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1 IntrodutionQuantum �eld theories on nonommutative spaes are full of surprises, indiating thata true understanding of quantum �eld theory is still missing [1℄. This means, on theother hand, that studying the quantisation of �eld theories on nonommutative spaes weresolve the degeneray of various methods developed for ommutative geometries: Theoutomes of di�erent quantisation shemes ported to nonommutative geometries will nolonger oinide.At the moment we know of two major hallenges. First, the evaluation of Feynmangraphs as a perturbative solution of the path integral produes a ompletely new typeof infrared-like singularities [2, 3℄ in non-planar graphs. This an be understood fromthe power-ounting theorem [4℄ for non-ommutative (massive, Eulidian) �eld theories,whih implies the existene of two types (rings and ommutants) of non-loal divergenes.Seond, the ase of a Minkowskian signature of the nonommutative geometry(\spae/time nonommutativity") turns out to be involved. It was pointed out in [5℄that in the Minkowskian (non-degenerate) ase the Wik rotation of Eulidian Green'sfuntion does not give a meaningful result, �rst of all beause unitarity would be lost[6℄. The reason is that the Osterwalder-Shrader theorem [7℄ does not hold. Already in[8℄ there was given a proposal for a orret quantisation of �eld theories on spae/timenonommutative geometries: Starting with interation Hamiltonians on a Fok spaeHI(t) = Zx0=td3x : (� ? � ? � � � ? �)(x) : (1)(and averaging over the nonommutativity parameter) the ontributions to the satteringamplitudes were de�nes as the Dyson seriesGn(x1; : : : ; xk) := (�i)nn! Z dt1 : : : dtn D0���T�(x1) : : : �(xk)HI(t1) � � �HI(tn)���0E ; (2)where T denotes the time-ordering with respet to fx01; : : : ; x0k; t1; : : : ; tng and j0i thevauum state. Unitarity is preserved. In [5℄ there was added a seond proposal, theiterative solution of the (interating) �eld equation (Yang-Feldman approah), whih hasthe advantage of being manifestly ovariant. Unitarity is preserved as well.A third approah, the diret appliation of the Gell-Mann{Low formula for Green'sfuntions,Gn(x1; : : : ; xk) := inn! Z d4z1 : : : d4zn D0���T�(x1) : : : �(xk)LI(z1) � � � LI(zn)���0Eon ; (3)where LI is the interation Lagrangian, was elaborated in [9℄. The supersript on meansprojetion onto the onneted part. Unitarity was investigated in [10℄. That approahwas alled \time-ordered perturbation theory" in [9℄, a name whih we �nd ambiguous.The time-ordering in [9℄ is onsidered for external verties and interation points only,and not with respet to the atual time-order of the �elds in the interation Lagrangian.We give in setion 2 a few omments on the two natural ways of time-ordering. Theversion used in [9℄ is an interation-point time-ordering (IPTO), it is expliitly aausal,and to distinguish from a true ausal time-ordering.1



Expliit alulations for the proposed quantisation shemes of spae/time nonommu-tative �eld theories are tehnially muh more umbersome than Feynman graph ompu-tations. It is therefore desirable to extrat a powerful alulus out of the general shemes.In a �rst step one has to familiarise oneself with the omputational methods of the newapproah.For that purpose we ompute in this paper the one-loop two-point funtion for a�4 theory on nonommutative spae-time. The result of the indeed very lengthy butstraightforward alulation in interation point time-ordered perturbation theory agreeswith the na��ve path integral omputation of the relevant Feynman graph. Deriving insetion 4 the Feynman rules for IPTO, we show, however, that this is true for tadpolelines only (whih should be removed anyway by normal ordering).We may speulate that taking the true ausal time-ordering in the Gell-Mann{Lowformula one ends up with the usual Feynman rules involving the ausal Feynman propa-gator. It seems, therefore, that ausality and unitarity are mutually exlusive propertiesof spae/time nonommutative geometries.2 Comments on time-ordering and ausalityBy \nonommutative R4" one understands the algebra R4� of Shwartz lass funtions onordinary four-dimensional spae, equipped with the multipliation rule(f ? g)(x) = Z d4s Z d4l(2�)4 f(x� 12~l) g(x+ s) eils ; ~l� := l���� : (4)The produt (4) haraterised by a real skew-symmetri translation-invariant tensor ��� =���� of dimension [length℄2 is assoiative and nonommutative, it is a non-loal produton rapidly dereasing funtions.We onsider a salar �eld theory on R4� given by the lassial ation� = Z d4z�12g��(��� ? ���)(z)� 12m2(� ? �)(z) + g4!(� ? � ? � ? �)(z)� ; (5)with � 2 R4� . By de�nition (4) we have�� ? � ? � ? ��(z) = Z 3Yi=1 �d4si d4li(2�)4 eilisi�� �(z� 12~l1)�(z+s1�12~l2)�(z+s1+s2�12~l3)�(z+s1+s2+s3) : (6)If g�� is the Minkowskian metri g�� = diag(1;�1;�1;�1), we annot simply Wik-rotate the Eulidian Green's funtions obtained by evaluation of the path integral, see [5℄.Here we shall follow the proposal of [9℄ and use the Gell-Mann{Low formula (3) to de�nethe quantum �eld theory. However, one has to be more areful with the de�nition of thetime-ordering. Let us onsider the simplest ase of the two-point funtion at �rst orderin g, G(x; y) = g4! Z d4z D0���T ��(x)�(y)�� ? � ? � ? ��(z)����0E : (7)2



(We put the missing fator i diretly into the formula for the element of the S-matrix.)In the same manner as on ommutative spae-time, the integration over the interationpoint is performed after taking the time-ordered produt. Sine the ?-produt for �0i 6= 0is non-loal in time, one has to say learly what one understands under time-ordering.Let us disuss this nuane for the geometrial situation relevant for (7):
-

6time
spae��(z+s1+s2�12~l3)

��(z� 12~l1)��(z+s1�12~l2)��(z+s1+s2+s3)�(� ? � ? � ? �)(z) ��(y)��(x) (8)
This arrangement of �elds orresponds to the following non-vanishing ontribution to thetrue time-ordering of (7):G(8)(x; y) = Z d4z Z 3Yi=1 �d4si d4li(2�)4 eilisi��(s01+s02+s03+12~l01)�(z0�12~l01�x0)� �(x0�z0�s01+12~l02)�(z0+s01�12~l02�y0)�(y0�z0�s01�s02+12~l03)� D0����(z+s1+s2+s3)�(z�12~l1)�(x)�(z+s1�12~l2)�(y)�(z+s1+s2�12~l3)���0E :(9)Here, �(t) denotes the step funtion �(t) = 1 for t > 0 and �(t) = 0 for t < 0. Thereare 6! = 720 di�erent ontributions to (7) when interpreting the time-ordering in theGell-Mann{Low formula as the name suggests. The time-ordering guarantees that ausalproesses only ontribute to the S-matrix. Positive energy solutions propagate forwardin time and negative energy solutions bakward.There exists a modi�ation of (7), where the time-ordering is de�ned with respet tothe interation point :G0(8)(x; y) = Z d4z Z 3Yi=1 �d4si d4li(2�)4 eilisi��(x0�z0)�(z0�y0)� D0����(x)�(z� 12~l1)�(z+s1�12~l2)�(z+s1+s2�12~l3)�(z+s1+s2+s3)�(y)���0E :(10)There are now only 3! = 6 di�erent ontributions of this type. Sine the individual �eldsare now (in most of the ases) at the wrong plae with respet to the time-order, theinterpretation (10) of the Gell-Mann{Low formula violates ausality. Now both energysolutions propagate in any diretion of time. There is, however, an argument in favour of(10): Contributions (2) to the Dyson series are preisely ordered with respet to the time3



stamp of the interation Hamiltonians. It does not matter how the time-dependene ofthe interation Hamiltonian is produed from the time-dependene of the onstituents.Sine it is ompletely unlear how to derive the Gell-Mann{Low formula in the non-ommutative setting, we have no guidane so far whether (9) or (10) (or none of the two)is the orret one. The authors of [9℄ do not mention (9). They use the exponentialform of the ?-produt, whih is a formal translation1 of a orret formula in momentumspae, but whih might be dangerous in position spae. See also the disussion in [11℄.Apart from avoiding subtleties with generalised derivatives, the use of (6) instead of theexponential form simpli�es the alulations onsiderably.3 The one-loop two-point funtion in \interation point time-ordered per-turbation theory"Sine the alulation of the sum of terms (10) is (at least) by a fator of 120 simpler thanthe alulation of the sum of terms (9), we evaluate in this paper the one-loop two-pointfuntion interpreted aording to (10). The name \time-ordered perturbation theory"used in [9℄ does not seem appropriate to us, beause the previous disussion shows thatthis approah is preisely not based on time-ordering. We should better all it \interationpoint time-ordered perturbation theory", and use the symbol TI instead of the true ausaltime-ordering T . The alulation an be shortened onsiderably when starting diretlyfrom the Feynman rule (39) derived in setion 4. But without omputing at least oneexample one has little understanding for the starting point (34) of the general derivation.With these remarks, the entire ontribution to the one-loop two-point funtion innonommutative �4 theory readsG(x; y) = g4! Z d4z D0���TI��(x)�(y)�� ? � ? � ? ��(z)����0E= g4! Z d4z��(x0 � y0)�(y0 � z0) 
0���(x)�(y)�� ? � ? � ? ��(z)��0�+ �(x0 � z0)�(z0 � y0) 
0���(x)�� ? � ? � ? ��(z)�(y)��0�+ �(y0 � x0)�(x0 � z0) 
0���(y)�(x)�� ? � ? � ? ��(z)��0�+ �(y0 � z0)�(z0 � x0) 
0���(y)�� ? � ? � ? ��(z)�(x)��0�+ �(z0 � x0)�(x0 � y0) 
0���� ? � ? � ? ��(z)�(x)�(y)��0�+ �(z0 � y0)�(y0 � x0) 
0���� ? � ? � ? ��(z)�(y)�(x)��0�� ; (11)with the ?-produt given in (6). We follow the usual strategy to obtain in the end theamputated on-shell momentum-spae one-loop two-point funtion. We insert (6) into (11)and split eah �eld (at given position x) �(x) = �+(x)+ ��(x) into negative and positive1The derivatives in the exponential form of the ?-produt are generalised derivatives in the sense ofdistribution theory, not ordinary derivatives. As suh one annot apply the na��ve rules of di�erentialalulus. To make this transparent, write �(x + a)�(y) = exp(a��x�)�(x)�(y), and hide the exponentialof the derivatives in the de�nition of the produt. It would be ompletely wrong to use the step funtion�(x0 � y0) or �(y0 � x0) for the produt �(x + a)�(y). One of the authors (R.W.) is grateful to EdwinLangmann for explaining this matter to him. 4



frequeny parts, whih have the property��(x)��0� = 0 ; 
0���+(x) = 0 : (12)Our onventions are listed in the Appendix, they are opposite to [9℄. It is onvenient nowto ommute the �� to the right and the �+ to the left, using the ommutation rule[��(x1); �+(x2)℄ = D+(x1 � x2) ; (13)where D+(x1 � x2) is the positive frequeny propagatorD+(x1 � x2) = Z d3k(2�)32!k e�ik+(x1�x2) ; !k =q~k2 +m2 ; (14)and k+� = (+!k;�~k) the positive energy on-shell four-momentum. A lengthy but om-pletely standard omputation yieldsG(x; y) = Gon(x; y) +Gdison(x; y) ; (15)Gdison(x; y) = g4! Z d4z Z 3Yi=1 �d4si d4li(2�)4 eilisi�n��(x0 � y0)�(y0 � z0)D+(x�y)+ �(x0 � z0)�(z0 � y0)D+(x�y) + �(z0 � x0)�(x0 � y0)D(x�y)�+ �x$ y�o�D+(� 12~l2�s2+12~l3)D+(�12~l1�s1�s2�s3)+D+(� 12~l1�s1�s2+12~l3)D+(� 12~l2�s2�s3)+D+(� 12~l1�s1+12~l2)D+(� 12~l3�s3)� ; (16)Gon(x; y) = g4! Z d4z Z 3Yi=1 �d4si d4li(2�)4 eilisi����(x0 � y0)�(y0 � z0)� n�D+(�12~l1�s1�s2�s3)D+(x�z�s1+12~l2)D+(y�z�s1�s2+12~l3)+D+(�12~l1�s1�s2+12~l3)D+(x�z�s1+12~l2)D+(y�z�s1�s2�s3)+D+(�12~l1�s1+12~l2)D+(x�z�s1�s2+12~l3)D+(y�z�s1�s2�s3)+D+(�12~l2�s2�s3)D+(x�z+ 12~l1)D+(y�z�s1�s2+12~l3)+D+(�12~l2�s2+12~l3)D+(x�z+ 12~l1)D+(y�z�s1�s2�s3)+D+(�12~l3�s3)D+(x�z+12~l1)D+(y�z�s1�12~l2)�+ (x$ y)o+ �(x0 � z0)�(z0 � y0)� nD+(�12~l1�s1�s2�s3)D+(x�z�s1�s2+12~l3)D+(z+s1�12~l2�y)+D+(�12~l2�s2�s3)D+(x�z�s1�s2+12~l3)D+(z� 12~l1�y)+D+(�12~l1�s1�s2+12~l3)D+(x�z�s1�s2�s3)D+(z+s1� 12~l2�y)5



+D+(�12~l2�s2+12~l3)D+(x�z�s1�s2�s3)D+(z� 12~l1�y)+D+(�12~l1�s1�s2�s3)D+(x�z�s1+12~l2)D+(z+s1+s2� 12~l3�y)+D+(�12~l3�s3)D+(x�z�s1+12~l2)D+(z� 12~l1�y)+D+(�12~l1�s1+12~l2)D+(x�z�s1�s2�s3)D+(z+s1+s2� 12~l3�y)+D+(�12~l1�s1�s2+12~l3)D+(x�z�s1+12~l2)D+(z+s1+s2+s3�y)+D+(�12~l1�s1+12~l2)D+(x�z�s1�s2+12~l3)D+(z+s1+s2+s3�y)+D+(�12~l2�s2�s3)D+(x�z+ 12~l1)D+(z+s1+s2�12~l3�y)+D+(�12~l3�s3)D+(x�z+12~l1)D+(z+s1�12~l2�y)+D+(�12~l2�s2+12~l3)D+(x�z+ 12~l1)D+(z+s1+s2+s3�y)o+ �(z0 � x0)�(x0 � y0)� n�D+(�12~l1�s1�s2�s3)D+(z+s1�12~l2�x)D+(z+s1+s2�12~l3�y)+D+(�12~l2�s2�s3)D+(z� 12~l1�x)D+(z+s1+s2�12~l3�y)+D+(�s3�~l3)D+(z� 12~l1�x)D+(z+s1�12~l2�y)+D+(�12~l1�s1�s2+12~l3)D+(z+s1� 12~l2�x)D+(z+s1+s2+s3�y)+D+(�12~l2�s2+12~l3)D+(z� 12~l1�x)D+(z+s1+s2+s3�y)+D+(�12~l1�s1+12~l2)D+(z+s1+s2�12~l3�x)D+(z+s1+s2+s3�y)�+ �x$ y�o� + �x$ y�� : (17)We have to take the onneted part Gon(x; y) only. Inserting (14) we an perform thesi-integrations, whih result in Æ-distributions in li, so that the li integration an beperformed as well. The result has a remarkably ompat form:Gon(x; y) = g12 Z d4z Z d3k1(2�)32!k1 Z d3k2(2�)32!k2 os(12k+1 ~k+2 )� ��(x0 � y0)�(y0 � z0)e�ik+1 (x�z)e�ik+2 (y�z)I++(k+1 ; k+2 )+ �(y0 � x0)�(x0 � z0)e�ik+1 (x�z)e�ik+2 (y�z)I++(k+1 ; k+2 )+ �(x0 � z0)�(z0 � y0)e�ik+1 (x�z)e�ik+2 (z�y)I+�(k+1 ; k+2 )+ �(y0 � z0)�(z0 � x0)e�ik+1 (z�x)e�ik+2 (y�z)I�+(k+1 ; k+2 )+ �(z0 � x0)�(x0 � y0)e�ik+1 (z�x)e�ik+2 (z�y)I��(k+1 ; k+2 )+ �(z0 � y0)�(y0 � x0)e�ik+1 (z�x)e�ik+2 (z�y)I��(k+1 ; k+2 )� ; (18)where (~k+)� � (k+)���� andI��(k+1 ; k+2 ) = Z d3k(2�)32!k �3 + ei�k+1 ~k++i�k+2 ~k+ + ei�k+1 ~k+ + ei�k+2 ~k+� ; �; � = �1 :(19)6



Next we pass to the Fourier-transformed Green's funtionGon(p; q) = Z d4x d4y eipx+iqyGon(x; y) : (20)We insert the identity (use the residue theorem)�(x0 � y0) = limÆ!0 i2� Z 1�1 dte�it(x0�y0)t+ iÆ (21)and perform the integrations over x; y; z. The result is a host of Æ-distributions, whihallow us to integrate over ~k1; ~k2; t1; t2:Gon(p; q)= limÆ1;Æ2!0 g12� i2��2 Z d4x d4y d4z Z 1�1 dt1t1 + iÆ1 Z 1�1 dt2t2 + iÆ2� Z d3k1(2�)32!k1 Z d3k2(2�)32!k2 os(12k+1 ~k+2 )� �eifx0(p0�t1�!k1 )+y0(q0+t1�t2�!k2)+z0(t2+!k1+!k2 )+~x(~k1�~p)+~y(~k2�~q)�~z(~k1+~k2)gI++(k+1 ; k+2 )+ eifx0(p0+t1�t2�!k1)+y0(q0�t1�!k2)+z0(t2+!k1+!k2)+~x(~k1�~p)+~y(~k2�~q)�~z(~k1+~k2)gI++(k+1 ; k+2 )+ eifx0(p0�t1�!k1)+y0(q0+t2+!k2)+z0(t1�t2+!k1�!k2)+~x(~k1�~p)�~y(~k2+~q)+~z(~k2�~k1)gI+�(k+1 ; k+2 )+ eifx0(p0+t2+!k1)+y0(q0�t1�!k2)+z0(t1�t2�!k1+!k2)�~x(~k1+~p)+~y(~k2�~q)+~z(~k1�~k2)gI�+(k+1 ; k+2 )+ eifx0(p0+t1�t2+!k1)+y0(q0+t2+!k2)�z0(t1+!k1+!k2)�~x(~k1+~p)�~y(~k2+~q)+~z(~k1+~k2)gI��(k+1 ; k+2 )+ eifx0(p0+t2+!k1)+y0(q0+t1�t2+!k2)�z0(t1+!k1+!k2)�~x(~k1+~p)�~y(~k2+~q)+~z(~k1+~k2)gI��(k+1 ; k+2 )�= limÆ1;Æ2!0 g12(2�)4Æ(p+ q)� � 1p0�!p+iÆ1 1!p+!q�iÆ2 os(12p+~q+)4!p!q I++(p+; q+)+ 1q0�!q+iÆ1 1!p+!q�iÆ2 os(12p+~q+)4!p!q I++(p+; q+)+ 1p0�!p+iÆ1 1q0+!q�iÆ2 os(12p+(�~q)+)4!p!q I+�(p+; (�q)+)+ 1q0�!q+iÆ1 1p0+!p�iÆ2 os(12(�p)+~q+)4!p!q I�+((�p)+; q+)+ 1!p+!q�iÆ1 1�q0�!q+iÆ2 os(12(�p)+(�~q)+)4!p!q I��((�p)+; (�q)+)+ 1!p+!q�iÆ1 1�p0�!p+iÆ2 os(12(�p)+(�~q)+)4!p!q I��((�p)+; (�q)+)� : (22)Note the appearane of Æ(p+q) implementing onservation of the four-momentum (trans-lation invariane). We have used !�k = !k. 7



Following [9℄ we amputate the external legs by multiplying (22) by the inverse propa-gators �i(p20 � !2p) and �i(q20 � !2q). Using (�k)+ = �k�, in partiular the identityI��((�p)+; (�q)+) = Z d3k(2�)32!k �3 + eip�~k++iq�~k+ + eip�~k+ + eiq�~k+� � I(p�; q�) ;(23)we obtain(2�)4Æ(p+ q)�(p; q) = �(p20 � !2p)(q20 � !2q)G(p; q)= � limÆ1;Æ2!0 g12(2�)4Æ(p+ q) (p20 � !2p)(q20 � !2q)� � 1p0�!p+iÆ1 1!p+!q�iÆ2 os(12p+~q+)4!p!q I(p+; q+)+ 1q0�!q+iÆ1 1!p+!q�iÆ2 os(12p+~q+)4!p!q I(p+; q+)+ 1p0�!p+iÆ1 1q0+!q�iÆ2 os(12p+~q�)4!p!q I(p+; q�)+ 1q0�!q+iÆ1 1p0+!p�iÆ2 os(12p�~q+)4!p!q I(p�; q+)+ 1!p+!q�iÆ1 1�q0�!q+iÆ2 os(12p�~q�)4!p!q I(p�; q�)+ 1!p+!q�iÆ1 1�p0�!p+iÆ2 os(12p�~q�)4!p!q I(p�; q�)� : (24)Taking on-shell external momenta p0 = !p and q0 = �!q there survives a single term (thethird one):�(p+; q�) = limp0!!p ; q0!�!q �(p; q) = g12 os(12p+~q�)I(p+; q�)= g12 Z d3k(2�)32!k�4 + 2 os(k+~p+)� : (25)In the last line we have used momentum onservation p+ = �q� and the skew-symmetryof �. The remaining integral over ~k onsists of a planar �-independent part and a non-planar �-dependent part (the osine). The planar part oinides (up to a fator 23) withthe ommutative result, it is divergent and to be renormalised as usual by multipliativerenormalisation (or better ompletely removed by normal ordering).To ompute the non-planar part, �rst note thatos(k+~p+) = os �!k~p0 � ~k~~p� = os �!k~p0� os(~k~~p) + sin �!k~p0� sin(~k~~p) ; (26)where ~p0 := (~p+)0 and ~~p = �!~p+. The uneven sine-term will drop under the integral. Using8



the residue theorem we haveei!k ~p02!k = 8>><>>: lim�!0 12�i Z 1�1 dk0 e�ik0~p0(k0 + !k + i�)(k0 � !k � i�) for ~p0 > 0 ;lim�!0 12�i Z 1�1 dk0 �e�ik0 ~p0(k0 + !k � i�)(k0 � !k + i�) for ~p0 < 0 ; (27)e�i!k ~p02!k = 8>><>>: lim�!0 12�i Z 1�1 dk0 �e�ik0 ~p0(k0 + !k � i�)(k0 � !k + i�) for ~p0 > 0 ;lim�!0 12�i Z 1�1 dk0 e�ik0~p0(k0 + !k + i�)(k0 � !k � i�) for ~p0 < 0 : (28)Inserting (26), (27) and (28) into (25) we obtain for the non-planar graph�non�planar(p+; q�) � g6 Z d3k(2�)32!k os(k+~p+)= lim�!0 g6 Z d4k(2�)4 <� ik20 � (~k2 +m2) + i��e�ik~p+ ; (29)independent of the sign of ~p0. The result (29) an obviously be obtained by Feynmanrules, with the presription that in non-planar tadpoles the propagator to use is thereal part of the Feynman propagator. That real part is arithmeti mean of ausal andaausal propagators. The observed aausality is no surprise, beause aording to (10)the interation time-ordering TI expliitly violates ausality. As we shall see in setion 4,the just given Feynman rule is true for tadpole lines only.Apart from taking the real part, the evaluation of (29) oinides with the omputationin the \na��ve" Feynman graph approah. Let us nevertheless repeat the steps. We employZimmermann's �-trik1k2 �m2 + i� 7! 1k20 + !2k(i��1) = �0�i(�0�i)k20 + !2k(���0+i+i��0) ; (30)the denominator of whih has for �0 < � a positive real part, whih allows us to introduea Shwinger parameter:�non�planar(p+; q�)= <� lim�!0;�0<� ig6 Z d4k(2�)4 Z 10 d� (�0�i)e��f(�0�i)k20+(~k2+m2)(���0+i+i��0)g�ik0 ~p0+i~k~~p�= <� lim�!0;�0<� ig6(4�)2 (�0�i) 12(���0+i+i��0) 32 Z 10 d��2 e� ~p204�(�0�i)� ~~p24�(���0+i+i��0)��m2(���0+i+i��0)�= <� lim�!0 2ig3(4�)2 1(i��1) 32vuutm2(i��1)~p20 + ~~p2(i��1) K1�qm2(~~p2 + (i��1)~p20)��= �<� 2g3(4�)2s�m2~p2 K1�p�~p2m2�� : (31)9



We have used R10 d��2 exp(�u�� v=(4�)) = 4p(u=v)K1(puv) for <u > 0 and <v > 0.In the partiular ase where the external momentum p is put on-shell, we have�~p2 = ~~p2 � ~p20 = (�i0p~p2 +m2 + �ijpj)2 � (�0jpj)2 � 0 ; (32)beause ~p� has to be spae-like or null as a vetor whih is orthogonal to the time-likevetor p�. Thus, the projetion onto the real part in (31) is superuous, and (31) agreesexatly with the na��ve Feynman rule omputation of the sum of graphs
�p k +�p k : (33)However, if these graphs appear as subgraphs in a bigger graph, the momentum p will bethe o�-shell momentum through a propagator, and the projetion to the real part makesa di�erene.4 The general aseThe graph we have omputed (for o�-shell external momenta!) is very often made respon-sible for the so-alled UV/IR mixing. In fat the situation is more omplex, as it is verywell desribed in [4℄. The ultimate goal must be to derive the power-ounting theorem forinteration point time-ordered perturbation theory (for nonommutative spae and time).In a �rst step one has to derive graphial rules to assign an integral to a given graph.Let us therefore onsider the momentum integral for a general Feynman graph for anonommutative �4 theory. A given onneted ontribution to the E-point funtion atorder V in the oupling onstant has after performing the Wik ontrations, insertion ofthe D+ aording to (14), integration over si and li appearing in (6) and insertion of stepfuntions (21) the formG(x1; : : : ; xE) = lim�!0 Z VYv=1 g d4zv4! Z EYe=1 d3pe(2�)32!pe Z IYi=1 d3ki(2�)32!ki Z E+V�1Ys=1 i dts(2�)(ts+i�)� exp �� i VXv=1 E+V�1Xs=1 Tvsz0vts � i EXe=1 E+V�1Xs=1 Tesx0ets�� exp �� i VXv=1 zv� IXi=1 Jvik+i + EXe=1 Jvep+e �� exp �� i EXe=1 �ep+e xe�� exp �i���� IXi;j=1 Iijk+i;�k+j;� + IXi=1 EXe=1 Iiek+i;�p+e;� + EXe;f=1 Iefp+e;�p+f;��� : (34)There are E+V�1 step funtions aording to the time di�erenes of the E externalpoints xe and the V interation points zv. For eah s there are two non-vanishing T�s,where these two indies � are either two indies e, one index e and one index v, or twoindies v. The T�s for whih the vertex � (zv or xe) is later equals +1, the other one �1.10



This gives the seond line in (34). An external point xe is linked via the external linewith momentum pe to exatly one vertex zv, i.e. for given e there is a single non-vanishingJve. For our �4 theory there are I = 2V � 12E internal lines (E is even) with momentumki whih link a vertex zv to another vertex zv0 . Thus, if v 6= v0 (no tadpoles) for giveni there are two non-vanishing Jvi, whereas for v = v0 we have Jvik+i � 0. We orient theinternal and external lines forward in time. Then, the inidene matries Jvi; Jve equal �1if the line leaves v and +1 if the line arrives at v. Similarly, �e = �1 if the line e leavesxe and �e = +1 if the line e arrives at xe. The matries Iij; Iie; Ief are the intersetionmatries [12, 4℄, whih instead of the Eulidian rosette onstrution are in IPTO obtainedas follows: Aording to the de�nition (6) of the ?-produt, write at eah vertex v thefour �elds in (6) as a time-sequene where zv� 12~l1 is the latest point and zv+s1+s2+s3 theearliest point2, irrespetive of the atual time-order of these four points. Connet thesepoints with verties y1; y2; y3; v4 aording to the following piture:
(((((((((hhhhhhhhhhhhhhhhhh(((((((((6time

y1y2
y3y4 zv + s1 + s2 + s3zv + s1 + s2 � 12~l3zv + s1 � 12~l2zv � 12~l1

k1k2k3
k4

(35)The phase fator produed by the sn and ln variables is then given byZ 3Yn=1�d4sn d4ln(2�)4 exp(isnln)�� exp �� ik+1 (s1+s2+s3)Jv1 � ik+2 (s1+s2�12~l3)Jv2 � ik+3 (s1�12~l2)Jv3 � ik+4 (�12~l1)Jv4�= exp � i2��� 4Xj=2 j�1Xi=1 k+i;�Jvik+j;�Jvj� � exp � i2��� 4Xi;j=1 � vijk+i;�Jvik+j;�Jvj� : (36)We have to de�ne � vij = +1 if the line i is onneted to an \earlier" �eld � in the vertex vthan the line j, otherwise � vij = 0. Summing over all verties and distinguishing externaland internal lines, we are led to the following identi�ation in (34):Iij = 12 VXv=1 � vijJviJvj ; Iie = 12 VXv=1 �� vie � � vei�JviJve ; Ief = 12 VXv=1 � vefJveJvf : (37)One more we notie the enormous omputational advantage of using the ?-produt inthe form (4).2By the way, this de�nes the time-orientation of tadpole lines.11



We perform the Fourier transformation R QEe=1 �d4xe exp(iqexe)� of (34) to externalmomentum variables q as well as the zv integrations:G(q1; : : : ; qE) = lim�!0 gV(4!)V EYe=1 12!qe Z IYi=1 d3ki(2�)32!ki Z E+V�1Ys=1 i dts(2�)(ts + i�)� VYv=1(2�)3Æ3� IXi=1 Jvi~ki + EXe=1 Jve�e~qe� EYe=1(2�)Æ�q0e � �e!qe � E+V�1Xs=1 Tests�� VYv=1(2�)Æ� IXi=1 Jvi!ki + EXe=1 Jve!qe + E+V�1Xs=1 Tvsts�� exp �i���� IXi;j=1 Iijk+i;�k+j;� + IXi=1 EXe=1 Iie�ek+i;�q�ee;� + EXe;f=1 Ief�e�fq�ee;�q�ff;��� :(38)The vetors ~qe are always outgoing from internal verties. There are now E+V time-omponent Æ-funtions involving the E+V�1 integration variables ts, after integrationover whih there is one remaining Æ-funtion for the energy onservation Æ(PEe=1 q0e). Wemultiply (38) by the inverse propagators QEe=1(�i)(q2e �!2qe), remove (2�)4Æ4(PEe=1 qe) byonvention and put q0e = �e!qe. There is a non-vanishing ontribution only if the externalverties xe are either before or after the internal verties zi. De�ning a time-order ofverties v0 < v if z0v0 < z0v we �nally get�(q�11 ; : : : ; q�EE ) = lim�!0 gV(4!)V Z IYi=1 d3ki(2�)32!ki V�1Yv=1 i(2�)3Æ3�PIi=1 Jvi~ki +PEe=1 Jve�e~qe�Pv0�v�PIi=1 Jv0i!ki +PEe=1 Jv0e!qe� + i�� exp�i���� IXi;j=1 Iijk+i;�k+j;� + IXi=1 EXe=1 Iie�ek+i;�q�ee;� + EXe;f=1 Ief�e�fq�ee;�q�ff;��� :(39)The vertex whih is missing in the produt over v is the latest one. There remainI�V+1=L momentum integrations to perform, where L is the number of loops. Theintegral (39) orresponds to a partiular graph with E external and V internal vertieswhih all have di�erent dates. The internal verties are omposed of four di�erent pointsaording to the four �elds building the vertex, with the time-interval within a vertexsmaller than the time-distane to the neighboured verties. Any external vertex is a sin-gle point whih is either later or earlier than all points in internal verties. A graph is theonnetion of eah two of these 4V+E points by a line whih is oriented forward in time,suh that at eah point we �nd exatly one end of a line. We assign to this graph theintegral (39) aording to the inidene matries, whih also enter in (37). Finally, onehas to sum over all di�erent graphs. Note that a given graph does not have any symmetrybeause the four points in the verties have learly distinguished dates. The Feynmanrule (39) is easily generalised to other than �4 theories. Eq. (39) is the analyti expressionof the Feynman rules listed in [9℄, apart from a disagreement in the symmetry fator.12



We now see that the graph we have omputed was very speial. Beause of V=1 thedenominator in (39) was absent so that the integration over the propagator momentumk1 was idential to the na��ve Feynman graph omputation. This remains true for alltadpole lines i, beause for them Jvik+i = 0 for all v. For internal lines onneting pointsin di�erent verties we need new tehniques to perform the integrations.5 SummaryAs a warm-up for the general treatment we have omputed the one-loop two-point funtionfor a �4 theory on nonommutative spae and time in the framework of \interation pointtime-ordered perturbation theory". The alulation is based on free �elds (on the massshell), but at the end the loop momenta beome general four-momenta. Our �nal result(for that graph) agrees with a Feynman graph omputation, provided that one assigns tothe internal line the real part of the Feynman propagator. This an be understood as theinlusion of aausal proesses in the S-matrix, beause IPTO expliitly violates ausality.One may speulate that the true time-ordering of the ?-produt (9) will produe thena��ve Feynman rules involving the standard ausal Feynman propagator in non-planargraphs. This approah was shown to violate unitarity of the S-matrix. We have thus todeide whether we prefer to give up (miro-) ausality or unitarity in nonommutative�eld theories3.Next we have derived the Feynman rules (39) for general Green's funtions. Power-ounting tells us that (39) is expeted to diverge if there are subgraphs with E � 4external lines. If there are non-planar divergent graphs, it is not possible to absorb thedivergenes by loal (hene planar) ounterterms. One has therefore to analyse whetherthe osillating phases render the power-ounting divergent integral �nite. This requiresto develop tehniques for the omputation of (39) in analogy to the treatment of theEulidian ase in [4℄. Of urgent interest are the evaluations of the two-loop two-pointfuntion and the one-loop four-point funtion.AknowledgementWe would like to thank the Erwin Shr�odinger Institute in Vienna, where this paper was�nished, for hospitality and for support by the programme \Nonommutative geometryand quantum �eld theory".A Conventions for Fok spae and propagatorsTo �x our notation and for onveniene we list our onventions for free �elds and propa-gators D�(x� y) and �F (x� y).The free �elds (solutions of the homogeneous Klein-Gordon equation) are mode-3Assuming spae-time nonommutativity to be a model of quantum-gravitational bakground e�ets(� � l2Plank), one an view this abandonment of ausality in the ?-produt as its breakdown at the Planksale.
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deomposed into negative (�+) and positive (��) frequeny parts �(x) = �+(x) + ��(x),��(x) = 1(2�)3=2 Z d3kp2!k a�k e�ix�k+� ; �+(x) = 1(2�)3=2 Z d3kp2!k a+k e+ix�k+� ; (40)with the ladder operators a�; a+ obeyinga�k j0i = 0 ; h0ja+k = 0 ; [a�p ; a+q ℄ = Æ3(~p� ~q) : (41)With these de�nitions we obtain for the two-point vauum expetation values and theommutators of positive and negative frequeny partsh0j�(x)�(y)j0i = [��(x); �+(y)℄ = D+(x� y) = Z d3k(2�)32!k e�i(x�y)�k+� ;h0j�(y)�(x)j0i = �[�+(x); ��(y)℄ = D�(x� y) = Z d3k(2�)32!k ei(x�y)�k+� ; (42)where !k = p~k2 +m2 and (k�)� = (�!k; ~k)�. For the Feynman propagator we hene�nd h0jT��(x)�(y)�j0i = �F (x� y) = Z d4k(2�)4 ie�i(x�y)kk2 �m2 + i" ; (43)and for its omplex onjugateh0j�(y0 � x0)�(x)�(y) + �(x0 � y0)�(y)�(x)j0i = ��F (x� y) = Z d4k(2�)4 �ie�i(x�y)kk2 �m2 � i" :(44)These propagators are solutions of the homogeneous and inhomogeneous wave equation,respetively:(���� �m2)xD�(x� y) = 0 ; (���� �m2)x�F (x� y) = �iÆ4(x� y) : (45)Referenes[1℄ K. G. Wilson and J. B. Kogut, \The Renormalization Group And The Epsilon Expansion,"Phys. Rept. 12 (1974) 75.[2℄ S. Minwalla, M. Van Raamsdonk and N. Seiberg, \Nonommutative perturbative dynam-is," JHEP 0002 (2000) 020 [arXiv:hep-th/9912072℄.[3℄ A. Matusis, L. Susskind and N. Toumbas, \The IR/UV onnetion in the non-ommutativegauge theories," JHEP 0012 (2000) 002 [arXiv:hep-th/0002075℄.[4℄ I. Chepelev and R. Roiban, \Convergene theorem for non-ommutative Feynman graphsand renormalization," JHEP 0103 (2001) 001 [arXiv:hep-th/0008090℄.[5℄ D. Bahns, S. Dopliher, K. Fredenhagen and G. Piaitelli, \On the unitarity prob-lem in spae/time nonommutative theories," Phys. Lett. B 533 (2002) 178 [arXiv:hep-th/0201222℄. 14
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