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1 Introdu
tionIt is now well admitted that our 
urrent 
on
epts of spa
e and time have to be modi�edwhen dealing with very short s
ale physi
s. One possible modi�
ation, inspired by quantumme
hani
s, is to allow for non
ommuting 
oordinates. Sin
e all relevant physi
al theories, likeYang-Mills theory or general relativity, are of geometri
al nature, it is ne
essary to developgeometri
al 
on
epts in
orporating non
ommutative 
oordinates.Among all possible ways to develop non 
ommutative geometry, the approa
h pioneered byA. Connes (see [1℄ and [2℄ as well as [3℄ and [4℄ for a pedagogi
al introdu
tion) already proved tobe relevant in des
ribing the Standard Model of parti
le physi
s (see [5℄ and referen
es thereinfor a review.)Another important breakthrough o

ured when these ideas appeared naturally in the studyof 
ompa
ti�
ation of matrix theory (see [6℄ and [7℄). In this survey, the 
entral tool is Yang-Mills theory on a non
ommutative torus. Roughly speaking, su
h an obje
t is obtained afterinsertion of phase fa
tors between the Fourier modes on the standard torus. From the math-emati
al point of view, this is a rather well known obje
t [8℄ on whi
h Yang-Mills theory hasbeen fully developed (see [9℄ and [10℄), even with non trivial topologi
al stru
ture.Here, we will be 
on
erned with the perturbative quantization of this theory. To thisaim, we will �rst review in the simplest possible terms the non
ommutative torus and the
orresponding Yang-Mills theory. We sti
k to the notions whi
h are ne
essary in what followsso that this paper requires no previous knowledge of non
ommutative geometry. Then we turnto the perturbative quantization, derive Feynman rules and study general aspe
ts of the theory,in
luding renormalizability. This survey is 
arried out in the simplest possible 
ase, i.e. pureYang-Mills theory without supersymmetry. In parti
ular, we do not in
lude fermioni
 �eldsand refer to [11℄ for a theory involving fermions. The next se
tion is devoted to a detailed
omputation of the one loop 
ounterterms using � fun
tion regularization. Finally, we 
ome togrips with higher order diagrams and show the �niteness of non planar diagrams.2 Algebrai
 preliminariesWe begin this se
tion by gathering the basi
 de�nitions of the theory as well as some usefulformulae. First of all, we introdu
e the algebra of 
oordinates A� on the non
ommutative torusof dimension D as the involutive algebra generated by D unitary elements U1; : : : ; UD ful�llingUiUj = e2i��ijUjUi; (1)where �ij 2 MD(R) is an antisymmetri
 matrix. When all its entries are integral, we get a
ommutative algebra and we re
over the usual n-dimensional torus if we identify the previousgenerators with the standard exponential of the 
oordinates on the torus.In 
omplete analogy with the usual torus, a generi
 element f of the algebra A� is power1



expanded as f = X(p1;:::;pD)2ZD fp1;:::;pD(U1)p1 � � � (UD)pD : (2)Sin
e we want to deal with the analogue of smooth fun
tions, it is ne
essary to assume that thesequen
e of 
omplex numbers fp1;:::;pD de
reases faster that any polynomial when jp1j + � � � +jpDj ! +1.For later purposes, it is 
onvenient to denote by Up the produ
t (U1)p1 � � � (UD)pD for p =(p1; : : : ; pD) 2 ZD. The latter satisfy the produ
t rule UpU q = e2i��(p;q)Up+q, where �(p; q) =���p�q� , � being a matrix obtained from � after deleting all its elements below the diagonal. Inthe previous relation, we have used Einstein's 
onvention of summation over repeated indi
es,as will always be the 
ase for greek indi
es. Moreover, when the indi
es lie at the same level,a 
ontra
tion with the basi
 eu
lidean metri
 is self-understood. To simplify the produ
t rule,we repla
e Up by ei��(p;p)Up so that we haveUpU q = ei��(p;q)Up+q: (3)In the mathemati
al language this de�nes a proje
tive representation of the abelian groupG = ZD. It 
an be extended to any other abelian group and it will prove to be useful to takefor G the group Rn (non
ommutative RD ) or a produ
t with the �nite group ZN (U(N) gauge�elds).We introdu
e the di�erential 
al
ulus on the non
ommutative torus by means of the deriva-tions �� de�ned as ��Up = ip�Up: (4)They form the non
ommutative 
ounterparts of the derivations with respe
t to the standard
oordinates on the torus. By de�nition, they satisfy the Leibniz rule ��(fg) = ��f g + f ��gfor any f; g 2 A�. Although they form a linear spa
e, it is important to note that in generalthe 
oeÆ
ients of a linear 
ombination of these derivations should be 
onstant for the Leibnizrule to be satis�ed; whi
h is more restri
tive than in the 
ommutative 
ase. These 
oeÆ
ientsmay be 
onsidered as vielbeins, whi
h determine a 
onstant metri
 on the torus.In 
omplete analogy with the 
ommutative 
ase, the integral of f = Pp fpUp is de�ned asZ f = V f0; (5)where V is a positive number whi
h represents the volume of the torus. Although V has to be
hosen in a

ordan
e with the 
hoi
e of the vielbein, we will 
hoose V = 1 for simpli
ity. Thisintegral has the property of being a tra
e on the algebra A�, whi
h means thatZ fg = Z gf (6)for any f; g 2 A�. 2



Furthermore, be
ause the integral just pi
ks up the the 0-th 
omponent of f , it is 
lear thatthe integral of a derivative vanishes, whi
h allows us to integrate by partZ ��f g = � Z f ��g (7)for any f; g 2 A.Whenever � 2MD(Z), it is 
lear that the algebra A� is 
ommutative and may be identi�edwith the algebra of fun
tions on the standard torus. In the general 
ase, the 
enter of A� is thelinear span of the monomials Up su
h that �(p) 2 2�ZD, where we noted (�(p))� = ���p� .Two 
ases are of parti
ular interest. First of all, if we assume that �(p) =2 2�ZD for anyp 2 ZD, then the 
enter turns out to be trivial. In this 
ase, whi
h we 
all the non degenerate
ase, many proofs of general results are mu
h simpler.When � 2MD(Q), the 
enter is isomorphi
 to the algebra of smooth fun
tions on an ordinarytorus of dimension D. To prove it, we �rst introdu
e a matrix S 2 SLD(Z) su
h that �0 = St�Sis a blo
k diagonal matrix made of 2�2 antisymmetri
 matri
es [12℄. Be
ause S is invertible inthe ring MD(Z), the monomials V p = US(p) also span A� and satisfy the simpler produ
t ruleV pV q = ei��0(p;q)V p+q. Thanks to the blo
k diagonal stru
ture of �0, it is suÆ
ient to study thetwo dimensional 
ase.A

ordingly, let us denote by U and V two unitary elements su
h thatUV = e2i�MN V U; (8)whereM and N are relatively prime integers. They generate the algebra of the two-dimensionalnon 
ommutative torus in the rational 
ase, whose 
enter is the algebra generated by UN andV N . We identify UN and V N with the Fourier modes e2i�x and e2i�y on a standard torus. IfP and Q are two unitary N � N matri
es satisfying PN = QN = 1 and PQ = e2i�MN QP , itis tantamount to identify U and V with e 2i�xN P and e 2i�yN Q. Unfortunately, the latter are notwell de�ned fun
tions over the torus and form a bundle of matri
es over it, whose transitionfun
tions are 
onstant. This bundle, as well as all its higher dimensional generalisations, appearin the des
ription of the zero a
tion se
tor of twisted gauge theory on the torus [22℄.Let us end up this se
tion by a des
ription of gauge theory on the non 
ommutative torus.Let Ap� be a sequen
e of N �N 
omplex matri
es indexed by a spa
e-time index � = 0; : : : ; Dand the momentum p 2 ZD. The gauge �eld A� is de�ned asA� = Xp2ZnAp�Up; (9)whi
h is supposed to be antihermitian, A�� = �A� or equivalently, �Ap��� = �A�p� . A� is aelement of a matrix algebra with 
oeÆ
ients in A� and we de�ne its 
urvature asF�� = ��A� � ��A� + g [A�; A�℄ ; (10)where g is a 
oupling 
onstant. 3



The Yang-Mills a
tion is nothing butSYM [A�℄ = �14 Z Tr (F��F��) ; (11)where the normalization is 
orre
t in the N = 1 
ase, to whi
h we will restri
t in the followingse
tions, but has to be adapted when N > 1. Note that sin
e A� is antihermitian so is F�� andthe a
tion is positive.Gauge transformations are given by unitary elements 
 of the algebra of matri
es over A�,a
ting on the spa
e of gauge �elds asA� ! 
A�
�1 + 
��
�1: (12)Sin
e �� is a derivation, it follows thatF�� ! 
F��
�1: (13)Thanks to the tra
e properties of the integration, it is obvious that the previous a
tion fun
tionalis gauge invariant.In this se
tion, we have been deliberately ignoring mu
h of the awe inspiring theory whi
his behind this 
onstru
tion. For the present purpose, all what has been written is suÆ
ient tounderstand what follows, but we urge the reader to 
onsult the referen
es quoted in the intro-du
tion, where Yang-Mills theory has been fully developed in the 
ontext of non
ommutativegeometry.3 Yang-Mills theoryBefore entering into the 
omputational details of the quantization of the a
tion given by (11), letus �rst 
larify what we mean by su
h a pro
edure. In its more general a

eptan
e, the expression"�eld theory" refers to a dynami
al system with an in�nite number of degrees of freedom.Working on R � T n�1� , the previous a
tion fun
tional de�nes su
h a system whose degrees offreedom are parametrized by all the fun
tions Ap�(t). It also has additional symmetry propertiesunder spa
e and time translations, whi
h lead to 
onserved quantities formally analogue to theusual ones.Moreover, this a
tion exhibits gauge symmetry and leads to a standard hamiltonian theorywith the non
ommutative Gauss law as a 
onstraint.The equal time Poisson bra
kets are easilyobtained by simply trading the standard Lie algebra indi
es for momenta on T n�1� . All this
lassi
al 
onstru
tion only relies on purely algebrai
 relations and is easily obtained from thestandard theory provided the latter is formulated without any referen
e to the point stru
tureof the underlining spa
e.Working on a formal level, the quantization of the system is obtained by repla
ing the equaltime Poisson bra
kets by 
ommutators of operators suitably represented on a Hilbert spa
e, forinstan
e by multipli
ation and derivation with respe
t to Api a
ting on the spa
e of all fun
tions4



of these quantities. Then, transition to path integral is 
arried out using standard te
hniques.The only te
hni
al diÆ
ulty lies in the fa
t that it is no longer possible to implement theintegration over the gauge group as the in�nite produ
t �x dg(x) of Haar measures.Any element of the group G of unitary elements of A� 
an be expanded as a Fourier seriesPp gpUp, where the 
omplex numbers gp are subje
t to the 
onstraints C(p) = 0 withC(p) =Xq gq�pgqe�i��(p;q) � Æ(p); (14)and the additional 
onstraints C 0(p) = 0 arising from gg� = 1. Inserting all these 
onstraintsin the naive integration form yields a (formal) measure[Dg℄ = �p dgp�q C(q) �r C 0(r) (15)whi
h is formally invariant under left and right translations and whi
h is identi
al to the usualmeasure in the 
ommutative 
ase. Apart from that, one 
onsiders fun
tional integrals over all�elds as produ
ts of fun
tional integrals over all fun
tions Ap�(t). This provides us with a gauge�xed generating fun
tional (in the Lorentz gauge)Z[J; �; �℄ = Z [DA�℄[DB℄[DCDC℄e�SYM [A�℄+SGF [A�;B℄+SFP [A�;C;C℄+R J�A� + Z �C + Z C�; (16)where B and J� are antihermitian maps form R to A� and C and C are ghosts 
oupled to thesour
es � and �. The nature of these ghosts will be pre
ised below.From now on, we assume that time has been 
ompa
ti�ed and we in
oporate the latter asa non
ommutative 
oordinate, whi
h means that we are ba
k to T d� .The �eld B is a Lagrange multiplier for the Lorentz gauge 
onstraint, so thatSGF [A�; B℄ = �g Z B��A�: (17)C and C are Faddeev-Popov ghosts that are expanded as C = PpCpUp and C = Pq CqU qwhere Cp and Cq generate an in�nite dimensional Grassmann algebra. The Faddeev-Popovterm is Z C (��C + g [A�; C℄) (18)and the whole a
tion is invariant under the nilpotent BRS transformation de�ned ass(A�) = 1g��C + [A�; C℄ (19)s(C) = �12C2 (20)s(C) = B (21)s(B) = 0: (22)5



The auxiliary �eld B 
an be integrated out with a gaussian weight e�g22 R B2 so that we retrievethe standard gauge �xing term SGF [A�℄ = � 12� Z (��A�)2 : (23)The previous generating fun
tional 
an be 
omputed perturbatively using Feynman dia-grams. To pro
eed, we expand all quantities in Fourier modes and we separate quadrati
 andintera
ting terms. The quadrati
 terms are absolutely identi
al to the ones appearing in nonabelian gauge theories, thus yielding the gauge propagator�p; � q; �asso
iated with � 1p2  g�� � (1� �)p�p�p2 ! Æ(p+ q)and the ghost propagator �p qrepresenting � 1p2 Æ(p+ q):Although the propagators are the same as in standard non-abelian Yang-Mills theory, theintera
tions take a di�erent form. To the three gauge bosons intera
tion
�r; � q; �p; �

we asso
iate 2g ((p� r)�g�� + (q � p)�g�� + (r � q)�g��) sin �(p; q)Æ(p+ q + r)and the four gauge bosons intera
tion
�

p; � q; �r; �s; �
6




orresponds to �4g2�(g��g�� � g��g��) sin �(p; q) sin �(r; s)+(g��g�� � g��g��) sin �(p; r) sin �(s; q)+(g��g�� � g��g��) sin �(p; s) sin �(q; r)�Æ(p+ q + r + s):Finally, the intera
tion of a gauge boson with ghosts
��r qp

is asso
iated with 2gr� sin �(p; q)Æ(p+ q + r):All these intera
tions are non lo
al sin
e they involve non polynomial fun
tions of the momenta.They are easily obtained from the standard Feynman rules after repla
ing the Lie algebrastru
ture 
onstants fab
 by 2 sin��(p; q), whi
h appear in the 
ommutation relation[Up; U q℄ = 2i sin��(p; q)Up+q: (24)All this 
onstru
tion is readily extended to U(N) gauge �elds on the non
ommutative torus bymeans of two unitary N �N matri
es P1 and P2 fu�lling PN1 = PN2 = 1 and P1P2 = e 2i�N P2P1.Then, if a = (a1; a2) and b = (b1; b2) denote additional indi
es in ZN � ZN, the Lie algebrastru
ture is given byhUp 
 P a; U q 
 P bi = 2i sin� ��(p; q) + 1N a ^ b�Up+q 
 P a+b; (25)with a ^ b = a1b2 � b2a1. A

ordingly, the in
orporation of the additional U(N) stru
ture iseasily implemented by a shift of the phases by 1N a^ b. This Lie algebra stru
ture goes ba
k to[13℄, where additional information on its stru
ture may be found.It follows from the inequality j sin��(p; q)j � 1 that any diagram whi
h is 
onvergent bypower
ounting in standard non abelian theory is also 
onvergent here. However, a short glimpseat the one loop 
orre
tion to the gauge boson propagator (see next se
tion) shows that it isdivergent, as well as all other one loop diagrams. A

ordingly, the theory is also plagued byultraviolet divergen
ies and requires regularization and renormalization, as it must be the 
asefor rational �.Nevertheless, it appears that the theory is 
ompletely free of any infrared singularity. Indeed,on the torus these singularities arise from the zero mode, whi
h does not appear in the a
tion(11), sin
e it 
ommutes with all other �elds. This is true only in the N = 1 
ase and is it7



not true, for instan
e, when � = 0 and N > 1. This di�eren
e between U(N) gauge �eldswith trivial topology � = 0; N > 1 and the 
orresponding twisted se
tor � 6= 0; N = 1 is easilyexplained by the fa
t that the infrared se
tor is modi�ed by the non trivial topology of thegauge �elds.The o

urren
e of one loop divergen
e (in dimension four, to whi
h we sti
k to from now on)and the new nature of the a
tion, whi
h in
orporates non lo
al intera
tions, raises the questionof its renormalizability. Even if the theory is well known for rational �, i.e. for a dense subsetof parameters, it is not a priori 
lear that all its properties extend by 
ontinuity to the general
ase.Renormalizability of the theory will follow immediately from the existen
e of an invariantregularization s
heme, sin
e it will enable us to 
onstru
t re
ursively the required 
ounterterms.In our situation, su
h a s
heme is provided by the higher-
ovariant derivatives and Pauli-Villarsregularizations [14℄.Although the orginal method turns out to be in
onsistent [15℄, it is 
learly established thatit provides a bona �de regularization of Yang-Mills theory with minor modi�
ations [16℄, [17℄and [18℄.The 
ornerstone of this pro
edure lies in adding to the previous a
tion a term like� 1�4 Z F��r4F�� ; (26)where r� = ��+ [A�; ℄ is the 
ovariant derivative and � a 
ut-o�. This term is gauge invariantand modi�es the power
ounting of all diagrams beyond one loop so that they are overall 
on-vergent. Sin
e the power
ounting is the same on the non
ommutative torus and in non abelianYang-Mills theory, this statement still holds in our 
ase.However, due to the new intera
tions we have introdu
ed, the one loop diagrams remaindivergent. They are usually regularized by means of additional Pauli-Villars �elds, whi
h 
arryover to the non
ommutative 
ase provided they are de�ned in momentum spa
e, like we haveintrodu
ed Faddeev-Popov ghosts. Therefore, if su
h a pro
edure is 
onsistent in non-abelianYang-Mills theory, it will also regularize Yang-Mills theory on the non
ommutative torus in aninvariant way, thus establishing renormalizability.Unfortunately, the last 
onstru
tion is not 
onsistent even in ordinary gauge theory. Onehas to modify the 
onstru
tion as already mentioned. Among all these modi�
ations, thesimplest one whi
h is readily formulated in non
ommutative geometry is the one des
ribed in[19℄. All this 
onstru
tion, in
luding the higher 
ovariant derivative a
tion and the additionalPauli-Villars �elds, 
an be formulated in momentum spa
e. Thus, the repla
ement of all Liealgebrai
 stru
ture 
onstants by sine fun
tions allows us to write the analogous regularizationon the non
ommutative torus, and all arguments presented in [19℄ are still valid in this 
ase.Be
ause it it rather lengthy, we postpone the detailed a

ount of the adaptation of thismethod to non
ommutative geometry to a more thorough survey of gauge �elds on the non-
ommutative torus. However, these arguments are strong 
lues in favour of the renormalizabilityof the theory to all orders. 8



4 1-loop 
ounterterms and �-fun
tionIn this se
tion we shall 
ompute expli
itly the 1-loop 
ounterterms using a � fun
tion regu-larization. To this aim, we will repla
e, after introdu
tion of the Feynman parameters, alldenominators kN appearing in Feynman integrals by ks for <(s) large enough and then takethe residue at s = N . Of 
ourse this s
heme breaks BRS invarian
e, but as far as we are
on
erned with divergent parts of one loop diagrams, this symmetry is preserved.To pro
eed, let us introdu
e �(s) =Xk ei'k(k2 + 2pk +m2)s ; (27)where the summation runs over all elements of ZD but a �nite subset. It also depends onadditional parameters: two ve
tors p and ' of RD , a real number m and an integer N . Be
ausethe zero mode does not propagate, we are obliged to ex
lude from the summation a �nite subset
orresponding to vanishing internal momenta.When <(s) is large enough, this fun
tion is holomorphi
 and it is easily seen, using Poissonresummation formula, that it extends to a holomorphi
 fun
tion on the whole 
omplex planewhen ' =2 2�ZD.If ' 2 2i�ZD, the poles and their residues 
an be determined [20℄ and we get a pole whens = D=2� n, n 2 f0; 1; : : : ; D=2� 1g, whose residue is�D=2 (p2 �m2)n�(D=2� n)�(n + 1) : (28)Writing s = D=2 � n + �, it is easily seen that these poles are the same as the ones of the
orresponding integral in dimensionD�2�. By derivation with respe
t to p, we obtain additionalidentities involving more 
ompli
ated tensorial stru
tures.This relation ensures that we will have the same numeri
al 
oeÆ
ients as in standard di-mensional regularization. A

ordingly, most of the 
al
ulation follows the standard one andthe only novelty resides in the use of trigonometri
 identities in pla
e of Lie algebrai
 ones.A

ordingly, the determination of the divergent part of the two and three point fun
tionsare straightforward. We �rst linearize the 
orresponding produ
ts of sines and then pi
k up apole whenever the phase fa
tor vanishes. However, it is worth noti
ing that the phases vanishwhen the external momenta satisfy additional relations (p = 0 for the two point fun
tions,p+ q = 0, q+ r = 0 and q+ r = 0 for the three point fun
tions). Fortunately, these divergen
esplay no role sin
e the 
orreponding intera
tions vanish identi
ally when the external momentaful�l the previous relations.In dimension four, the divergent parts of the gauge boson and ghost propagators are respe
-tively (13� 3�)�2g23� (�1)p2  g�� � p�p�p2 ! Æ(p+ q) (29)9



and (3� �)�22� (�1)p2 Æ(p+ q): (30)Note that, as usual, the 
orre
tion to the gauge boson propagator is transverse.The total 
ontribution to the divergent part of the intera
tion of a gauge boson and twoghosts 
an be written as8g2Æ(p+ q + r) Xk 6=0;q;�r�k�k � r + r�k2 � k�k � rk2(k � q)2(k + r)2 sin��(p; k � q) sin��(q; k) sin��(p; k): (31)The produ
t of sines 
an be expressed assin��(p; k � q) sin��(q; k) sin��(p; k) = 14 sin��(p; q)+ i8ei��(p;q) �e2i��(q;k) + e2i��(r;k) � e2i��(p;k)�� i8e�i��(p;q) �e�2i��(q;k) + e�2i��(r;k) � e�2i��(p;k)� ;(32)where we have used the relation p+ q+r = 0. Only the �rst term gives a pole and all divergent
ontributions that appear in the other term 
an
el. A

ordingly the divergent part of thisintera
tion is 2gÆ(p+ q + r) sin��(p; q)�g2�2� (33)The divergent 
ontribution to the intera
tion of three gauge bosons is 
omputed in a similarway and is given (in the � = 1 gauge) by2gÆ(p+ q + r) (g��(p� q)� + gnu�(q � r)� + g��(r � p)�) sin��(p; q)4g2�2� : (34)The four point fun
tion of gauge bosons may be derived in an analogous way, but we have tofa
e two novel diÆ
ulties. Be
ause these have no 
ounterparts in standard non-abelian theory,we found it interesting to spend a few lines retra
ing the main aspe
ts of the 
omputation.All one loop diagrams 
ontributing to this fun
tions involve produ
ts of four sines, but oneor two of them may be independent of the internal momenta k. Evaluation of these diagramsis 
ompletely similar to the previous ones. When all sines depend on the internal momenta,their produ
t 
an always be written assin ��(a; k + x) sin��(b; k � y) sin��(
; k) sin��(d; k); (35)where a; b; 
; d is a permutation of p; q; r; s and x = 
; y = d or x = d; y = 
. In the nondegenerate 
ase, this yields a pole term of the type18 
os (��(a; x)� ��(b; y))+18 (Æ(a+ b) 
os ��(a; b) 
os ��(
; d)+Æ(a+ 
) 
os ��(a; 
) 
os��(b; d)+Æ(a+ d) 
os��(a; d) 
os��(b; 
)) :10



The term involving Æ fun
tions is the �rst major deviation from the standard 
al
ulation innon-abelian gauge theory. Furthermore, these terms 
hallenge renormalizabilty and but theydisappear after the sum of all diagrams have been taken into a

ount.After all 
ontributions have been added, the term begining by �4g2 2�2g2� g��g�� has a trigono-metri
 fa
tor given by1548 
os (��(p; q)� ��(r; s)) + 10948 
os (��(p; q) + ��(r; s))�5748 
os (��(p; r)� ��(s; q)) + 2548 
os (��(p; r) + ��(s; q))�6948 
os (��(p; s)� ��(q; r))� 2348 
os (��(p; s) + ��(q; r)) ; (36)whi
h is far from the initial Yang-Mills intera
tion. However, elementary transformations usingp+ q + r + s = 0 yield��(p; r)� ��(s; q) = ��(q + s; p)� ��(q; p+ r) = � (��(p; s) + ��(q; r))��(p; q)� ��(r; s) = ��(r + s; p)� ��(s; p+ q) = � (��(p; r) + ��(s; q))��(p; q) + ��(r; s) = ��(r + s; p) + ��(p + q; r) = � (��(p; s)� ��(q; r)) ; (37)so that the trigonometri
 fa
tor 
an be rewritten as�4048 
os (��(p; r)� ��(s; q)) + 4048 
os (��(p; r) + ��(s; q))+4048 
os (��(p; s)� ��(q; r))� 4048 
os (��(p; s) + ��(q; r))= 53 (sin��(p; s) sin��(q; r)� sin��(p; r) sin��(q; s)) : (38)Additional terms 
ome from produ
ts of one and two sines involving the internal momenta andalso from other tensorial stru
tures, so that the divergen
e of the four point fun
tion 
an berewritten as (in the � = 1 gauge)�4g2Æ(p+ q + r + s) ((g��g�� � g��g��) sin��(p; q) sin��(r; s)+(g��g�� � g��g��) sin��(p; r) sin ��(s; q)+(g��g�� � g��g��) sin��(p; s) sin��(q; r)) �2g2�23 � ; (39)whi
h has the same trigonometri
 stru
ture as the initial intera
tion. In the previous 
al
u-lation, we assumed that � was not degenerate. If this is not the 
ase, the 
omputations areonly slightly more 
ompli
ated, be
ause we have to repla
e the Æ fun
tions by an in�nite sumof su
h fun
tions 
orresponding to all possible vanishing phases. However, the �nal result stillholds.A

ordingly, it turns out that the theory is one-loop renormalizable. Using standard nota-tions [21℄, the required 
ounterterms in the MS s
heme are given byZ3 = 1 + (13� 3�)�2g23� ~Z3 = 1 + (3� �)�2g22� (40)11



for the gauge and ghost two point fun
tions. The renormalization of the three and four pointfun
tions are (extending our results to a general gauge)Z1 = 1 + (17� 9�)�2g26� Z4 = 1 + (4� 6�)�2g23� : (41)Finally, the renormalization of the intera
tion between gauge boson and ghosts reads~Z1 = 1� ��2g2� : (42)Appart from a fa
tor 32�4 (
orresponding to the volume of the torus that we set equal to1) and the repla
ement of the Casimir C2(G) by 2, we retrieve the usual expression for the
ounterterms. Therefore, they satisfy the usual relationZ4Z1 = Z1Z3 = ~Z1~Z3 (43)that ensures one-loop renormalizability.From the previous relations, one readily 
omputes the � fun
tion whi
h is given by�(g) = �11�23 g2: (44)A

ordingly, the theory is asymptoti
ally free whenever � does not vanish.At �rst sight, this is a rather surprising result, sin
e in the rational 
ase we are workingwith standard SU(N) gauge theory whose �-fun
tion depends in a 
ru
ial way on N . However,this is nothing but a simple question of normalization: although our kineti
 term is 
orre
tlynormalized, the basis of the Lie algebra of SU(N) we have been using is not 
orre
tly normal-ized. Taking into a

ount the 
orre
t normalization, we have to multiply g by a fa
tor of qN=2whi
h yields the standard beta fun
tion.The results we have obtained are reminis
ent of those appearing in the large N limit ofgauge theory. Indeed, as far as the one-loop 
omputations are involved, the divergent parts ofthe diagrams are 
ontinuous in � so that one 
an pass to the limit of large N with a large twist� = limN!+1 ���N ; (45)where ��� is the twist tensor [22℄, whi
h is also assumed to go to in�nity.Within this se
tion, it 
learly appeared that one 
an work with this theory as if it wasa standard gauge theory. Appart from minor 
ompli
ations in the 
omputations, no newphenomena have appeared. However, the alluded relation with the large N limit suggests thatsomething new may o

ur when dealing with non planar diagrams, as we will see in the nextse
tion. 12



5 Higher order behaviorWhen dealing with higher order diagrams the following two questions arise in a natural way:� What is the phase fa
tor pertaining to su
h a diagram?� How does this phase fa
tor govern the divergen
e of the 
orresponding integral?The answer of the �rst question follows quite immediately from a previous work whi
h weshall brie
y review [23℄.To begin with, let us introdu
e multivalent planar verti
es whose arrows are ordered upto 
y
li
 permutation. Verti
es are related by lines and ea
h of them is given an arbitraryorientation is equipped with a momentum ve
tor k 2 Rn . We further assume that momen-tum 
onservation holds for all verti
es and we asso
iate to a vertex with in
oming momenta(k1; : : : ; km) the phase fa
tor exp i�0� X1�i<j�m �(ki; kj)1A ; (46)where ki has been repla
ed by �ki if it is outgoing. Let us point out that we do not requirethese diagrams to be planar so that a 
rossing of to lines is allowed.The resulting phase pertaining to an arbitrary 
onne
ted diagramwith external lines p1 : : : ; pEand internal lines k1; : : : ; kI isexp i�0� X1�i<j�E �(pi; pj)1A exp i�0� X1�i;j�I \ij�(ki; kj)1A ; (47)where \ij = 12(Iij�Iji) is the antisymmetrized interse
tion matrix of the oriented graph de�nedas follows, \ij = 8><>: Iij = +1 if j 
rosses i from left;Iij = �1 if j 
rosses i from right;Iij = 0 if j and i do not 
ross: (48)The two phase fa
tors appearing in (47) have rather di�erent origins: the �rst one only dependson the external momenta of the graph and the se
ond one is due to the non-planarity of thediagram. Let us also point out that the phase 
an be 
omputed from a redu
ed diagramobtained after 
ontra
tion of an internal line 
onne
ting a 
ouple of verti
es and 
losed loopsthat do not 
ross any other internal line.The relation between the previous statements and the phase fa
tor in Yang-Mills theoryis obtained by expressing the trigonometri
 fun
tion pertaining to the diagram as a sum ofexponentials. This is translated diagrammati
aly as follows: we �rst express the four-valentintera
tions as a sum of three produ
ts of three-valent graphs (the internal line joining thetwo verti
es does not 
ontribute to the phase), and then we redu
e all-three valent graphs(asso
iated with a sine) as sums of two planar intera
tions (asso
iated with an exponential).13



This pro
edure allows to determine the phase fa
tor of a given diagram quite easily. Fur-thermore, it proves that for any non-planar diagram there is still a phase fa
tor depending onthe internal momenta, 
ontrary to a planar one whi
h always yields a fun
tion independent ofthe internal momenta.This has also been studied in the 
ontext of large N redu
ed models in [24℄. Stri
tlyspeaking, the method applies to a matrix model des
ribing the rational 
ase, but it 
an bereadily extended to the general 
ase. It essentially relies on interpreting �(p; q) as the 
ux ofthe 
onstant 2-form ��� through the triangle determined by p and q. Then, to a given planarFeynman diagram we asso
iate the dual one and the total phase is nothing but the 
ux of �through the resulting polygon. By 
utting all non planar diagrams, we obtain a residual phasedepending on the internal momenta. Note that this method also requires �xing the in
omingmomenta up to 
y
li
 permutation.Let us now see how these phase fa
tors may be relevant in smoothing the divergen
es of agiven Feynman diagram. To pro
eed, we �rst study a simpler model based on the followingalgebra.Let us introdu
e n 
oordinates x� satisfying the 
ommutation relation[x�; x�℄ = 2i���� ; (49)where ��� is an antisymmetri
 n� n matrix of real numbers. We further de�ne on this algebraan involution by assuming that these 
oordinates are hermitian. These 
oordinates should notbe 
onfused with points on the non
ommutative spa
e under 
onsideration { su
h points donot exist. They have to be repla
ed by appropriate states on the algebra. We refer to [25℄for a �eld theory on non
ommutative spa
es based on states and a dis
ussion of the limit of
oin
iding "points".For any real ve
tor k 2 Rn , we de�ne Uk = exp ik�x� that may be res
aled by a phase sothat they ful�ll UkUk0 = exp i��(k; k0)Uk+k0 : (50)The latter are unitary generators of an algebra similar to that of the non
ommutative torusand it is not diÆ
ult to see that one 
an build a Yang-Mills theory out of it whi
h is 
ompletelyanalogous to the previous one provided one allows the momenta to take all values instead ofonly dis
rete ones and that one repla
es the series by integrals over the internal momenta inFeynman diagramms.By a unitary transformation in momemtum spa
e, one 
an redu
e the matrix ��� to a
anoni
al blo
k diagonal form made out of antisymmetri
 2�2 matri
es. Furthermore, be
ausethere is no preferred role assigned to the integral momenta k 2 Zn, there is no analogue ofthe rational 
ase and the theory never 
orresponds to standard Yang-Mills theory. To avoid
ompli
ations, we will assume that the matrix � is invertible.However, it is interesting to note that this theory is still free of infrared divergen
es, evenif it is de�ned on the analogue of an in�nite volume spa
e. This follows from the fa
t that any14



internal line 
arrying momenta k is always 
onne
ted to two verti
es sin��(k; p) and sin��(k; q),thus implying the �niteness of sin��(k; p) sin��(k; q)k2 (51)when k goes to zero. However, sin
e we will de
ompose the sines into exponentials this 
an
ela-tion no longer holds and we must in
oporate a small mass term for the gauge �elds. When thesum of all exponentials pertaining to a given Feynman diagram are taken into a

ount, theirinfrared divergen
es 
an
el and we let the mass go to zero.After appli
ation of Feynman's parametri
 formula, the integral over loop momenta k =(k1; : : : ; kL) 
an always be redu
ed to the evaluation of integrals of the formIN (\; p; q;m) = Z dDLk ei'(k2 + 2pk +m2)N ; (52)followed by an integration over the Feynman parameters and eventually a derivation withrespe
t to p to take into a

ount the derivative 
ouplings. For the sake of simpli
ity, we do not
onsider these topi
s here. We re
all that the phase '(k) has already been determined and pand m are fun
tions of the external momenta and of a small mass whi
h is added to the gauge�eld.In general, this integral is divergent whenever DL � 2N , so that it generally requires theintrodu
tion of a regulator. Within S
hwinger's regularization s
heme, the latter is providedby a positive fun
tion �� su
h that lim�!1 �� = 1, whi
h enables us to make the repla
ement1(k2 + 2pk +m2)N ! 1�(N) Z 10 d���(�)�N�1e��(k2+2pk+m2); (53)where � is a 
ut-o�. In order to ensure 
onvergen
e of the integral, the fun
tion �� is supposedto vanish in zero. For 
onvenien
e, we simply 
hoose ��(�) = �(�=�), where � is the stepfun
tion.A

ordingly, the gaussian integration 
an be performed and we getIN(\; p; q;m) = (2�)DL2�(N) Z 10 d��N�1��(�) 1det1=2A(�)e 12B(�)A�1(�)B(�)��m2 ; (54)with ( A(�) = 12� + i� \ 
�B(�) = �2�p+ i�(q); (55)where q is a linear 
ombination of external momenta that does not involve the Feynman param-eters. The remainig integral over � is 
onvergent in the region � ! +1 (infrared divergen
ein momentum spa
e).Besides, it turns out that even when the regulator is removed, the integral is 
onvergentwhen � ! 0 ex
ept when \ and q both vanish. Indeed, the �rst non-trivial term in the
hara
teristi
 polynomial of \
 � (whi
h is non-zero whenever \ 6= 0) is suÆ
ient to regularize15



the integral. If this matrix happens to vanish, the 
onvergen
e is provided by the fa
tor e�q2=�if q 6= 0. When \ and q both vanish, we retrieve the standard power
ounting analysis.Therefore, as soon as there is a non-trivial phase fa
tor, the Feynman integral 
onverges.This always happens for non-planar diagrams so that we are tempted to 
on
lude that the
orresponding integrals are always 
onvergent. Unfortunately, this is not true be
ause of thefollowing two fa
ts.First of all, in our analysis we do not take 
are of the subdivergen
es. A
tually the phasefa
tor only regularizes the overall divergen
e. Indeed, it may happen that for spe
ial valuesof the Feynman parameters the integral is redu
ed to that of a subdivergent diagram withvanishing phase, thus yielding a divergen
e. Assuming that the subdivergen
es 
an be takeninto a

ount by standard tools like the forest formula, we will not emphasize this point here.Moreover, there are additional divergen
es for some ex
eptional values of the in
omingmomenta. This happens whenever there is no 
rossing between internal lines so that the phasefa
tor is only due to non-vanishing q. Sin
e q is the image under � of some linear 
ombinationof the external momenta, it vanishes as soon as the momenta ful�l this relation.This kind of divergen
e requires a 
ounterterm 
ontaining a delta fun
tion appart fromthe standard phase fa
tor and thus threatens renormalizability. However, it follows from theexisten
e of an invariant regularisation s
heme that the theory is renormalizable, so that weexpe
t these divergen
es to 
an
el when all diagrams pertaining to a given Green fun
tion aretaken into a

ount, as we have already shown at one-loop.All these results are readily extended to the 
ase of the non
ommutative torus by means ofthe Poisson resummation formula. For any fun
tion f on RD , the latter states thatXn2ZD f(n) = Xn2ZD ZRd dDkf(k)e2i�(k�n): (56)Applying this idea to the fun
tion appearing in a Feynamn diagram yields the same gaussianintegral as before but with q shifted by the integer n. The summation over n is always 
onvergentas well as the remaining integral over � provided the phase does not disappear.In the non-degenerate 
ase, this is similar the the previous situation be
ause the equationq = n has no non-trivial solution, thus implying that the external momenta must ful�l some�xed relation (ex
eptional momenta). In the rational 
ase, this happens for in�nitely many
on�gurations of the external momenta be
ause of the periodi
ity of the exponential. Thisway one re
overs the usual divergen
es of Feynman diagrams in the twisted SU(N) gaugetheory. Indeed, after splitting of our momenta into standard momenta and 
olor indi
es, weget divergent 
ontributions for all 
on�gurations of the standard momenta.Obviously, most of the statements of this last se
tion are of 
onje
tural nature and it is
lear that they deserve a more 
omplete study that we postpone to future work. In parti
ular,it would be interesting to �nd identities ensuring the 
an
ellation of divergen
es of non-planardiagrams. We also hope that this 
ould shed some new light on large N theories.16
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