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Abstrat. We analyse two new versions of �-expanded non-ommutative quantum eletrodynamis up to �rst order in � and�rst loop order. In the �rst version we expand the bosoni setorusing the Seiberg-Witten map, leaving the fermions unexpanded.In the seond version we leave both bosons and fermions unex-panded. The analysis shows that the Seiberg-Witten map is a�eld rede�nition at �rst order in �. However, at higher order in� the Seiberg-Witten map annot be regarded as a �eld rede�ni-tion. We �nd that the initial ation of any �-expanded masslessnon-ommutative QED must inlude one extra term proportionalto � whih we identify by loop alulations.
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1 IntrodutionQuantum �eld theory on non-ommutative strutures has reeived inreasing attention dur-ing the last years [1, 2, 3, 4℄. In almost all artiles on the subjet a non-ommutativestruture [x̂�; x̂� ℄ = i��� ; (1.1)haraterised by a onstant non-ommutativity parameter � has been onsidered, mainlydue to the possibility of expliit alulations. Some investigations of �eld theories involvinga non-onstant � have been performed [5, 6℄. In any ase, non-ommutative on�gurationsof the form (1.1) are to be seen in the spirit of deformation quantisation [7℄, whih forma subspae of all possible non-ommutative settings [8℄. The algebra (1.1) with onstant �serves as the simplest possible setting for a non-ommutative quantum �eld theory.Beause the relation (1.1) implies a non-loality of the underlying spae-time, the questionof renormalisability and, as a onsequene hereof, the method of quantisation, is of entralinterest.The method mostly applied for quantisation takes the full, non-expanded, non-loal a-tion as the soure of Feynman rules. This leads to damping phases whih renders thenon-planar setor UV-�nite. However, the entailed UV-IR mixing leads to new infrared di-vergenes [9℄ whih spoil renormalisability beyond �rst loop order. A thorough analysis ofthe problem was given in [10, 11℄. In the speial ase of non-ommutative �4-theory methodsof �nite temperature quantum �eld theory have been used to re-sum the perturbation seriesleading to renormalisability [12℄. This method might be useful for non-ommutative gaugetheories as well. So far, however, the problem of preserving the gauge symmetry has not beensolved. Ideas involving �eld rede�nitions to overome the IR-problems were presented in [13℄.It is however unlear whether this idea will prove fruitful beause it transfers the problemsto higher n-point funtions rather than removing them from the theory. The only solution tothe problem of quantising non-ommutative gauge theory known today is the introdution ofsupersymmetry [14, 15℄, beause the divergenes present in ertain supersymmetri modelsare `soft' enough to render the UV-IR mixing integrable [16℄.An alternative method of quantisation was proposed in [17℄: The non-ommutativitystruture � apparently limits the hoie of gauge group to that of a matrix representation ofa U(N) gauge group. The hoie of a more general group automatially entails envelopingalgebra valued �elds rendering the model seemingly meaningless. This problem is solved byexpanding the model in � via the Seiberg-Witten map [1, 18, 19℄, whih expresses the non-ommutative gauge �eld in terms of a ommutative gauge �eld. The prie paid is howeververy high: �-expanded theories are truly power-ounting non-renormalisable and involvein�nitely many verties with an arbitrary number of legs. In [20℄ the purely bosoni asewas analysed for an Abelian group and in [21℄ it was shown that the photon self-energyis renormalisable to all orders. In [22℄, however, �-expanded non-ommutative QED wasproven non-renormalisable, putting this line of quantisation to an apparent halt.A entral problem related to non-ommutative �eld theories whih beomes urgently im-portant in the seond method of quantisation is the hoie of the ation: In order to quantisea power-ounting non-renormalisable model one needs very strong symmetries. Symmetriesare to be found in the lassial ation, but the above senario does not give any riteria whihditate the form of the ation, apart from Lorentz and gauge symmetries and the demand1



that the limit � ! 0 yields the ommutative model. These bonds leaves a huge spae ofpossible ations. If the naive|initial|hoie of the ommutative ation equipped with ap-propriate star produts should prove renormalisable the non-ommutativity must somehowyield symmetries by itself. On the other hand, one ould speulate whether the quantisationproedure will by itself ast light on this question by foring extra terms to the initial naivehoie and thereby lead us to a suitable ation. In the light of reent phenomenologialworks onsidering the �-expanded Standard Model via the Seiberg-Witten map [23℄ we �ndit important to single out the initial ation by the behaviour of the Seiberg-Witten map onquantum level.In this paper we analyse two variations of the seond method of quantisation (�-expansion) up to �rst order in � and �rst loop order. These two variations are loselyrelated to the �-expanded non-ommutative QED studied in [22℄ where both the bosoniand fermioni setors were expanded via the Seiberg-Witten map. Here we �rst onsider�-expanded non-ommutative QED in the speial ase where the Seiberg-Witten map isonly applied to the bosons. The reason for this is speulative: Whereas there are strongmathematial reasons for expanding the bosons via the Seiberg-Witten map [18℄ there doesnot seem to be urgent reasons for applying the Seiberg-Witten di�erential equation to thefermions [24℄. Seondly, we onsider the ase of �-expanded non-ommutative QED with-out use of the Seiberg-Witten map whatsoever. In onnetion to the above it is natural toinvestigate this ase in order to fully understand the role of the Seiberg-Witten map.What we �nd is partly enouraging: Up to unphysial �eld rede�nitions both studiedsettings oinide with the results of [22℄. This means that the Seiberg-Witten map is nothingbut a �eld rede�nition at �rst order in �. However, we �nd substantial evidene that thiswill not be the ase at higher orders in �, thus leaving a small window of hope open for�-expanded models. It means, though, that the initial ation of any �-expanded modelinvolving fermions must be extended with at least one extra term whih we identify. Thisextra term suÆes|in the massless ase|for one-loop renormalisability at �rst order in �.In the massive ase two extra instabilities our in the fermioni setor, whih annotbe removed in an obvious way. It thus appears that we are umulating evidene that if onepersists on onsidering �-expanded non-ommutative Yang-Mills theory, then the fermionimass must be introdued via a Higgs mehanism.Let us mention that our initial motivation for studying �-expanded �eld theories withoutusing the Seiberg-Witten map was �rst of all the wish to obtain �-graded symmetries whihould �x the �-struture of the ation on the quantum level. It turned out, however, that thisdoes not work beause we loose at the same time the initial `at' gauge symmetry. One ouldspeulate if other symmetries present in the original �-non-expanded ation (we think e.g. ofsymmetries of the spetral ation [25℄, see also the disussion in [22℄) ould provide useful �-graded symmetries of the expanded ation. An interesting example is supersymmetry whihindeed yields suh a �-graded symmetry [26℄.The paper is organised as follows: In setion 2 we introdue non-ommutative Yang-Millstheory. In setion 3 we expand the ation using the Seiberg-Witten map in the bosoni setoronly. The quantisation is studied at �rst loop order. In setion 4 we repeat the analysis forthe ation expanded in � without the Seiberg-Witten map. In setion 5 we analyse generalhanges of variables in the path-integral and, �nally, in setion 6 we give a onlusion.2



2 Non-ommutative Yang-Mills theoryOn the spae of rapidly dereasing funtions on R4 one introdues a deformed produt(f ? g)(x) = Z d4k(2�)4 Z d4p(2�)4 e�i(k�+p�)x� e� i2 ���k�p� ~f(k) ~g(p) ; (2.1)where f; g are rapidly dereasing funtions on the manifold and ~f; ~g their Fourier transforms1.The ?-produt (2.1) is assoiative and non-ommutative and yields for the oordinates x�belonging to the multiplier algebra the ommutator[x�; x�℄? � x� ? x� � x� ? x� = i��� : (2.2)We onsider the ation of non-ommutative Yang-Mills (NCYM) theory, inludingfermions, given bŷ�l = Z d4x�� 14g2 F̂�� ? F̂ �� + �̂ ? i�D̂� ̂ �m �̂ ?  ̂� ; (2.3)with F̂�� = ��Â� � ��Â� � i�Â�; Â�℄? ;D̂� ̂ = �� ̂ � iÂ� ?  ̂ :Notie that this is a non-loal �eld theory. The ation (2.3) is invariant with respet to anin�nitesimal gauge transformationÆ�̂Â� = D̂adj� �̂ � ���̂� i[Â�; �̂℄? ;Æ�̂ ̂ = i�̂ ?  ̂ ;Æ�̂ �̂ = �i �̂ ? �̂ : (2.4)Usually this gauge symmetry is �xed via a gauge-�xing term, introduing ghost ̂, anti-ghost�̂ and multiplier �eld B̂, �̂gf = Z d4x ŝ��̂ ? ��Â� + �2 �̂ ? B̂� ; (2.5)where we de�ne the non-ommutative BRST-transformations byŝÂ� = D̂adj� ̂ ; ŝ̂ = î ? ̂ ;ŝ ̂ = î ?  ̂ ; ŝ �̂ = �i �̂ ? ̂ ;ŝ�̂ = B̂ ; ŝB̂ = 0 : (2.6)Finally, we ouple the non-linear BRST-transformations to external �elds (�̂�; �̂; �̂�; �̂) byintroduing an extra term to the ation,�̂ext = Z d4x � �̂��ŝ ̂�+ �ŝ �̂ ��̂ + �̂��ŝÂ��+ �̂�ŝ̂�� ; (2.7)1Our Fourier onventions are f(x) = R d4k(2�)4 e�ik�x ~f(k) and ~f(k) = R d4x eik�x f(x).3



and de�ne ŝ�̂ = 0 ; ŝ �̂� = 0 ; ŝ�̂� = 0 ; ŝ�̂ = 0 : (2.8)The full tree level generating funtional for 1PI graphs reads�̂(0) = ��̂l + �̂ext + �̂gf� : (2.9)The nilpoteny of ŝ allows us to write down the Slavnov-Taylor identity expressing theBRST-symmetry:S ��̂(0)� = 0 ; (2.10)S (�) = Z d4x � Æ�Æ�̂� Æ�ÆÂ� + Æ�Æ�̂ Æ�Æ̂ + Æ�Æ�̂ Æ�Æ �̂ + Æ�Æ ̂ Æ�Æ �̂� + B̂ Æ�Æ�̂� : (2.11)3 Expanding the ation. [Case I℄In this setion we expand the ation of NCYM theory in � using the Seiberg-Witten dif-ferential equation in the bosoni setor. In ontrast to the analysis performed in [22℄ on�-expanded QED [27℄ the fermions are not expanded. This entails a piture where the gaugesymmetry is `at' (not �-graded) in the bosoni setor and `tilted' (�-graded) in the fermionisetor. Performing the loop alulations we show that the Slavnov-Taylor identities are stillvalid on quantum level. Also, we �nd that the model haraterised by the lassial ation(2.3) is instable. Remarkable enough, the bosoni setor is stable at �rst order in �. Theseresults are up to �eld rede�nitions idential to the results found in [22℄.3.1 Classial analysisThe expansion of the ation (2.9) is performed aording to�f ? g�(x) = f(x)g(x) + i2�����f(x)��g(x) +O(�2) ;Â� = A� � 12���A� (��A� + F��) +O(�2) ;�̂ = � ; 8 �̂ 2 f ̂; �̂ ; ̂; �̂; B̂; �̂�; �̂; �̂�; �̂g ; (3.1)where the gauge �eld is expanded aording to the Seiberg-Witten di�erential equation [1℄.This leads to the expanded ation �fng�-exp = nXi=0 �(i) ; (3.2)whih up to �rst order in � (whih we are interested in from now on) reads�(0)l = Z d4x�� 14g2F��F �� + � (i�D� �m) � ; (3.3)4



�(1)l = Z d4x� 18g2 ���F��F��F �� � 12g2���F��F��F ��+ i2��� � ���A��� � ��� � �A���A� + 12��� � �A���A� � ; (3.4)�(0)gf = Z d4x�B��A� + �2BB � ������ ; (3.5)�(�1)gf = 0 : (3.6)We hoose the `linear gauge-�xing' in the sense of [20℄ applied after the Seiberg-Witten map(3.1). The �-expansion of (2.5) leads to the `non-linear gauge-�xing' whih is di�erent2. Weexpand the BRST transformations (2.4) aording to (3.1),ŝ =Xi s(i) ;whih to �rst order in � givess(0)A� = �� ; s(0) = 0 ;s(0) = i ; s(0) � = �i �  ;s(1)A� = 0 ; s(1) = 0 ;s(1) = � i2���A��� � 12������� ; s(1) � = i2��� � A���+ 12����� � �� : (3.7)Here we have used the Seiberg-Witten expansion of the non-ommutative gauge parameter[1℄ �̂ = �� 12���A����+O(�2) ; (3.8)replaing � by  [20℄, to obtain the non-ommutative gauge transformation of the fermions interms of the ommutative gauge parameter. Notie that only the BRST transformations ofthe fermions (3.7) are �-graded. The appliation of the Seiberg-Witten map in the bosonisetor `attens' out their BRST-transformations. The total �-expanded ation is invariantunder non-ommutative BRST transformationssXi �(i) = 0 ; (3.9)leading to a tower of symmetries s(0)�(0) = 0 ; (3.10)s(1)�(0) + s(0)�(1) = 0 ; (3.11)s(2)�(0) + s(1)�(1) + s(0)�(2) = 0 ; (3.12)...2In [Case I℄ we apply the linear gauge, whih is possible beause the BRST-symmetry is `at' in thebosoni setor|in perfet analogy to [20℄. In [Case II℄ (see setion 4) we use (a variation of) the non-lineargauge, beause in [Case II℄ we have a �-graded BRST symmetry in the bosoni setor, leaving no roomfor a linear gauge. Sine we have shown that the hoie of linear/non-linear gauge leaves loop alulationsinvariant [20℄ this is justi�ed. 5



where (3.10) is simply the BRST invariane of the ommutative theory.3.2 Slavnov-Taylor identityLoop orretions do not preserve the BRST symmetry in the form (3.9). The solution ofthis problem is to ouple the non-linear BRST transformations to external �elds,�(n)ext = Z d4x ��� �s(n)A��+ � �s(n)�+ �� �s(n) �+ �s(n) � � �� : (3.13)De�ning the full tree level generating funtional for 1PI graphs to nth order in � by�(n;0) = ��(n)�-exp + �(n)ext + �(n)gf � ; (3.14)the Slavnov-Taylor identity expresses the whole set of BRST invarianes (3.10){(3.12) up tonth order in �, �S��(n) = 0 ; (3.15)where the Slavnov-Taylor operator is de�ned by (2.11) (without the hat over the �elds). Inmomentum spae we have0 = Z d4k(2�)4� Æ�Æ��(k) Æ�ÆA�(�k) + Æ�Æ�(k) Æ�Æ � (�k) + Æ�Æ (k) Æ�Æ��(�k) + Æ�Æ�(k) Æ�Æ(�k)+B(k) Æ�Æ�(k)� : (3.16)Funtional derivation of (3.16) with respet to the �elds fA�; ;  ; � ; �; Bg in momentumspae, followed by putting the �elds to zero, leads to various forms of the Slavnov-Tayloridentity for 1PI Green's funtions(2�)4Æ(p1+ : : :+pN) ��1:::�N (p1; : : : ; pN) := ÆN�Æ�N (pN) : : : Æ�1(p1) ����i=0 : (3.17)These Green's funtions ��1:::�N (p1; : : : ; pN) = Pn;`�0 �(n;`)�1:::�N (p1; : : : ; pN) arry a bidegree(n; `) where n is the number of fators of � and ` the number of loops. For our purpose themost important Slavnov-Taylor identities derived from (3.16) are the following:0 = X̀̀0=0 nXn0=0��(n0;`0)�;� (q+r; p)�(n�n0;`�`0)�A �  (p; q; r)+ �(n0;`0)� � (q; p; r)�(n�n0;`�`0)�  (p+q; r) + �(n�n0;`�`0)�  (q; p+r)�(n0;`0)�� (q; p; r)� ; (3.18)0 = X̀̀0=0 nXn0=0��(n0;`0)�;� (q+r+s; p)�(n�n0;`�`0)��AA �  (p; q; r; s)+ �(n0;`0)��;A� (q; r+s; p)�(n�n0;`�`0)�A �  (p+q; r; s)+ �(n0;`0)�A � � (q; r; p; s)�(n�n0;`�`0)�  (p+q+r; s) + �(n�n0;`�`0)�  (r; p+q+s)�(n0;`0)�A�� (q; r; p; s)+ �(n0;`0)� � (r; p; q+s)�(n�n0;`�`0)�A �  (q; p+r; s) + �(n�n0;`�`0)�A �  (q; r; p+s)�(n0;`0)�� (q+r; p; s)� ;(3.19)6



0 = X̀̀0=0 nXn0=0�(n0;`0)�;� (q; p)�(n�n0;`�`0)��AA (p; q) ; (3.20)0 = X̀̀0=0 nXn0=0��(n0;`0)��;A� (q; r; p)�(n�n0;`�`0)��AA (p+q; r) + �(n0;`0)��;A� (r; q; p)�(n�n0;`�`0)��AA (p+r; q)+ �(n0;`0)�;� (q+r; p)�(n�n0;`�`0)���AAA (p; q; r)� ; (3.21)0 = X̀̀0=0 nXn0=0��(n0;`0)�;� (q+r+s; p)�(n�n0;`�`0)�A � � (p; r; q; s)� �(n0;`0)�;� (p+r+s; q)�(n�n0;`�`0)�A � � (q; r; p; s)+ �(n0;`0)� � (r; p; q+s)�(n�n0;`�`0)� � (p+r; q; s)� �(n0;`0)� � (r; q; p+s)�(n�n0;`�`0)� � (q+r; p; s)+ �(n0;`0)� (r+s; p; q)�(n�n0;`�`0)� � (r; p+q; s)� ; (3.22)0 = X̀̀0=0 nXn0=0��(n0;`0)�;� (q+r+s; p)�(n�n0;`�`0)�A�� (p; r; q; s)� �(n0;`0)�;� (p+r+s; q)�(n�n0;`�`0)�A�� (q; r; p; s)� �(n0;`0)�� (r; p; q+s)�(n�n0;`�`0)�� (p+r; q; s) + �(n0;`0)�� (r; q; p+s)�(n�n0;`�`0)�� (q+r; p; s)+ �(n0;`0)� (r+s; p; q)�(n�n0;`�`0)�� (r; p+q; s)� : (3.23)For n=0 we reover ordinary QED, where additionally `0=0 beause there are no loopsinvolving external �elds.The above Slavnov-Taylor identities an be veri�ed on a formal level of divergent integralsand hold for renormalised Green's funtions when using an invariant regularisation sheme.However, in ontrast to the ommutative world, the Slavnov-Taylor identities are in preseneof � not strong enough to preserve the form of the ation at higher loop order.3.3 The tree-level Green's funtionsTo be expliit, the non-vanishing tree-level Green's funtions of our model are at order n=0in � given by�(0;0)�  (q; p) = �p� �m ; �(0;0)�A �  (p; q; r) = � ;�(0;0)��AA (p; q) = � 1g2�p2g�� � p�p�� ; �(0;0)�AB (p; q) = �ip� ;�(0;0)BB (p; q) = � ; �(0;0)� (q; p) = p2 ;�(0;0)�� (q; p; r) = i ; �(0;0)� � (q; p; r) = �i ;�(0;0)�;� (q; p) = �ip� : (3.24)It is straightforward to hek the tree-level (`=0) Slavnov-Taylor identities (3.18){(3.23)for n=0. The propagators are the bilinear parts of the tree-level generating funtional of
7



onneted Green's funtions:� �  (q; p) = � �p� +mp2 �m2 + i� ; �AA�� (p; q) = g2p2 + i��g�� � �1� �g2� p�p�p2 + i�� ;�AB� (p; q) = � ip�p2 + i� ��(q; p) = � 1p2 + i� : (3.25)At order n=1 in � we have the following tree-level 1PI Green's funtions:�(1;0)�A �  (p; q; r) = � i2���p�r�� ; (3.26)�(1;0)��AA �  (p; q; r; s) = i���q�� + i���p�� � i2���(q� � p�)� ; (3.27)�(1;0)���AAA (p; q; r) = 1g2 i����g��g���(qr)p� � (pr)q��+ g��g���(rp)q� � (qp)r��+ g��g���(pq)r� � (rq)p��+ g���(g��(pq)� p�q�)r� + (g��(rp)� r�p�)q��+ g���(g��(qr)� q�r�)p� + (g��(pq)� p�q�)r��+ g���(g��(rp)� r�p�)q� + (g��(qr)� q�r�)p��+ g���p�q�r� + q�p�r��+ g���q�r�p� + r�q�p��+ g���r�p�q� + p�r�q��� g��(g��(rq)� r�q�)p� � g��(g��(pr)� p�r�)q�� g��(g��(qp)� q�p�)r��; (3.28)�(1;0)�� (q; p; r) = 12���p�r� ; (3.29)�(1;0)� � (q; p; r) = 12���p�q� ; (3.30)�(1;0)�A�� (q; r; p; s) = �12���p� ; (3.31)�(1;0)�A � � (q; r; p; s) = 12���p� : (3.32)It is straightforward to hek the tree-level (`=0) Slavnov-Taylor identities (3.18){(3.23) forn=1.3.4 One-loop omputationUsing analyti regularization we ompute the one-loop divergent Green's funtions up to�rst order in �. We hoose the Feynman gauge � = g2. At order n=0 in � we �nd�(0;1)�  (q; p) = ~g2(4�)2"�12N + 3m ��m��(0;0)�  (q; p) ; (3.33)�(0;1)�A �  (p; q; r) = ~g2(4�)2"�12N + 0NA��(0;0)�A �  (p; q; r) ; (3.34)�(0;1)��AA (p; q) = ~g2(4�)2"�� 43g2 ��g2 + 0NA��(0;0)��AA (p; q) ; (3.35)8



where N and NA are the ounting operators of eletrons � ;  and photons A�, respetively.There are no divergenes in graphs involving ; �; B; ��; �; �� at order 0 in � so that �; ��must reeive a wave funtion renormalisation �12 ~g2(4�)2"N� in order to ompensate the wavefuntion renormalisation of  ; � . The result (3.33){(3.35) means that at order 0 in � allone-loop divergenes an be removed by a rede�nition of the eletron wave funtion, theeletron mass and the oupling onstant.At order n=1 in � we �nd�(1;1)�  (q; p) = 0 ; (3.36)�(1;1)�A �  (p; q; r) = ~g2(4�)2"��12N + 0NA��(1;0)�A �  (p; q; r)+ i����12(p�r� � r�p�)Æ��� � 14mÆ��(2r� + p�)��� 34(p2Æ�� � p�p�)��� � 32p�p���� + 154 mÆ��p��� ; (3.37)�(1;1)��AA �  (p; q; r; s) = : : : ; (3.38)�(1;1)���AAA �  (p; q; r; s; t) = : : : ; (3.39)�(1;1)�  �  (p; q; r; s) = ~g2(4�)2" i����34g2� 
 ���� ; (3.40)�(1;1)��AA (p; q) = 0 ; (3.41)�(1;1)���AAA (p; q; r) = ~g2(4�)2"�� 43g2 ��g2��(1;0)���AAA (p; q; r) ; (3.42)�(1;1)�1:::�NA:::A (p1; : : : pN) = : : : ; N 2 f4; 5; 6g : (3.43)We did not ompute the divergent Green's funtions �(1;1)��AA �  (p; q; r; s), �(1;1)���AAA �  (p; q; r; s; t) and�(1;1)�1:::�NA:::A (p1; : : : pN ) for N 2 f4; 5; 6g, beause they do not give new information for thedisussion (see footnote 3 below). The graphs to ompute for the Green's funtions (3.36),(3.37) and (3.40){(3.42) are exatly the same as those given in [22℄, only the Feynman rulesare di�erent. There is no need to print these graphs again. However, there are now divergentgraphs involving external �elds, whih have no analogue in [22℄. These graphs are omputedto �(1;1)�� (q; p; r) =�p�q rk�k k+r = ~g2(4�)2"���p��� 14r� + 14��r� � 12m�� ;(3.44)�(1;1)� � (q; p; r) =�p�q rk�kk�q = ~g2(4�)2"���p��� 14q� � 14��q� + 12m�� ;(3.45)9



�(1;1)�A�� (q; r; p; s) =�p�r sq; �k�ss�kk+q k = ~g2(4�)2"���p��� 14Æ�� + 14 �� � ; (3.46)
�(1;1)�A � � (q; r; p; s) =��r spq; � k+r�r�k k�qk = ~g2(4�)2"���p��14Æ�� + 14 �� � : (3.47)The external �elds ��; � are symbolised by dotted lines and the ghost  by dashed lines,everything else is as in [22℄. A vertex with a dot is of �rst order in �.First, the (n=1; `=1) Slavnov-Taylor identities (3.18) and (3.20){(3.23) are ful�lled, asalready expeted from general onsiderations. For us the importane of these identitiesonsists in testing the graph omputations performed by a MathematiaTM program [28℄.Next, the one-loop divergent Green's funtions at �rst order in � are onsiderably di�erentfrom their tree-level form. The question is then how many of these divergenes an beremoved by a �eld rede�nition.3.5 Field rede�nitionsA �eld rede�nition F must preserve the Slavnov-Taylor identity, hene we have to requireS(F�) = 0 ; F =Xi Z 	i[�j℄ ÆÆ�i ; (3.48)where the funtional 	i[�j℄ of the �elds �j must be of the same power-ounting dimension,ghost harge and hermitiity as the �eld �i. We make the ansatzF =  � 12����A��� + i4����mA�� + 38� 0���F ������ ; (3.49)F � = � � 12������ � A� � i4���� � �mA� + 38� 0��� � F ������ ; (3.50)F� = �� 12������(A��) + i4����mA���� 38� 0���F ������� ; (3.51)F �� = ��� 12������(��A�)� i4���� ���mA� � 38� 0��� ��F ������ ; (3.52)F�� = �� + ��� ���14�(Æ�� �  �� )(�� � iA� ) + i2�A� � i2��m �� ����14�(�� � + i � A�)(Æ�� +  �� )� i2� � A� + i2� � �m�� ; (3.53)FA� = A� ; F =  ; F� = � ; F� = � ; FB = B ; (3.54)whih leads toF(�(0;0)) = �(0;0) + ������ 12 � i���A��� + 12 � �A���A� � 14 � i�F��D� + 38 � mF�� + 14 � m �� (2A�D� + ��A� )�10



+ 34� 0����� i � �����F �� + i � �����F �� � � m����F �� �+ ���� �����14(Æ�� �  �� )(�� � iA� )� i2�m �+ �����14(�� � + i � A�)(Æ�� +  �� ) + i2 � �m���� +O(�2) : (3.55)The orresponding Green's funtions are(F�)(1;0)�A �  (p; q; r) = i������ 12(r�p� � p�r�)� + 34mp� � 14m(2r�+p�)���+ 34i� 0����� 2p�p���� � ���(p2g�� � p�p�)� 2mp������ ; (3.56)(F�)(1;0)��AA �  (p; q; r; s) = i������12(p�+q�)(Æ���+Æ���)� 12m(Æ�� �� +Æ�� �� )� ; (3.57)(F�)(1;0)�� (q; p; r) = ����p��� 14(r� �  �� r�)� 12m�� ; (3.58)(F�)(1;0)� � (q; p; r) = ����p��� 14(q� +  �� q�) + 12m�� ; (3.59)(F�)(1;0)�A�� (q; r; p; s) = ����p��� 14(Æ�� �  �� )� ; (3.60)(F�)(1;0)�A � � (q; r; p; s) = ����p��14(Æ�� +  �� )� : (3.61)The Slavnov-Taylor identities (3.18){(3.23) are veri�ed. Now (3.37) and (3.44){(3.47) anbe rewritten as�(1;1)�A �  (p; q; r) = ~g2(4�)2"��12N + 0NA��(1;0)�A �  (p; q; r) + � ��� + ��� 0�(F�)(1;0)�A �  (p; q; r)+ i����3mÆ��p� + 32mp������� ; (3.62)�(1;1)ext.�eld = ~g2(4�)2" ��� (F�)(1;0)ext.�eld ; (3.63)where ext.�eld stands for �� (q; p; r), � �(q; p; r), �A�� (q; r; p; s) and �A � �(q; r; p; s). In otherwords, the one-loop divergenes in the Green's funtions involving external �elds and, form = 0, in �(1;1)�A �  (p; q; r) an be removed by �eld rede�nitions. Due to the Slavnov-Tayloridentity these �eld rede�nitions remove all one-loop divergenes in �(1;1)��AA �  (p; q; r; s) and�(1;1)���AAA �  (p; q; r; s; t) as well, and �(1;1)�1 :::�NA:::A (p1; : : : pN ) is onvergent for N 2 f4; 5; 6g3. There3Sine all divergenes in Green's funtions involving external �elds are removed by a �eld rede�nition, see(3.63), the (n=1; `=1) Slavnov-Taylor identity (3.19) implies that the divergent part of �(1;1)��AA �  (p; q; r; s) istransversal (ontration with p� yields zero) after the �eld rede�nitions (3.49){(3.54), beause the remainingdivergenes in �(1;1)�A �  (p; q; r) are independent of r. Sine �(1;1)��AA �  (p; q; r; s) is linear in momentum variablesand symmetri under (p; �) $ (q; �), it must be zero. In the same way one proves �(1;1)���AAA �  (p; q; r; s; t) = 0after the �eld rede�nitions (3.49){(3.54). Similarly, the photon N -point funtions �(1;1)�1:::�NA:::A (p1; : : : pN ) forN 2 f4; 5; 6g are transversal in all momenta, but beause they are at most quadrati (for N = 4) in themomentum variables, they must vanish. This short proof shows that the omputation of (3.38), (3.39) and(3.43) was not neessary. 11



remain only the divergene in the eletron four-point funtion (3.40) and the two mass termsin (3.62). It is remarkable that these remaining divergenes oinide exatly (with the samenumerial oeÆients!) with the result obtained in [22℄ where the eletrons are Seiberg-Witten expanded! Moreover, there are no divergenes in the photon N -point funtions�(1;1)�1;:::�NA:::A (p1; : : : ; pN) after the same renormalisation of the oupling onstant as in QED,see (3.35). Again, this oinides with the results found in [22℄ where the fermions areSeiberg-Witten expanded as well. This is a remarkable result: The physial (i.e. modulo�eld rede�nitions) one-loop divergenes are insensitive for the hoie of non-ommutative orSeiberg-Witten expanded eletrons in �-expanded non-ommutative QED.4 Expanding the ation. [Case II℄In this setion we omplete the �rst order analysis of the Seiberg-Witten map on quantumlevel by leaving it out ompletely: We repeat the analysis of the previous setion withoutapplying the Seiberg-Witten map to the bosoni setor. The result is a `tilted' BRST-symmetry in both bosoni and fermioni setors leading to a tower of symmetries involvingboth bosoni and fermioni ations.4.1 Classial analysisThe expansion of the ation (2.9), inluding the ghost setor, is now performed aording to�f ? g�(x) = f(x)g(x) + i2�����f(x)��g(x) +O(�2) ;�̂ = � ; 8 �̂ 2 fÂ�;  ̂; �̂ ; ̂; �̂; B̂; �̂�; �̂; �̂�; �̂g : (4.1)This leads to the expanded ation �fng�-exp = nXi=0 �(i) ; (4.2)whih up to �rst order in � (in whih we are only interested for now) reads�(0)l = Z d4x�� 14g2F��F �� + � (i�D� �m) � ; (4.3)�(1)l = Z d4x�� 12g2 ���F����A���A� + i2��� � ���A��� � ; (4.4)�(0)gf = Z d4x �B��A� � �����+ �2BB� ; (4.5)�(1)gf = Z d4x ������� ��A� ��� : (4.6)We expand (2.4) using (4.1) to �rst order in �:s(0)A� = �� ; s(0) = 0 ;s(0) = i ; s(0) � = �i �  ;12



s(1)A� = �����A��� ; s(1) = �12���(��)(��) ;s(1) = �12������� ; s(1) � = �12����� � �� : (4.7)The above transformations are �-graded in both bosoni and fermioni setors. The �-expanded BRST-transformations (4.7) ful�l (3.10) and (3.11). Again we also expand theterm with external �elds leading to (3.13) with the BRST-transformations de�ned in (4.7).The full tree-level generating funtional is de�ned by (3.14), now with the lassial andgauge-�xing ations given by (4.6).Again the full set of BRST symmetries must be expressed by Slavnov-Taylor identities(3.16) and (3.18){(3.23).4.2 The tree-level Green's funtionsAt order n=0 in � the tree-level Green's funtions of [Case II℄ are learly the same asbefore (3.24). At order n=1 in � we now have the following non-vanishing tree-level Green'sfuntions: �(1;0)�A �  (p; q; r; s) = � i2���p�r�� ; (4.8)�(1;0)��A (p; q; r) = i���p�q�r� ; (4.9)�(1;0)���AAA (p; q; r) = ig2 ����(g��p� � g��p�)q�r� + (g��q� � g��q�)r�p�+ (g��r� � g��r�)p�q�� ; (4.10)�(1;0)��;A�(q; r; p) = Æ�����p�q� ; (4.11)�(1;0)�� (q; p; r) = 12���p�r� ; (4.12)�(1;0)� � (q; p; r) = 12���p�q� ; (4.13)�(1;0)� (p; q; r) = ���q�r� : (4.14)It is straightforward to hek the (n=1; `=0) Slavnov-Taylor identities (3.18){(3.23).4.3 One-loop omputationThe one-loop results for order n=0 in � are the same as before (3.33){(3.35). At order n=1in � we �nd the following divergent Green's funtions in analyti regularisation (using againthe Feynman gauge � = g2):�(1;1)�  (q; p) = 0 ; (4.15)�(1;1)�A �  (p; q; r) = ~g2(4�)2"��12N + 0NA��(1;0)�A �  (p; q; r)+ i����� 12p�r�� � 14(2r� + p�)p�� � 14Æ��(2r� + p�)p��� 54p�p���� + 72mÆ��p��� ; (4.16)13



�(1;1)��AA �  (p; q; r; s) = : : : ; (4.17)�(1;1)���AAA �  (p; q; r; s; t) = : : : ; (4.18)�(1;1)�  ; �  (p; q; r; s) = 0 ; (4.19)�(1;1)��AA (p; q) = 0 ; (4.20)�(1;1)���AAA (p; q; r) = ~g2(4�)2"�� 43g2 ��g2 + 0NA��(1;0)���AAA (p; q; r) ; (4.21)�(1;1)�1:::�NA:::A (p1; : : :pN) = : : : ; N 2 f4; 5; 6g ; (4.22)�(1;1)�� (q; p; r) =�r k; �k+r �q�k; � p p�k = ~g2(4�)2"���p��� 14q� � 14m� � 14��q�� ;(4.23)�(1;1)� � (q; p; r) =�r k�q �qk+p p�k; �k; � = ~g2(4�)2"���p��� 14r� + 14m� + 14��r�� ;(4.24)�(1;1)�A�� (q; r; p; s) =�sk+s
q; �
k; �k+q+s

�r
�k; � pp�k = ~g2(4�)2"���p��14Æ�� + 14 �� � ; (4.25)

�(1;1)�A � � (q; r; p; s) =�s
q; � �rk�r pk+pk+p+s �k; �k; � = ~g2(4�)2"���p��� 14Æ�� + 14 �� � : (4.26)

The (n=1; `=1) Slavnov-Taylor identities (3.18) and (3.20){(3.23) are veri�ed.4.4 Field rede�nitionsWe try again to absorb the divergenes in (4.23){(4.26) and most of (4.16) by �eld rede�ni-tions. We make the ansatzF =  + ����� 14� �� ��A� + 38� 0����F �� � 18� 00F�� � ; (4.27)14



F � = � + ����14� �  �� ��A� + 38� 0 � ����F �� � 18� 00 � F��� ; (4.28)F �� = �� + ����14� �� �� ��A� � 38 ��� 0����F �� + 18� 00��F��� ; (4.29)F� = � + ����� 14� �� ��A��� 38� 0����F ���+ 18� 00F���� ; (4.30)FA� = A� � 34ig2� 000��� � ��� ; (4.31)F�� = �� + 14�����(�� �� + i��A�)(Æ�� +  �� ) � i��m� � � (Æ�� �  �� )(���� iA��)� i � m��� ; (4.32)F =  ; F� = � ; F� = � ; FB = B ; (4.33)whih givesF(�(0;0)) = �(0;0) + ������ 12 � i���A��� + 14 � i�����A� + 12 � i���A��� + 14 � i�������A� � 12 � �A���A� + 12 � �A���A� �+ 34� 0����� i � �����F �� + i � �����F �� � � m����F �� �+ � 00����� 18 � i�(��F�� + 2F��D� ) + 14 � mF�� �� 34� 000���� � i���(��F �� � g2��B) + g2( � � )( � i��� )�+ 14�����(�� ��+ i��A�)(Æ�� +  �� )�� � i��m��� + � ��(Æ�� �  �� )(���� iA��) + i � m����� +O(�2) : (4.34)The orresponding Green's funtions are(F�)(1;0)�A �  (p; q; r) = i����� 12�p�r�� � 14�(p�+2r�)p�� � 14� 00(p�+2r�)p�Æ���+ �14��32� 0�p�p���� + 34(� 000 � � 0)(p2g���p�p�)���+ 12� 00mp�Æ�� � 32� 0mp������ ; (4.35)(F�)(1;0)��AA �  (p; q; r; s) = i����12(�q� � � 00p�)Æ��� + 12(�p� � � 00q�)Æ��� � 12�(p�+q�)g���� ;(4.36)(F�)(1;0)�  ; �  (p; q; r; s) = �34� 000i���g2� 
 ��� ; (4.37)(F�)(1;0)B �  (p; q; r) = �34� 000i���g2p���� ; (4.38)(F�)(1;0)�� (q; p; r) = 14����p��q�(�Æ�� �  �� )�m�� ; (4.39)15



(F�)(1;0)� � (q; p; r) = 14����p��r�(�Æ�� +  �� ) +m�� ; (4.40)(F�)(1;0)�A�� (q; r; p; s) = 14����p�q�(Æ�� +  �� ) ; (4.41)(F�)(1;0)A � �(q; r; p; s) = 14����p�q�(�Æ�� +  �� ) : (4.42)The (n=1; `=0) Slavnov-Taylor identities (3.18){(3.23) are veri�ed. Now (4.16), (4.19) and(4.23){(4.26) an be rewritten as�(1;1)�A �  (p; q; r) = ~g2(4�)2"��12N + 0NA��(1;0)�A �  (p; q; r)+ � ��� + ��� 0 + ��� 00 + ��� 000�(F�)(1;0)�A �  (p; q; r)+ i����3mÆ��p� + 32mp������� ; (4.43)�(1;1)�  ; �  (p; q; r; s) = ~g2(4�)2"� ��� 000 (F�)(1;0)�  ; �  (p; q; r; s) + 34i���g2� 
 ���� ; (4.44)�(1;1)B �  (p; q; r) = ~g2(4�)2"� ��� 000 (F�)(1;0)B �  (p; q; r) + 34i���g2p����� ; (4.45)�(1;1)ext.�eld = ~g2(4�)2" ��� (F�)(1;0)ext.�eld ; (4.46)where ext.�eld stands for �� (q; p; r), � �(q; p; r), �A�� (q; r; p; s) and �A � �(q; r; p; s). Thus, theresult after �eld rede�nitions is the same as in [Case I℄ and [22℄, provided that a ~-renormalisation of the tree-level gauge-�xing ation �(0)gf from (4.5) to�0(0)gf = Z d4x �B���A� � 34g2 ~g2(4�)2"��� � ��� �� �����+ �2BB� (4.47)is performed. In summary, up to �eld rede�nitions the one-loop omputations of Green'sfuntions up to �rst order in � are ompletely independent of the appliation of the Seiberg-Witten map(1) to both eletrons and photons [22℄,(2) to photons only [Case I℄, or(3) to neither photons nor eletrons [Case II℄.In the next setion we shall explain why this has to be the ase.First let us point out a possibility whih we have overlooked in [22℄ and whih beomesapparent from the loop alulation of [Case II℄. Putting � 0 = � 000 = 0 in (4.34) we haveinstead of (4.43) and (4.44)�(1;1)�A �  (p; q; r) = ~g2(4�)2"��12N + 0NA��(1;0)�A �  (p; q; r) + � ��� + ��� 00�(F�)(1;0)�A �  (p; q; r)+ i����3mÆ��p� � 32p�p������ ; (4.48)�(1;1)�  ; �  (p; q; r; s) = 0 : (4.49)16



The same result an obviously be ahieved for the treatments of [22℄ and [Case I℄ as well.This is the minimal �eld rede�nition in the sense that only two non-absorbable one-loopdivergenes remain. It is tempting to try an extended non-ommutative initial ation�̂el = �̂l + ge Z d4x i��� �̂ ? ���D̂adj� F̂�� ?  ̂ ; (4.50)D̂adj� F̂�� = ��F̂�� � i[Â�; F̂��℄? ;where �̂l was given in (2.3) and ge is a new oupling onstant. It turns out that alldivergenes generated by this extension term are|apart from the trivial one due to the wavefuntion renormalisation of � ;  |proportional to the eletron mass m. In other words, inmassless non-ommutative QED the �-expansion of (4.50) is one-loop renormalisable up to�rst order in � by the standard QED wave funtion and eletron harge renormalisations,the renormalisation ge(") = ge + 34 ~g2(4�)2" (4.51)of the additional oupling onstant ge and �eld rede�nitions.5 General onsiderations: Change of variablesIn this setion we further analyse NCYM theory expanded in �. In the following we shallleave the option open as to whether fermions are inluded or not. Our starting point is atrivial expansion of (2.3) aording to(f ? g)(x) = f(x)g(x) + 1Xn=1 1n!� i2�n��1�1 � � � ��n�n���1 : : : ��nf(x)����1 : : : ��ng(x)� ;�̂i = �0i ; 8 �̂i ; (5.1)where �̂i denotes all �elds of the theory, with the index i labelling spin and partile type.We reonsider the Seiberg-Witten map�0i = �i + 
i[�℄ ; (5.2)where the �eld polynomial 
i[�℄ is at least linear in �, as a hange of integration variablesin the path integral Z[J ℄ = N Z �D�0� exp� i~�l [�0℄ + i~J i�0i� : (5.3)Here, N is a (ill-de�ned) normalisation fator and �l [�0℄ is the gauge-�xed NCYM ation|possibly inluding fermions|expanded aording to (5.1) in �. To improve the readabilitywe omit spae-time integrals in J i�0i � R d4x J i(x)�0i(x) as well as in the sequel. We apply
17



(5.2) to (5.3) and �ndZ[J ℄ = N Z �D�� det � Æ�0jÆ�k � exp� i~�l [�0[�℄℄ + i~J i�0i[�℄�= N Z �D���DC��D �C� exp � i~�l [�0[�℄℄ + �Ci Æ�0iÆ�j Cj+ i~�J i�i + J i
i[�℄ + �CiJi + �J iCi������J= �J=0� N Z �D���DC��D �C� exp� i~ ~�l [�; C; �C℄+ i~�J i�i + J i
i[�℄ + �CiJi + �J iCi������J= �J=0 : (5.4)The ghosts and anti-ghosts Ci and �Ci are to be understood as `towers' of �elds of mixedGrassmann grading aording to the atual �eld they ouple to. The e�et of the new ghostsetor introdued in (5.4) is of ourse to ompensate for the performed �eld rede�nition inagreement with the equivalene theorem [29, 30, 31℄.As usual we split ~�l [�; C; �C℄ = ~�bil [�; C; �C℄ + ~�int [�; C; �C℄ into the bilinear part~�bil [�; C; �C℄ = �12�i(��1)ij�j + ~i �CiCi (5.5)and an interation part ~�int [�; C; �C℄, in whih the �elds are replaed by funtional derivativeswith respet to the soures. Then the funtional integration an (formally) be performedand yieldsZ[J ℄ = N 0 exp � i~J i
ih~i ��J i� exp� i~ ~�inth~i ��J ; ~i �� �J ;�~i ��J i�� exp� i2~J i�ijJ j � � i~�2 �J iJi�����J= �J=0 : (5.6)The soure J i in front of 
i is external and therefore must not be di�erentiated. We anwrite J i however as (��1)ij�j with �j = ~i ÆÆJj and orret the error due to ontrations of J jwith other soures. One type of these ontrations is given by a loop of these J i
i vertiesin the form Æ
i1Æ�i2 Æ
i2Æ�i3 : : : Æ
in�1Æ�in Æ
inÆ�i1 : (5.7)These loops anel exatly the ghost loops, beause the ghost verties are given by �Ci Æ
iÆ�j Cjand the ghost propagator equals 1. Next a single J i
i vertex an be ontrated with ~�int togive 
i ~�intÆ�i . This new vertex an further be ontrated, as well as the 
i(��1)ij�j vertex,and we �nally getZ[J ℄ = N 0 exp i~��bil [�� 
[�� 
[�� : : : ℄℄℄� �bil [�℄+ ~�int [�� 
[�� 
[�� : : : ℄℄℄������7!~i ÆÆJ exp � i2~J i�ijJ j� : (5.8)18



Realling �0 = �+
[�℄ and �[�+
[�℄℄ = ~�[�℄, (5.8) simpli�es to the formula obtained bya diret omputation of (5.3), i.e. without the hange of variables (5.2),Z[J ℄ = N 0 exp � i~�inth~i ��J i� exp � i2~J i�ijJ j� : (5.9)The equivalene of (5.6) and (5.9) was of ourse expeted. We are, however, interested in adi�erent question. It is lear that (5.9) yields the (general) Green's funtions of [Case II℄,but how an we relate it to the Green's funtions of [22℄ and [Case I℄?To answer this question we pass to the generating funtionalZ[J ℄ = ~i lnZ[J ℄ (5.10)of onneted Green's funtions and by Legendre transformation to the generating funtional�[�l ℄ = Z[J ℄� J i�i;l (5.11)of 1PI Green's funtions, where J i has to be replaed by the inverse solution of�i;l = ÆZ[J ℄ÆJ i : (5.12)In this way �[�l ℄ is obtained as a formal sum over `-loop Feynman graphs. The modelstudied in [22℄ is given by the subset of Feynman graphs orresponding to (5.6) but withoutlosed (C; �C)-ghost loops and without the verties involving 
. The [Case I℄ Feynman graphsare obtained by leaving out the fermioni part of the 
-vertex and the orresponding ghosts.We show now that 1PI Graphs in Z[J ℄ involving a single 
-vertex result in a �eld rede�nition,but this property does not extend to higher order in 
.The 1PI-part of Z[J ℄ whih is at most linear in 
 has the formZ1PI;lin(
) [J ℄ = 12J i�ijJ j + ~�int [��J ℄ + ~�(`�1)e� [��J ℄ + J i
(`�0)e� ;i [��J ℄ ; (5.13)where (��J)i = �ijJ j. All (`�1)-loop 1PI graphs without the 
-vertex are ontained in�(`�1)e� and all 1PI-graphs involving the 
-vertex are ontained in 
(`�0)e� ;i . All graphs are builtwith the ~�int verties and ( �C; C)-ghost loops are omitted, assuming the ghost tadpole Æ
iÆ�i in(5.7) to be zero. Now we obtain�i;l = (��J)i +�ij Æ~�intÆ�j [��J ℄ + �ij Æ~�(`�1)e�Æ�j [��J ℄+ �ijJk Æ
(`�0)e� ;kÆ�j [��J ℄ + 
(`�0)e� ;i [��J ℄ ; (5.14)(��J)lin(
)i = �i;l ��ij Æ~�intÆ�j [�l ℄��ij Æ~�(`�1)e�Æ�j [�l ℄+ �ij Æ2~�intÆ�jÆ�k [�l ℄ 
(`�0)e� ;k [�l ℄ + �ij Æ2~�(`�1)e�Æ�jÆ�k [�l ℄ 
(`�0)e� ;k [�l ℄� 
(`�0)e� ;i [�l ℄��ijJk Æ
(`�0)e� ;kÆ�j [�l ℄ + 1PR-terms ; (5.15)19



�lin(
)[�l ℄ = �~�(`�0)e� [��J ℄� (��J)i Æ~�intÆ�i [��J ℄� (��J)i Æ~�(`�1)e�Æ�i [��J ℄� (��J)iJk Æ
(`�0)e� ;kÆ�i [��J ℄�1PI;lin(
)= ~�(`�0)e� [�l ℄� Æ~�(`�0)e�Æ�i [�l ℄ 
(`�0)e� ;i [�l ℄ : (5.16)Terms like ��i;l � 
(`�0)e� ;i � Æ�intÆ�i [�l ℄ anel via the diret ourrene in the �rst line of (5.16)and the substitution of (5.15) in �bil [��J ℄ = �12(��J)��1(��J). The �nal result (5.16)shows that graphs involving the 
-verties in (5.6) linearly are a �eld rede�nition. In our(n=1; `=1) loop alulation the 
-verties ontribute already with ` = 1, therefore, the e�etat total loop order 1 is expeted to be 
(`=1)e� ;i Æ�lÆ�i ; (5.17)whih is exatly the di�erene of the loop alulations of [22℄, [Case I℄ and [Case II℄.Taking graphs with more than one 
-vertex into aount, the di�erene of the ases an-not be a �eld rede�nition any longer. Namely, there is now a graph J i1 � � �J in
(`�1)e� ;i1:::in[��J ℄in the generalisation of (5.13), whih gives the term (1�n)J i1 � � �J in
(`�1)e� ;i1:::in [��J ℄ in �. Thefree soures J ik are now replaed e.g. by Æ�e�Æ�k and thus lead to 1PI graphs where the 
-verties beome inner. These graphs annot be reahed by �eld rede�nitions, whih areouter. In onlusion, we expet at order �2 that the di�erenes between [22℄, [Case I℄ and[Case II℄ are no longer �eld rede�nitions.In priniple there are also the (C; �C)-ghost loops to take into aount. However, the orre-sponding ghost propagator equals 1 and the ghost ouplings are polynomial in momenta andmasses. If there are no sub-divergenes, all ghost loops vanish trivially, at least in analytiand dimensional regularisation. Aordingly, if the (C; �C)-ghost verties are renormalisable,the (C; �C)-ghosts give no ontribution at all.6 DisussionIn this paper we have ontinued the quantum analysis of the Seiberg-Witten map �rstarried out in [20, 21, 22℄. We have analysed �-expanded non-ommutative QED, whihhappens to be the easiest non-ommutative model to study in this ontext. In ontrastto [22℄, where both bosoni and fermioni setors were �-expanded via the Seiberg-Wittendi�erential equations, we have analysed in this paper the two ases where(I) only the bosoni setor is expanded via the Seiberg-Witten map and(II) neither the bosoni nor the fermioni setors are expanded via the Seiberg-Witten map.We have found that up to �eld rede�nitions the outome of all three approahes is idential.We an summarise our piture about the Seiberg-Witten map as follows:20



� The Seiberg-Witten expansion must be seen as a true (physial) expansion of the �eldsin a gauge theory, whih is performed prior to quantisation. Otherwise (expandingafter the quantisation) ghosts and 
-verties generated due to the hange of integrationvariables would ontribute to the loop alulation and lead to the same result as withoutthe Seiberg-Witten map.� At �rst order in � no di�erene between �-expanded quantum �eld theories with andwithout Seiberg-Witten map is expeted (apart from problems with the hoie of thegauge group, whih we ignore here). Our one-loop QED alulations on�rm this.� �-expanded gauge theory an not be expeted to be stable under quantisation beausedivergenes will appear already at �rst order in �, for the reason that no symmetryis known whih rules them out. At �rst order in � the additional terms added to theinitial ation in order to have enough freedom to absorb these divergenes are the samewhen using the Seiberg-Witten map or leaving it out.� At seond order in � there will be substantial di�erenes between �-expansion withor without Seiberg-Witten map due to ontributions of the 
-verties (and possiblynon-renormalisable ghost sub-divergenes).The most important result of this paper is perhaps that i� one insists on analysing�-expanded (Abelian) gauge theories involving fermions one must add the termge Z d4x i��� �̂ ? ���D̂adj� F̂�� ?  ̂to the non-expanded initial ation. Also, the fermion masses should be introdued via aHiggs mehanism.Let us �nally stress that it is not yet possible to make de�nite onlusions towardsrenormalisability of �-expanded models. It appears that expliit loop alulations at seondorder in � are needed, these are however not easily aessible due to the enormous volumeof alulations involved.AknowledgementWe would like to thank Peter Shupp for giving us the initial idea to investigate the mixedase where bosons are Seiberg-Witten expanded whereas fermions are not. We would liketo thank Paolo Asheri, Branislav Jur�o, Peter Shupp, Harold Steinaker and Julius Wessfor stimulating disussions and hospitality during our visit at the Physis Department of theUniversity of Munih.Referenes[1℄ N. Seiberg and E. Witten, \String theory and nonommutative geometry," JHEP 9909 (1999)032 [arXiv:hep-th/9908142℄.[2℄ A. Konehny and A. Shwarz, \Introdution to M(atrix) theory and nonommutative geome-try," arXiv:hep-th/0012145. 21
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