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Abstract

The D-colored version of tensor models has been shown to admit a large N -limit
expansion. The leading contributions result from so-called melonic graphs which are
dual to the D-sphere. This is a note about the Schwinger-Dyson equations of the
tensorial ϕ4

5-model (with propagator 1/p2) and their melonic approximation. We derive
the master equations for two- and four-point correlation functions and discuss their
solution.
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1 Introduction

The construction of a consistent quantum theory of gravity is one of the biggest open prob-
lems of fundamental physics. There are several approaches to this challenging issue. Tensor
models belong to the promising candidates to understand quantum gravity (QG) in dimen-
sion D ≥ 3 [1]-[4]. Tensor models represent an attempt to generalize matrix models (see, for
instance [5] and the review article [6]). Tensor models are, as it will be evident, connected
with group field theory [8], which, interestingly, is a proposal for a second quantization of

1



loop quantum gravity [7]. In combination with group field theory, tensor models lead to
another framework called tensorial group field theory (TGFT). TGFT is quantum field the-
ory (QFT) over group manifolds. It can also be viewed as a new proposal for quantum
field theories based on a Feynman path integral, which generates random graphs describing
simplicial pseudo manifolds.

A few years ago, Razvan Gurău [9]-[15] achieved a breakthrough for this program by
discovering the generalization of ’t Hooft’s 1/N -expansion [6]-[16]. This allows to under-
stand statistical physics properties such as continuum limits, phase transitions and critical
exponents (see [17]-[27] for more details). Concerning the renormalizability of tensor models,
by modifying the propagator using radiative corrections of the form 1/p2 [28], it has been
shown that several models have this property [29]-[37]. Investigating the UV behavior of
these renormalizable models, it has been shown that several models are asymptotically free
[32] and [38]-[40].

Recently, important progress was made in the case of independent identically distributed
(iid) tensor models. The correlation functions are solved analytically in the large N -limit, in
which the dominant graphs are called “melons” [19]. This model corresponds to dynamical
triangulations in three and higher dimensions. The susceptibility exponent is computed and
the model is reminiscent of certain models of branched polymers [25]. Despite all these
aesthetic results, the critical behavior of the large-N limit of the renormalizable models
(the melonic approximation) is not yet explored. The phase transitions must be computed
explicitly. This glimpse needs to be taking into account for the future development of the
renormalizable TGFT program.

This paper extends previous work on Schwinger-Dyson equations for matrix and tensor
models. The original motivation for this method was the construction of the ϕ4

4-model on
noncommutative Moyal space. This model is perturbatively renormalizable [41]-[43] and
asymptotically safe in the UV regime [44]-[45]. The key step of the asymptotic safety proof
[45] was extended in [46] to obtain a closed equation for the two-point function of the model.
This equation was reduced in [47] to a fixed point problem for which existence of a solution
was proved. All higher correlation functions were expressed in terms of the fixed point
solution. In [48] the fixed point problem was numerically studied. This gave evidence for
phase transitions and for reflection positivity of the Schwinger two-point function.

The noncommutative ϕ4
4-model solved in [47] can be viewed as the quartic cousin of

the Kontsevich model which is relevant for two-dimensional quantum gravity. This leads
immediately to the question to extend the techniques of [46, 47] to tensor models of rank
D ≥ 3. In [50] one of us addressed the closed equation for correlation functions of rank 3
and 4 just renormalizable TGFT. The two-point functions are given perturbatively using the
iteration method. The main challenge in this new direction is to perform the combinatorics
of Feynman graphs and to solve the nontrivial integral equations of the correlators. The
nonperturbative study of all correlation functions need to be investigated carefully.

In this paper we push further this program. For this, we consider the just renormalizable
tensor model of the form ϕ4

5 whose dynamics is described by the propagator of the form
1/p2. In the melonic approximation, the Schwinger-Dyson equations are given. The closed
equations of the two-point and four-point functions are derived and the solution of the former
is obtained.
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The paper is organized as follows. In section 2, proceeding from the definition of the
model and its symmetries, we give the Ward-Takahashi identities which result from these
symmetries. In section 3 we find the melonic approximation of the Schwinger-Dyson equa-
tion. In 4 we investigate the closed equation for two- and four-point functions. Section 5 is
devoted to the study of the closed equation of the four-point correlation functions. In section
6 we solve the equation obtained. In Section 7, we conclude by a summary of our work and
list open questions.

2 The Model

The model we will be mainly considering here is a tensorial ϕ4-theory on U(1)5, i.e. a field
ϕ : U(1)5 → C and the following action, whose measure is the product of Haar measures for
each U(1)-factor:

S[ϕ̄, ϕ] =

∫
U(1)5

dg ϕ̄(g)(−∆ +m2)ϕ(g)

+
λ

2

5∑
c=1

∫
U(1)20

dg dg′ dh dh′ ϕ̄(g)ϕ(g′)ϕ̄(h)ϕ(h′)Kc(g,g
′,h,h′) . (1)

Here, ∆ =
∑5

`=1 ∆` and ∆` is the Laplace-Beltrami operator on U(1) acting on colour-
` indices [34], bold variables stand for 5-dimensional variables (g = (g1, . . . , g5)), and Kc

identifies group variables according to a vertex of colour c ∈ {1, 2, . . . , 5}. Figure 1 shows
the vertex of colour 1.
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(a) A vertex of
colour 1

(b) A generic ver-
tex

Figure 1: Vertices

The statistical physics description of the model is encoded in the partition function:

Z[J̄ , J ] =

∫
DϕDϕ̄e−S[ϕ̄,ϕ]+〈J̄ ,ϕ〉+〈ϕ̄,J〉 = eW [J̄ ,J ], (2)

where J̄ , J : U(1)5 → C represent the sources, and for fields ψ1, ψ2 : U(1)5 → C,

〈ψ1, ψ2〉 :=

∫
U(1)5

dgψ1(g)ψ2(g),
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and W [J̄ , J ] is the generating functional for the connected Green’s functions. Then the
N -point Green functions take the form

GN(g1, · · · ,g2N) =
∂Z[J̄ , J ]

∂J1∂J̄1 · · · ∂JN∂J̄N

∣∣∣∣∣
J1,...,JN=J̄1,...,JN=0

. (3)

being Ji shorthand for J(gi), for each i = 1, . . . , N .
The correlation functions can be computed perturbatively by expanding the interaction

part of the action (1):

GN(g1, · · · ,g2N) ∼
∞∑
n=0

(−λ)n

2nn!

∫
dµC ϕ̄(g1) · · ·ϕ(g2N) (4)

×
[ 5∑
c=1

∫
U(1)20

dg dg′ dh dh′ ϕ̄(g)ϕ(g′)ϕ̄(h)ϕ(h′)Kc(g,g
′,h,h′)

]n
where dµC is the Gaussian measure with covariance C (the propagator), i.e.∫

dµC(ϕ̄, ϕ) ϕ̄(g)ϕ(g′) = C(g,g′),

∫
dµC(ϕ̄, ϕ)ϕ(g)ϕ(g′) =

∫
dµC(ϕ̄, ϕ) ϕ̄(g)ϕ̄(g′) = 0.

In this paper we consider the Fourier transform of the field ϕ to momentum space,
ϕp1p2p3p4p5 , defined by

ϕ(eiθ1 , . . . , eiθ5) =
∑

p1,...,p5

ϕp1p2p3p4p5e
i
∑5
j=1 θjpj

with θi ∈ [0, 2π). We impose for every a = 1, . . . , 5 the condition |pa| ≤ Λa, Λa ∈ N, on the
field ϕ, keeping in mind that we will eventually take the limits Λa →∞. The truncation of
ϕ shall be here denoted by ϕΛ, and its conjugate field, also compatible with the momentum
truncation, by ϕ̄Λ. Accordingly, from the full symmetry U(∞)⊗5 remains ⊗5

i=1U(Ni), being
Na := 2Λa + 1. To this symmetry corresponds, as we will see, a set of Ward-Takahashi
identities.

For any a = 1, 2, · · · , 5 we let a unitarity W (a) in the factor U(Na) of ⊗5
i=1U(Ni) act on

the fields as follows:

ϕΛ
p1p2···p5

→ [W (a)ϕΛ]p1p2...p5 =
Λa∑

p′a=−Λa

W
(a)
pap′a

ϕΛ
p1...p′a...p5

, (5)

ϕ̄Λ
p1p2···p5

→ [ϕ̄ΛW (a)†]p1p2...p5 =
Λa∑

p′a=−Λa

W
(a)

pap′a
ϕ̄Λ
p1...p′a...p5

. (6)

There might be some common values of Na for different indices a = {1, . . . , 5}, but the
point is to think of each unitary group U(Na) as acting exclusively on the the a-th index.
Given a W (a) ∈ U(Na), denote by B(a) its (Hermitian) generator, i.e.

W
(a)
pp′ = δ

(a)
pp′ + iB

(a)
pp′ +O(B2), W̄

(a)
pp′ = δ

(a)
pp′ − iB̄

(a)
pp′ +O(B̄2). (7)
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We take the limits Na → ∞ and consider the variation of the connected partition function
with respect to B(a), δ(lnZ)/δB

(a)
mn. From the invariance of the measure dϕdϕ̄, this variation

vanishes. The resulting Ward Takahashi identities were also obtained in detail, for arbitrary-
rank TGFT’s, in Section 2 of [50]. For a = 1 and for the two-point function they read∑

p2,p3,p4,p5

(
C−1
mp2p3p4p5

− C−1
np2p3p4p5

)
Gins

[mn]p2p3p4p5
= Gnp2p3p4p5 −Gmp2p3p4p5 , (8)

where Cp1···p5 denotes the propagator in the momentum space. Similar identities for arbitray
a hold after trivial index reordering. The correlation functions with insertion of strands here
are Gins

[mn]p2p3p4p5
:= 〈ϕmqp2p3p4p5ϕ̄np2p3p4p5

∑
q2,q3,q4,q5

ϕnq2q3q4q5ϕ̄mq2q3q4q5〉c. The model (1) is

(just) renormalizable to all orders of perturbation theory. See Refs [29]-[34] for more detail.

3 Schwinger-Dyson equation in the melonic approxi-

mation

We start by writing the Schwinger-Dyson equations for the one-particle irreducible 2- and
4-point functions of the model (1). We use the following graphical conventions: dashed lines
symbolize amputated external legs, a black circle represents a connected function whereas two
concentric circles stand for a one-particle irreducible function. Finally, in order to lighten
equations, we will use the generic vertex of fig. 1b to mean the sum of the five different
coloured interactions. Note that (9) has been derived in [50].

= Σa = + + . (9)

= Γa = + +

+ . (10)

We now want to restrict our attention to the melonic part of the 2- and 4-point functions,
that is, we restrict ourselves to the leading graphs G characterized by a degree ω(G) = 0 [13].
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For arbitrary graphs, this number ω ≥ 0, also called Gurău’s degree, is the analogue of the
Euler characteristic in the large-N expansion of matrix models and is defined as follows. In
G sit ribbon graphs J with the same vertices and edges as G, but with face set indexed by a
cycle τ ∈ S5, and defined by

FJ = {f faces in G | f = (τ q(0), τ q+1(0)), q ∈ Z5}.

To each of these graphs corresponds a compact orientable surface on which the ribbon graph
J can be drawn with non-intersecting edges. One then canonically associates to a jacket J
a genus gJ — the minimal-genus surface on which one can planarly draw J . Then

ω(G) :=
∑

J jacketof G

gJ . (11)

Let G be a 2- or 4-point Feynman graph of model (1). We impose ω(G) = 0. We will prove
that not all terms of eqs. (9) and (10) contribute to the melonic functions. A simple way of
computing the degree ω of a graph is to count its number F of faces. Indeed, the two are
related in the following way (in dimension 5, for a degree 4 interaction)[50]:

F = 4V + 4− 2N − 1

12
(ω̃(G)− ω(∂G))− (C∂G − 1), (12)

where V is the number of vertices of G, N its number of external legs, and C∂G is the
number of connected components of its boundary graph ∂G and ω̃(G) =

∑
J̃⊂G gJ̃ with

J̃ the pinched jacket associated with a jacket J of G. Recall that the Feynman graphs
here are so-called uncoloured graphs and, as a consequence, a face is a cycle of colours 0i,
i ∈ {1, 2, . . . , 5} [14]. A detailed analysis of coloured graphs [32, 50] allows to prove that
F (G) = Fmax(G) = 4V + 4 − 2N , if and only if ω̃(G) = ω(∂G) = C∂G − 1 = 0. Moreover
F 6 Fmax. We can thus prove the following

Lemma 1. The Schwinger-Dyson equations for the melonic 2- and 4-point functions of
model (1) are (m stands for melonic):

m =

m

, (13)

m = +

m

. (14)
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Proof. The right-hand side of eqs. (9) and (10) involve connected 2-, 4-, and 6-point function
insertions and a generic vertex. Let G be a graph contributing to the left-hand side of (9)
or (10) and let F be its number of faces. Let us study a term of the right-hand side of the
equation under consideration. The number of faces of a graph contributing to its insertion is
written F ′. Clearly F = F ′+ δF where δF > 0. The additional internal faces are created by
closing the external faces of the insertion with the new edges connected to the new vertex.
As a consequence, δF is bounded from above by the number of faces of the new vertex which
do not contain its external legs. Note also that F 6 F ′max + δF .

Let us now consider eq. (9) and the lying tadpole of its right-hand side (second term).
In this case, δF 6 1. From eq. (12), F ′max = 4V ′ (V ′ being the number of vertices of the
connected 2-point insertion) and F 6 4V ′ + 1 < 4(V ′ + 1) = Fmax. Thus whatever the
insertion, the graph G cannot be melonic. The same type of argument holds for the other
terms but for the sake of clarity, let us repeat it for the last term of eq. (10). Here δF 6 5
and F ′max = 4V ′ − 8. Their sum never reaches Fmax = 4V − 4 = 4V ′.

The only terms which survive this analysis are the first one of eq. (9), and the first
and second ones of eq. (10). Moreover it also proves that for a graph to be melonic, the
corresponding insertion needs to be melonic too. Note that a melonic graph necessarily has
a melonic boundary [30, 36]. Finally, such arguments also fix the orientation, and the colour,
of the boundary graph of the 4-point insertion in the second term on the right-hand side of
14, see fig. 2 for a zoom into this term.

1

1

1

1

Figure 2: Boundary structure of a melonic 4-point insertion

Note that the Schwinger-Dyson equation (13) and (14) are easy to describe. Taking into
account (13) we do not need to write the Ward-Takahashi identities before getting the closed
equation of the two-point functions.

4 Two-point correlation functions

We now want to use the melonic approximation to obtain a closed equation for the one-
particle irreducible two-point function Σa1,...,a5 . For sake of simplicity write a = (a1, . . . , a5) ∈
Z5. Setting each constant λρ (ρ = 1, . . . , 5) equal to the bare coupling constant, λρ = λ, we
can express the one-particle irreducible two-point function Σa in terms of the renormalized
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quantities by using the Taylor expansion

Σa = Σ0 + |a|2 ∂Σa

∂|a|2
∣∣∣
a=0

+ Σr
a

= (Z − 1)|a|2 + Zm2 −m2
r + Σr

a, (15)

with |a|2 =
∑5

i=1 a
2
i and

m2 =
m2

r + Σ0

Z
, Z = 1 +

∂Σa

∂|a|2
∣∣∣
a=0

. (16)

Moreover the following renormalization conditions hold, for ρ = 1, . . . , 5:

Σr
0 = 0,

∂Σr
a

∂a2
ρ

∣∣∣
a=0

= 0. (17)

The propagator C, given explicitly by C−1
p = Z(|p|2 + m2), is related to the dressed

propagator Ga by means of the Dyson relation G−1
a = C−1

a −Σa. Then using the Schwinger-
Dyson equations for Σa, given in (13), we get

Σa = −Z2λ
Λ∑

p1,p2,p3,p4

[ 1

C−1
a1p1p2p3p4

− Σa1p1p2p3p4

+
1

C−1
p1a2p2p3p4

− Σp1a2p2p3p4

+
1

C−1
p1p2a3p3p4

− Σp1p2a3p3p4

+
1

C−1
p1p2p3a4p4

− Σp1p2p3a4p4

+
1

C−1
p1p2p3p4a5

− Σp1p2p3p4a5

]
. (18)

The sums are performed over the integers pi ∈ Z with some cutoff Λ. For ρ = 1, . . . , 5, let
σρ be the action of S5 which permutes the strands with momenta p as follows:

σ1(p1p2p3p4p5) = (p2p1p3p4p5),

σ2(p1p2p3p4p5) = (p2p3p1p4p5),

...

σ4(p1p2p3p4p5) = (p2p3p4p5p1),

and σ5 acts trivially. Notice that the value of the propagator Cp remains invariant under the
action of all these σρ, Cσρ(p) = Cp, and since the interaction vertices remain also unaffected,
so does Σa. Therefore, by (15), Σr

a is symmetric under the permutation of its indices. After
combining (15) and (18) we can obtain, by using

C−1
a1p1p2p3p4

− Σa1p1p2p3p4 = a2
1 +

4∑
i=1

p2
i +m2

r − Σr
a1p1p2p3p4

, (19)

the expression
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(Z − 1)|a|2 + Zm2 −m2
r + Σr

a = −Z2λ

5∑
ρ=1

Λ∑
p1,p2,p3,p4

1

(a2
ρ +

∑4
i=1 p

2
i ) +m2

r − Σr
σρ(aρp1p2p3p4)

.

(20)

We now can evaluate at a = 0 to get rid of the term Zm2 − m2
r , which according to this

equation is given by

Zm2 −m2
r = −Z2λ

Λ∑
p1,p2,p3,p4

5∑
ρ=1

1∑4
i=1 p

2
i +m2

r − Σr
σρ(0p1p2p3p4)

. (21)

Replacing the expression (21) in (20), we obtain

(Z − 1)|a|2 + Σr
a = −Z2λ

Λ∑
p1,p2,p3,p4

5∑
ρ=1

[ 1

a2
ρ + |p|2 +m2

r − Σr
σρ(aρp1p2p3p4)

− 1

|p|2 +m2
r − Σr

σρ(0p1p2p3p4)

]
. (22)

Here we have defined |p|2 :=
∑4

i=1 p
2
i , with some abuse of notation. The evaluation at

a = σρ(aρ0000), namely

(Z − 1)a2
ρ + Σr

σρ(aρ0000) = −Z2λ
Λ∑

p∈Z4

[ 1

a2
ρ + |p|2 +m2

r − Σr
σρ(aρp1p2p3p4)

(23)

− 1

|p|2 +m2
r − Σr

σρ(0p1p2p3p4)

]
,

leads to a splitting of the renormalized one-particle irreducible two-point function as

Σr
a1a2a3a4a5

=
5∑
ρ=1

Σr
σρ(aρ0000) (24)

as a mere consequence of summing eq. (23) over ρ = 1, . . . , 5 and then comparing the rhs
of the resulting equation with that of eq. (22). The wave function renormalization constant
Z can be obtained from differentiating (23) with respect to any a2

ρ and the subsequent
evaluation at aρ = 0:

Z − 1 = Z2λ
[ Λ∑

p∈Z4

1

(|p|2 +m2
r − Σr

0p)2

]
, Λ ∈ Z4. (25)

Here (17) has been used. Insertion of this value for (Z − 1) into eq. (23) yields, setting
λ̃ = Z2λ and using (24) again,

Σr
a0 = −λ̃

Λ∑
p∈Z4

[ 1

a2 + |p|2 +m2
r − Σr

a0 − Σr
0p

+
a2

(|p|2 +m2
r − Σr

0p)2
− 1

|p|2 +m2
r − Σr

0p

]
. (26)
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The above equation could lead to a divergence in the limit where Λ→∞. To deal with
this we introduce later, in sec. 6, a regularization method. We now pass to a continuum
limit in which the discrete momenta a ∈ Z, p ∈ Z4 become continuous. We do this here in
a formal manner. A rigorous treatment should first view the regularized dual of U(1)5 as
a toroidal lattice (Z/2ΛZ)5, then take an appropriate scaling limit to the 5-torus [−Λ,Λ]5

with periodic boundary conditions, and finally Λ→∞. These steps should give for (26):

Σr
a0 = −λ̃

∫
R4

dp
[ a2

(|p|2 +m2
r − Σr

0p)2
+

1

a2 + |p|2 +m2
r − Σr

a0 − Σr
0p

− 1

|p|2 +m2
r − Σr

0p

]
(27)

with dp = dp1dp2dp3dp4. Because of (24), i.e. Σr
0p =

∑4
i=1 Σr

pi0
, (27) is a closed equation for

the function Σr
a0. Using Taylor’s formula we can equivalently write this equation as

Σr
a0 = −λ̃

∫ a2

0

dt (a2 − t)
∫
R4

dp
d2

dt2

( 1

m2
r + t− Σr√

t0
+
∑4

i=1(p2
i − Σr

pi0
)

)
. (28)

The equation (28) is the analogue of the fixed point equation [47, eq. (4.48)] for the
boundary 2-point function Ga0 of the quartic matrix model: In both situations the decisive
function satisfies a non-linear integral equation for which we can at best expect an ap-
proximative numerical solution. Finding a suitable method, implementing it in a computer
program and and running the computation needs time. We intend to report results in a
future publication. At the moment we have to limit ourselves to a perturbative investigation
of this equation, see sec. 6.

5 Closed equation of the one-particle irreducible four-

point functions

In this section we prove that the coupling constant λ̃ is finite in the UV regime. It will
be convenient to briefly discuss first the index structure of the four-point function. Γ4 has
10 indices: Each external coloured line of ϕa and ϕb should be paired with one of the
complex conjugate fields ϕ̄c and ϕ̄d in the vertex ϕaϕ̄cϕbϕ̄d. That is to say that c and d
are expressed1 in terms of (a,b). For instance, for the vertex of colour 1, represented in
fig. (1a), c = (a5a4a3a2b1), and d = (b5b4b3b2a1). The external lines for that vertex look as
follows:

1More precisely, c = (π1◦%)(a,b) and d = (π2◦%)(a,b) where, (a,b) ∈ Z10, π1 and π2 are the projections
in the first or second factor of Z5 ⊕ Z5, and % is a permutation in S10 that allows colour conservation.
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a3

a4

a5

a2

b1

colour-1 vertex

a3
a2

a1

a4

a5

colour-1 vertex

b3
b4
b5

b2
a1

colour-1 vertex

b3
b2
b1

b4
b5

colour-1 vertex

We now excise the vertex in the rhs of the melonic approximation of the Schwinger-Dyson
equation for the four-point function and write its value, −Z2λ, instead. The first graph in
the rhs of eq. (14) is precisely the vertex. In the second graph, after removing the vertex,
a jump in the colour 1 occurs; this can be understood as an insertion, whose value we give
now. The removal of the colour-1 vertex in that graph leaves the following graph, where the
upper dotted lines have indices a = (a1a2a3a4a5) and c = (a5a4a3a2b1).

G−1
a1a2a3a4a5

G−1
a5a4a3a2b1

Gins
[a1b1]a2a3a4a5

=

a1 b1
.

a c

. (29)

According to (8), the value of that insertion is

Gins
[a1b1]a2a3a4a5

=
1

Z(a2
1 − b2

1)
(Ga1a2a3a4a5 −Ga5a4a3a2b1) .

In general any of the vertex in this model has a privileged colour i (i.e. the colour i is with the
neighbour vertically and the remaining colours are connected with the other neighbouring
field, sidewards). The excised graph for the ‘colour i’-vertex has then the following value:

G−1
a1a2a3a4a5

G−1
a5...b1âi...a1

Gins
[aibi]a1...âi...a5

=
1

Z(a2
i − b2

i )

[
1

Ga5...biâi...a2a1

− 1

Ga1a2a3a4a5

]
,

where âi means omission of âi (and this index is substituted by bi) and, accordingly, c =
(a5 . . . biâi . . . a2a1). Then the full equation for Γ4,ren

a1a2a3a4a5b1b2b3b4b5
is given by the sum over

11



these two kinds of graphs over all the vertices of the model, to wit

Γ4,ren
a,b =

5∑
i=1

−Z2λ(1 +G−1
a1a2a3a4a5

G−1
a5...b1âi...a1

Gins
[aibi]a1...âi...a5

)

=− Z2λ

(
5 +

1

Z(a2
1 − b2

1)

[
1

Ga5a4a3a2b1

− 1

Ga1a2a3a4a5

]
+

1

Z(a2
2 − b2

2)

[
1

Ga5a4a3b2a1

− 1

Ga1a2a3a4a5

]
+

1

Z(a2
3 − b2

3)

[
1

Ga5a4b3a2a1

− 1

Ga1a2a3a4a5

]
+

1

Z(a2
4 − b2

4)

[
1

Ga5b4a3a2a1

− 1

Ga1a2a3a4a5

]
+

1

Z(a2
5 − b2

5)

[
1

Gb5a4a3a2a1

− 1

Ga1a2a3a4a5

])
.

By inserting the value for Gq given by (19), and by imposing the renormalization conditions,
taking the limit a,b→ 0 one readily obtains

Γ4,ren
0 = −5λ̃

(
1 +

1

Z

)
. (30)

By imposing the cutoff Λ, we can show (perturbatively) that the wave function renormaliza-
tion (for a similar computation cf. Lemma 5 in [32]) takes the form

Z = 1 + xλ log(Λ) +O(λ2), x ∈ R. (31)

Then one has

− λr = Γ4,ren
0 → −5λ̃. (32)

6 Solution of the integral equation

The integral equation (28) is a non-linear integro-partial differential equation. We therefore
opt for a numerical approach. We introduce the following dimensionless variables:

α ≡ a

mr

, τ ≡ t

m2
r

, ρ ≡ p

mr

, and γ ≡ 1 + τ +
4∑
i=1

ρ2
i ,

and, accordingly, we rescale the two-point function σ(α) ≡ Σr
a0000/m

2
r . Equation (28) can be

thus reworded:

σ(α) =− λ̃
∫
dρ

∫ α2

0

dτ(α2 − τ)
∂2

∂τ 2

{
1

1 + τ + |ρ|2 − σ(
√
τ ,ρ)

}
. (33)

Expanding the solution in λ̃, σ(α) =
∑∞

n=0 σn(α)λ̃n, it readily follows σ0(α) = 0. To proceed

with the computation of the non-trivial orders, we invert the power series (in λ̃) appearing
in the denominator (33) after factoring out γ, namely (1− σ(

√
τ ,ρ)/γ). First, we treat this

series as a formal power series, then we care about convergence. The idea is that in order
to compute σn+1, for which we need σi, i ≤ n, we approximate the latter functions by near-
to-‘principal diagonal’ Padé approximants, i.e. by quotients of polynomials of almost equal

12



degree; this approximation is valid in a certain domain and would lead to the convergence
of the series there. Shortly, a second advantage of the Padé approximants will be evident.

We use the following result for the power of a series (cf. sec. 3.5 in [49]): For any r ∈ C,
the r-th power of a formal power series 1 + g1t

1 + 1
2!
g2t

2 + . . . can be expanded as follows:(
1 +

∑
n≥1

gn
tn

n!

)r

= 1 +
∑
n≥1

(
P(r)
n

tn

n!

)
, (34)

where the P(r)
n , the so-called potential polynomials, are given in terms of the Bell polynomials

Bp,q:

P(r)
n =

∑
1≤k≤n

(r)kBn,k(g1, . . . , gn−k+1)

=
∑

1≤k≤n

(−1)kk!Bn,k(g1, . . . , gn−k+1).

In our case, the Pochammer symbol appearing there, (r)k, becomes (−1)k = (−1)kk! As
for the Bell polynomials, they are defined by

Bn,k(x1, . . . , xn−k+1) =
∑
cj

n!

c1!c2! · · · cn−k+1!

(x1

1!

)c1 (x2

2!

)c2
· · ·
(

xn−k+1

n− k + 1!

)cn−k+1

.

The sum here runs over all the non-negative integers cl such that the conditions

n−k+1∑
i=1

ci = k and
n−k+1∑
q=1

qcq = n (35)

are fulfilled. It will be useful to rescale the k-th variable xk in the Bell polynomials by
x′k = xk · w · k!, for a number w 6= 0, to obtain a simpler expression in the lhs:

Bn,k(x′1, . . . , x′n−k+1) = Bn,k (x1 · w · 1!, x2 · w · 2!, . . . , xn−k+1 · w · (n− k + 1)!)

= wk
∑
cj

n!

c1!c2! · · · cn−k+1!
xc11 · · · (xn−k+1)cn−k+1 . (36)

Remark. After taking the reciprocal of the power series, the convergence of each coefficient
of λ̃n, σn(α), is not guaranteed. We denote by σ̃n(α) those probably divergent coefficients,

which need to be renormalized. Thus, taking the (n + 1)-order in λ̃ of σ̃(α), σ̃n+1(α), boils
down to integrate

σ̃n+1(α) =−
∫
R4

dρ

∫ α2

0

dτ(α2 − τ)
∂2

∂τ 2[
1

n!γ

∑
1≤k≤n

(−1)kk!Bn,k
(
−1!

σ1(ζ)

γ
,−2!

σ̃2(ζ)

γ
, . . . ,−(n− k + 1)!

σ̃n−k+1(ζ)

γ

)]

=−
∫
R4

dρ

∫ α2

0

dτ(α2 − τ)
∂2

∂τ 2

 ∑
1≤k≤n

k!

γk+1

∑
c(k,n)

n−k+1∏
j=1

(
σ̃j(ζ)cj

cj!

) . (37)
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Here ζ = (
√
τ ,ρ) and we have made use of (36) with the nowhere-vanishing w = −γ−1. To

obtain expressions for higher-order solutions we use the explicit form of the Bell polynomials

B1,1(x1) = x1, B2,1(x1, x2) = x2, B3,1(x1, x2, x3) = x3, B4,1(x1, x2, x3, x4) = x4,

B2,2(x1, x2) = x2
1, B3,2(x1, x2, x3) = 3x1x2, B4,2(x1, x2, x3, x4) = 4x1x3 + 3x2

2,

B3,3(x1, x2, x3) = x3
1, B4,3(x1, x2, x3, x4) = 6x2

1x2,

B4,4(x1, x2, x3, x4) = x4
1.

The first order in perturbation theory can be given exactly —and without using the Padé
approximants, nor regularization — and is given by

σ1(α) = −2Vol(S3)

∫ α2

0

dτ(α2 − τ)

∫ ∞
0

dρ
ρ2

(1 + τ + ρ3)2

= −2(2π2)

∫ α2

0

dτ
α2 − τ

4(1 + τ)
= −π2[(α2 + 1) log(α2 + 1)− α2].

With (37) in our hands, other low-order terms can be obtained:

σ̃0(α) = σ0(α) = 0

σ̃1(α) = σ1(α) = −π2[(α2 + 1) log(α2 + 1)− α2]

σ̃2(α) = −
∫
R4

Λ

dρ

∫ α2

0

dτ(α2 − τ)
∂2

∂τ 2

(
1

γ2
σ̃1(ζ)

)
σ̃3(α) = −

∫
R4

Λ

dρ

∫ α2

0

dτ(α2 − τ)
∂2

∂τ 2

{
1

γ3

(
σ̃2

1(ζ) + γσ̃2(ζ)
)}

σ̃4(α) = −
∫
R4

Λ

dρ

∫ α2

0

dτ(α2 − τ)
∂2

∂τ 2

{
1

γ4

(
σ̃3

1(ζ) + 2γσ̃1(ζ)σ̃2(ζ) + γ2σ̃3(ζ)
)}

σ̃5(α) = −
∫
R4

Λ

dρ

∫ α2

0

dτ(α2 − τ)
∂2

∂τ 2

{
1

γ5

(
σ̃4

1(ζ) + 3γσ̃1(ζ)2σ̃2(ζ)

+ 2γ2(σ̃1(ζ)σ̃3(ζ) + σ̃2
2(ζ)) + γ3σ̃4(ζ)

)}
.

In all these expressions σ̃i(ζ) =
∑4

j=1 σ̃i(pj) + σ̃i(
√
τ), with ζ0 =

√
τ , ζ1 = ρ1, . . . , ζ4 = ρ4.

Notice that the non-linearity is evident from the third order on.
To shed some light on the procedure to extract the divergence occurring in the integral

(37), we consider the second order and then extend the method to higher orders. The most
dangerous term in

σ̃2(α) = −
∫
R4

Λ

dρ

∫ α2

0

dτ(α2 − τ)
[6σ̃1(ζ)

γ4
− 4σ̃′1(

√
τ)

γ3
+
σ̃′′1(
√
τ)

γ2

]
(38)

is the last summand. We write the Taylor expansion of γ−2σ̃′′1(
√
τ) at first order and get the

renormalized expression σ2(α) as

σ2(α) = −
∫
R4

Λ

dρ

∫ α2

0

dτ(α2 − τ)
[6σ1(ζ)

γ4
− 4σ′1(

√
τ)

γ3
+
σ′′1(
√
τ)

γ2
− σ′′1(

√
τ)

(1 + |ρ|2)2

]
14



= −
∫
R4

Λ

dρ

∫ α2

0

dτ(α2 − τ)
[6σ1(ζ)

γ4
− 4σ′1(

√
τ)

γ3

]
+π2

∫ α2

0

dτ(α2 − τ)σ′′1(
√
τ) log(1 + τ)

= −
∫
R4

Λ

dρ

∫ α2

0

dτ(α2 − τ)
[6σ1(ζ)

γ4
− 4σ′1(

√
τ)

γ3

]
+π4

{
(1 + α2) log(1 + α2)− α2 − 1

2
(1 + α2)

[
log(1 + α2)

]2}
.

The above integral is convergent and therefore σ2(α) is well defined in the limit where Λ→∞.
Consider now

σ̃n+1(α) = −
∫
R4

dρ

∫ α2

0

dτ(α2 − τ)
∂2

∂τ 2

 ∑
1≤k≤n

k!

γk+1

∑
c(k,n)

n−k+1∏
j=1

(
σ̃j(ζ)cj

cj!

) . (39)

The integral leads to the logarithmically divergence which could be removed. We get

σn+1(α) = −
∫
R4

dρ

∫ α2

0

dτ(α2 − τ)

{
∂2

∂τ 2

[ ∑
1≤k≤n

k!

γk+1

∑
c(k,n)

n−k+1∏
j=1

(σj(ζ)cj

cj!

)]
− σ′′n(

√
τ)

(1 + |ρ|2)2

}
. (40)

The above integral is convergent in the limit where Λ → ∞ using (almost) equal degree
Padé approximation. The solution of the integral equation, for small values of the coupling
constant, is given in fig. 3, fig. 4 and fig. 5 . Those plots show σ(α), computed to second

order in λ̃. We have used MathematicaTM to obtain the Padé approximants and to plot the
solution. Their advantage over partial Taylor sums to approximate the σi’s becomes now
clear— those had been otherwise divergent and the only term we introduced in order to
control the divergence would not have been enough.

7 Conclusion

In this paper we have considered the just renormalizable ϕ4
5 tensorial group field theory with

the propagator of the form 1/p2. We have introduced the melonic approximation of the
Schwinger-Dyson equation of the two and four-point functions. This is made possible, by
suppressing the non-melonic graphs, to obtain a closed equation for the two-point functions.
This equation is solved perturbatively. It would be interesting to apply the melonic approx-
imation to other tensor models supporting a large-N expansion, e.g. to multi-orientable
tensor models [18].

For future investigation remains the numerical study of the four-point function we treated
in section 5. We also plan to address the criticality of the model. Concretely, at certain value
of the coupling constant, namely about λ ≈ −2.125 × 10−2, the behaviour of the two-point
function noticeably bifurcates. Thus, some criticality is promissory in fig. 4. To claim this
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Figure 3: Plot of σ(α) with different negative values of λ. The curves are interpolations of discrete
data obtained for the two-point function of the ϕ4

5-model (with mr set to 1) to second order in λ̃.
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Figure 4: This is a zoom to the region where criticality might take place. It shows how the
behaviour of the two-point function bifurcates from a certain value for the coupling constant
about λ ≈ −0.002125.
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Figure 5: Plot of log[−σ(α)] with different positive values of λ. Just as in the previous plot, we
interpolated a discrete graph.

we need a new, more detailed study, though; for instance, by solving for higher values of α.
The phase transitions and the critical behaviour of the model could physically relevant, and
in particular, interesting for applications in cosmology.
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