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2 R. Wulkenhaargauge invariant, because ~�(G ) does not commute with D : Usually, one restoresgauge invariance by adding gauge �elds A minimally coupled to the fermions.The gauge �eld A and its action on  are determined by the condition thatthere exist transformations of A under G that compensate the disturbing partof the transformation of  �D : Second, if the action of only a subgroup G0 ofG commutes with fM ; then the mass term  �fM of the Dirac Lagrangian isnot gauge invariant. In this case, one restores gauge invariance by extendingthe fermionic mass matrix to Higgs �elds fM+� with appropriate transformationbehavior. Thus, the gauge invariant fermionic action can be written symbolically(i.e. up to signs and constants of the order one) asSinvF = ZX dx  �(D+ fM+A + �) : (2)Moreover, one wishes to have a dynamics for the �elds A and � : This is achievedby adding the free bosonic actionSfreeB = ZXdx (hdA;dAi2 + hd(�+fM);d(�+fM)i1) ; (3)where h ; i2 and h ; i1 are appropriate scalar products. However, the action SfreeB isnot gauge invariant, one has to add interaction terms for A and � : Moreover, thevacuum expectation value of �+fM must be just the mass matrix fM in order toreproduce the correct fermionic sector. This is achieved by adding quartic inter-action terms V (�+fM) such that �+fM = fM is a local minimum of V (�+fM) :Here, one has to implement the desired spontaneous symmetry breaking scheme4), which in some gauge theories is already determined by the fermionic massmatrix fM : However, in extended theories, one may need supplementary infor-mation on the spontaneous symmetry breaking scheme that is not contained infM : In summary, the invariant bosonic action has the symbolic formS invB = ZXdx � hdA+A2;dA+A2i2+h(d+A)(�+fM); (d+A)(�+fM)i1 + V (�+fM)� : (4)We see that our input data 1) { 4) should su�ce to reconstruct a complete classicalgauge �eld theory. In particular, the fermionic sector determines candidates forthe bosonic con�guration space. Of course, the actions (2) and (4) are not unique,but we can �x much of the ambiguity by a minimal choice of A and � :Usually, the above construction scheme is carried out more or less by hand.This is not di�cult, for example, in the case of the standard model. However, ingrand uni�ed theories with very large Higgs multiplets this is a highly non-trivialpuzzle. One may wish to have a machinery at disposal which is able to do thiswork. This machinery should consist of an algorithm which has to be fed withthe data 1) { 4) as the input and which returns the desired action, in particular,



Graded di�erential Lie algebras and model building 3the Higgs multiplets and the Higgs potential. This paper is a sketch of such amachinery, which even does much more: It also returns tree-level predictions forthe masses of Yang{Mills and Higgs �elds.An idea how to �nd this machinery is inspired by the following observation[23]: The gauge �eld A is a vector �eld and the Higgs �eld � a scalar �eld.From that point of view, both are completely di�erent objects. However, in theabove sketch they play precisely the same rôle. Both A and � occur via minimalcoupling in the fermionic action (2) and restore in this way the gauge invariance.Both have the same type of kinetic Lagrangians (3). Both occur as fourth orderpolynomials in the bosonic action (4). Moreover, also D and fM play the samerôle. All that may be an accident. But accidents have often inspired new theories.It might be promising to search for a new type of mathematics that deals withvector and scalar �elds in the same way. Such mathematics does already exist inform of Alain Connes' non-commutative geometry [7]!2. Non-commutative geometry2.1. General remarksThe evolution of non-commutative topology started with Gel'fands discovery thatthe unital C�-algebra C(X) of continuous functions over a compact manifold Xcontains all information about that manifold: Given C(X) one can reconstructthe manifold X (up to homeomorphisms) as the set of characters. In the otherdirection, each commutative unital C�-algebra is isomorphic to C(X) for a cer-tain compact manifold X : This language was transcribed to the case that theC�-algebra is not commutative, and one considers general C�-algebras as func-tion algebras over \non-commutative manifolds". This programme, to dualizegeometric or topological objects and to deform them within the dual picture,has been very successful. It led for instance to algebraic K-theory and quantumgroups.2.2. The Connes{Lott prescriptionGel'fands theorem establishes the duality between the function algebra C(X) andthe topology of X : The discovery of Connes [9, 7] was that, taking in additionthe Dirac operator acting on the spinor Hilbert space, one can also recover themetric properties of X : It is possible to reconstruct the distance between twopoints and the de Rham complex. Formalizing this method, Connes introducedthe basic object of non-commutative geometry, the K-cycle or2 spectral triple:De�nition 1 A K-cycle (A; h;D; �;�) over a unital associative �-algebra A isgiven by2We prefer the ancient notation `K-cycle'.



4 R. Wulkenhaari) an involutive representation � of A in the algebra B(h) of bounded operatorson a Hilbert space h ;ii) a (possibly unbounded) selfadjoint operator D on h such that (1B(h) +D2)�1is compact and for all a 2 A there is [D; �(a)] 2 B(h) :The K-cycle is called even i� in addition there is a selfadjoint operator � on h ;ful�lling �2 = 1B(h) ; �D +D� = 0 and ��(a)� �(a)� = 0 ; for all a 2 A :Non-commutative geometry (NCG) as sketched above seems to be perfectlyadapted to the setting 1) { 4): For technical reasons one �rst has to pass from thespace-time manifold to a compact Euclidian spin manifoldX. Then, the fermions constitute the Hilbert space h : Next, one chooses the selfadjoint operator Dof De�nition 1 to be equal to D + fM on physical fermions  : A matrix algebraAM is chosen in such a way that the gauge group G = C1(X)
G is isomorphicto the group of unitary elements of the algebra A = C1(X) 
 AM : The action� = id
�0 ofA = C1(X)
AM on h is the extension3 of the group representation~� = id
~�0 of G = C1(X)
G on the fermions  : At the very end, one returns toan inde�nite metric by a Wick rotation. Chiral fermions are obtained by meansof a chirality condition via the operator � :To any K-cycle (A; h;D; �;�) there is canonically associated a di�erentialalgebra 
�DA : One considers the universal graded di�erential algebra 
�A overthe algebra A of the K-cycle,
�A = 1Mn=0 
nA ; 
nA = �P� a0� da1� da2� : : : dan�	 ; (5)where d is the universal di�erential and ai� 2 A : In particular, 
0A �= A : Onede�nes a linear representation � of 
�A on the Hilbert space h by [25]�(a0 da1 da2 : : : dan) := �(a0) � [�iD; �(a1)] � [�iD; �(a2)] � � � [�iD; �(an)] : (6)One remarks that �(
�A) is not a di�erential algebra. Fortunately, this defectcan be repaired, and the canonical graded di�erential algebra is
nDA= 1Mn=0 
nDA ; 
nDA := 
nA = ((ker� + d ker�) \ 
nA)�= �(
nA) = �(d ker� \ 
nA) : (7)For the physically interesting case of even K-cycles over a subalgebra ofC1(X)C
MFC and generalized Dirac operators of the form D = D
1F +5
M ; a gener-ally applicable construction of 
�DA has been given in [18]. The non-commutativegauge potential is an element of 
1DA and the �eld strength an element of 
2DA :Using invariant scalar products one de�nes bosonic and fermionic actions [7, 9]. Afurther improvement is a new spectral action principle [2, 3] that gives a couplingof the Yang{Mills ({Higgs) action to Einstein plus Weyl gravity.3Provided that this is possible!



Graded di�erential Lie algebras and model building 52.3. Application to the standard modelThis NCG-prescription has proved very successful in reformulating the standardmodel. There exists an \old scheme" initiated by Connes and Lott in [9], see also[7, 19, 20, 25, 16], and a \new scheme" based upon real structures introducedby Connes in [8], see also [17, 23, 1] for the application to model building. Thealgebra A and its group of unitary elements U(A) are given byAold =C1(X)
 �(H�C)� (M3C�C)� ;U(Aold) =C1(X)
 (SU(2)� U(1)� U(3)� U(1)) ;Anew =C1(X)
 (H�C�M3C) ;U(Anew) =C1(X)
 (SU(2)� U(1)� U(3)) : (8)The additional U(1)-groups are eliminated by unimodularity conditions. Themost important improvement compared with the usual formulation of the stan-dard model is that the non-commutative gauge potential contains both thesu(3)� su(2)�u(1) Yang{Mills �elds and the complex Higgs doublet. Moreover,the bosonic action contains the Yang{Mills Lagrangian, the covariant derivativesof the Higgs �elds and the Higgs potential in a uni�ed form. The fermionic ac-tion uni�es the gauge �eld couplings with the Yukawa-couplings. Numerically,one gets a very promising \fuzzy" relation between the mass of the W boson andthe mass of the top quark, and the prediction for the mass of the Higgs �eld iscompatible with LEP precision experiments, see [7, 8, 17, 16, 1, 23, 19].2.4. The Mainz{Marseille modelThere exists a di�erent NCG-formulation of the standard model [11, 10, 12, 14]elaborated by groups in Mainz and Marseille. This formulation leads to the sameuni�cation of the Yang{Mills and Higgs sectors in the bosonic and fermionic ac-tions. The essential mathematical di�erence is the use of the graded Lie algebra�� 
 su(2j1) of di�erential form-valued matrices as the starting point instead ofK-cycles and di�erential algebras constructed thereof in the Connes{Lott pre-scription. The essential physical di�erence is that the purely bosonic sector ofthe standard model can be formulated. This is in contrast to the Connes{Lottmodel, where the bosonic sector can only be reproduced if at least two generationsof fermions occur in nature (which is the case, of course). The Mainz{Marseillemodel yields no relations between fermion and boson masses, but an interestingrelation between the Cabibbo angle and quark masses can be obtained [10, 15].The inseparable tie between bosons and fermions in the Connes{Lott model,which is responsible for relations between fermion and boson masses obtained inthat model, has been criticized by the Mainz{Marseille group, mainly for tworeasons: First, purely bosonic theories are mathematically interesting as well.Second, relations between fermion and boson masses do not survive the usual



6 R. Wulkenhaarquantization procedure. However, there exist examples where parameter relationsthat are not stemming from a symmetry of the theory are respected on quantumlevel, see [29]. Thus, our point of view is to consider the interpretation of themass relations in the Connes{Lott model as a challenge for the future.2.5. Non-commutative geometry and grand uni�cationThe overwhelming success of non-commutative geometry leads to the expectationthat its application to other gauge �eld theories should not be di�cult. However,if one follows the Connes{Lott prescription one runs into certain problems. Itwas shown in [22] that, besides the standard model, there are only two more orless realistic models which can be constructed within the above understanding ofNCG: the SU(4)PS�SU(2)L�SU(2)R-model and the SU(3)C�SU(2)L�SU(2)R�U(1)B�L-model. However, if one additionally demands a real structure [8] for theK-cycle, then also these two models are ruled out. The only more or less realisticphysical model that is compatible with the most elegant NCG-prescription isthe standard model! It is certainly too early to judge from experimental resultswhether the standard model is correct or not. At least there exist good reasons[21] why one could be interested in Grand Uni�ed Theories (GUT's): GUT'sexplain the quantization of electric charge, yield a fairly good prediction for theWeinberg angle, explain the convergence of running coupling constants at highenergies, include massive neutrinos to solve the solar neutrino problem, producethe observed baryon asymmetry of the universe, etc. Unfortunately, the resultsof [22] imply that one needs additional structures or di�erent methods for aNCG-formulation of these models.The perhaps most successful NCG-approach towards grand uni�cation wasproposed by Chamseddine, Felder and Fr�ohlich. In the SU(5)-model [4, 5], theauthors start to construct an auxiliary K-cycle. Within this framework theyconstruct the bosonic sector. Then they interpret some of these bosonic quantitiesas Lie algebra valued and consider Lie algebra representations on the physicalHilbert space to obtain the fermionic sector. This procedure is a systematicrealization of the gauge theory construction programme set up at the beginning.However, an aesthetic shortcoming of that approach is the auxiliary character ofthe K-cycle, which of course is inevitable in view of [22]. The SO(10)-model [6] byChamseddine and Fr�ohlich �ts well4 into the NCG-scheme. The reason why thismodel was excluded in [22] is that only models possessing complex fundamentalirreducible representations were admitted in that article.It turns out that only a slight modi�cation of the Connes{Lott prescriptionenables the formulation of a large class of physical models without additionalstructures. A sketch of that formulation and of its application to interestingphysical models is the concern of this paper.4Nevertheless, the use of Lie algebras instead of algebras could probably justify certainassumptions made in [6].



Graded di�erential Lie algebras and model building 73. A modi�cation of non-commutative geometryLet us investigate why the most elegant NCG-prescription is so restrictive toadmissible models. The obstruction is the extension of the representations ofthe gauge group G = C1(X) 
 G to representations of the unital associative�-algebra A = C1(X)
AM containing G as the set of unitary elements. That~� = id
~�0 is a representation of G on the Hilbert space h means that~�0(g1) ~�0(g2) = ~�0(g1g2) ; 8g1; g2 2 G : (9)The representation ~�0 of the matrix group G should coincide with the represen-tation �0 of the matrix algebra AM on the subset G � AM ;�0(g1) �0(g2) = �0(g1g2) ; 8g1; g2 2 G � AM : (10)It is perhaps not the problem to extend the multiplication rule (10) to the en-tire matrix algebra AM : The essential problem is that this extension must becompatible with linear operations,�1�0(a1) + �2�0(a2) = �0(�1a1 + �2a2) ; 8a1; a2 2 AM ; 8�1; �2 2 R : (11)Addition and multiplication by scalars are not de�ned on G ; and the represen-tation ~�0 does not care whether it is linear or not. A priory, there are two typesof irreducible representations that ful�l (11): the identity and { in the case ofreal algebras { the complex conjugation. In general, this is all what is possible.We see: The reason why the most elegant NCG-prescription [8] is so restrictive isthat it is compatible only with linear representations of the matrix group. Mostof the grand uni�ed theories are not of that type.Fortunately, our observation also shows the way how to overcome the restric-tion: We propose to linearize the matrix group, which means to work withinthe tangent space at a �xed group element, for instance the unit element. Thetangent space at the unit element is isomorphic to the Lie algebra a of G : Thus,the Lie algebra g = C1(X)
a of the gauge group G = C1(X)
G is the correctobject to use, not an algebra extending G : The linearized group multiplication isdescribed by the commutator of Lie algebra elements. It is clear that the repre-sentation of a Lie group induces a representation of its Lie algebra. The point isthat this Lie algebra representation is always linear.In analogy to the procedure in non-commutative geometry we formalize ourobservation. We simply replace in De�nition 1 the unital associative �-algebra Aby a skew-adjoint Lie algebra g : The outcome can no longer be called a K-cycle;I propose the name \L-cycle", where the letter L stands for Lie (and it is thenext letter in the alphabet):De�nition 2 An L-cycle (g; h;D; �;�) over a skew-adjoint Lie algebra g is givenby



8 R. Wulkenhaari) an involutive representation � of g in the Lie algebra B(h) of bounded oper-ators on a Hilbert space h ; i.e. (�(a))� = �(a�) � ��(a) ; for any a 2 g ;ii) a (possibly unbounded) selfadjoint operator D on h such that (idh+D2)�1 iscompact and for all a 2 g there is [D; �(a)] 2 B(h) ; where idh denotes theidentity on h :iii) a selfadjoint operator � on h ; ful�lling �2 = idh ; �D+D� = 0 and��(a)��(a)� = 0 ; for all a 2 g :It seems obvious that our concept is perfectly adapted to the setting 1) { 4)at the beginning5: In the same way as in the Connes{Lott formulation we startwith the construction of a Euclidian gauge �eld theory. Again, the Euclidianfermions  constitute our Hilbert space h : For technical reasons it may some-times be necessary to work with several copies of the fermions. The Lie algebrag = C1(X) 
 a is simply the Lie algebra of the gauge group G ; up to possi-ble modi�cations if U(1)-groups occur (see footnote 5). We assume that X hasa trivial topology in order to avoid discussions of transition functions betweendi�erent charts of the manifold. The Lie algebra representation � = id
�̂ isjust the di�erential ~�� of the group representation ~� = id
~�0 : The selfadjointoperator D is chosen in such a way that on physical fermions it equals D + fM :The operator � represents the chirality properties of the fermions. Finally, onereturns to Minkowski space by a Wick rotation and imposes a chirality conditionfor the fermions  by means of �:The programme of our approach is clear: We \simply" have to transcribe theConnes{Lott prescription of non-commutative geometry to our case. However,this is not as easy as one probably expects. The associativity of the algebra andthe existence of a unit element are very powerful tools. Without them we areforced to go long detours where non-commutative geometry uses short cuts.4. The general schemeNow for the sketch of the construction in the general context, without relationto physical models. A detailed exposition of our techniques can be found in [26].In analogy to the �rst step in the Connes{Lott prescription we enlarge our Liealgebra g to a universal graded di�erential Lie algebra 
�g : One can imagine
�g as the set of repeated graded commutators of g and dg ; where dg is a secondcopy of g : Thus, elements ! 2 
�g have the form! = X�;z�0[vz�; [vz�1� ; [: : : ; [v1�; v0�] : : : ]]] ; �nite sum ; (12)5There can occur obstructions and modi�cations if Abelian Lie groups are present. Inparticular, a purely Abelian gauge �eld theory can be constructed only with partial success. Insome cases, Abelian Lie algebras are automatically generated. If such a Lie algebra is desired,one can omit this part when deriving the Lie algebra g out of G :



Graded di�erential Lie algebras and model building 9where vi� either belongs to g or dg : The vector space 
�g is N-graded. Thehomogeneous element [vz; [vz�1; [: : : ; [v1; v0] : : : ]]] belongs to 
ng i� n elementsof fv0; : : : ; vzg belong to dg : The graded commutator [ ; ] is compatible withthat grading structure; one has [
kg;
lg] � 
k+lg : Moreover, [ ; ] respects theusual graded antisymmetry and the graded Jacobi identity. The symbol d isextended to a graded di�erential on 
�g ; it is nilpotent and obeys the gradedLeibniz rule. The graded Lie algebra 
�g is universal in the following sense: Eachgraded di�erential Lie algebra generated by �(g) and d�(g) can be obtainedby factorization of 
�g with respect to a di�erential ideal. For instance, theinformation contained in an L-cycle determines uniquely such a di�erential ideal.Thus, there is a canonical graded di�erential Lie algebra 
�Dg associated to anL-cycle.To �nd this di�erential Lie algebra, we represent 
�g on the Hilbert space h ;using the data speci�ed in the L-cycle. This representation extends the represen-tation � of the L-cycle and is de�ned by�(da) = [�iD; �(a)] ;�([!k; ~!l]) = [�(!k); �(~!l)]g := �(!k)�(~!l)� (�1)kl�(~!l)�(!k) ; (13)for a 2 g ; !k 2 
kg and ~!l 2 
lg : Here, it is essential to have the gradingoperator � ; which detects the correct sign for (�1)kl :As one expects from the Connes{Lott formulation, the representation � doesnot transport the di�erential d on 
�g to a di�erential on �(
�g) : To cure this,we use the usual trick of non-commutative geometry. One shows thatJ �g = ker � + d ker � � 
�g (14)is a graded di�erential ideal of 
�g : Factorizing out the \junk" J �g we obtainthe graded di�erential Lie algebra 
�Dg ;
�Dg = 1Mn=0 
nDg ; 
nDg = 
ngJ ng �= �(
ng)�(J ng) : (15)The di�erential and the commutator are de�ned as usual for equivalence classes.It is extremely useful to introduce a linear map � from 
�g to (possiblyunbounded) operators on h : The operator � is odd with respect to the Z2-gradingand is within the same notations as before de�ned by�(a) = 0 ; �(da) = [D2; �(a)] ;�([!k; ~!l]) = [�(!k); �(~!l)]g + (�1)k[�(!k); �(~!l)]g : (16)The importance of the map � is that it measures the defect if one represents theuniversal di�erential d by graded commutators with �iD ;�(d!k) = [�iD; �(!k)]g + �(!k) ; !k 2 
kg : (17)



10 R. WulkenhaarIn particular, taking !k 2 ker � ; we get�(J k+1g) = f �(!k) ; !k 2 
kg \ ker � g : (18)This characterization of �(J �g) is especially convenient, because �(!k) is derivedsuccessively from lower degrees, see (16). Indeed, this is the way how we caneventually compute �(J �g): The real problem is to �nd �(
1g) : Then we derivefor k � 2 by induction a formula for �(!k) for given �(!k) : Clearly, �(!k) isnot uniquely de�ned by �(!k) ; and this ambiguity is nothing but �(J k+1g) :However, the explicit realization of this line is not done within a couple of pages.We also point out that, once knowing �(!k) ; formula (17) provides the explicitdi�erentiation rule for elements of 
�Dg :In the Connes{Lott formulation of non-commutative geometry, all work isdone at this point. There, the connection form is simply an element of 
1DAand the curvature an element of 
2DA : It is straightforward to write down thefermionic and bosonic actions. In our case, the situation is di�erent. If onetries to �nd a reasonable de�nition for the connection (the covariant derivative),one encounters more freedom than one expects. Moreover, it is not possibleto describe gauge �eld theories containing U(1)-groups if one takes 
1Dg-valuedconnection forms. Therefore, an additional structure is necessary: Not the gradeddi�erential Lie algebra 
�Dg is the correct space where the connection form and thecurvature live, but the space of certain graded Lie endomorphisms of 
�Dg : Thisis not completely unreasonable. For instance, connections within the frameworkof �nite projective modules [24] are of a similar type. Formally, we introduce thespace H�g = Ln2NHng of certain graded Lie homomorphisms of �(
�g) : Thespace Hng consists of linear (possibly unbounded) operators on h of Z2-degree nmod 2 ; which raise the N-degree of �(
�g) and �(J �g) by n ;[Hng; �(
kg)]g � �(
k+ng) ; [Hng; �(J kg)]g � �(J k+ng) : (19)Factorizing H�g with respect to its graded centralizer ~c�g in �(
�g) and the ideal�(J �g) ; we obtain the graded Lie algebraĤ�g :=Mn2N Ĥng ; Ĥng := Hng = (�(J ng) + ~cng) : (20)The di�erential and the commutator on Ĥ�g are de�ned as usual for dual spaces:via the graded Leibniz rule and the graded Jacobi identity. From our de�nitionsit is clear that �(
ng) � Hng ; 
nDg=~cng � Ĥng : (21)In some sense, this framework is an extension of the primary spaces �(
�g) and
�Dg :



Graded di�erential Lie algebras and model building 11The formal de�nition of a connection on L-cycles is given in [26]. Here, weshall only quote the result: A connection r acting on 
�Dg is closely related tothe covariant derivative rh acting on the Hilbert space h : The general form ofthese two objects isrh = �iD + � ; r = d+ [~� ; : ]g ; � 2 H1g ; ~� := �+ ~c1g 2 Ĥ1g : (22)The Lie homomorphism � is called the connection form (gauge potential). Thecurvature (�eld strength) of the connection r isr2 = [�; : ] ; � = d~�+ 12f~�; ~�g 2 Ĥ2g : (23)We see that our formulae look very similar to what one knows from NCG or classi-cal gauge �eld theory. However, we have no control over the space of connectionsin that general context. All what we know is that elements of 
1Dg are possibleconnection forms, but it is completely unclear what else. Also the operations d~�and f~�; ~�g are di�cult to perform, because they are only indirectly de�ned. It isa visible complication compared with the Connes{Lott prescription to �nd notonly 
�Dg but also Ĥ�g (up to second degree).The group U(g) obtained via the exponential mapping of a neighbourhoodof the zero element of H0g plays the rôle of a gauge group in our approach.Comparing for a physical model this group with the original gauge group Gwe had started with, we see that the global topology of G cannot always bereconstructed. But for most physical applications it su�ces to know the gaugegroup locally. One can de�ne an adjoint representation Ad of U(g) on 
�Dg : Localgauge transformations are given byr 7!AdurAdu� ; rh 7! urhu� ;� 7! udu�1 + u�u� ; � 7!Adu (�) ;  7! u ; (24)where u 2 U(g) and  2 h : The bosonic and fermionic actions are de�ned in thesame way as in the Connes{Lott prescription: Using the Dixmier trace Tr! wede�ne the bosonic actionSB(r) := minj22~c2g+�(J 2g)Tr!((�0 + j2)2 jDj�d) ; (25)where �0 2 H2g is any representative of � : For the fermionic action we use thescalar product on the Hilbert space:SF ( ;rh) := h ; irh ih ;  2 h : (26)Both SB and SF are invariant under gauge transformations (24).



12 R. Wulkenhaar5. functions 
 matricesIn physical applications one is especially interested in the case that the Lie algebrag is the tensor product of the algebra of functions on the space-time manifoldX and a matrix Lie algebra a : We are able to handle this situation. However,it turns out that we must impose restrictions on the matrix Lie algebra. If a issemisimple then there are no problems at all. The situation that a is Abeliancan not be satisfactorily treated. We are able to deal with L-cycles over the Liealgebra g = C1(X)
 (a0 � a00) ; (27)where C1(X) is the algebra of real smooth functions over the (four dimensional)space-time manifold, a0 is a semisimple Lie algebra and a00 an optional AbelianLie algebra. For a00 we have to impose constraints on the representations. Re-markably, for the models I considered so far, the u(1)-representations realized innature are admissible. The Hilbert space ish = L2(X;S)
CF ; (28)where L2(X;S) is the Hilbert space of square integrable sections on the spinorbundle over X : The representation � of g on h is given by� = id
�̂ ; (29)where �̂ is a representation of a0 � a00 on CF : The selfadjoint operator D of theL-cycle is D = D
 1F + 5 
M ; (30)where D and 5 are the Dirac operator of the spin connection and the chiralityoperator on L2(X;S) :Moreover,M is a symmetrical complex F�F -matrix suchthat there exists a symmetrical F �F -matrix �̂; ful�lling �̂2 = 1F ;M�̂ = ��̂Mand �̂(a)�̂ = �̂�̂(a) ; for all a 2 a : Then, the chirality operator is� = 5 
 �̂ : (31)As mentioned before, the representation �̂(a00) is not arbitrary, we have aconstraint relation between M and �̂(a00) ; see [26]. Observe that the tuple(a;CF ;M; �̂; �̂) itself forms an L-cycle. In some sense, the L-cycle (g; h;D; �;�)is the product of the Dirac K-cycle (C1(X); L2(X;S);D; 5) with the matrixL-cycle (a;CF ;M; �̂; �̂) :One may ask how the spaces �(
�g); �(J �g) and 
�Dg depend on the geomet-ric objects of the underlying Dirac K-cycle and the matrix L-cycle. It turns outthat �(
�g); �(J �g) and 
�Dg can be universally written as a sum of tensor prod-ucts of di�erential forms of homogeneous degree (partly coboundaries only) with



Graded di�erential Lie algebras and model building 13certain commutators and anticommutators of homogeneous subspaces of �̂(
�a)and �̂(J �a) : Thus, if one has complete knowledge of �̂(
�a) and �̂(J �a) ; thenalso �(
�g); �(J �g) and 
�Dg are known. The formulae of lowest degree read:�(
0g) = �0 
 (�̂(a0)� �̂(a00)) ;�(
1g) = (�1 
 �̂(a0))� (B1 
 �̂(a00))� (�05 
 �̂(
1a)) ;�(
2g) = (�2 
 �̂(a0))� (�15 
 �̂(
1a))� (�0 
 (�̂(
2a) + f�̂(a); �̂(a)g)) ;�(J 0g) = 0 ; �(J 1g) = 0 ; �(J 2g) = �0 
 (�̂(J 2a) + f�̂(a); �̂(a)g) ;
0Dg= �(
0g) ; 
1Dg = �(
1g) ; (32)
2Dg= (�2 
 �̂(a0))� (�15 
 �̂(
1a))�(�0 
 �(�̂(
2a) + f�̂(a); �̂(a)g) mod (�̂(J 2a) + f�̂(a); �̂(a)g)�) :Here, �k is the space of k-di�erential forms, B1 = d�0 � �1 the space of 1-co-boundaries andf�̂(a); �̂(a)g = f P�f�̂(a�); �̂(~a�)g ; a�; ~a� 2 a ; �nite sum g : (33)For higher degrees, the formulae for the matrix part belonging to a �xed space ofk-di�erential forms become more and more complicated. Corresponding formulaein usual NCG formulations are less di�cult, because an associative algebra doesnot care, at which sites in the product !1 � !2 � � � � � !n one inserts bracketsdistinguishing commutators and anticommutators. As it can be seen, the AbelianLie algebra a00 plays a special rôle. For instance, if the connection form � belongsto 
1Dg ; then the �eld strength of a u(1)-gauge �eld is always zero. That u(1)-gauge �elds can have a non-vanishing �eld strength in our theory is due to theextension of 
1Dg to Ĥ1g :An additional feature of L-cycles over functions 
 matrix Lie algebra is thepossibility to consider local connections. For local connections, the connectionform � commutes with functions. Therefore, it has the decomposition� 2 (�1 
 r0a)� (�05 
 r1a) ; (34)where r0a and r1a are certain subspaces of MFC : The de�ning equations (19),decomposed according to their di�erential form degree, yield certain equations forcommutators and anticommutators of r0a and r1a with �̂(
�a) and �̂(J �a) : Theseequations and Z2-grading properties and involution identities make it possible to�nd the space of gauge potentials (34). Moreover, one also gets a decompositionfor the ideal J2g := ~c2g + �(J 2g) commuting with functions, which we need towrite down the bosonic action (25):J2g = (�0 
 c2a)� (�15 
 c1a)� (�2 
 (c0a+�̂(J 2a)+f�̂(a); �̂(a)g)) : (35)Again, one �nds certain equations between cia and �̂(
�a) that make it possibleto determine J2g : For the computation of the bosonic action one makes use



14 R. Wulkenhaarof the fact that in the present situation one can express the Dixmier trace bya combination of the usual trace over the matrix structures (including gammamatrices) and integration over the space-time manifold.6. Electrodynamics and standard modelOne can try to formulate the chiral spinor electrodynamics within our approach.However, since the Lie algebra to use is purely Abelian, there occur certain prob-lems. It is no problem to get the correct fermionic action. In particular, thephoton has the usual properties and a non-vanishing classical curvature. Never-theless, in our approach we get a vanishing curvature and, therefore, no bosonicaction.The reformulation of the standard model [27] is more successful. The L-cycleis the direct transcription of the physical situation. Clearly, the Lie algebra touse is C1(X) 
 (su(3) � su(2) � u(1)) : We can formulate the standard modelwith or without right neutrinos. For a generic mass matrix, the generalized gaugepotential � contains the usual Yang-Mills �elds of the standard model and onecomplex Higgs doublet. The bosonic Lagrangian includes the Yang{Mills part,the covariant derivative of the Higgs �elds and the well-known quartic Higgspotential. Three Higgs components are absorbed by the Higgs mechanism andgive mass to the W� and Z bosons. One massive scalar Higgs �eld survives. Inthe same way as in the Connes{Lott prescription we obtain tree-level predictionsfor all bosonic masses. For the simplest scalar product we �nd in the case thatright neutrinos are includedmW = 12mt ; mZ = mW= cos �W ; sin2 �W = 38 ; mH = 32mt : (36)Without right neutrinos, the only modi�cation is mH = q4320mt : Here,mt; mW ; mZ; mH are the masses of the top quark, the W bosons, the Z bo-son and the Higgs boson. The photon and the gluons remain massless. TheWeinberg angle �W coincides with the SU(5)-GUT prediction. Moreover, weget the same coupling constants for the weak and strong interactions. In theConnes{Lott formulation of non-commutative geometry one uses the algebraA = C1(X) 
 (M3C � H � C) to derive the standard model, together witha rather complicated representation of A : For the simplest scalar product6, thenumerical results are [20]mW = 12mt ; mZ = mW= cos �W ; sin2 �W = 1229 ; mH =q6928mt � 1:57mt :(37)Thus, we see that our predictions do not di�er very much from the standardNCG-prescriptions.6In the meantime one prefers to use the whole class of compatible scalar product to obtain\fuzzy mass relations", see [1, 16, 17, 23].



Graded di�erential Lie algebras and model building 157. The ipped SU(5)� U(1)-grand uni�cation modelThis section is a summary of our analysis [28] of the ipped SU(5)�U(1)-model.For the classical treatment of that model see [13].7.1. The matrix L-cycleThe matrix L-cycle is given by the following data: The matrix Lie algebra isa = su(5) : Nevertheless, we will obtain an additional u(1)-gauge �eld and U(1)-gauge transformations due to the extension of �(
1g) to H1g : Remarkably, therepresentation of that u(1)-gauge �eld on the fermionic Hilbert space is uniqueand realized in nature7! The internal Hilbert space is C192 : This means that wemust deal with huge matrices, a problem which should not be underestimated.The strange number 192 = 4 � 48 arises because there are 48 fermions in nature(including right neutrinos), and we need four copies of them: Two copies becausewe need particles and antiparticles in one representation (the SU(5) exchangesparticles and antiparticles { proton decay!), and an additional doubling to includethe essential grading operator. The 48 fermions occur in three generations, eachgeneration contains 16 fermions. These 16 fermions are assigned to the su(5)-representations 10; 5�; 1 : Now, for a 2 su(5) we de�ne the representation �̂ of theLie algebra su(5) of our matrix L-cycle in terms of 48� 48-block matrices
�̂(a) = 0BBBBB@ Â 0 0 00 Â 0 00 0 Â 00 0 0 Â

1CCCCCA : (38)
In terms of the decomposition C48 = (10� 5� � 1)
C3 we haveÂ = diag ��10(a)
 13 ; �5(a)
 13 ; 03� : (39)Here, �5(a) = a is the adjoint representation 24 of su(5) and �10(a) the embeddingof 24 into End(10) = 1 � 24 � 75 : The fact that the su(5) representations aretensorized by 13 means that the gauge group does not distinguish between thethree generations of fermions.The mass matrixM of the L-cycle consists of two di�erent contributions. The�rst one is diagonal and the other one o�-diagonal in the sense of the indicated7This is a purely algebraic result, for which I have no geometric interpretation. I supposethat this has something to do with anomaly-freedom of the model.



16 R. Wulkenhaardecomposition into two by two blocks in (38):M = 0BBBB@ 0 Mi Mf 0M�i 0 0 MfM�f 0 0 Mi0 M�f MTi 0
1CCCCA : (40)The 48�48-matrixMf =MTf is the fermionic mass matrix. A convenient pictureis to imagine the two{two structure as the left{right decomposition. Since massterms exchange left and right fermions, they must stand in the o�-diagonal blocks.With this picture in mind it is not di�cult to assign the 3�3-fermion mass matri-ces Mu;Md;Me;Mn;MN to the 16� 16-block matrixMf : Here, Mu is the massmatrix for the (u; c; t)-quark sector,Md the mass matrix for the (d; s; b)-quark sec-tor andMe the mass matrix for the (e; �; �)-lepton sector. Moreover, Mn andMNare Dirac and Majorana mass matrices for the (�e; ��; �� )-neutrino sector. Thesemass matrices include the fermion masses and generalized Kobayashi{Maskawamixing angles. Mathematically, the sites where these generation matrices occurinMf coincide with a combination of the representations 5 ; 45 and 50 of su(5) :The relevant decomposition rules of tensor products areHom(10�; 10) = 5� � 45� 50 ; Hom(5; 10) = 5� 45� ; Hom(1; 5�) = 5� :(41)Let n; n0; m0 be appropriate elements of 5; 45�; 50 ; in this order. Then one hasMf := 0B@ i�10;10(n)
Md + im0 
MN i�10;5(n)
M~u + in0 
M~n 0i�10;5(n)T 
MT~u + in0T 
MT~n 0 i�5;1(n)
Me0 i�5;1(n)T 
MTe 0 1CA ;(42)where �10;10(n) is the embedding of n 2 5 into Hom(10�; 10) ; �10;5(n) the em-bedding of n into Hom(5; 10) and �5;1(n) the embedding of n into Hom(1; 5�) :Moreover, M~u = 14(3Mu +Mn) ; M~n = 14(Mu �Mn) : (43)The block diagonal partMi ofM couples left{left and right{right sectors. Thus,it has no interpretation in terms of fermion masses. It is responsible for thedesired spontaneous symmetry breaking pattern from su(5) � u(1) to su(3) �su(2)� u(1)� u(1) ; see item 4) at the very beginning. The non-Abelian part ofsu(5)�u(1) commuting withMi must coincide with the non-Abelian part of thestandard model Lie algebra. In terms of the decompositionsu(5) =  su(3) �� su(2) ! (44)



Graded di�erential Lie algebras and model building 17we put m = i diag(�25 ;�25 ;�25 ; 35 ; 35) 2 su(5) : (45)With this notation, the desired symmetry breaking pattern is achieved forMi := diag(i�10(m)
M10 ; �i�5(m)
M5 ; 03) ; (46)where M10 and M5 are arbitrary 3 � 3-matrices. In contrast to the parametersentering Mf we have no experimental hints how to choose M10 and M5 exceptthat their norm must be very large. Namely, in the ipped SU(5) � U(1)-GUTthere occur interactions which lead to proton decay. It turns out that the lifetimepredicted for the proton depends on tr(M10M�10 +M5M�5 ) : The larger the trace(in units of mt), the larger is the lifetime of the proton. It is essential thatthe matrices Mu;d;e;n;N and M10;5 are generically chosen, because otherwise therewould be unwanted contributions from the extension (21). Finally, the gradingoperator is �̂ = diag � � 148 ; 148 ; 148 ; �148 � : (47)7.2. Remarks on the constructionTo this L-cycle we apply our formalism, which performs the following job: First,it extends the matrix a 2 su(5) to a su(5)-gauge �eld A : This step is obvious,because we have A 2 �(
1g) = 
1Dg : Second, a rather long calculation revealsthat those local elements of H1g that are not already contained in �(
1g) areu(1)-gauge �elds A00 : The representations � of A and A00 on the fermionic Hilbertspace are �xed by the formalism. In the notation of (38) they are given by�(A) = diag � ~A; ~A; C ~AC ; C ~AC� ;~A=diag ��10(A)
 13 ; C�5(A)C 
 13 ; 03 � ; (48)�(A00) = diag � ~A00; ~A00; C ~A00C; C ~A00C� ;~A00 =diag ��12A00110 
 13 ; � 32CA00C15 
 13 ; �52A00 
 13� ; (49)where C is the complex conjugation matrix: � = C�C ; (C)2 = �14 : Third,the formalism extends the matricesm to a 24-Higgs multiplet ~	 = 	 +m ;n to a complex 5-Higgs multiplet ~� = �+ n ;n0 to a complex 45�-Higgs multiplet ~� = � + n0 ;m0 to a complex 50-Higgs multiplet ~� = � +m0 :This is an immediate consequence of the fact that m;n; n0; m0 belong to irre-ducible representations. Thus, the formalism generates the complete bosoniccon�guration space of the ipped SU(5) � U(1)-model out of the given L-cycle.



18 R. WulkenhaarIn total, there are 224 Higgs �elds and 25 gauge bosons. The connection formhas the structure� = (50)0BBBB@ ~�(A+A00) 5~�( ~	) ~�( ~�+ ~�+~� ) 0�(5~�( ~	))� ~�(A+A00) 0 5~�( ~�+ ~�+~� )�(5~�( ~�+ ~�+~� ))� 0 �C(~�(A+A00))C 5~�( ~	)0 �(5~�( ~�+ ~�+~� ))� �(5~�( ~	))� �C(~�(A+A00))C
1CCCCA :Here, we have denoted by ~� the embeddings (48) and (49) of the gauge �eldsA and A00 ; the embedding (42) of the Higgs multiplets ~� ; ~� and ~� and theembedding (46) of the Higgs multiplet ~	 into M48C each. Thus, Yang{Mills andHiggs �elds are treated in a uni�ed way. Since the embeddings (42) and (46)include the matrices Mu;d;e;n;N and M10;5 ; the bosonic masses will depend on thefermion masses and the parameters of M10;5 :The bosonic Lagrangian contains the usual Yang{Mills Lagrangian, the covari-ant derivatives of the Higgs �elds and the Higgs potential. The Higgs potentialis very complicated as a fourth order polynomial in 224 variables. All gaugeinvariant combinations of�10( ~	) ; �5( ~	) ; �10;10( ~�) ; �10;5( ~�) ; �5;1( ~�) ; ~� ; �10;10( ~� ) ; ~� (51)really do occur. A computation of the minimum of such a monster seems hopeless.However, we do not have to work. The minimum is simply given by~	 = m ; ~� = n ; ~� = n0 ; ~� = m0 : (52)This is a general feature of non-commutative geometry; the Higgs �elds occuralready in the broken phase. Just to give an impression of the power of ourapproach we list few examples of occurring contributions to the Higgs potential.LetV1 = ~	 2 � 15 tr( ~	 2)15 � 15 i ~	 ; V2 = ( ~� ~� �)0 + 83 i ~	 � ~�� ~�+ 15 tr( ~�� ~�)15 ;V3 = ~� �� � 15 tr( ~� �� )15 + 8i ~	 + 9~���� 95 tr(���)15 ;V4 = � ��10;5( ~�) + �10;5( ~�)�� � 8i ~	 � 6���+ 65 tr(���)15 ; (53)V5 = � ��10;5(�)� �10;5(�)�� ; V6 = ( ~� ~��)0 + 13 i ~	 :Here, iY 0 denotes the 24-component of the 10� 10-matrix iY : Then,P6i;j=1 �ij tr(ViVj) (54)is a typical contribution to the Higgs potential. If one came to the idea to changethe relative coe�cients a bit, say, to omit the linear terms in Vi ; then (52) is nolonger the minimum and one has to deal with the monster. At this point at the



Graded di�erential Lie algebras and model building 19latest one realizes the advantage that our scheme brings to gauge �eld theory. Thelinear terms in (53) arise from the part �(!1) in equation (17) for the di�erential.They lead to cubic terms in the Higgs potential, which must not be omitted!Principally, we have the freedom to choose the global parameters in the Higgspotential such as �ij in (54) arbitrarily (but such that the Higgs potential remainspositive de�nite). In the classical construction this freedom exists indeed, andthat is the reason why one obtains no predictions for the masses of the Higgs�elds. In our approach, also these global parameters are �xed. They are givenby traces over certain combinations of the matrices Mu;d;e;n;N and M10;5 : Thus,if we �x the mass matrixM then all Higgs masses are determined on tree-level.In the ipped SU(5)�U(1)-model, the Lie subalgebra which leaves the vacuum(52) invariant is C1(X) 
 (su(3)C � u(1)EM) : The su(3)C corresponds to thecolour symmetry and the u(1)EM to the symmetry generated by the electriccharge of the particles. The remaining 16 gauge degrees of freedom, correspondingto C1(X)
 ((su(5)� u(1))=(su(3)C � u(1)EM)) ; (55)are used to gauge away 16 Higgs �elds, twelve of the 24-representation, three ofthe 5-representation and one of the 50-representation. This in turn gives a massto the 16 former gauge bosons corresponding to (55). These are the W� and Zbosons, an additional neutral heavy gauge boson Z 0 and the twelve leptoquarksX and Y (six each). Thus, there remain 208 Higgs �elds 01;  02;  03;  0;  1; : : : ;  8; �00; �1; : : : ; �6; �00; �1; : : : ; �89; �0; �1; : : : ; �98 ; (56)whose masses are obtained by diagonalization of the bilinear terms of the Higgspotential. It is a tedious procedure to select these bilinear terms (without com-puter algebra it is almost impossible to avoid errors).7.3. The SU(5)-grand uni�cation modelIf we omit ad hoc the u(1)-gauge �eld A00 and put MN equal to zero, we can\derive" the SU(5)-grand uni�cation model out of the ipped SU(5)�U(1)-model.This derivation violates the principles of our prescription of non-commutativegeometry. However, if we do not perform the extension (21), then the SU(5)-model is obtained from the same L-cycle introduced above, after renamingMu $Md ; Mn 7!Me andMe 7!M� : If one omits the 5-representations and the matrixM� then one gets a model without right neutrinos.7.4. Physical results from the grand uni�cation modelWe present the �nal results (on tree-level) for the ipped SU(5) � U(1)-granduni�cation model in Table 1. In this table, we denote by mt and mb the masses



20 R. WulkenhaarParticle Mass Particle Mass1. The completely neutral Higgs �elds:�00 (0 : : : 1:45)mt �0 (q 160 : : :q74)mN�00 �mt �45 12p3�mt 0 q25mN  03 (0 : : : 112q113 )m2NM2. The colour-neutral Higgs �elds of charge �1 :1p2(�18 � i�63) 12p3�mt 1p2( 1 � i 2) (0 : : : 112q113 )m2NM3. The neutral Higgs �elds, for i = 0; : : : ; 7 : i+1 (0 : : : 112q113 )m2NM�i+1 (� : : : �+��)mn �i+45 (� : : : �+��)mn�i+32 3M �i+81 3M4. The Higgs �elds of charge �1 ; for i = 0 : : : 7 :1p2(�19+i � i�64+i) (� : : : �+��)mn 1p2(�25+i � i�74+i) 3M5. The Higgs �elds of charge �13 ; for i = 0; 1; 2 and j = 0; : : : ; 5 :1p2(�1+i � i�4+i) M 1p2(�9+i � i�54+i) M1p2(�12+i � i�57+i) M 1p2(�39+i � i�84+i) 2M1p2(�44+i � i�93+i) M 1p2(�47+i � i�96+i) 2M1p2(�19+j � i�68+j) 2M 1p2(�30+j � i�75+j) M6. The Higgs �elds of charge �23 ; for i = 0; 1; 2 and j = 0; : : : ; 5 :1p2(�15+i � i�60+i) M 1p2(�36+i � i�81+i) 2M1p2(�42+i � i�87+i) M 1p2(�41+i � i�90+i) M1p2(�7+j � i�56+j) 2M 1p2(�13+j � i�62+j) 4M7. The Higgs �elds of charge �43 ; for i = 0; 1; 2 and j = 0; : : : ; 5 :1p2(�27+i � i�72+i) M 1p2(�1+j � i�50+j) 2M8. The neutral massive gauge �elds:Z q25 mt Z 0 12q53mN9. The massive gauge �elds of charge �1 :1p2(W1 � iW2) 12mt Weinberg angle: sin2 �W = 3810. The leptoquarks leading to proton decay, for i = 0; 1; 2 :1p2(X1+i � iX4+i) M charge: � 131p2(Y1+i � iY4+i) M charge: � 23Table 1: The particle masses for the SU(5)� U(1)-model



Graded di�erential Lie algebras and model building 21of the top quark and by mn and mN the mass scales of the Dirac and Majoranamasses for the neutrinos, respectively. The masses in Table 1 are correct formn; mb < mt � �mt; (�+ ��)mn < M;mN ; (57)which is physically plausible. The parameter M � mt is the grand uni�cationscale. Moreover, we assume that the Majorana mass of the right neutrinos is of thesame order of magnitude asM : The parametersM;�; �� are certain combinationsof the unknown parameters of the matrices M10 and M5 : For generic matricesM10 and M5 ; the masses �mt and (� : : : � + ��)mn are not signi�cantly smallerthan M and mN : Let us comment on some observations:1) There occur three mass scales in the ipped SU(5) � U(1)-model: The massscale of the fermions determined by mt ; the grand uni�cation scaleM and anintermediate scale determined by �mt and (� : : : �+��)mn : All particles withfractional-valued electric charge, which therefore lead to proton decay, have amass of the order M :2) There exists precisely one light Higgs �eld �00 ; whose upper bound for the massis independent of the grand uni�cation matricesM10 andM5 : The reason thatonly an upper bound can be given is the incomplete knowledge of the inputparameters. The Higgs �eld �00 is a certain linear combination of neutral Higgs�elds of the 5-representation and the 45�-representation8. It has precisely thesame properties as the standard model Higgs �eld.3) The predictions for the SU(5)-model are qualitatively the same, except thatthe gauge �eld Z 0 and all Higgs �elds �i are absent. Moreover, the electriccharges of certain Higgs �elds are modi�ed.4) The standard model is in perfect agreement with experiment. However, ourresults show that the low energy sector of both the SU(5) � U(1) and SU(5)GUT's is identical with the standard model. This means that it is not possibleto decide by means of present energy experiments which of the three modelsis correct. One essential advantage of the grand uni�cation models is thatthey explain why proton and electron have up to the sign the same electriccharge. On the other hand, the proton is not a stable particle in grand uni�edmodels. Concerning this question, the SU(5) � U(1)-model is favoured overthe SU(5)-model, because it yields a larger lifetime for the proton [13].We see that our prescription of non-commutative geometry has the exibility todescribe grand uni�cation models.References[1] L. Carminati, B. Iochum and T. Sch�ucker, The noncommutative constraints on the standardmodel �a la Connes, J. Math. Phys. 38 (1997) 1269{1280.8This shows impressively that the 45-representation, which is absent in the NCG-formula-tions [4, 5] of the SU(5)-GUT, is an essential part of our model.
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