµ− ξµ)≡−iAµ , (26)

which, as the difference of two connections, obviously de-
fines a tensorial formAµ, whose gauge transformations are
given by

Agµ = g �Aµ � g
† . (27)

3 One of us (J.C. W.) is grateful to M. Dubois-Violette for an
enlightening discussion on this point.

This tensorial form has sometimes been called in the string
theory literature the covariant coordinates (see e.g. [1] and
references therein). Given a connection ∇Aµ (or equiva-
lently a gauge potential Aµ), the corresponding curvature
is given by

FAµν = i[∇
A
µ ,∇

A
ν ]� = ∂µAν −∂νAµ− i[Aµ, Aν ]� ,

(28)

with gauge transformations taking the usual form
(
FAµν
)g
= g �FAµν � g

† . (29)

By further combining (28) with (23) and (26), the curva-
ture can be reexpressed as

FAµν =Θ
−1
µν − i[Aµ,Aν ]� . (30)

Note that the invariant connection defined by ξµ is a con-
stant curvature connection since F ξµν =Θ

−1
µν .

Another type of transformations given by φU = U �φ�
U†, which may be viewed as the noncommutative analogue
of transformations of matter fields in the adjoint represen-
tation, has been also considered in the literature. These
transformations will be more closely analysed in the next
subsection.

2.3 The minimal coupling prescription

Let us assume that the action of the gauge group on the
matter fields φ is given by (16). Then, owing to the spe-
cial role played by the coordinate functions xµ through
the invariant “gauge potential” (21) involved in ∇ξµ and
the expression for the inner derivatives (23), it follows that
a natural choice for the minimal coupling of the action (7)
to an external gauge fieldAµ is obtained by performing the
usual substitution

∂µ→∇
A
µ (31)

on the action (7) provided the latter is reexpressed in terms
of ∂µ and ∇ξµ, using in particular the following identity:

x̃µφ= x̃µ �φ− i∂µφ=−i(∂µφ−2iξµ �φ)

=−2i∇ξµφ+ i∂µφ . (32)

By using (32), one easily infers that the minimal coupling
prescription can conveniently be written as

∂µφ 
→ ∇
A
µφ= ∂µφ− iAµ �φ , (33)

x̃µφ 
→ −2i∇
ξ
µφ+ i∇

A
µφ= x̃µφ+Aµ �φ . (34)

Note that gauge invariance of the resulting action func-
tional is obviously obtained thanks to the relation
(∇A,ξµ (φ))

g = g � (∇A,ξµ (φ)).
By applying the aboveminimal coupling prescription to

(7), we obtain the following gauge-invariant action:

S(φ,A) = S(φ)+

∫
d4x
(
(1+Ω2)φ† � (x̃µAµ)�φ

−(1−Ω2)φ† �Aµ �φ� x̃µ

+(1+Ω2)φ† �Aµ �Aµ �φ
)
(x) , (35)
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where S(φ) is given by (7) with Sint restricted to its gauge-
invariant part SOint; see (9). At this level, it is instructive to
interpret the action (8) in the light of the algebraic frame-
work that has been developed above. As alreadymentioned
in Sect. 2.1, the operator ∂µ+ iΩx̃µ is actually related to
a connection∇ζµ with

ζµ =
2Ω

1+Ω
ξµ , (36)

since the relation

(∂µ+ iΩx̃µ)φ= (1+Ω)

(
∂µφ− i

2Ω

1+Ω
ξµ �φ

)

= (1+Ω)∇ζµ(φ) (37)

holds in view of (18). The action (8) can then be rewritten
as

SLSZ(φ) =

∫
d4x
(
(1+Ω)2

(
∇ζµ(φ)

)†
�∇ζµ(φ)

+m2φ† �φ
)
(x)+Sint , (38)

where ζ is given by (36), which, for Ω �= 0, makes explicit
the invariance of the action under the gauge transform-
ations φg = g �φ for any g ∈ U(M). Notice that a similar
comment applies to the noncommutative version of the
(two-dimensional) Gross–Neveumodel considered recently
in [31]. It can easily be realised that the corresponding ac-
tion quoted in [31] can be cast into the form

SGN =

∫
d2x
(
−i(1+Ω)ψ̄γµ∇ζµψ+mψ̄ψ

)
(x)+ . . . ,

(39)

where the ellipsis denotes interaction terms, ψ is a spinor
and the anti-Hermitian γ matrices satisfy {γµ, γν} =
−2δµν . In physical words, it should be clear that these
two latter actions can be interpreted as matter actions al-
ready coupled to an external (background) gauge potential
ζµ (while the action (7) does not obviously support this
interpretation).
As announced in the last subsection, another type of

transformations given by

φU = U �φ�U† ≡ α(φ) , (40)

for any U ∈ U(M), has been also considered in the litera-
ture. It is instructive to confront the actual mathematical
status of these transformations with the algebraic frame-
work developed in Sect. 2.2. In fact, it should be clear that
(40) defines an automorphism α of the algebra,

α(φ1 �φ2) = α(φ1)�α(φ2) , (41)

but not an automorphism of the module (which would sat-
isfy α(φ1 �φ2) = α(φ1)�φ2) except when U is in the centre
ofM (which in the present case is equal to C). Actually,
the noncommutative analogue of the adjoint representa-
tion of the gauge group is constructed with the help of the
real structure J [5]. This requires one to replace the alge-
braM byM⊗Mo, whereMo is the opposite algebra. The

only minimal coupling prescription that is compatible with
modules over the algebraM is given by (33) and (34).
Nonetheless, in order to prepare the discussion of

Sect. 4, we simply quote the action

Sadj(φ,A) = S(φ)

+

∫
d4x
(
(1+Ω2)

(
φ† � (x̃µAµ)�φ+φ� (x̃µAµ)�φ

†
)

−(1−Ω2)
(
φ† �Aµ �φ� x̃µ+φ�Aµ �φ

† � x̃µ
)

−2(1−Ω2)φ† �Aµ �φ�Aµ

+(1+Ω2)
(
φ† �Aµ �Aµ �φ+φ�Aµ �Aµ �φ

†
))
(x) ,
(42)

which is invariant under the adjoint gauge transformation
(40). This is obtained from (7) by the substitution

∂µφ 
→ ∂µφ− i[Aµ, φ]� , x̃µφ 
→ x̃µφ+{Aµ, φ}� . (43)

3 The one-loop effective action

In this section we will calculate the one-loop effective ac-
tion starting from the action S(φ,A) (35). Recall that the
effective action is formally obtained from

e−Γ (A) ≡

∫
DφDφ†e−S(φ,A)

=

∫
DφDφ†e−S(φ)e−Sint(φ,A) , (44)

Fig. 2. Graphical representation for the vertices carrying the
external gauge potential Aµ involved in the action (35). The
overall factor affecting the two uppermost vertices is (1+Ω2).
From left to right, the overall factors affecting the lower vertices
are respectively equal to −2(1−Ω2) and −(1+Ω2)
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Fig. 3. The nonvanishing tadpole diagram. To simplify the
figure, we do not explicitly draw all the diagrams that would be
obtained from the vertices given on Fig. 2 but indicate only the
overall topology of the corresponding diagrams. Notice that
the background lines are not explicitly depicted

Fig. 4. Relevant one-loop diagrams contributing to the 2-point
function. To simplify the figure, we do not explicitly draw all
the diagrams that would be obtained from the vertices given
in Fig. 2 but indicate only the overall topology of the corres-
ponding diagrams. Notice that the background lines are not
explicitly depicted. The leftmost (respectively rightmost) dia-
gram corresponds to the contribution T ′2 (respectively T

′′
2 )

where S(φ) is given by (7) and Sint(φ,A) can be read off
from (35) and (7). At one-loop order, (44) reduces to

e−Γ1loop(A) =

∫
DφDφ†e−Sfree(φ)e−Sint(φ,A) , (45)

Fig. 5. Relevant one-loop di-
agrams contributing to the
3-point function. Comments
similar to those related to
Fig. 4 apply. The rightmost
(respectively two leftmost)
diagram(s) corresponds to
the contribution T ′′3 (respec-
tively T ′3 )

Fig. 6. Relevant one-loop di-
agrams contributing to the
4-point function. Comments
similar to those related to
Fig. 4 apply. Among the up-
per figures, the rightmost
figure (respectively the two
leftmost) diagram(s) corres-
ponds to the contribution
T ′′′4 (respectively T ′4). The
lower diagrams correspond
to T ′′4

where Sfree(φ) is simply the quadratic part of (7). The cor-
responding diagrams are depicted on the Figs. 3–6.
The additional vertices involving Aµ and/or ξµ and

generated by the minimal coupling can be obtained by
combining (11) with (35) and the generic relation

∫
d4x(f1 �f2 �f3 �f4)(x)

=
1

π4θ4

∫ 4∏
i=1

d4xif1(x1)f2(x2)f3(x3)f4(x4)

× δ(x1−x2+x3−x4)e
−i
∑
i<j(−1)

i+j+1xi∧xj .

(46)

These vertices are depicted on Fig. 2. Note that additional
overall factors must be taken into account. These are indi-
cated on Fig. 2.

3.1 The tadpole for the scalar model

Using the expression for the vertices and the minimal coup-
ling, the amplitude corresponding to the tadpole on Fig. 3
is

T1 =
1

π4θ4

∫
d4xd4ud4zAµ(u)e

−i(u−x)∧zC(x+ z, x)

×
(
(1−Ω2)(2x̃µ+ z̃µ)−2ũµ

)
. (47)
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Combining this with the explicit expression for the propa-
gator (10), (47) can be expressed as

T1 =
Ω2

4π6θ6

∫
d4xd4ud4z

×

∫ ∞
0

dte−tm
2

sinh2(Ω̃t) cosh2(Ω̃t)
Aµ(u)e

−i(u−x)∧z

× e−
Ω̃
4 (coth(Ω̃t)z

2+tanh(Ω̃t)(2x+z)2)

×
(
(1−Ω2)(2x̃µ+ z̃µ)−2ũµ

)
. (48)

At this point, we find convenient to introduce the following
8-dimensional vectorsX, J and the 8×8 matrixK defined
by

X =

(
x
z

)
,

K =

(
4 tanh(Ω̃t)I 2 tanh(Ω̃t)I−2iΘ−1

2 tanh(Ω̃t)I+2iΘ−1 (tanh(Ω̃t)+coth(Ω̃t))I

)
,

J =

(
0
iũ

)
. (49)

This permits one to reexpress (48) in a form such that some
Gaussian integrals can easily be performed. Note that this
latter procedure can be adapted to the calculation of the
higher order Green functions (see Sect. 3.2). The combina-
tion of (49) with (48) then yields

T1 =
Ω2

4π6θ6

∫
d4xd4ud4z

∫ ∞
0

dte−tm
2

sinh2(Ω̃t) cosh2(Ω̃t)
Aµ(u)

× e−
1
2X.K.X+J.X

(
(1−Ω2)(2x̃µ+ z̃µ)−2ũµ

)
. (50)

By performing the Gaussian integrals onX, we find

T1 =−
Ω4

π2θ2(1+Ω2)3

∫
d4u

∫ ∞
0

dte−tm
2

sinh2(Ω̃t) cosh2(Ω̃t)

×Aµ(u)ũµe
− 2Ω
θ(1+Ω2)

tanh(Ω̃t)u2

. (51)

Then, inspection of the behaviour of (51) for t→ 0 shows
that this latter expression has a quadratic as well as a log-
arithmic UV divergence. Indeed, by performing a Taylor
expansion of (51), one obtains

T1 =−
Ω2

4π2(1+Ω2)3

(∫
d4uũµAµ(u)

)
1

ε

−
m2Ω2

4π2(1+Ω2)3

(∫
d4uũµAµ(u)

)
ln(ε)

−
Ω4

π2θ2(1+Ω2)4

(∫
d4uu2ũµAµ(u)

)
ln(ε)+ . . . ,

(52)

where ε→ 0 is a cut-off and the ellipsis denotes finite con-
tributions. The fact that the tadpole is (a priori) non-
vanishing is a rather unusual feature for a Yang–Mills-type
theory. This will be discussed more closely in Sect. 4.

3.2 The multi-point contributions

The 2-, 3- and 4-point functions can be computed in a way
similar to the oneused for the tadpole.The algebraicmanip-
ulations are standard but cumbersome so that we only give
the final expressions for the various contributions below.
Let us start with the 2-point function. The regularisa-

tion of the diverging amplitudes is performed in a way that
preserves gauge invariance of the most diverging terms
(which in four dimensions are UV quadratically diverg-
ing) so that the cut-off ε to be put on the various integrals
over the Schwinger parameters, say

∫∞
ε
dt, must be suit-

ably chosen. In the present case, we find that this can be
achieved with

∫∞
ε
dt for T ′′2 , while for T

′
2 the regularisation

must be performed with
∫∞
ε/4 dt. Such an adaptation of the

scheme by hand is not surprising. The one-loop effective
action can be expressed in terms of heat kernels [44],

Γ1loop(φ,A) =−
1

2

∫ ∞
0

dt

t
Tr
(
e−tH(φ,A)− e−tH(0,0)

)

=−
1

2
lim
s→0
Γ (s)Tr

(
H−s(φ,A)−H−s(0, 0)

)
,

(53)

whereH(φ,A) = δ
2S(φ,A)

δφδφ†
. Expanding [45]

H−s(φ,A) =
(
1+a1(φ,A)s+a2(φ,A)s

2+ . . .
)
H−s(0, 0) ,

(54)

we obtain

Γ1loop(φ,A) =−
1

2
lim
s→0
Tr ((Γ (s+1)a1(φ,A)

+sΓ (s+1)a2(φ,A)+ . . . )H
−s(0, 0)

)
.

With Γ (s+1) = 1− sγ+ . . . we have

Γ1loop(φ,A) =−
1

2
lim
s→0
Tr
(
a1(φ,A)H

−s(0, 0)
)

−
1

2
Ress=0Tr ((a2(φ,A)−γa1(φ,A))

×H−s(0, 0)
)
. (55)

The last line is the Wodzicki residue [46], which is a trace
and corresponds to the logarithmically divergent part
of the one-loop effective action. But there is also the
quadratically divergent part − 12 lims→0 Tr (a1H

−s(0, 0))
in the action, which cannot be gauge-invariant. In field-
theoretical language, gauge invariance is broken by the
naive ε-regularisation of the Schwinger integrals and must
be restored by adjusting the regularisation scheme using
methods from algebraic renormalisation [47]. In would
be interesting to check that algebraic renormalisation
methods lead indeed to the replacement ε 
→ ε

4 in T
′
2 . Note

that the logarithmically divergent part is insensitive to a fi-
nite scaling of the cut-off.
After some tedious calculations, we find the following

final expressions for the diagrams on Fig. 4:
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T ′2 =
(1−Ω2)2

16π2(1+Ω2)3

(∫
d4uAµ(u)Aµ(u)

)
1

ε

+
m2(1−Ω2)2

16π2(1+Ω2)3

(∫
d4uAµ(u)Aµ(u)

)
ln(ε)

+
Ω2(1−Ω2)2

4π2θ2(1+Ω2)4

(∫
d4uu2Aµ(u)Aµ(u)

)
ln(ε)

−
Ω4

2π2(1+Ω2)4

(∫
d4u (ũµAµ(u))

2

)
ln(ε)

−
(1−Ω2)2(1+4Ω2+Ω4)

96π2(1+Ω2)4

(∫
d4u Aµ(u)∂

2Aµ(u)

)

× ln(ε)

−
(1−Ω2)4

96π2(1+Ω2)4

(∫
d4u (∂µAµ(u))

2

)
ln(ε)+ . . . ,

(56a)

T ′′2 =−
1

16π2(1+Ω2)

(∫
d4u Aµ(u)Aµ(u)

)
1

ε

−
m2

16π2(1+Ω2)

(∫
d4u Aµ(u)Aµ(u)

)
ln(ε)

−
Ω2

4π2θ2(1+Ω2)2

(∫
d4u u2Aµ(u)Aµ(u)

)
ln(ε)

+
Ω2

16π2(1+Ω2)2

(∫
d4u Aµ(u)∂

2Aµ(u)

)
ln(ε)+ . . .

(56b)

The computation of the 3-point function contributions
can be conveniently carried out by further using the follow-
ing identity:

∫
d4u ũµAµ(u)(Aν �Aν)(u)

=
1

2

∫
d4u

(
ũµAν(u){Aµ, Aν}�(u)

−i(∂µAν(u))[Aµ, Aν ]�(u)+
4

θ2

)
. (57)

The contributions corresponding to the diagrams of Fig. 5
can then be expressed as

T ′3 =
Ω2(1−Ω2)2

8π2(1+Ω2)4

(∫
d4u ũµAν(u){Aµ, Aν}�(u)

)
ln(ε)

+
(1−Ω2)2(1+4Ω2+Ω4)

48π2(1+Ω2)4

×

(∫
d4u

(
(−i∂µAν(u))[Aµ, Aν ]�(u)+

4

θ2

))
ln(ε)

+ . . . , (58a)

T ′′3 =−
Ω2

8π2(1+Ω2)2

×

(∫
d4u

(
ũµAν(u){Aµ, Aν}�(u)+

4

θ2

))
ln(ε)

+
iΩ2

8π2(1+Ω2)2

(∫
d4u (∂µAν(u))[Aµ, Aν ]�(u)

)

× ln(ε)+ . . . (58b)

In the same way, the 4-point contributions depicted on
Fig. 6 are given by

T ′4 =−
(1−Ω2)4

96π2(1+Ω2)4

×

(∫
d4u

(
(Aµ �Aν(u))

2+2(Aµ �Aµ(u))
2
))
ln(ε)

+ . . . , (59a)

T ′′4 =
(1−Ω2)2

16π2(1+Ω2)2

(∫
d4u (Aµ �Aµ(u))

2

)
ln(ε)+ . . . ,

(59b)

T ′′′4 =−
1

32π2

(∫
d4u (Aµ �Aµ(u))

2

)
ln(ε)+ . . . (59c)

Finally, by collecting the various contributions given
above, we find that the effective action Γ (A) can be written
as

Γ (A) =
Ω2

4π2(1+Ω2)3

(∫
d4u

(
Aµ �Aµ−

1

4
ũ2
))

×

(
1

ε
+m2 ln(ε)

)

−
(1−Ω2)4

192π2(1+Ω2)4

(∫
d4u Fµν �Fµν

)
ln(ε)

+
Ω4

8π2(1+Ω2)4

×

(∫
d4u

(
Fµν �Fµν +{Aµ,Aν}

2
�−
1

4
(ũ2)2

))

× ln(ε)+ . . . , (60)

where Aµ(u) = Aµ(u)+
1
2 ũµ and Fµν = ∂µAν − ∂νAµ−

i[Aµ, Aν ]�. To put the effective action into the form (60), it
is convenient to use the following formulae:

∫
d4x Aµ �Aµ =

∫
d4x

(
1

4
x̃2+ x̃µAµ+AµAµ

)
,

(61a)∫
d4x Fµν �Fµν =

∫
d4x

(
16

θ2
−2
(
Aµ∂

2Aµ+(∂µAµ)
2
)

−4i∂µAν [Aµ, Aν ]�− [Aµ, Aν ]
2
�

)
,

(61b)∫
d4x{Aµ,Aν}

2
� =

∫
d4x

(
1

4
(x̃2)2+2x̃2x̃µAµ

+4(x̃µAµ)
2+2x̃2AµAµ+2(∂µAµ)

2

+4x̃µAν{Aµ, Aν}�+{Aµ, Aν}
2
�

)
.

(61c)

The effective action (60) is one of the main results of this
paper. A somewhat similar calculation can be performed
when the transformations correspond to those given in
(40) and the action (42). It turns out that the non-planar
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graphs are UV finite, so that the corresponding effective
action Γadj(A) satisfies

Γadj(A) = 2Γ (A) . (62)

4 Discussion

Let us summarise and discuss the results we obtained. In
this paper, we considered the involutive unital Moyal al-
gebraM in four space dimensions, as described in Sect. 2,
and we focused on noncommutative field theories defined
on M, viewed as a (Hermitian) module over itself. We
started from a renormalisable scalar field theory that can
be viewed as the extension to complex-valued fields φ of
the renormalisable noncommutative ϕ4-theory with a har-
monic term, studied in [17, 19]. By further applying a min-
imal coupling prescription, which we discussed in Sect. 2,
this action is coupled to an external gauge potential and
gives rise to a gauge-invariant action S(φ,A), the point
of departure for the computation of the effective action
Γ (A). The whole analysis is based on the usual algebraic
construction of connections relevant to a noncommuta-
tive framework. As presented in Sect. 2, the modules of
the algebra play the role of the set of sections of vector
bundles of ordinary geometry, while the noncommutative
analogue of gauge transformations are naturally associ-
ated with the automorphisms of (Hermitian) modules. The
fact that M involves only inner derivations implies the
existence of a gauge-invariant connection, which is fur-
ther used as a reference connection. It plays a special role
in the minimal coupling prescription and permits one to
relate the so-called covariant coordinates [1] to a tenso-
rial form built from the difference of two connections. We
also pointed out that scalar fields that transform under
the adjoint representation of the gauge group do not fit
into the above algebraic framework, because noncommuta-
tive gauge transformations are automorphisms of modules
while “adjoint transformations” are automorphisms of the
algebra.
We have computed at the one-loop order the effective

action Γ (A) given in (60), obtained by integrating over
the scalar field φ, for any value of the harmonic oscillator
parameter Ω ∈ [0, 1] in S(φ,A). Details of the calculation
are collected in Sect. 3. We find that the effective action
involves, beyond the usual expected Yang–Mills contri-
bution ∼

∫
d4x Fµν �Fµν , additional terms of quadratic

and quartic order in Aµ (26), ∼
∫
d4x Aµ �Aµ and ∼∫

d4x {Aµ,Aν}2�. These additional terms are gauge in-
variant thanks to the gauge transformation of Aµ (27).
The quadratic term involves a mass term for the gauge
potential Aµ (while such a bare mass term for a gauge po-
tential is forbidden by gauge invariance in commutative
Yang–Mills theories). We further notice that the presence
of a quartic term ∼

∫
d4x {Aµ,Aν}2� accompanying the

standard Yang–Mills term is reminiscent of the occurrence
of (covariance under) Langmann–Szabo duality [36]. Ba-
sically, Langmann–Szabo duality is generated through the
exchange i∂µ� x̃µ, which, upon using (23) and {x̃µ, f}� =

2x̃µf , can be expressed as [ξµ, .]�� {ξµ, .}�. This, com-
bined with (30), therefore suggests that some covariance
under Langmann–Szabo duality would show up whenever
both commutators and anticommutators are involved in
the action. By the way, at the special valueΩ = 1, for which
the scalar model considered in [36] is duality-invariant, the
effective action (60) is fully symmetric under the exchange
[Aµ,Aν ]�� {Aµ,Aν}�.
Recently, a calculation based on the machinery of

Duhamel expansions of the (one-loop) action for the ef-
fective gauge theory stemming from a (real-valued) scalar
theory with harmonic term has been carried out in [39],
extending the previous work [48] dealing with the limit-
ing case Ω = 1. The scalar theory considered in [39] was
somewhat similar to the one described by the action (42)
together with transformations as those given in (40). The
analysis was performed within the matrix base. It can
easily be verified that our result for the effective action
Γadj(A) agrees globally with the one given in [39], up to
unessential numerical factors. Notice that the calculations
are easier within the x-space formalism even when Ω �= 1.
At this point, one important comment on (60) is in

order. The fact that the tadpole is non-vanishing (see (52))
is a rather unusual feature for a Yang–Mills-type theory.
This non-vanishing implies automatically the occurrence
of the mass-type term

∫
d4x Aµ �Aµ as well as the quartic

term
∫
d4x {Aµ,Aν}2�. Keeping this in mind together with

the expected impact of Langmann–Szabo duality on renor-
malisability, it is tempting to conjecture that the following
class of actions:

S =

∫
d4x

(
α

4g2
Fµν �Fµν +

Ω′

4g2
{Aµ,Aν}

2
�+
κ

2
Aµ �Aµ

)
,

(63)

involves suitable candidates for renormalisable actions for
gauge theory defined on Moyal spaces. Recall that the
naive action for a Yang–Mills theory on the Moyal space,
∼
∫
d4x Fµν �Fµν , exhibits UV/IR-mixing [37, 38], mak-

ing its renormalisability quite problematic. In (63), the
second term built from the anticommutator may be viewed
as the “gauge counterpart” of the harmonic term ensur-
ing the renormalisability of the ϕ4-theory investigated
in [17], while α,Ω′ and κ are real parameters and g denotes
some coupling constant. According to the above discus-
sion, the presence of the quadratic and quartic terms in
Aµ in (63) will be reflected in a non-vanishing vacuum
expectation value for Aµ. The consequences of the pos-
sible occurrence of this non-trivial vacuum remain to be
understood and properly controlled in view of further
gauge-fixing of a (classical) gauge action stemming from
(63) combined with a convenient regularisation scheme
(that could be obtained by some adaptation of [49, 50]).
We will come back to these points in a forthcoming
publication.
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