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1 IntrodutionIt is now well admitted that our urrent onepts of spae and time have to be modi�edwhen dealing with very short sale physis. One possible modi�ation, inspired by quantummehanis, is to allow for nonommuting oordinates. Sine all relevant physial theories, likeYang-Mills theory or general relativity, are of geometrial nature, it is neessary to developgeometrial onepts inorporating nonommutative oordinates.Among all possible ways to develop non ommutative geometry, the approah pioneered byA. Connes (see [1℄ and [2℄ as well as [3℄ and [4℄ for a pedagogial introdution) already proved tobe relevant in desribing the Standard Model of partile physis (see [5℄ and referenes thereinfor a review.)Another important breakthrough oured when these ideas appeared naturally in the studyof ompati�ation of matrix theory (see [6℄ and [7℄). In this survey, the entral tool is Yang-Mills theory on a nonommutative torus. Roughly speaking, suh an objet is obtained afterinsertion of phase fators between the Fourier modes on the standard torus. From the math-ematial point of view, this is a rather well known objet [8℄ on whih Yang-Mills theory hasbeen fully developed (see [9℄ and [10℄), even with non trivial topologial struture.Here, we will be onerned with the perturbative quantization of this theory. To thisaim, we will �rst review in the simplest possible terms the nonommutative torus and theorresponding Yang-Mills theory. We stik to the notions whih are neessary in what followsso that this paper requires no previous knowledge of nonommutative geometry. Then we turnto the perturbative quantization, derive Feynman rules and study general aspets of the theory,inluding renormalizability. This survey is arried out in the simplest possible ase, i.e. pureYang-Mills theory without supersymmetry. In partiular, we do not inlude fermioni �eldsand refer to [11℄ for a theory involving fermions. The next setion is devoted to a detailedomputation of the one loop ounterterms using � funtion regularization. Finally, we ome togrips with higher order diagrams and show the �niteness of non planar diagrams.2 Algebrai preliminariesWe begin this setion by gathering the basi de�nitions of the theory as well as some usefulformulae. First of all, we introdue the algebra of oordinates A� on the nonommutative torusof dimension D as the involutive algebra generated by D unitary elements U1; : : : ; UD ful�llingUiUj = e2i��ijUjUi; (1)where �ij 2 MD(R) is an antisymmetri matrix. When all its entries are integral, we get aommutative algebra and we reover the usual n-dimensional torus if we identify the previousgenerators with the standard exponential of the oordinates on the torus.In omplete analogy with the usual torus, a generi element f of the algebra A� is power1



expanded as f = X(p1;:::;pD)2ZD fp1;:::;pD(U1)p1 � � � (UD)pD : (2)Sine we want to deal with the analogue of smooth funtions, it is neessary to assume that thesequene of omplex numbers fp1;:::;pD dereases faster that any polynomial when jp1j + � � � +jpDj ! +1.For later purposes, it is onvenient to denote by Up the produt (U1)p1 � � � (UD)pD for p =(p1; : : : ; pD) 2 ZD. The latter satisfy the produt rule UpU q = e2i��(p;q)Up+q, where �(p; q) =���p�q� , � being a matrix obtained from � after deleting all its elements below the diagonal. Inthe previous relation, we have used Einstein's onvention of summation over repeated indies,as will always be the ase for greek indies. Moreover, when the indies lie at the same level,a ontration with the basi eulidean metri is self-understood. To simplify the produt rule,we replae Up by ei��(p;p)Up so that we haveUpU q = ei��(p;q)Up+q: (3)In the mathematial language this de�nes a projetive representation of the abelian groupG = ZD. It an be extended to any other abelian group and it will prove to be useful to takefor G the group Rn (nonommutative RD ) or a produt with the �nite group ZN (U(N) gauge�elds).We introdue the di�erential alulus on the nonommutative torus by means of the deriva-tions �� de�ned as ��Up = ip�Up: (4)They form the nonommutative ounterparts of the derivations with respet to the standardoordinates on the torus. By de�nition, they satisfy the Leibniz rule ��(fg) = ��f g + f ��gfor any f; g 2 A�. Although they form a linear spae, it is important to note that in generalthe oeÆients of a linear ombination of these derivations should be onstant for the Leibnizrule to be satis�ed; whih is more restritive than in the ommutative ase. These oeÆientsmay be onsidered as vielbeins, whih determine a onstant metri on the torus.In omplete analogy with the ommutative ase, the integral of f = Pp fpUp is de�ned asZ f = V f0; (5)where V is a positive number whih represents the volume of the torus. Although V has to behosen in aordane with the hoie of the vielbein, we will hoose V = 1 for simpliity. Thisintegral has the property of being a trae on the algebra A�, whih means thatZ fg = Z gf (6)for any f; g 2 A�. 2



Furthermore, beause the integral just piks up the the 0-th omponent of f , it is lear thatthe integral of a derivative vanishes, whih allows us to integrate by partZ ��f g = � Z f ��g (7)for any f; g 2 A.Whenever � 2MD(Z), it is lear that the algebra A� is ommutative and may be identi�edwith the algebra of funtions on the standard torus. In the general ase, the enter of A� is thelinear span of the monomials Up suh that �(p) 2 2�ZD, where we noted (�(p))� = ���p� .Two ases are of partiular interest. First of all, if we assume that �(p) =2 2�ZD for anyp 2 ZD, then the enter turns out to be trivial. In this ase, whih we all the non degeneratease, many proofs of general results are muh simpler.When � 2MD(Q), the enter is isomorphi to the algebra of smooth funtions on an ordinarytorus of dimension D. To prove it, we �rst introdue a matrix S 2 SLD(Z) suh that �0 = St�Sis a blok diagonal matrix made of 2�2 antisymmetri matries [12℄. Beause S is invertible inthe ring MD(Z), the monomials V p = US(p) also span A� and satisfy the simpler produt ruleV pV q = ei��0(p;q)V p+q. Thanks to the blok diagonal struture of �0, it is suÆient to study thetwo dimensional ase.Aordingly, let us denote by U and V two unitary elements suh thatUV = e2i�MN V U; (8)whereM and N are relatively prime integers. They generate the algebra of the two-dimensionalnon ommutative torus in the rational ase, whose enter is the algebra generated by UN andV N . We identify UN and V N with the Fourier modes e2i�x and e2i�y on a standard torus. IfP and Q are two unitary N � N matries satisfying PN = QN = 1 and PQ = e2i�MN QP , itis tantamount to identify U and V with e 2i�xN P and e 2i�yN Q. Unfortunately, the latter are notwell de�ned funtions over the torus and form a bundle of matries over it, whose transitionfuntions are onstant. This bundle, as well as all its higher dimensional generalisations, appearin the desription of the zero ation setor of twisted gauge theory on the torus [22℄.Let us end up this setion by a desription of gauge theory on the non ommutative torus.Let Ap� be a sequene of N �N omplex matries indexed by a spae-time index � = 0; : : : ; Dand the momentum p 2 ZD. The gauge �eld A� is de�ned asA� = Xp2ZnAp�Up; (9)whih is supposed to be antihermitian, A�� = �A� or equivalently, �Ap��� = �A�p� . A� is aelement of a matrix algebra with oeÆients in A� and we de�ne its urvature asF�� = ��A� � ��A� + g [A�; A�℄ ; (10)where g is a oupling onstant. 3



The Yang-Mills ation is nothing butSYM [A�℄ = �14 Z Tr (F��F��) ; (11)where the normalization is orret in the N = 1 ase, to whih we will restrit in the followingsetions, but has to be adapted when N > 1. Note that sine A� is antihermitian so is F�� andthe ation is positive.Gauge transformations are given by unitary elements 
 of the algebra of matries over A�,ating on the spae of gauge �elds asA� ! 
A�
�1 + 
��
�1: (12)Sine �� is a derivation, it follows thatF�� ! 
F��
�1: (13)Thanks to the trae properties of the integration, it is obvious that the previous ation funtionalis gauge invariant.In this setion, we have been deliberately ignoring muh of the awe inspiring theory whihis behind this onstrution. For the present purpose, all what has been written is suÆient tounderstand what follows, but we urge the reader to onsult the referenes quoted in the intro-dution, where Yang-Mills theory has been fully developed in the ontext of nonommutativegeometry.3 Yang-Mills theoryBefore entering into the omputational details of the quantization of the ation given by (11), letus �rst larify what we mean by suh a proedure. In its more general aeptane, the expression"�eld theory" refers to a dynamial system with an in�nite number of degrees of freedom.Working on R � T n�1� , the previous ation funtional de�nes suh a system whose degrees offreedom are parametrized by all the funtions Ap�(t). It also has additional symmetry propertiesunder spae and time translations, whih lead to onserved quantities formally analogue to theusual ones.Moreover, this ation exhibits gauge symmetry and leads to a standard hamiltonian theorywith the nonommutative Gauss law as a onstraint.The equal time Poisson brakets are easilyobtained by simply trading the standard Lie algebra indies for momenta on T n�1� . All thislassial onstrution only relies on purely algebrai relations and is easily obtained from thestandard theory provided the latter is formulated without any referene to the point strutureof the underlining spae.Working on a formal level, the quantization of the system is obtained by replaing the equaltime Poisson brakets by ommutators of operators suitably represented on a Hilbert spae, forinstane by multipliation and derivation with respet to Api ating on the spae of all funtions4



of these quantities. Then, transition to path integral is arried out using standard tehniques.The only tehnial diÆulty lies in the fat that it is no longer possible to implement theintegration over the gauge group as the in�nite produt �x dg(x) of Haar measures.Any element of the group G of unitary elements of A� an be expanded as a Fourier seriesPp gpUp, where the omplex numbers gp are subjet to the onstraints C(p) = 0 withC(p) =Xq gq�pgqe�i��(p;q) � Æ(p); (14)and the additional onstraints C 0(p) = 0 arising from gg� = 1. Inserting all these onstraintsin the naive integration form yields a (formal) measure[Dg℄ = �p dgp�q C(q) �r C 0(r) (15)whih is formally invariant under left and right translations and whih is idential to the usualmeasure in the ommutative ase. Apart from that, one onsiders funtional integrals over all�elds as produts of funtional integrals over all funtions Ap�(t). This provides us with a gauge�xed generating funtional (in the Lorentz gauge)Z[J; �; �℄ = Z [DA�℄[DB℄[DCDC℄e�SYM [A�℄+SGF [A�;B℄+SFP [A�;C;C℄+R J�A� + Z �C + Z C�; (16)where B and J� are antihermitian maps form R to A� and C and C are ghosts oupled to thesoures � and �. The nature of these ghosts will be preised below.From now on, we assume that time has been ompati�ed and we inoporate the latter asa nonommutative oordinate, whih means that we are bak to T d� .The �eld B is a Lagrange multiplier for the Lorentz gauge onstraint, so thatSGF [A�; B℄ = �g Z B��A�: (17)C and C are Faddeev-Popov ghosts that are expanded as C = PpCpUp and C = Pq CqU qwhere Cp and Cq generate an in�nite dimensional Grassmann algebra. The Faddeev-Popovterm is Z C (��C + g [A�; C℄) (18)and the whole ation is invariant under the nilpotent BRS transformation de�ned ass(A�) = 1g��C + [A�; C℄ (19)s(C) = �12C2 (20)s(C) = B (21)s(B) = 0: (22)5



The auxiliary �eld B an be integrated out with a gaussian weight e�g22 R B2 so that we retrievethe standard gauge �xing term SGF [A�℄ = � 12� Z (��A�)2 : (23)The previous generating funtional an be omputed perturbatively using Feynman dia-grams. To proeed, we expand all quantities in Fourier modes and we separate quadrati andinterating terms. The quadrati terms are absolutely idential to the ones appearing in nonabelian gauge theories, thus yielding the gauge propagator�p; � q; �assoiated with � 1p2  g�� � (1� �)p�p�p2 ! Æ(p+ q)and the ghost propagator �p qrepresenting � 1p2 Æ(p+ q):Although the propagators are the same as in standard non-abelian Yang-Mills theory, theinterations take a di�erent form. To the three gauge bosons interation
�r; � q; �p; �

we assoiate 2g ((p� r)�g�� + (q � p)�g�� + (r � q)�g��) sin �(p; q)Æ(p+ q + r)and the four gauge bosons interation
�

p; � q; �r; �s; �
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orresponds to �4g2�(g��g�� � g��g��) sin �(p; q) sin �(r; s)+(g��g�� � g��g��) sin �(p; r) sin �(s; q)+(g��g�� � g��g��) sin �(p; s) sin �(q; r)�Æ(p+ q + r + s):Finally, the interation of a gauge boson with ghosts
��r qp

is assoiated with 2gr� sin �(p; q)Æ(p+ q + r):All these interations are non loal sine they involve non polynomial funtions of the momenta.They are easily obtained from the standard Feynman rules after replaing the Lie algebrastruture onstants fab by 2 sin��(p; q), whih appear in the ommutation relation[Up; U q℄ = 2i sin��(p; q)Up+q: (24)All this onstrution is readily extended to U(N) gauge �elds on the nonommutative torus bymeans of two unitary N �N matries P1 and P2 fu�lling PN1 = PN2 = 1 and P1P2 = e 2i�N P2P1.Then, if a = (a1; a2) and b = (b1; b2) denote additional indies in ZN � ZN, the Lie algebrastruture is given byhUp 
 P a; U q 
 P bi = 2i sin� ��(p; q) + 1N a ^ b�Up+q 
 P a+b; (25)with a ^ b = a1b2 � b2a1. Aordingly, the inorporation of the additional U(N) struture iseasily implemented by a shift of the phases by 1N a^ b. This Lie algebra struture goes bak to[13℄, where additional information on its struture may be found.It follows from the inequality j sin��(p; q)j � 1 that any diagram whih is onvergent bypowerounting in standard non abelian theory is also onvergent here. However, a short glimpseat the one loop orretion to the gauge boson propagator (see next setion) shows that it isdivergent, as well as all other one loop diagrams. Aordingly, the theory is also plagued byultraviolet divergenies and requires regularization and renormalization, as it must be the asefor rational �.Nevertheless, it appears that the theory is ompletely free of any infrared singularity. Indeed,on the torus these singularities arise from the zero mode, whih does not appear in the ation(11), sine it ommutes with all other �elds. This is true only in the N = 1 ase and is it7



not true, for instane, when � = 0 and N > 1. This di�erene between U(N) gauge �eldswith trivial topology � = 0; N > 1 and the orresponding twisted setor � 6= 0; N = 1 is easilyexplained by the fat that the infrared setor is modi�ed by the non trivial topology of thegauge �elds.The ourrene of one loop divergene (in dimension four, to whih we stik to from now on)and the new nature of the ation, whih inorporates non loal interations, raises the questionof its renormalizability. Even if the theory is well known for rational �, i.e. for a dense subsetof parameters, it is not a priori lear that all its properties extend by ontinuity to the generalase.Renormalizability of the theory will follow immediately from the existene of an invariantregularization sheme, sine it will enable us to onstrut reursively the required ounterterms.In our situation, suh a sheme is provided by the higher-ovariant derivatives and Pauli-Villarsregularizations [14℄.Although the orginal method turns out to be inonsistent [15℄, it is learly established thatit provides a bona �de regularization of Yang-Mills theory with minor modi�ations [16℄, [17℄and [18℄.The ornerstone of this proedure lies in adding to the previous ation a term like� 1�4 Z F��r4F�� ; (26)where r� = ��+ [A�; ℄ is the ovariant derivative and � a ut-o�. This term is gauge invariantand modi�es the powerounting of all diagrams beyond one loop so that they are overall on-vergent. Sine the powerounting is the same on the nonommutative torus and in non abelianYang-Mills theory, this statement still holds in our ase.However, due to the new interations we have introdued, the one loop diagrams remaindivergent. They are usually regularized by means of additional Pauli-Villars �elds, whih arryover to the nonommutative ase provided they are de�ned in momentum spae, like we haveintrodued Faddeev-Popov ghosts. Therefore, if suh a proedure is onsistent in non-abelianYang-Mills theory, it will also regularize Yang-Mills theory on the nonommutative torus in aninvariant way, thus establishing renormalizability.Unfortunately, the last onstrution is not onsistent even in ordinary gauge theory. Onehas to modify the onstrution as already mentioned. Among all these modi�ations, thesimplest one whih is readily formulated in nonommutative geometry is the one desribed in[19℄. All this onstrution, inluding the higher ovariant derivative ation and the additionalPauli-Villars �elds, an be formulated in momentum spae. Thus, the replaement of all Liealgebrai struture onstants by sine funtions allows us to write the analogous regularizationon the nonommutative torus, and all arguments presented in [19℄ are still valid in this ase.Beause it it rather lengthy, we postpone the detailed aount of the adaptation of thismethod to nonommutative geometry to a more thorough survey of gauge �elds on the non-ommutative torus. However, these arguments are strong lues in favour of the renormalizabilityof the theory to all orders. 8



4 1-loop ounterterms and �-funtionIn this setion we shall ompute expliitly the 1-loop ounterterms using a � funtion regu-larization. To this aim, we will replae, after introdution of the Feynman parameters, alldenominators kN appearing in Feynman integrals by ks for <(s) large enough and then takethe residue at s = N . Of ourse this sheme breaks BRS invariane, but as far as we areonerned with divergent parts of one loop diagrams, this symmetry is preserved.To proeed, let us introdue �(s) =Xk ei'k(k2 + 2pk +m2)s ; (27)where the summation runs over all elements of ZD but a �nite subset. It also depends onadditional parameters: two vetors p and ' of RD , a real number m and an integer N . Beausethe zero mode does not propagate, we are obliged to exlude from the summation a �nite subsetorresponding to vanishing internal momenta.When <(s) is large enough, this funtion is holomorphi and it is easily seen, using Poissonresummation formula, that it extends to a holomorphi funtion on the whole omplex planewhen ' =2 2�ZD.If ' 2 2i�ZD, the poles and their residues an be determined [20℄ and we get a pole whens = D=2� n, n 2 f0; 1; : : : ; D=2� 1g, whose residue is�D=2 (p2 �m2)n�(D=2� n)�(n + 1) : (28)Writing s = D=2 � n + �, it is easily seen that these poles are the same as the ones of theorresponding integral in dimensionD�2�. By derivation with respet to p, we obtain additionalidentities involving more ompliated tensorial strutures.This relation ensures that we will have the same numerial oeÆients as in standard di-mensional regularization. Aordingly, most of the alulation follows the standard one andthe only novelty resides in the use of trigonometri identities in plae of Lie algebrai ones.Aordingly, the determination of the divergent part of the two and three point funtionsare straightforward. We �rst linearize the orresponding produts of sines and then pik up apole whenever the phase fator vanishes. However, it is worth notiing that the phases vanishwhen the external momenta satisfy additional relations (p = 0 for the two point funtions,p+ q = 0, q+ r = 0 and q+ r = 0 for the three point funtions). Fortunately, these divergenesplay no role sine the orreponding interations vanish identially when the external momentaful�l the previous relations.In dimension four, the divergent parts of the gauge boson and ghost propagators are respe-tively (13� 3�)�2g23� (�1)p2  g�� � p�p�p2 ! Æ(p+ q) (29)9



and (3� �)�22� (�1)p2 Æ(p+ q): (30)Note that, as usual, the orretion to the gauge boson propagator is transverse.The total ontribution to the divergent part of the interation of a gauge boson and twoghosts an be written as8g2Æ(p+ q + r) Xk 6=0;q;�r�k�k � r + r�k2 � k�k � rk2(k � q)2(k + r)2 sin��(p; k � q) sin��(q; k) sin��(p; k): (31)The produt of sines an be expressed assin��(p; k � q) sin��(q; k) sin��(p; k) = 14 sin��(p; q)+ i8ei��(p;q) �e2i��(q;k) + e2i��(r;k) � e2i��(p;k)�� i8e�i��(p;q) �e�2i��(q;k) + e�2i��(r;k) � e�2i��(p;k)� ;(32)where we have used the relation p+ q+r = 0. Only the �rst term gives a pole and all divergentontributions that appear in the other term anel. Aordingly the divergent part of thisinteration is 2gÆ(p+ q + r) sin��(p; q)�g2�2� (33)The divergent ontribution to the interation of three gauge bosons is omputed in a similarway and is given (in the � = 1 gauge) by2gÆ(p+ q + r) (g��(p� q)� + gnu�(q � r)� + g��(r � p)�) sin��(p; q)4g2�2� : (34)The four point funtion of gauge bosons may be derived in an analogous way, but we have tofae two novel diÆulties. Beause these have no ounterparts in standard non-abelian theory,we found it interesting to spend a few lines retraing the main aspets of the omputation.All one loop diagrams ontributing to this funtions involve produts of four sines, but oneor two of them may be independent of the internal momenta k. Evaluation of these diagramsis ompletely similar to the previous ones. When all sines depend on the internal momenta,their produt an always be written assin ��(a; k + x) sin��(b; k � y) sin��(; k) sin��(d; k); (35)where a; b; ; d is a permutation of p; q; r; s and x = ; y = d or x = d; y = . In the nondegenerate ase, this yields a pole term of the type18 os (��(a; x)� ��(b; y))+18 (Æ(a+ b) os ��(a; b) os ��(; d)+Æ(a+ ) os ��(a; ) os��(b; d)+Æ(a+ d) os��(a; d) os��(b; )) :10



The term involving Æ funtions is the �rst major deviation from the standard alulation innon-abelian gauge theory. Furthermore, these terms hallenge renormalizabilty and but theydisappear after the sum of all diagrams have been taken into aount.After all ontributions have been added, the term begining by �4g2 2�2g2� g��g�� has a trigono-metri fator given by1548 os (��(p; q)� ��(r; s)) + 10948 os (��(p; q) + ��(r; s))�5748 os (��(p; r)� ��(s; q)) + 2548 os (��(p; r) + ��(s; q))�6948 os (��(p; s)� ��(q; r))� 2348 os (��(p; s) + ��(q; r)) ; (36)whih is far from the initial Yang-Mills interation. However, elementary transformations usingp+ q + r + s = 0 yield��(p; r)� ��(s; q) = ��(q + s; p)� ��(q; p+ r) = � (��(p; s) + ��(q; r))��(p; q)� ��(r; s) = ��(r + s; p)� ��(s; p+ q) = � (��(p; r) + ��(s; q))��(p; q) + ��(r; s) = ��(r + s; p) + ��(p + q; r) = � (��(p; s)� ��(q; r)) ; (37)so that the trigonometri fator an be rewritten as�4048 os (��(p; r)� ��(s; q)) + 4048 os (��(p; r) + ��(s; q))+4048 os (��(p; s)� ��(q; r))� 4048 os (��(p; s) + ��(q; r))= 53 (sin��(p; s) sin��(q; r)� sin��(p; r) sin��(q; s)) : (38)Additional terms ome from produts of one and two sines involving the internal momenta andalso from other tensorial strutures, so that the divergene of the four point funtion an berewritten as (in the � = 1 gauge)�4g2Æ(p+ q + r + s) ((g��g�� � g��g��) sin��(p; q) sin��(r; s)+(g��g�� � g��g��) sin��(p; r) sin ��(s; q)+(g��g�� � g��g��) sin��(p; s) sin��(q; r)) �2g2�23 � ; (39)whih has the same trigonometri struture as the initial interation. In the previous alu-lation, we assumed that � was not degenerate. If this is not the ase, the omputations areonly slightly more ompliated, beause we have to replae the Æ funtions by an in�nite sumof suh funtions orresponding to all possible vanishing phases. However, the �nal result stillholds.Aordingly, it turns out that the theory is one-loop renormalizable. Using standard nota-tions [21℄, the required ounterterms in the MS sheme are given byZ3 = 1 + (13� 3�)�2g23� ~Z3 = 1 + (3� �)�2g22� (40)11



for the gauge and ghost two point funtions. The renormalization of the three and four pointfuntions are (extending our results to a general gauge)Z1 = 1 + (17� 9�)�2g26� Z4 = 1 + (4� 6�)�2g23� : (41)Finally, the renormalization of the interation between gauge boson and ghosts reads~Z1 = 1� ��2g2� : (42)Appart from a fator 32�4 (orresponding to the volume of the torus that we set equal to1) and the replaement of the Casimir C2(G) by 2, we retrieve the usual expression for theounterterms. Therefore, they satisfy the usual relationZ4Z1 = Z1Z3 = ~Z1~Z3 (43)that ensures one-loop renormalizability.From the previous relations, one readily omputes the � funtion whih is given by�(g) = �11�23 g2: (44)Aordingly, the theory is asymptotially free whenever � does not vanish.At �rst sight, this is a rather surprising result, sine in the rational ase we are workingwith standard SU(N) gauge theory whose �-funtion depends in a ruial way on N . However,this is nothing but a simple question of normalization: although our kineti term is orretlynormalized, the basis of the Lie algebra of SU(N) we have been using is not orretly normal-ized. Taking into aount the orret normalization, we have to multiply g by a fator of qN=2whih yields the standard beta funtion.The results we have obtained are reminisent of those appearing in the large N limit ofgauge theory. Indeed, as far as the one-loop omputations are involved, the divergent parts ofthe diagrams are ontinuous in � so that one an pass to the limit of large N with a large twist� = limN!+1 ���N ; (45)where ��� is the twist tensor [22℄, whih is also assumed to go to in�nity.Within this setion, it learly appeared that one an work with this theory as if it wasa standard gauge theory. Appart from minor ompliations in the omputations, no newphenomena have appeared. However, the alluded relation with the large N limit suggests thatsomething new may our when dealing with non planar diagrams, as we will see in the nextsetion. 12



5 Higher order behaviorWhen dealing with higher order diagrams the following two questions arise in a natural way:� What is the phase fator pertaining to suh a diagram?� How does this phase fator govern the divergene of the orresponding integral?The answer of the �rst question follows quite immediately from a previous work whih weshall briey review [23℄.To begin with, let us introdue multivalent planar verties whose arrows are ordered upto yli permutation. Verties are related by lines and eah of them is given an arbitraryorientation is equipped with a momentum vetor k 2 Rn . We further assume that momen-tum onservation holds for all verties and we assoiate to a vertex with inoming momenta(k1; : : : ; km) the phase fator exp i�0� X1�i<j�m �(ki; kj)1A ; (46)where ki has been replaed by �ki if it is outgoing. Let us point out that we do not requirethese diagrams to be planar so that a rossing of to lines is allowed.The resulting phase pertaining to an arbitrary onneted diagramwith external lines p1 : : : ; pEand internal lines k1; : : : ; kI isexp i�0� X1�i<j�E �(pi; pj)1A exp i�0� X1�i;j�I \ij�(ki; kj)1A ; (47)where \ij = 12(Iij�Iji) is the antisymmetrized intersetion matrix of the oriented graph de�nedas follows, \ij = 8><>: Iij = +1 if j rosses i from left;Iij = �1 if j rosses i from right;Iij = 0 if j and i do not ross: (48)The two phase fators appearing in (47) have rather di�erent origins: the �rst one only dependson the external momenta of the graph and the seond one is due to the non-planarity of thediagram. Let us also point out that the phase an be omputed from a redued diagramobtained after ontration of an internal line onneting a ouple of verties and losed loopsthat do not ross any other internal line.The relation between the previous statements and the phase fator in Yang-Mills theoryis obtained by expressing the trigonometri funtion pertaining to the diagram as a sum ofexponentials. This is translated diagrammatialy as follows: we �rst express the four-valentinterations as a sum of three produts of three-valent graphs (the internal line joining thetwo verties does not ontribute to the phase), and then we redue all-three valent graphs(assoiated with a sine) as sums of two planar interations (assoiated with an exponential).13



This proedure allows to determine the phase fator of a given diagram quite easily. Fur-thermore, it proves that for any non-planar diagram there is still a phase fator depending onthe internal momenta, ontrary to a planar one whih always yields a funtion independent ofthe internal momenta.This has also been studied in the ontext of large N redued models in [24℄. Stritlyspeaking, the method applies to a matrix model desribing the rational ase, but it an bereadily extended to the general ase. It essentially relies on interpreting �(p; q) as the ux ofthe onstant 2-form ��� through the triangle determined by p and q. Then, to a given planarFeynman diagram we assoiate the dual one and the total phase is nothing but the ux of �through the resulting polygon. By utting all non planar diagrams, we obtain a residual phasedepending on the internal momenta. Note that this method also requires �xing the inomingmomenta up to yli permutation.Let us now see how these phase fators may be relevant in smoothing the divergenes of agiven Feynman diagram. To proeed, we �rst study a simpler model based on the followingalgebra.Let us introdue n oordinates x� satisfying the ommutation relation[x�; x�℄ = 2i���� ; (49)where ��� is an antisymmetri n� n matrix of real numbers. We further de�ne on this algebraan involution by assuming that these oordinates are hermitian. These oordinates should notbe onfused with points on the nonommutative spae under onsideration { suh points donot exist. They have to be replaed by appropriate states on the algebra. We refer to [25℄for a �eld theory on nonommutative spaes based on states and a disussion of the limit ofoiniding "points".For any real vetor k 2 Rn , we de�ne Uk = exp ik�x� that may be resaled by a phase sothat they ful�ll UkUk0 = exp i��(k; k0)Uk+k0 : (50)The latter are unitary generators of an algebra similar to that of the nonommutative torusand it is not diÆult to see that one an build a Yang-Mills theory out of it whih is ompletelyanalogous to the previous one provided one allows the momenta to take all values instead ofonly disrete ones and that one replaes the series by integrals over the internal momenta inFeynman diagramms.By a unitary transformation in momemtum spae, one an redue the matrix ��� to aanonial blok diagonal form made out of antisymmetri 2�2 matries. Furthermore, beausethere is no preferred role assigned to the integral momenta k 2 Zn, there is no analogue ofthe rational ase and the theory never orresponds to standard Yang-Mills theory. To avoidompliations, we will assume that the matrix � is invertible.However, it is interesting to note that this theory is still free of infrared divergenes, evenif it is de�ned on the analogue of an in�nite volume spae. This follows from the fat that any14



internal line arrying momenta k is always onneted to two verties sin��(k; p) and sin��(k; q),thus implying the �niteness of sin��(k; p) sin��(k; q)k2 (51)when k goes to zero. However, sine we will deompose the sines into exponentials this anela-tion no longer holds and we must inoporate a small mass term for the gauge �elds. When thesum of all exponentials pertaining to a given Feynman diagram are taken into aount, theirinfrared divergenes anel and we let the mass go to zero.After appliation of Feynman's parametri formula, the integral over loop momenta k =(k1; : : : ; kL) an always be redued to the evaluation of integrals of the formIN (\; p; q;m) = Z dDLk ei'(k2 + 2pk +m2)N ; (52)followed by an integration over the Feynman parameters and eventually a derivation withrespet to p to take into aount the derivative ouplings. For the sake of simpliity, we do notonsider these topis here. We reall that the phase '(k) has already been determined and pand m are funtions of the external momenta and of a small mass whih is added to the gauge�eld.In general, this integral is divergent whenever DL � 2N , so that it generally requires theintrodution of a regulator. Within Shwinger's regularization sheme, the latter is providedby a positive funtion �� suh that lim�!1 �� = 1, whih enables us to make the replaement1(k2 + 2pk +m2)N ! 1�(N) Z 10 d���(�)�N�1e��(k2+2pk+m2); (53)where � is a ut-o�. In order to ensure onvergene of the integral, the funtion �� is supposedto vanish in zero. For onveniene, we simply hoose ��(�) = �(�=�), where � is the stepfuntion.Aordingly, the gaussian integration an be performed and we getIN(\; p; q;m) = (2�)DL2�(N) Z 10 d��N�1��(�) 1det1=2A(�)e 12B(�)A�1(�)B(�)��m2 ; (54)with ( A(�) = 12� + i� \ 
�B(�) = �2�p+ i�(q); (55)where q is a linear ombination of external momenta that does not involve the Feynman param-eters. The remainig integral over � is onvergent in the region � ! +1 (infrared divergenein momentum spae).Besides, it turns out that even when the regulator is removed, the integral is onvergentwhen � ! 0 exept when \ and q both vanish. Indeed, the �rst non-trivial term in theharateristi polynomial of \
 � (whih is non-zero whenever \ 6= 0) is suÆient to regularize15



the integral. If this matrix happens to vanish, the onvergene is provided by the fator e�q2=�if q 6= 0. When \ and q both vanish, we retrieve the standard powerounting analysis.Therefore, as soon as there is a non-trivial phase fator, the Feynman integral onverges.This always happens for non-planar diagrams so that we are tempted to onlude that theorresponding integrals are always onvergent. Unfortunately, this is not true beause of thefollowing two fats.First of all, in our analysis we do not take are of the subdivergenes. Atually the phasefator only regularizes the overall divergene. Indeed, it may happen that for speial valuesof the Feynman parameters the integral is redued to that of a subdivergent diagram withvanishing phase, thus yielding a divergene. Assuming that the subdivergenes an be takeninto aount by standard tools like the forest formula, we will not emphasize this point here.Moreover, there are additional divergenes for some exeptional values of the inomingmomenta. This happens whenever there is no rossing between internal lines so that the phasefator is only due to non-vanishing q. Sine q is the image under � of some linear ombinationof the external momenta, it vanishes as soon as the momenta ful�l this relation.This kind of divergene requires a ounterterm ontaining a delta funtion appart fromthe standard phase fator and thus threatens renormalizability. However, it follows from theexistene of an invariant regularisation sheme that the theory is renormalizable, so that weexpet these divergenes to anel when all diagrams pertaining to a given Green funtion aretaken into aount, as we have already shown at one-loop.All these results are readily extended to the ase of the nonommutative torus by means ofthe Poisson resummation formula. For any funtion f on RD , the latter states thatXn2ZD f(n) = Xn2ZD ZRd dDkf(k)e2i�(k�n): (56)Applying this idea to the funtion appearing in a Feynamn diagram yields the same gaussianintegral as before but with q shifted by the integer n. The summation over n is always onvergentas well as the remaining integral over � provided the phase does not disappear.In the non-degenerate ase, this is similar the the previous situation beause the equationq = n has no non-trivial solution, thus implying that the external momenta must ful�l some�xed relation (exeptional momenta). In the rational ase, this happens for in�nitely manyon�gurations of the external momenta beause of the periodiity of the exponential. Thisway one reovers the usual divergenes of Feynman diagrams in the twisted SU(N) gaugetheory. Indeed, after splitting of our momenta into standard momenta and olor indies, weget divergent ontributions for all on�gurations of the standard momenta.Obviously, most of the statements of this last setion are of onjetural nature and it islear that they deserve a more omplete study that we postpone to future work. In partiular,it would be interesting to �nd identities ensuring the anellation of divergenes of non-planardiagrams. We also hope that this ould shed some new light on large N theories.16
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