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2 R. Wulkenhaardiscovery, but di�erent in details. These versions developed, competed with eachother, died out { a perfect example of Darwin's theory of evolution. After all,one version survived2, proposed by Alain Connes who { guided by a deep under-standing of mathematics { completed a set of axioms3. These axioms have theirorigin in the classi�cation of classical spin manifolds4. It is remarkable that thesame axioms which are fruitful in the commutative case of spin manifolds providethe standard model as one of the simplest noncommutative examples.Sometimes it happens that branch lines of evolution have attractive features,which fascinate mankind long after the dead of the species (think of the di-nosaurs). Such a species is grand uni�cation. The axioms of NCG are compatiblewith the standard model but not with grand uni�cation5. Nevertheless, granduni�cation is such an attractive idea that it will not die very soon, no matter howwell the standard model is veri�ed by experiment.Technically, the essential progress that NCG brings over the traditional for-mulation of gauge theories is that Yang-Mills and Higgs �elds are understoodas two complementary parts of one universal gauge potential. It is desirable toextend this unifying feature to grand uni�ed theories (GUTs). The only chanceto do so is to allow for a minor modi�cation of the NCG-axioms so that GUTsare accessible as well. An inspiration how to modify the axioms comes fromtraditional gauge theories. They are formulated in terms of Lie groups or { onin�nitesimal level { Lie algebras. Thus, replacing the associative algebra in NCGby a Lie algebra6, one can expect a formalism (section 2) that is able to producegrand uni�ed models.In this paper we show that the SO(10)-GUT7;8 can indeed be formulated withthis method. The SO(10)-model has the exceptional property that all knownfermions and the supposed right-handed neutrino �t into the irreducible 16-representation of SO(10) (for each generation). Other GUTs such as SU(5),SU(5)�U(1) and SU(4)�SU(2)L�SU(2)R arise as intermediate steps of di�erentSO(10) symmetry breaking chains.The treatment of the SO(10)-model by NCG-methods is not new. The �rstapproach9 by Chamseddine and Fr�ohlich came in the early days of noncommu-tative geometry. Since then, NCG underwent the development sketched abovethat singled out the axioms incompatible with grand uni�cation. Our construc-tion di�ers in its conception and its results from the Chamseddine-Fr�ohlich ap-proach. The authors of ref. 9 start from the (associative) Cli�ord algebra ofSO(10). The crucial di�erence of the two approaches lies in the Higgs sector.We denote by Y =Pi Yi 
M i the Yukawa operator. Its part Yi transforms the16-representation into itself or into its charge conjugate 16c. The mass matricesM i mix the three fermion generations. Thus, for Yi we have the two possibilities16 
 16� and 16c 
 16�, which are reducible representations under SO(10) or



SO(10)-uni�cation in NCG revisited 3so(10) and decompose into16
 16� = 1� 45� 210 ; 16c 
 16� = 10� 120� 126 : (1)The point is now that these two Yi-representations are not reducible underthe Cli�ord algebra Cli�(SO(10)). That is why the Higgs multiplets in theChamseddine-Fr�ohlich model are 16 
 16� and 16c 
 16, where only the lat-ter occurs in the fermionic action (due to chirality). The consequence is thatthere is only one generation matrix M i in the fermionic action. This leads tothe relation me : m� : m� = md : ms : mb = mu : mc : mt between the fermionmasses, which is obviously not satis�ed. Moreover, the analysis of the Higgs po-tential shows that also a Kobayashi-Maskawa matrix is not possible, but can beobtained by including an additional fermion in the trivial representation.In our version based upon the Lie algebra so(10) we do have the decomposition(1), and each irreducible representation occurring in (1) is tensorized by its owngeneration matrix. It is therefore no problem to get the fermion masses we want.For the SO(10)-symmetry breaking we have the 45 and 210-representations atdisposal, which both do not occur in the fermionic action. We employ the 45-representation to break SO(10) to SU(3)C � SU(2)L � SU(2)R � U(1)B�L in the�rst step (at about10 1016GeV). The corresponding (self-adjoint) generation ma-trix adds a freedom of 9 real parameters. The other symmetry breaking chainSO(10)! SU(4)PS � SU(2)L � SU(2)R mediated by the 210 is possible as well,but we have to make a choice due to the length of the formulae. In the secondstep this intermediate symmetry is broken by the Majorana mass term for theright-handed neutrinos (126-generator) to the standard model symmetry groupSU(3)C�SU(2)L�U(1)Y (at about10 109GeV). We then restrict ourselves to thecase that the fermion masses are as general as possible, this implies the Higgsmultiplets 10 (twice), 120 (four times) and 126 (twice). The surviving symmetrygroup is SU(3)C � U(1)EM .There is also a technical di�erence to mention. The article ref. 9 was writ-ten in the pioneering epoch of noncommutative geometry where auxiliary �eldsemerged in the action. They eliminate themselves at the end via their equationof motion. Our version is based on a di�erential calculus and we quotient outthe ideal of auxiliary �elds before building the action. We think this method ismore transparent but the results are independent of the way of eliminating theseunphysical degrees of freedom.Our paper is organized as follows: We review in section 2 our Lie algebraicapproach to noncommutative geometry. In section 3 we write down our setting ofthe so(10)-model, where we acknowledge a lot of inspiration from ref. 9. Section4 is devoted to the computation of the gauge potential and the Higgs part of the�eld strength. This is the most cumbersome part, because the extremely richHiggs structure leads to a big number of terms in the �eld strength. It remainsto calculate some traces to get the bosonic action (section 5) and to implement



4 R. Wulkenhaarthe various symmetries to get the fermionic action (section 6). We conclude withan outlook towards a minimal SO(10)-model.2 The Lie algebraic formulation of noncommutative geometryThe starting point is the Lie algebra g = C1(M)
 a acting via a representation� = id 
 �̂ on the Hilbert space H = L2(M;S) 
 C F . Here, C1(M) is thealgebra of (real-valued) smooth functions on the (compact Euclidean) spacetimemanifold M , L2(M;S) is the Hilbert space of square integrable bispinors and �̂a representation of the semisimple matrix Lie algebra a on C F . The treatmentof Abelian factors is possible but more complicated. Moreover, we have theselfadjoint unbounded operator D = i@/ 
 1F + Y on H, with Y = 5 
 Ŷ andŶ 2 MF C . We also need a Z2-grading operator � on H which commutes with�(g) and anti-commutes with D. In many cases there will exist further discretesymmetries such as the charge conjugation J .A universal 1-form !1 2 
1 has the structure!1 =X�;z [f z�
az�; [: : : [f 1�
a1�; d(f 0�
a0�)] : : : ]] ;with f i� 2 C1(M) and ai� 2 a. The commutators should be read as tensorproducts. The representation � of the universal calculus on H is obtained bytaking � of f i� 
 ai� and representing the universal d by the derivation [�iD; : ],� = �(!1) =P�;z[f z�
�̂(az�); [: : : [f 1�
�̂(a1�); [�iD; f 0�
�̂(a0�)]] : : : ]]=P�;z f z� : : : f 1�@/(f 0�)
 [�̂(az�); [: : : [�̂(a1�); �̂(a0�)] : : : ]] ! A+P�;z 5f z� : : : f 1�f 0� 
 [�̂(az�); [: : : [�̂(a1�); [�iŶ ; �̂(a0�)]] : : : ]] ! �(�)The second and third line are independent for semisimple a. In the second linethe commutators clearly yield an element of �̂(a) and f@/f 0 a spacetime 1-form,together a Yang-Mills multiplet represented on H. We decompose the �nitedimensional part of the Hilbert space into C F =Lini 
 C N , where ni are irre-ducible representations of a and N is the number of fermion generations. Then,we have the decomposition Ŷ = P Ŷ rij 
M ijr , where Ŷ rij 2 ni 
 n�j is (for eachr) a generator of an irreducible representation and M ijr 2 MNC a mass matrix.If we now evaluate the commutators in the third line above, the generators areexpanded to irreducible multiplets, and we obtain �(�) =P 5�rij 
M ijr , where�rij 2 C1(M) 
 nij are function-valued irreducible representations, i.e. Higgsmultiplets.The universal di�erential of !1 is de�ned asd!1 =X�;z zXy=1[f z�
az�; [: : : [d(f y�
ay�); [: : : [f 1�
a1�; d(f 0�
a0�)] : : : ]] : : : ]] :



SO(10)-uni�cation in NCG revisited 5Its representation on H reads after elementary calculation�(d!1) =X�;z zXy=1 [f z�
�̂(az�); [: : :f[�iD; f y�
�̂(ay�)]; [: : : [�iD; f 0�
�̂(a0�)] : : : ]g : : : ]]= f�iD; �g+P�;z[f z�
�̂(az�); [: : : [f 1�
�̂(a1�); [D2; f 0�
�̂(a0�)]] : : : ]]� f�iD; �(!1)g+ �(!1) (2)= f@/ ; Ag+P�;z[f z�
�̂(az�); [: : : [f 1�
�̂(a1�); [�@/2 
 1F ; f 0�
�̂(a0�)]] : : : ]]+ f@/ ; �(�)g+ f�iY;Ag+ f�iY; �(�)g+ �̂(�) ;with �̂(�) =P�;z f z� : : : f 1�f 0� 
 [�̂(az�); [: : : [�̂(a1�); [Ŷ 2; �̂(a0�)]] : : : ]] :After a lengthy calculation6 one �ndsf@/ ; Ag+P�;z[f z�
�̂(az�); [: : : [f 1�
�̂(a1�); [�@/2 
 1F ; f 0�
�̂(a0�)]] : : : ]]= dA + C1(M)
 f�̂(a); �̂(a)g ;where d is the exterior di�erential (which anti-commutes with 5) and thef�̂(a); �̂(a)g-part is independent of A and �(�). Moreover, we have f@/ ; �(�)g =d�(�). We now decompose Ŷ 2 into generators of irreducible representations,Ŷ 2 = Ŷ 2k + Ŷ 2? + �̂(1) :Here, �̂(1) contains trivial representations which commute with �̂(a). Those gen-erators which also occur in Ŷ , denoted Ŷ 2k , generate obviously the correspondingrepresentations which occur already in �(�). The other (non-trivial) generators,denoted Ŷ 2?, generate representations independent of �(�) and A.It is now crucial to notice that the same � can be written in many waysas �(!1) so that the de�nition of a di�erential \d� = �(d!1)" is ambiguous.The usual way out is to consider equivalence classes modulo the ideal J 2 =�(d(ker � \ 
1)). We have just shown that if �(!1) = 0 then there remain onlythe f�̂(a); �̂(a)g-part and the representations generated by Ŷ 2?, which givesJ 2 = C1(M)
P(f�̂(a); �̂(a)g+ [�̂(a); [: : : [�̂(a); Ŷ 2?] : : : ]]) : (3)The �nal formula for the di�erential of � = A + �(�) is therefored� = d� + f�iY; �g+ �̂(�) mod J 2 : (4)In the same way one represents the space 
n of universal forms of degree non H and determines the corresponding ideal J n = �(d(ker � \ 
n�1)). Thegeneralization of (2) isd(�(!n) + J n) = [[�iD; �(!n)]] + �(!n) + J n+1 ; !n 2 
n ; (5)



6 R. Wulkenhaarwhere [[ : ; : ]] is the graded commutator, i.e. the anti-commutator if both entriesare odd under Z2 and the commutator else. This yields the graded di�erentialLie algebra 
D = �(
)=J .We propose to de�ne the connection r as a generalization of the di�erential dand the covariant derivative D as a generalization of the operator D. This meansthat D is a linear unbounded selfadjoint operator on H and odd under Z2, andr : 
nD ! 
n+1D is linear. Both D and r are related via the same formula (5):r(�(!n) + J n) = [[�iD; �(!n)]] + �(!n) + J n+1 ;for !n 2 
n and any degree n. The general solution isD = D + i� ; r = d+ [[�; : ]] ; [[�; �(
n)]] � �(
n+1) ; [[�;J n]] � J n+1 :One obvious solution is � = A + �(�) 2 �(
1). But there are further solutionspossible, depending on the setting. These additional solutions allow us to for-mulate gauge theories with u(1)-factors such as the standard model. Demandingthat � commutes with functions, we have the decomposition�0 = �1 
 r0 + �05 
 r1of the additional solutions, where the matrices ri 2 MF C commute with �̂(a).The essential step is to check f�0; �(
1)g � �(
2), which yields several conditionsfor r0 and r1. Finally, one has to verify the compatibility with J .The curvature is now r2 = [F ; : ], where one �nds the usual formulaF = d�+ 12f�; �gfor the �eld strength. The di�erential and (anti)commutator are de�ned via the(graded) Leibniz rule and Jacobi identity; for it one has to enlarge the ideal Jby the graded centralizer C of �(
). Then, the general formula (4) continues towork so that for � = A+ �(�) one hasF = (dA + A2j�2) + (d�(�) + fA; (�(�)� iY )g)+ �(�(�))2 + f�iY; �(�)g+ �̂(�) mod J 2 + C2� : (6)Here, A2j�2 is the restriction of A2 to the spacetime 2-form part. The bosonicaction is de�ned via the Dixmier trace and can be rewritten asSB = 1g2 F ZM dx tr(F?)2 = ZM dx (L2 + L1 + L0) (7)= 1g2 F ZM dx �tr((dA + A2j�2)2) + tr((d�(�) + fA; (�(�)� iY )g)2)+tr(�(�(�))2 + f�iY; �(�)g+ �̂(�)�2?)� :



SO(10)-uni�cation in NCG revisited 7Here, g is a coupling constant and F the dimension of the matrix part. The traceincludes the trace over gamma matrices and F? is the component of F orthogonalto J 2. The bosonic action consists of three parts, the Yang-Mills Lagrangian L2,the covariant derivative L1 of the Higgs �elds and the Higgs potential L0. Thefermionic action isSF = 12s ZM dx  �D = 12s ZM dx i �(@/ 
 1F + A+ �(�)� iY ) ; (8)where s is the number of discrete symmetries of the setting, and  2 H is in-variant under these symmetries (possibly only after passing to Minkowski space).The fermionic action contains the minimal coupling to the Yang-Mills �elds Aand the Yukawa coupling to the Higgs �elds �(�).Let us study the part � = �(�(�))2+f�iY; �(�)g+�̂(�)�? of the �eld strength,whose square gives the Higgs potential. Since the covariant derivative D can bewritten as D = i@/ 
 1F + iA + i(�(�) � iY ), it is natural to consider �(~�) =(�(�)� iY ) as the analogue of a classical Higgs multiplet. This is because �(~�)transforms as �(~�) 7! u�(~�)u� under gauge transformations D 7! uDu�, withu 2 C1(M)
 exp(a+ r0). In terms of ~� we have� = (�(~�)2 + �̂(�) + Y 2)? = (�(~�)2 + �̂(�) + �(1) + Y 2? + Y 2k )?= (�(~�)2 + �̂(~�) + �(1))? ; (9)because Y 2? has by de�nition no component orthogonal to J 2 andif �(~�) = �iY +P�;z[�(az�); [: : : [�(a1�); [�iY; �(a0�)]] : : : ]]then �̂(~�) = Y 2k +P�;z[�(az�); [: : : [�(a1�); [Y 2k ; �(a0�)]] : : : ]] ;with ai� 2 g. Thus, � can be expressed completely in terms of ~� so that gaugeinvariance of the Higgs potential V = tr(�2) is obvious. The point is nowthat we know a priori the Higgs vacuum: it is h�(~�)i0 = �iY . At this con-�guration we have � = 0 and V = 0. On the other hand V is non-negativeso that �iY is a global and local minimum. In the vicinity of �iY we haveV = tr((�i(Y �(�) + �(�)Y ) + �̂(�))2?), i.e. something bilinear in the physicalHiggs �elds. The coe�cients are the Higgs masses, after diagonalization andrescaling. There are however massless modes, the Goldstone bosons. They are ofthe form �(�) = [�(a);�iY ] with a 2 g. In this case we have(�i(Y �(�) + �(�)Y ) + �̂(�))? = (�[�(a); Y 2] + [�(a); Y 2k ])?= (�[�(a); Y 2?])? = 0 :The masses of the Yang-Mills �elds come from the part tr(fA;�iY g)2 =tr([�(A�); Y ][�(A�); Y ]) of the Lagrangian L1. This is a form of the Goldstone-Higgs theorem: The massive Yang-Mills �elds are those which do not commute



8 R. Wulkenhaarwith Y and to each of them there corresponds a massless Goldstone boson. TheHiggs mechanism consists in removing the Goldstone bosons by those gauge trans-formations which do not commute with Y , and which are �xed in this way. Theremaining unconstrained gauge degrees of freedom are those which commute withY , and to each of them there corresponds a massless Yang-Mills �eld.3 The so(10)-settingLet �I 2 M32C , I = 0; : : : ; 9, be so(10)-gamma matrices represented in terms oftensor products of �ve sets of Pauli matrices9�i = �1�3�i ; �i ! 12 
 12 
 12 
 12 
 �i ;�i+3 = �1�1�i ; �i ! 12 
 12 
 12 
 �i 
 12 ;�i+6 = �1�2�i ; �i ! 12 
 12 
 �i 
 12 
 12 ; (10)�0 = �2 ; �i ! 12 
 �i 
 12 
 12 
 12 ;�11 = i�0�1 � � ��9 = �3 ; �i ! �i 
 12 
 12 
 12 
 12 ;where i = 1; 2; 3. The tensor products are interpreted such that �i is 2 � 2 and�i is 32� 32.The matrix Lie algebra is a = so(10) represented as so(10) 3 a = aIJ�IJ , withaIJ = �aJI 2 R, and where �I1I2:::In = (1=n!)�[I1�I2 � � ��In] is the completelyanti-symmetrized product of �-matrices. Summation over equal so(10) indicesI; J; : : : from 0 to 9 and over equal spacetime indices �; �; : : : from 0 to 3 isunderstood. We introduce the projection operatorsP� = 12(1� �11)
 13 ; P = diag(14 
 P+ ; 14 
 P+ ; 14 
 P� ; 14 
 P�) ;and the so(10)-conjugation matrixB = ��1�3�4�6�8 
 13 = �B = BT = By ; B2 = 196 ;B(�I 
m)B = �TI 
m 8m 2 M3C ; BP�B = P� ;and de�ne the Z2-grading operator� = diag(�5 
 P+ ; 5 
 P+ ; 5 
 P� ; �5 
 P�) :Then, the Hilbert space isH = P(L2(M;S)
 C 32 
 C 3 
 C 4) �= L2(M;S)
 C 192 : (11)The representation � of g = C1(M)
 a 3 f 
 a on H is de�ned by�(f 
 a) = f14 
0BB@P+(a
 13)P+ 0 0 00 P+(a
 13)P+ 0 00 0 P�(a
 13)P� 00 0 0 P�(a
 13)P�1CCA :(12)



SO(10)-uni�cation in NCG revisited 9Note that P� commutes with a 
 13 and that � commutes with �(a). Theselfadjoint Yukawa operator anti-commuting with � isY = 0BB@ 0 5 
 P+MP+ 5 
 P+NP� 05� 
 P+MP+ 0 0 5� 
 P+NP�5� 
 P�N yP+ 0 0 5� 
 P�BMBP�0 5 
 P�N yP+ 5 
 P�BMBP� 0 1CCA :(13)We distinguish explicitly 5 and 5�, which are equal in Euclidean space, inMinkowski space however we have 5 = �5�. This allows for a parallel devel-opment of our model in both Euclidean and Minkowski space. The matrices Mand N are obtained by tensorizing the generators given in ref. 9 by independentgeneration matrices:M = �i(�45 + �78 + �69)
M1 ;N = i�0 
Ms + �3 
Mp + �120 
M 0a � i�123 
Ma (14)+ (�450 + �780 + �690)
M 0b � i(�453 + �783 + �693)
Mb� i(�01245 + �01278 + �01269)
Mc � (�31245 + �31278 + �31269)
Mf� 18 i(�1�i�2)�3(�4�i�5)(�6�i�9)(�7�i�8)
M2 :Here, Ms;Mp;Mc;Mf ;M2 are symmetric and Ma;M 0a;Mb;M 0b anti-symmetric3� 3-matrices and M1 = M y1 . That implies BNB = N T and M = My. Westress that here lies the essential di�erence between our Lie formalism and thealgebraic version9: There, the matrices Ms;Mp;Mc;Mf ;M2 are all proportionalto each other, the same is true for the matrices Ma;M 0a;Mb;M 0b. This is dictatedby the fact that 16c 
 16� is irreducible under the Cli�ord algebra of SO(10).The above setting is chosen in such a way that it has two symmetries J andS. First, the charge conjugation is given byJ = P0BB@ 0 0 C
B 00 0 0 C
BC
B 0 0 00 C
B 0 0 1CCAP � c:c ;where C is the spacetime conjugation matrix, C�C = �, and c:c stands forcomplex conjugation. We use the following convention for Euclidean gammamatrices0 = �0 1212 0� ; a = � 0 i�a�i�a 0 � ; 5 = 0122 = �12 00 �12� ; C = 02 :Our Minkowskian gamma matrices are0 = �0 1212 0� ; a = � 0 ��a�a 0 � ; 5 = i0123 = �12 00 �12� ; C = 2 :



10 R. WulkenhaarObserve that J2 = P in Minkowski space but J2 = �P in Euclidean space.Second, we have an exchange symmetrySE = P0BB@ 0 1384 0 01384 0 0 00 0 0 13840 0 1384 0 1CCAP; SM = P0BB@ 0 i1384 0 0�i1384 0 0 00 0 0 �i13840 0 i1384 0 1CCAP;where SE is realized in Euclidean space and SM in Minkowski space. This yieldsin both Euclidean and Minkowski spaces[J;D] = [J; �(a)] = [S; D] = [S; �(a)] = [J;S] = 0 ;where D = P(i@/ 
 132 
 13 
 14)P + Y .4 The gauge potential and its �eld strengthThe gauge potential � 2 �(
1) is composed of two parts, of a a-valued spacetime1-form A = ��(A�) and (up to 5) a a- representation valued spacetime 0-form�(�), � = A+ �(�). The second part has the general structure�(�) =X�;z [�(az�); [: : : ; [�(a1�); [�iY; �(a0�)]] : : : ]] ;where ai� 2 g. Products of �-matrices are generators of irreducible representa-tions, but as some of them occur more than once in Y , we must check that theyare linear independent. For instance,�14ad�01 � ad�01(�0) � �14 [�01; [�01;�0]] = �0 ; �14ad�01 � ad�01(�3) = 0 ;which establishes the independence of the two 10-dimensional representationsgenerated by �0
Ms and �3
Mp. Next, application of�14ad�01�ad�01 to the four120-dimensional representations generated by �IJK establishes the independenceof �123 and (�450 + �780 + �690) from �120 and (�453 + �783 + �693). Applicationof 18ad�16 � ad�64 � ad�41 leads to independence of all these four 120-dimensionalrepresentations. Finally, application of �14ad�69 � ad�69 and �14ad�01 � ad�01 tothe three 126-dimensional representations generated by �IJKLM shows that theyare independent. In conclusion, and using the identity B(a
 13)B = a
 13, thegeneral form of �(�) is�(�) = �iP0BB@ 0 5 �M 5 �N 05� �M 0 0 5� �N5� �yN 0 0 5� B�MB0 5 �yN 5 B�MB 0 1CCAP ; (15)�M = �i�
M1�N = i�1 
Ms +�2 
Mp + �1 
M 0a � i�2 
Ma + �3 
M 0b � i�4 
Mb� i	1 
Mc � 	2 
Mf � i	3 
M2 ;



SO(10)-uni�cation in NCG revisited 11where � 2 C1(M)
45, �i 2 C1(M)
10 and �i 2 C1(M)
120, all of thembeing real representations, and 	i 2 C1(M)
 126 (complex representation).The next step is to compute the ideal J 2 and the part �̂(�) of the curvature.Both are related to Y 2, decomposed into irreducible representations. Those whichoccur both in Y and Y 2 contribute to �̂(�), the other ones give rise to the ideal.Using 55� = �14, with � = 1 in Euclidean space and � = �1 in Minkowskispace, we haveY 2 = �14 
0BBB@ P+Y(1)P+ 0 0 Y(2)P�0 P+Y(1)P+ P+Y(2)P� 00 P�Yy(2)P+ P�BY(1)BP� 0P�Yy(2)P+ 0 0 P�BY(1)BP� 1CCCA ; (16)Y1 =M2 +NN y ; Y2 =MN +NBMB :In detail, we �ndY(1) = 132 
 (3M1M y1 +MsM ys +MpM yp +M 0aM 0ay +MaM ya+ 3M 0bM 0by + 3MbM yb + 3McM yc + 3MfM yf + 14M2M y2)� i(�45 + �78 + �69)
 (MsM 0by+M 0bM ys+MpM yb+MbM yp+M 0aM yc+McM 0ay+MaM yf +MfM ya + 2M 0bM yf + 2MfM 0by + 2MbM yc + 2McM yb � 14M2M y2 )+ i�03 
 Z1 � i�12 
 Z2� (�4578 + �4569 + �7869)
 Z3 + (�0345 + �0378 + �0369)
Z4� (�1245 + �1278 + �1269)
 Z5 + �0123 
 Z6+ 18(�2567 � �1467 + �1568 + �2468 � �1489 � �2479 + �2589 � �1579)
 Z7+ 18(�1567 + �2467 � �2568 + �1468 + �2489 � �1479 + �1589 + �2579)
 Z8 :Y(2) = i�0 
 (3M1M 0b � 3M 0bM 1) + �3 
 (3M1Mb � 3MbM 1)+ �120 
 (3M1Mc � 3McM 1)� i�123 
 (3M1Mf � 3MfM 1)� i(�453 + �783 + �693)
 (M1Mp � iMpM 1 + 2M1Mc � 2McM 1)+ (�450 + �780 + �690)
 (M1Ms �MsM 1 + 2M1Mf � 2MfM1)� i(�01245 + �01278 + �01269)
 (M1M 0a �M 0aM 1 + 2M1Mb � 2MbM 1)� (�31245 + �31278 + �31269)
 (M1Ma �MaM 1 + 2M1M 0b � 2M 0bM 1)� 18 i(�1�i�2)�3(�4�i�5)(�6�i�9)(�7�i�8)
 (�3M1M2 � 3M2M1) ;where (h:c denotes the Hermitian conjugate of the preceding term)Z1 = (MsM yp +M 0aM ya + 3M 0bM yb + 3McM yf + 18M2M y2) + h:c ;Z2 = (MsM 0ay +MpM ya + 3M 0bM yc + 3MbM yf � 18M2M y2) + h:c ;



12 R. WulkenhaarZ3 = (M1M y1 + 18M2M y2 +MsM yf +MpM yc +M 0aM yb+MaM 0by +M 0bM 0by +MbM yb +McM yc +MfM yf ) + h:c ;Z4 = (MsM yb+MpM 0by+M 0aM yf+MaM yc+2M 0bM yc+2MbM yf�18M2M y2) + h:c ;Z5 = (MsMcy+MpM yf+M 0aM 0by+MaM yb+2M 0bM yb+2McM yf+18M2M y2) + h:c ;Z6 = (MsM ya +MpM 0ay + 3M 0bM yf + 3MbM yc � 18M2M y2) + h:c ;Z7 = i(((Ms +Mp +M 0a +Ma + 3M 0b + 3Mb + 3Mc + 3Mf )M y2)� h:c) ;Z8 = ((Ms +Mp +M 0a +Ma + 3M 0b + 3Mb + 3Mc + 3Mf )M y2) + h:c :This gives�̂(�) = P��14 
0BB@ �̂(�(1)) 0 0 �̂(�(2))0 �̂(�(1)) �̂(�(2)) 00 �̂(�(2))y B�̂(�(1))B 0�̂(�(2))y 0 0 B�̂(�(1))B1CCA�P ;�̂(�(1)) = �i�
 (MsM 0by +M 0bM ys +MpM yb +MbM yp +M 0aM yc +McM 0ay+MaM yf+MfM ya+2M 0bM yf+2MfM 0by+2MbM yc+2McM yb� 14M2M y2)�̂(�(2)) = i�1 
 (3M1M 0b � 3M 0bM 1) + �2 
 (3M1Mb � 3MbM 1)+ �1 
 (3M1Mc � 3McM1)� i�2 
 (3M1Mf � 3MfM 1)+ �3 
 (M1Ms �MsM 1 + 2M1Mf � 2MfM 1)� i�4 
 (M1Mp �MpM1 + 2M1Mc � 2McM 1)� i	1 
 (M1M 0a �M 0aM 1 + 2M1Mb � 2MbM 1)�	2 
 (M1Ma �MaM 1 + 2M1M 0b � 2M 0bM 1)� i	3 
 (�3M1M2 � 3M2M1)andJ 2 =P([�(g); [: : : ; [�(g); Y 2?]] : : : ] + f�(g); �(g)g)= 0BB@ P+J(1)P+ 0 0 00 P+J(1)P+ 0 00 0 P�BJ(1)BP� 00 0 0 P�BJ(1)BP� 1CCA ;J(1) = C1(M)
 1
 C 13 + C1(M)
 i45
 (CZ1 + CZ2)+ C1(M)
 210
 (CZ3 + CZ4 + CZ5 + CZ6 + CZ7 + CZ8 + C 13) :The �eld strength F of the gauge potential � = A+ �(�) is given in (6). Let� be the spacetime 0-form component of F? orthogonal to J 2, as given in (9).



SO(10)-uni�cation in NCG revisited 13Introducing~� = �+ (�45 + �78 + �69) ; ~�1 = �1 + �0 ; ~�2 = �2 + �3 ;~�1 = �1 + �120 ; ~�2 = �2 + �123 ;~�3 = �3 + (�453 + �783 + �693) ; ~�4 = �4 + (�450 + �780 + �690) ;~	1 = 	1 + (�01245 + �01278 + �01269) ; ~	2 = 	2 + (�31245 + �31278 + �31269) ;~	3 = 	3 + 18(�1�i�2)�3(�4�i�5)(�6�i�9)(�7�i�8) ;we �nd after straightforward but apparently lengthy calculation� = �14 
0BBB@ P+�(1)P+ 0 0 P+�(2)P�0 P+�(1)P+ P+�(2)P� 00 P��y(2)P+ P�B�(1)BP� 0P��y(2)P+ 0 0 P�B�(1)BP� 1CCCA ;�(1) =Pi �i1 
 (Q1i )? +Pj �j45 
 (Q45j )? +Pk �k210 
 (Q210k )?= 12(3 132 � (i ~�)21)
 ~Mf11g+ 12(132 � ( ~�21)1)
 ~Mfssg + 12(132 � ( ~�22)1)
 ~Mfppg+ 12(132 � (i~�1)21)
 ~Mfa0a0g + 12(132 � (i~�2)21)
 ~Mfaag+ 12(3 132 � (i~�3)21)
 ~Mfb0b0g + 12(3 132 � (i~�4)21)
 ~Mfbbg+ 12(3 132 � ( ~	1 ~	y1)1)
 ~Mfccg + 12(3 132 � ( ~	2 ~	y2)1)
 ~Mfffg+ 12(16 132 � ( ~	3 ~	y3)1)
 ~Mf22g � ( ~�1 ~�2)1 
 ~M[sp]+ (~�1 ~�2)1 
 ~M[a0a] + (~�1 ~�3)1 
 ~Mfa0b0g + (~�1 ~�4)1 
 ~M[a0b]� (~�2 ~�3)1 
 ~M[ab0] + (~�2 ~�4)1 
 ~Mfabg + (~�3 ~�4)1 
 ~M[b0b]� 12 i( ~	1 ~	y2 � ~	2 ~	y1)1 
 ~Mfcfg � 12( ~	1 ~	y2 + ~	2 ~	y1)1 
 ~M[cf ]+ 12 i( ~	1 ~	y3 � ~	3 ~	y1)1 
 ~M[c2] � 12( ~	1 ~	y3 + ~	3 ~	y1)1 
 ~Mfc2g+ 12 i( ~	2 ~	y3 � ~	3 ~	y2)1 
 ~Mff2g + 12( ~	2 ~	y3 + ~	3 ~	y2)1 
 ~M[f2]� i( ~�1 ~�2)45 
Mfspg+ i(~�1~�1)45 
Mfsa0g + i(~�1~�2)45 
M[sa] + i(~�1~�3 � ~�)45 
Mfsb0g+ i(~�1~�4)45 
M[sb] � i( ~�2~�1)45 
M[pa0] + i(~�2~�2)45 
Mfpag� i( ~�2 ~�3)45 
M[pb0] + i(~�2~�4 � ~�)45 
Mfpbg+ i(~�1~�2)45 
Mfa0ag � i(~�1 ~�3)45 
M[a0b0] + i(~�1~�4)45 
Mfa0bg� 12 i(~�1 ~	y1 + ~	1 ~�1 + 2~�)45 
Mfa0cg � 12(~�1 ~	y1 � ~	1 ~�1)45 
M[a0c]� 12 i(~�1 ~	y2 + ~	2 ~�1)45 
M[a0f ] + 12(~�1 ~	y2 � ~	2 ~�1)45 
Mfa0fg� 12 i(~�1 ~	y3 + ~	3 ~�1)45 
Mfa02g � 12(~�1 ~	y3 � ~	3 ~�1)45 
M[a02]



14 R. Wulkenhaar� i(~�2 ~�3)45 
Mfab0g � i(~�2 ~�4)45 
M[ab] + i(~�3 ~�4)45 
Mfb0bg+ 12 i(~�2 ~	y1 + ~	1 ~�2)45 
M[ac] � 12(~�2 ~	y1 � ~	1 ~�2)45 
Mfacg� 12 i(~�2 ~	y2 + ~	2 ~�2 + 2~�)45 
Mfafg � 12(~�2 ~	y2 � ~	2 ~�2)45 
M[af ]+ 12 i(~�2 ~	y3 + ~	3 ~�2)45 
M[a2] � 12(~�2 ~	y3 � ~	3 ~�2)45 
Mfa2g� 12 i(~�3 ~	y1 + ~	1 ~�3)45 
Mfb0cg � 12(~�3 ~	y1 � ~	1 ~�3)45 
M[b0c]� 12 i(~�3 ~	y2 + ~	2 ~�3)45 
M[b0f ] + 12(~�3 ~	y2 � ~	2 ~�3 � 4i ~�)45 
Mfb0fg� 12 i(~�3 ~	y3 + ~	3 ~�3)45 
Mfb02g � 12(~�3 ~	y3 � ~	3 ~�3)45 
M[b02]+ 12 i(~�4 ~	y1 + ~	1 ~�4)45 
M[bc] � 12(~�4 ~	y1 � ~	1 ~�4 + 4i~�)45 
Mfbcg� 12 i(~�4 ~	y2 + ~	2 ~�4)45 
Mfbfg � 12(~�4 ~	y2 � ~	2 ~�4)45 
M[bf ]+ 12 i(~�4 ~	y3 + ~	3 ~�4)45 
M[b2] � 12(~�4 ~	y3 � ~	3 ~�4)45 
Mfb2g� 12( ~	1 ~	y1)45 
Mfccg � 12( ~	2 ~	y2)45 
Mfffg � 12(( ~	3 ~	y3)45 � 16i ~�)
Mf22g� 12 i( ~	1 ~	y2 � ~	2 ~	y1)45 
Mfcfg � 12( ~	1 ~	y2 + ~	2 ~	y1)45 
M[cf ]+ 12 i( ~	1 ~	y3 � ~	3 ~	y1)45 
M[c2] � 12( ~	1 ~	y3 + ~	3 ~	y1)45 
Mfc2g+ 12 i( ~	2 ~	y3 � ~	3 ~	y2)45 
Mff2g + 12( ~	2 ~	y3 + ~	3 ~	y2)45 
M[f2]� 12(i ~�)2210 
 M̂f11g+ (~�1 ~�1)210 
 M̂[sa0] � ( ~�1 ~�2)210 
 M̂fsag + (~�1 ~�3)210 
 M̂[sb0]� ( ~�1 ~�4)210 
 M̂fsbg + (~�2 ~�1)210 
 M̂fpa0g + (~�2 ~�2)210 
 M̂[pa]+ (~�2 ~�3)210 
 M̂fpb0g + (~�2 ~�4)210 
 M̂[pb]+ 12( ~�1 ~	y1 + ~	1 ~�1)210 
 M̂fscg � 12 i( ~�1 ~	y1 � ~	1 ~�1)210 
 M̂[sc]+ 12( ~�1 ~	y2 + ~	2 ~�1)210 
 M̂[sf ] � 12 i( ~�1 ~	y2 � ~	2 ~�1)210 
 M̂fsfg+ 12( ~�1 ~	y3 + ~	3 ~�1)210 
 M̂fs2g � 12 i( ~�1 ~	y3 � ~	3 ~�1)210 
 M̂[s2]� 12( ~�2 ~	y1 + ~	1 ~�2)210 
 M̂[pc] � 12 i( ~�2 ~	y1 � ~	1 ~�2)210 
 M̂fpcg+ 12( ~�2 ~	y2 + ~	2 ~�2)210 
 M̂fpfg � 12 i( ~�2 ~	y2 � ~	2 ~�2)210 
 M̂[pf ]� 12( ~�2 ~	y3 + ~	3 ~�2)210 
 M̂[p2] � 12 i( ~�2 ~	y3 � ~	3 ~�2)210 
 M̂fp2g+ 12(~�21)210 
 M̂fa0a0g + 12(~�22)210 
 M̂faag+ 12(~�23)210 
 M̂fb0b0g + 12(~�24)210 
 M̂fbbg+ (~�1 ~�2)210 
 M̂[a0a] + (i~�1 ~�2�11)210 
 M̂fa0ag + (~�1 ~�3)210 
 M̂fa0b0g� (i~�1 ~�3�11)210 
 M̂[a0b0] + (~�1 ~�4)210 
 M̂[a0b] + (i~�1 ~�4�11)210 
 M̂fa0bg� (~�2 ~�3)210 
 M̂[ab0] � (i~�2 ~�3�11)210 
 M̂fab0g + (~�2 ~�4)210 
 M̂fabg� (i~�2 ~�4�11)210 
 M̂[ab] + (~�3 ~�4)210 
 M̂[b0b] + (i~�3 ~�4�11)210 
 M̂fb0bg� 12(~�1 ~	y1 � ~	1 ~�1)210 
 M̂[a0c] � 12 i(~�1 ~	y1 + ~	1 ~�1)210 
 M̂fa0cg



SO(10)-uni�cation in NCG revisited 15+ 12(~�1 ~	y2 � ~	2 ~�1)210 
 M̂fa0fg � 12 i(~�1 ~	y2 + ~	2 ~�1)210 
 M̂[a0f ]� 12(~�1 ~	y3 � ~	3 ~�1)210 
 M̂[a02] � 12 i(~�1 ~	y3 + ~	3 ~�1)210 
 M̂fa02g� 12(~�2 ~	y1 � ~	1 ~�2)210 
 M̂facg + 12 i(~�2 ~	y1 + ~	1 ~�2)210 
 M̂[ac]� 12(~�2 ~	y2 � ~	2 ~�2)210 
 M̂[af ] � 12 i(~�2 ~	y2 + ~	2 ~�2)210 
 M̂fafg� 12(~�2 ~	y3 � ~	3 ~�2)210 
 M̂fa2g + 12 i(~�2 ~	y3 + ~	3 ~�2)210 
 M̂[a2]� 12(~�3 ~	y1 � ~	1 ~�3)210 
 M̂[b0c] � 12 i(~�3 ~	y1 + ~	1 ~�3)210 
 M̂fb0cg+ 12(~�3 ~	y2 � ~	2 ~�3)210 
 M̂fb0fg � 12 i(~�3 ~	y2 + ~	2 ~�3)210 
 M̂[b0f ]� 12(~�3 ~	y3 � ~	3 ~�3)210 
 M̂[b02] � 12 i(~�3 ~	y3 + ~	3 ~�3)210 
 M̂fb02g� 12(~�4 ~	y1 � ~	1 ~�4)210 
 M̂fbcg + 12 i(~�4 ~	y1 + ~	1 ~�4)210 
 M̂[bc]� 12(~�4 ~	y2 � ~	2 ~�4)210 
 M̂[bf ] � 12 i(~�4 ~	y2 + ~	2 ~�4)210 
 M̂fbfg� 12(~�4 ~	y3 � ~	3 ~�4)210 
 M̂fb2g + 12 i(~�4 ~	y3 + ~	3 ~�4)210 
 M̂[b2]� ( ~	1 ~	y1)210 
 M̂fccg � ( ~	2 ~	y2)210 
 M̂fffg � ( ~	3 ~	y3)210 
 M̂f22g� 12( ~	1 ~	y2 + ~	2 ~	y1)210 
 M̂[cf ] � 12 i( ~	1 ~	y2 � ~	2 ~	y1)210 
 M̂fcfg� 12( ~	1 ~	y3 + ~	3 ~	y1)210 
 M̂fc2g + 12 i( ~	1 ~	y3 � ~	3 ~	y1)210 
 M̂[c2]+ 12( ~	2 ~	y3 + ~	3 ~	y2)210 
 M̂[f2] + 12 i( ~	2 ~	y3 � ~	3 ~	y2)210 
 M̂ff2g ;�(2) =Pi �i10 
Q10i +Pj �j120 
Q120j +Pk �k126 
Q126k= �( ~�~�1)10 
Mf1sg + i(~�~�2)10 
Mf1pg + (~�~�1)10 
M[1a0]� i( ~�~�2)10 
M[1a] + ((~�~�3)10 + 3~�1)
M[1b0] � i(( ~�~�4)10 + 3~�2)
M[1b]+ ((i ~�~�1)120�i~�3)
M[1s] � i((i ~�~�2)120�i~�4)
M[1p] + (i ~�~�1)120 
Mf1a0g� i(i ~�~�2)120 
Mf1ag + (i ~�~�3)120 
Mf1b0g � i(i ~�~�4)120 
Mf1bg� ((i ~�~	1)120 + 3i~�1 + 2~�4)
M[1c] + i((i ~�~	2)120 + 3i~�2 � 2~�3)
M[1f ]� (i ~�~	3)120 
M[12]+ ((~�~�1)126 � ~	1)
M[1a0] � i(( ~�~�2)126 � ~	2)
M[1a]+ ((~�~�3)126 + 2i~	2)
M[1b0] � i(( ~�~�4)126 � 2i ~	1)
M[1b]+ (~�~	1)126 
Mf1cg � i( ~�~	2)126 
Mf1fg + ((~�~	3)126 + 3i~	3)
Mf12g ;with~Mf��g = (M�M y� +M�M y�)(?) ; ~M[��] = (iM�M y� � iM�M y�)(?) ;Mf��g = (M�M y� +M�M y�)? ; M[��] = (iM�M y� � iM�M y�)? ; (�=1)�=1)M̂f��g = (M�M y� +M�M y�)? ; M̂[��] = (iM�M y� � iM�M y�)? ;Mf1�g = (M1M� +M�M 1) ; M[1�] = (iM1M� � iM�M 1) ; (� 6= 1)



16 R. Wulkenhaar(Q1i )(?) = Qi � 13tr(Qi)13 ;(Q45j )? = Q45j �P2a;b=1 tr(Q45j Za)TabZb ; P2a=1 Ta0atr(ZaZb) = �a0b ;(Q210j )? = Q210j �P9a;b=3 tr(Q210j Za)TabZb ; P9a=3 Ta0atr(ZaZb) = �a0b ;with Z9 = 13. We have the following 8 constraints due to the Zi of our ideal:0 =Mfspg +Mfa0ag + 3Mfb0bg + 3Mfcfg + 8Mf22g ;0 =Mfsa0g +Mfpag + 3Mfb0cg + 3Mfbfg � 8Mf22g ;0 = M̂f11g + 8M̂f22g + M̂fsfg + M̂fpcg + M̂fa0bg + M̂fab0g+ M̂fb0b0g + M̂fbbg + M̂fccg + M̂fffg ;0 = M̂fsbg + M̂fpb0g + M̂fa0fg + M̂facg + 2M̂fb0cg + 2M̂fbfg � 8M̂f22g ; (17)0 = M̂fscg + M̂fpfg + M̂fa0b0g + M̂fabg + 2M̂fb0bg + 2M̂fcfg + 8M̂f22g ;0 = M̂fsag + M̂fpa0g + 3M̂fb0fg + 3M̂fbcg � 8M̂f22g ;0 = M̂[s2] + M̂[p2] + M̂[a02] + M̂[a2] + 3M̂[b02] + 3M̂[b2] + 3M̂[c2] + 3M̂[f2] ;0 = M̂fs2g + M̂fp2g + M̂fa02g + M̂fa2g + 3M̂fb02g + 3M̂fb2g + 3M̂fc2g + 3M̂ff2g :According to the general theory we have to investigate whether or not theconnection form � receives an extra contribution �0 = �1 
 r0 + �05 
 r1. Dueto the symmetries of our setting and the requirement that the ri commute with�̂(so(10)), the matrices ri have the general formr0 = 0BB@iP+(132 
M0)P+ 0 0 00 iP+(132 
M0)P+ 0 00 0 �iP�(132 
M0)P� 00 0 0 �iP�(132 
M0)P�1CCA ;
r1 = 0BB@ 0 P+(132 
M 00)P+ 0 0�P+(132 
M 00)P+ 0 0 00 0 0 �P�(132 
M 00)P�0 0 P�(132 
M 00)P� 0 1CCA ;with M0 = M y0 and M 00 = M 00y. The condition [r0; �̂(�)] 2 �̂(
1(a)) yieldsfrom the 45-sector i[M0;M1] 2 RM1 , which �xes M0 up to three parameters.The 10-sector yields i(M0Ms +MsM0) 2 RMs + iRMp and i(M0Mp +MpM0) 2RMp + iRMs . The r.h.s. are two-dimensional so that both i(M0Ms+MsM0) andi(M0Mp +MpM0) are orthogonal to 7-dimensional spaces. It is clear that thereexists no solution for M0 in general.The condition fr1; �̂(�)g 2 �̂(
2(a))+f�̂(a); �̂(a)g derived from f�0; �(!1)g 2�(
2) gives from the 45-sector no condition at all, because �i�
(M 00M1+M1M 00)is contained in �(1) for any M 00. From the 10-sector we get 2 times (9 � 6)



SO(10)-uni�cation in NCG revisited 17conditions, from the 120-sector 4 times (9�9) conditions and from the 10-sector3 times (9� 7) conditions. This means that there will not exist a solution for M 00in general. There are no extra contributions to the gauge potential possible.In the same way one shows that the graded centralizer C2 is trivial, C2 =C1(M)P � f�(g); �(g)g. There is also no extra contribution to the ideal J 2.5 The bosonic actionThe bosonic action (7) is now given bySB = �192g2 ZM tr(F2) dx = ZM(L2 + L1 + V ) dx ;where g is the so(10)-coupling constant. In this formula, V = �192g2 tr(�2) is theHiggs potential, which in more detail is given byV = �48g2 �Xi;i0 tr(P+�i1�i01 ) tr((Q1i )(?)(Q1i0)(?)) +Xj;j0 tr(P+�j45�j045) tr((Q45j )?(Q45j0 )?)+Xk;k0 tr(P+�k210�k0210) tr((Q210k )?(Q210k0 )?) +Xk;k0 tr(P+�k126(�k0126)y) tr(Q126k (Q126k0 )y)+Xi;i0 tr(P+�i10(�i010)y) tr(Q10i (Q10i0 )y) +Xj;j0 tr(P+�j120(�j0120)y) tr(Q120j (Q120j0 )y)� :The other parts of the Lagrangian areL2 = �192g2 tr((dA + A2j�2)2) ; L1 = �192g2 tr((d�(�) + fA; �(�)� iY g)2) :As there are 23 di�erent 1-terms, 48� 2 = 46 di�erent 45-terms, 70� 6 = 64di�erent 210-terms, 6 di�erent 10-terms, 9 di�erent 120-terms and 7 di�erent10-terms in �, there occur 12(23 � 24 + 46 � 47 + 64 � 65 + 6 � 7 + 9 � 10 + 7 � 8) =3531 di�erent gauge invariant terms in the Higgs potential. All of them arecompatible with the con�guration M and N speci�ed by the Yukawa operatorY as the vacuum. This means that the most general gauge invariant Higgspotential that leads to the desired spontaneous symmetry breaking depends on3531 parameters. Of course, not all these terms are really necessary, and in theclassical formulation one puts most of the coe�cients equal to zero. But there isno justi�cation for doing so, the Higgs potential in the classical formulation doescontain 3531 parameters. Our theory reduces this huge number to 9, namelythe parameters of the unknown matrix M1. All other matrices occur in thefermionic action and can be measured, in principle. Thus, although our SO(10)-model has more independent parameters than the standard model, the ratio of the�xed parameters to the classical parameters is much better than in correspondingtreatments of the standard model.



18 R. WulkenhaarWe now study the Yang-Mills part L2 � �192g2 tr(fA; Y g2) of the Lagrangian.For that purpose we introduce chiral �-matrices��1 = 1p2(�4 � i�5) ; ��2 = 1p2(�6 � i�9) ; ��3 = 1p2(�7 � i�8) ;��4 = 1p2(�0 � i�3) ; ��5 = 1p2(�1 � i�2) ;f�pi ;�qjg = 2�p�qij 132 ; �p�qij = �ij�p�q �pqij = 12 [�pi ;�qj] = �(��p�qij )y ;where p; q 2 f+;�g and i; j = 1; : : : ; 5. The bar in �q changes the sign. TheYang-Mills �eld A can now be decomposed asA = P( 14p2gAijpq;�� 
 �pqij 
 13 
 14) = P(� 
 A � 
 13 
 14) ; (18)A � = 14p2Aijpq;��pqij ; Aijpq;� = �Ajiqp;� = Aij�p�q;� 2 C1(M) ;where 13 acts on the generation space and 14 is the 4�4-matrix structure in (12).De�ning �� = 12(�� � ��) we havedA = P( 18p2g(@�Aijpq;� � @�Aijpq;�)�� 
 �pqij 
 13 
 14) ;A2 = P( 132g2Aijpq;�Aklrs;��� 
 �pqij �rskl 
 13 
 14)= P( 1128g2Aijpq;�Aklpq;�(�� + ��)
 (�pqij �rskl + �rskl�pqij )
 13 
 14)+ P( 1128g2Aijpq;�Aklpq;�(�� � ��)
 (�pqij �rskl � �rskl�pqij )
 13 
 14) :This gives with (�pqij �rskl � �rskl�pqij ) = 2 fmn;pqrstu;ijkl �tumn ;fmn;pqrstu;ijkl = �q�rjk�m;pt;i �n;su;l � �p�rik �m;qt;j �n;su;l � �q�sjl �m;pt;i �n;ru;k + �p�sil �m;qt;j �n;ru;k ;where �i;qp;j = �ij�qp, the �nal resultsA2j�2 = P( 132g2fmn;pqrstu;ijkl Aijpq;�Aklrs;��� 
 �tumn 
 13 
 14) ;dA+ A2j�2 = P( 18p2gFmntu;���� 
 �tumn 
 13 
 14) ;Fmntu;�� = @�Amntu;� � @�Amntu;� + 12p2gfmn;pqrstu;ijkl Aijpq;�Aklrs;� :Using tr(����)=4(g��g���g��g��) and tr(�pqij �rskl)=32(�p�sil �q�rjk��p�rik �q�sjl ), we arriveatL2 = �192g2 � 1128g2F ijpq;��F klrs;�� � tr(����) � tr((P++P�)�ijpq�klrs) � 6 = �8F ijpq;��F �p�q;��ij :It is now convenient to identify the su(3)� su(2)L � su(2)R � u(1)B�L gauge



SO(10)-uni�cation in NCG revisited 19�elds (Gk; V i; ~V i; G0), where from now on i; j = 1; 2; 3 and k = 1; : : : ; 8:A12+�;� = � 1p2 i(G6��iG7�) ; A23+�;� = � 1p2(G4�+iG5�) ; A31+�;� = � 1p2(G1��iG2�) ;1p2(A33+�;��A11+�;�) = iG3� ; 1p6(A33+�;�+A11+�;��2A22+�;�) = iG8� ;1p3(A11+�;�+A22+�;�+A33+�;�) = iG0� ;A45�+;� = � 1p2(V 1��iV 2� ) =: �V +� = �(V �� )y ; 1p2(A44+�;��A55+�;�) = �iV 3� ;A45++;� = 1p2( ~V 1��i ~V 2� ) =: ~V +� = (~V �� )y ; 1p2(A44+�;�+A55+�;�) = i ~V 3� :in this notation, the Yang-Mills Lagrangian L2 takes the formL2 = �4�Gk��G��k + @[�G0�]@[�G�]0 + V i��V ��i + ~V i�� ~V ��i � (19)+ �2( @[�Aij++;�]@[�A��;�]ij + @[�Ai4++;�]@[�A��;�]i4 + @[�Ai4�+;�]@[�A+�;�]i4+@[�Ai5++;�]@[�A��;�]i5 + @[�Ai5�+;�]@[�A+�;�]i5 ) + I:T ;where I:T stands for interaction terms between 3 or 4 Yang-Mills �elds andGk�� = @[�Gk�] � gfkk0k00Gk0�Gk00� ;V i�� = @[�V i�] � g�ijj0V j�V j0� ; ~V i�� = @[� ~V i�] � g�ijj0 ~V j� ~V j0� ;and fkk0k00 and �ijj0 are su(3) and su(2) structure constants. The lesson is thatthe choice 1192g2 for the global normalization constant was correct, where g is thecoupling constant of su(3) and the two su(2) Lie subalgebras.It remains to compute the mass terms�� 1192g2 tr(fA; Y g2)= �� 1192g2 � 4 � tr(�5��5 
 (P+[A � ;M][A � ;M] + P+[A � ;N ][A � ;N y]))= 112g2 � ( g4p2)2 � 4 � 16 � �4 (Ai4�+;�A+�;�i4 + Ai4++;�A��;�i4 ) tr(2M21 +M 0aM 0ay +MaM ya + 3M 0bM 0by + 3MbM yb+3McM yc + 3MfM yf +MpM yp +MsM ys )+ 8 (Ai5�+;�A+�;�i5 + Ai5++;�A��;�i5 ) tr(M21 +M 0aM 0ay +MaM ya +M 0bM 0by+MbM yb + 2McM yc + 2MfM yf )+ 2 (Ai4+�;�A�+;�i4 + Ai5++;�A��;�i5 ) tr(M2M y2)+ 4 (Ai4++;�A�+;�i4 + Ai4��;�A+�;�i4 ) tr(M 0aM 0ay �MaM ya +M 0bM 0by �MbM yb+McM yc �MfM yf +MsM ys �MpM yp)+ 4 (�Ai4++;�A�+;�i4 + Ai4��;�A+�;�i4 ) tr(M 0aM ya �MaM 0ay +M 0bM yb �MbM 0by+McM yf �MfM yc +MsM yp �MpM ys )8 (Ai5++;�A��;�i5 � Ai5+�;�A�+;�i5 ) tr(MbM ya +MaM yb +M 0aM 0by +M 0bM 0ay+2McM yf + 2MfM yc )



20 R. Wulkenhaar+ 32Aij++;�A��;�ij tr(M21 +M 0bM 0by +MbM yb +McM yc +MfM yf + 116M2M y2 )+ 8i�ijj0 Ajj0++;�A++;�i5 tr(M2M yf+M2M yc )� 8i�ijj0 Ajj0��;�A��;�i5 tr(MfM y2+McM y2 )+ 2 (2V +� V �� + 2~V +� ~V �� + (V 3�� ~V 3� )(V �3 � ~V �3 )) tr(M 0aM 0ay +MaM ya + 3M 0bM 0by+3MbM yb + 3McM yc + 3MfM yf +MsM ys +MpM yp)� 4(V +� ~V �� + V �� ~V �+ ) tr(�M 0aM 0ay +MaM ya + 3M 0bM 0by � 3MbM yb�3McM yc + 3MfM yf +MsM ys �MpM yp)� 4(V +� ~V �� � V �� ~V �+ ) tr(MaM 0ay �M 0aM ya + 3M 0bM yb � 3MbM 0by+3MfM yc � 3McM yf +MsM yp �MpM ys )+ 2( ~V +� ~V �� + (q32G0�+~V 3� )(q32G�0+~V �3 )) tr(M2M y2)� ;where we used tr(��) = 4g�� and 55� = �14. The factor 4 comes from theanti-symmetry Aijpq = �Ajiqp and the 16 from the trace over P+ times �-matrices.We anticipate (section 6) the relation between fermion masses and the matri-ces Ms;p;a0;a;b0;b;c;f , which reads (tp = transpose of the preceding term)Ms = 116(Mn+3Mu+Me+3Md) + tp ; Ma = 116(Mn+3Mu+Me+3Md)� tp ;Mp = 116(Mn+3Mu�Me�3Md) + tp ; M 0a = 116(Mn+3Mu�Me�3Md)� tp ;Mc = 116(Mn�Mu�Me+Md) + tp ; Mb = 116(Mn�Mu�Me+Md)� tp ;Mf = 116(Mn�Mu+Me�Md) + tp ; M 0b = 116(Mn�Mu+Me�Md)� tp : (20)This gives23tr(M 0aM 0ay+MaM ya+3M 0bM 0by+3MbM yb+3McM yc+3MfM yf+MsM ys+MpM yp)= 112tr(MnM yn +MeM ye + 3MuM yu + 3MdM yd) = � ;43tr(�M 0aM 0ay+MaM ya+3M 0bM 0by�3MbM yb�3McM yc+3MfM yf+MsM ys�MpM yp)= 16tr(MnM ye +MeM yn + 3MuM yd + 3MdM yu) = 2~� ;43tr(MaM 0ay�M 0aM ya+3M 0bM yb�3MbM 0by+3MfM yc�3McM yf+MsM yp�MpM ys )= 16tr(MeM yn�MnM ye+3MdM yu�3MuM yd) = 2i�̂ :The numbers �; ~�; �̂ are not determined by the experimental data because theDirac mass matrix for the neutrinos Mn is unknown. Let us assume that thelargest eigenvalue of Mn is smaller than the mass mt of the top quark. Then, wehave in leading approximation � = 14m2t and ~� = 14mtmb.We now diagonalize the V - ~V -G0 sector. The photon is the massless linear com-bination P� = 12G0��q38V 3��q38 ~V 3� , which is perpendicular to the plane spannedby 1p2( ~V 3��V 3� ) and q25 ~V 3�+q35G0�. Now, abbreviating M 02=13tr(M2M y2), the



SO(10)-uni�cation in NCG revisited 21mass terms of the V - ~V -G0 sector are12� 1p2( ~V 3��V 3� ); 1p8( ~V 3�+V 3� )+p32 G0���2�+M 02 2M 022M 02 4M 02� 1p2( ~V 3��V 3� )1p8( ~V 3�+V 3� )+p32 G0�!+ �V +� ; ~V +� �� � �~�� i�̂�~� + i�̂ �+M 02 �� V ��~V �� � :After a unitary-orthogonal transformation�Z�~Z��=�cos� � sin�sin� cos� � 1p2(V 3�+~V 3� )1p8( ~V 3��V 3� )+p32 G0�! ; �W��~W�� �=�cos� �ei�0 sin�sin� ei�0 cos� ��V ��~V �� � ;where ei�0 = ~�+i�̂p�̂2+~�2 , the physical particles obtain the following masses:m2W �+ 12M 02 �q14M 04+�̂2+~�2 � �+ (�̂2+~�2)=M 02m2~W �+ 12M 02 +q14M 04+�̂2+~�2 � M 02 + �m2Z �+ 52M 02 �q254 M 04 � 3�M 02 + �2 � 85�� 16 �225M 02m2~Z �+ 52M 02 +q254 M 04 � 3�M 02 + �2 � 5M 02 + 25�This meansmW � 12mt ; mZ = mW= cos �W ; sin2 �W � 38 � m2t80M 02 : (21)We recall that the mass prediction for mW depends crucially on the assumptionthat the Dirac mass for the neutrinos can be neglected. But as mW cannot bemuch larger than 12mt, this assumption seems to be correct. For the rotationangles we get cot 2� = 34 � �2M 02 and tan 2� = �2p~�2 + �̂2=M 02. Hence, there isa violation of the standard model of the order m2t =M 02, for instance a couplingof the W� bosons to the right-handed fermions, and the Weinberg angle is notuniversal any more.We neglect the mixing of the order kMa;a0;b;b0;c;f;s;pk=kM1;2k between the verymassive leptoquarks. DenotingM2 = 43tr(M21 ), the masses of the leptoquark are:Ai4+� Ai4++ Ai5+� Ai5++ Aij++pM2+M 02 M M pM2+M 02 p4M2+M 02The renormalization group analysis10 suggests M � 1016GeV. Below that en-ergy, the original gauge group SO(10) is broken to the intermediate symme-try group SU(3)C�SU(2)L�SU(2)R�U(1)B�L. At the scale M 0 � 109GeV, thesubgroups SU(2)R and U(1)B�L are broken to the standard model symmetry



22 R. Wulkenhaargroup SU(3)C�SU(2)L�U(1)Y , with the hyper-charge given by q35 ~V 3��q25G0�.Finally, the fermion masses break the standard model symmetry at the scalemt � 102GeV to the remaining symmetry SU(3)C�U(1)EM . Hence, the onlymassless Yang-Mills �elds are the photon P� and the eight gluons Ga�. The Higgsmechanism consists in using the other 45� 9 = 36 SO(10)-gauge parameters toeliminate the 36 Goldstone bosons [�(a);�iY ], which in turn breaks the sym-metry from SO(10) to the fermion symmetry SU(3)C�U(1)EM . Thus, there are45+2�10+4�120+3�2�126�36 = 1301�36 = 1265 independent Higgs components.We compute now the upper limit for the mass of the standard model Higgs�eld. It is obtained by evaluating the Higgs potential V at the con�guration~� = (�45 + �78 + �69) ;~�1 = (1 + �)�0 ; ~�2 = (1 + �)�3 ;~�1 = (1 + �)�120 ; ~�2 = (1 + �)�123 ;~�3 = (1 + �)(�453 + �783 + �693) ; ~�4 = (1 + �)(�450 + �780 + �690) ;~	1 = (1 + �)(�01245 + �01278 + �01269) ; ~	2 = (1 + �)(�31245 + �31278 + �31269) ;~	3 = 18(�1�i�2)�3(�4�i�5)(�6�i�9)(�7�i�8) : (22)It is important that � is a real �eld, because the con�guration corresponding to aimaginary part is the Goldstone boson given by the commutator with �+�44 . Oneeasily �nds�(1) = ��14 
 132 
 ( ~Mfssg + ~Mfppg + ~Mfa0a0g + ~Mfaag + 3 ~Mfb0b0g + 3 ~Mfbbg+3 ~Mfccg + 3 ~Mfffg)+ 2�14
i(�45+�78+�69)
(Mfsb0g+Mfpbg+Mfa0cg+Mfafg+2Mfbcg+2Mfb0fg) ;�(2) = 0 ;up to the Higgs self-interaction �2. The other 45 and all 210-contributions arecancelled due to (17). We insert (20) and arrive at�(1) = � 116�14 
 132 
 ( ~Mfnng + ~Mfeeg + 3 ~Mfuug + 3 ~Mfddg+ ~Mfntntg + ~Mfetetg + 3 ~Mfututg + 3 ~Mfdtdtg)+ 116�14 
 i(�45 + �78 + �69)
 (Mfnng +Mfeeg �Mfuug �Mfddg�Mfntntg �Mfetetg +Mfututg +Mfdtdtg) :where ~M�t�t := (2MT�MT� y)?. We neglect again Mn and choose Mu =diag(mu; mc; mt), where the entries are the masses of the u; c; t-quarks. Thereis a neglectable contribution of �45 to the Higgs potential, and we have in leadingapproximation �(1) = �14�m2t14 
 132 
 diag(�1;�1; 2) :



SO(10)-uni�cation in NCG revisited 23This leads to V = �48g2 116�2m4t � 4 � 16 � 6 = � 12g2m4t�2 :Inserting the con�guration (22) into the part L1 of the Lagrangian we getL1 = �192g2 � 4 � tr(P+(�@�5�N )�(�@�5�N )) = 112g2 tr(P+@��N y @��N )= 112g2@�� @�� � 16 � tr(M 0aM 0ay +MaM ya + 3M 0bM 0by + 3MbM yb+ 3McM yc + 3MfM yf +MsM ys +MpM yp)= 2g2� @�� @�� :This means that the physical Higgs boson is obtained by rescaling ' = g2p�� =g�=mt, and it receives the mass m' = mt : (23)This value is an upper bound for the Higgs mass, because we have only calculatedthe diagonal matrix element of the whole mass matrix. Due to the o�-diagonalmatrix elements, the masses = eigenvalues are di�erent from the diagonal matrixelements, and the smallest eigenvalue is smaller than the smallest diagonal matrixelement. It is plausible that this smallest diagonal matrix element is just m2',because any other Higgs con�guration obtains a mass contribution from �(2) ofthe order tr((M1Mi �MiM 1)2)=tr(M2i ).The computation of the masses of the remaining 1264 Higgs bosons is analo-gous.6 The fermionic actionTo write down the fermionic action (in Minkowski space!), recall that our settinghas two symmetries J and S. It is therefore natural to demand that the fermioniccon�guration space has the same symmetries,H = f 2 L2(M;S)
 C 384 : P = J = S =  g :As usual we impose a Weyl condition in Minkowskian case. This means to lookfor a chirality operator that commutes with both J and S. The unique choice upto the sign is� = � ; � = Pdiag(�5 
 196 ; �5 
 196 ; 5 
 196 ; 5 
 196)P :Thus, elements of H are of the form = 0BBB@ (12(14�5)
 P+) ~ (�i12(14�5)
 P+) ~ (12(14+5)2 
 P�B) ~ (i12(14+5)2 
 P�B) ~ 
1CCCA ; ~ 2 L2(M;S)
 C 96 :



24 R. WulkenhaarIn order to eliminate the projection operators we introduceB = � 0 bb 0 � ; b = �2�2�2�2 
 13 2 C 48 ;A � 
 13 = � A� 00 �bAT� b � ; A� 2 C1(M)
 so(10)
 13 ;P+(�N +N )P� = � 0 ~H0 0 � ;�0 = ~�0 = 12 ; �a = �~�a ; a = 1; 2; 3 ;(12(14�5)
 P+) ~ = �0 ;  L ; 0 ; 0�t ;  L 2 L2(M)C 2 
 C 16 
 C 3 :Now, the fermionic action (8) isSF = ZM dx 14 y0(D + i�) = ZM dx 12� yL ; � TL�2b�� i~��(@� +A�) ~H~Hy i��(@� � bAT� b) ��  L��2b L�= ZM dx �i yL~��(@� +A�) L + n12 yL ~H(��2b L) + h:co� : (24)To get the last line one has to take into account that fermions  i are Grassmann-valued, which means  T1XT 2 = � y2X 1, for any matrix X. The correctfermionic parameterization dictated by the electric charge is L = �nL; u1L; u2L; u3L; eL; d1L; d2L; d3L;�2d3R;��2d2R;��2d1R; �2eR;��2u3R; �2u2R; �2u1R;��2�R�t;��2b L = ��nR;�u1R;�u2R;�u3R;�eR;�d1R;�d2R;�d3R;�2d3L;��2d2L;��2d1L; �2eL;��2u3L; �2u2L; �2u1L;��2�L�t;where t does not transpose the entries of the vector. It it now easy to verify that12 yLN (��2b L) + h:c = �� uyL(Mu 
 13)uR � dyL(Md 
 13)dR� eyLMeeR � �yLM��R � �TR�2M2�R	+ h:c ;with the mass matrices Mu;d;�;e given implicitly in (20). The right neutrinosreceive a large Majorana mass of the order kM2k and the see-saw mechanismproduces very small masses for the left-handed neutrinos of the order km2nk=kM2k.7 OutlookWhat we have presented here is a maximal SO(10)-model which allows thefermion masses to be as general as possible. This is in contrast to the orig-inal idea of grand uni�cation, namely, to reduce the number of free parame-ters of the standard model. The number of Higgs multiplets can be reduced



SO(10)-uni�cation in NCG revisited 25by imposing appropriate relations between the fermion masses. For instance,the minimal SO(10)-model containing one complex 10, one complex 126 andthe 45 (or 210) is obtained by putting Ms = �1Mp, M2 = �2Mc = �3Mf andMa = M 0a = Mb = M 0b = 0, with real parameters �i. This model is very predic-tive in the fermion sector and one can calculate the neutrino masses10. However,in our formulation the ideal J 2 becomes so large that the only surviving termsin the Higgs potential are 1 and 10. This is not su�cient. There seems to bea strong evidence that a 120 representation must be included. This next-to-minimal SO(10)-model will be studied elsewhere.AcknowledgmentI am grateful to Bruno Iochum, Daniel Kastler, Thomas Krajewski, SergeLazzarini and Thomas Sch�ucker for very useful discussions and for the hospi-tality at the CPT Luminy.1. A. Connes, G�eom�etrie non commutative, InterEditions (Paris 1990).2. A. Connes, Noncommutative geometry and reality, J. Math. Phys. 36 (1995) 6194{6231.3. A. Connes, Gravity coupled with matter and the foundation of noncommutativegeometry, Commun. Math. Phys. 182 (1996) 155{176.4. D. Kastler, Noncommutative geometry and fundamental physical interactions (His-torical sketch and outline of the present situation), Monsaraz summer school (1997).5. F. Lizzi, G. Mangano, G. Miele and G. Sparano, Constraints on uni�ed gauge the-ories from noncommutative geometry, Mod. Phys. Lett. A 11 (1996) 2561{2572.6. R. Wulkenhaar, Noncommutative geometry with graded di�erential Lie algebras, J.Math. Phys. 38 (1997) 3358{3390.7. H. Fritzsch and P. Minkowski, Uni�ed interactions of leptons and hadrons, AnnalsPhys. 93 (1975) 193{266.8. H. Georgi, The state of the art{gauge theories, in: Proc. 1974 Williamsburg AIPconf., ed by C. E. Carlton, AIP (New York 1975) 575{582.9. A. H. Chamseddine and J. Fr�ohlich, SO(10) uni�cation in noncommutative geom-etry, Phys. Rev. D 50 (1994) 2893{2907.10. R. N. Mohapatra, Minimal SO(10) grand uni�cation: Predictions for proton decayand neutrino masses and mixings, Warsaw Elem. Part. Phys. (1993) 158{172, andhep-ph/9310265.


