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1 IntrodutionThe investigation of �eld theories on a very speial type of nonommutative spaes|the so-alled nonommutative R4 involving a onstant antisymmetri tensor ���|beame during thelast two years an industry, making it impossible to list all relevant ontributions. Fortunatelyone an refer to some reviews [1, 2, 3, 4℄, whih reet most of the ahievements. Nevertheless,let us briey reall a few seleted milestones whih lead diretly to the question addressed inthis paper.Many investigations on this subjet are motivated by the disovery of ompati�ations ofM theory on nonommutative tori [5℄ and the identi�ation of these nonommutative geome-tries as limiting ases of string theory [1℄. Quantum �eld theories on �-deformed spae-timewere shown to be ultraviolet divergent [6℄ (motivated at this time by the ontinuum versionof the twisted Eguhi-Kawai model [7℄ whih already possesses nonommutative features).A more general result on divergenes for spaes whih are nonommutative manifolds in thesense of [8℄ was obtained in [9℄. The ruial question about the physial relevane of �eldtheories on nonommutative spae-time is whether these models are renormalizable. At theone-loop level, renormalizability of gauge theories on �-deformed spaes was �rst proved in[10, 11, 12℄. At higher loop order there was disovered a new type of infrared divergenesboth in salar �eld theories [13℄ and Yang-Mills theory [14, 15℄. A power-ounting theoremfor nonommutative �eld theories whih lassi�es the divergenes was established in [16℄.A very surprising result due to Seiberg and Witten [1℄ was that nonommutative andommutative gauge theories are related by a formal power series in �, the so-alled Seiberg-Witten map. The Seiberg-Witten map allows one to irumvent the infrared problem [17℄1at expense of a power-ounting non-renormalizable theory with in�nitely many verties. Thefat that the super�ial divergenes in the photon self-energy are (to all orders in � and �h)�eld rede�nitions [19℄ gave some hope that gauge theories on �-deformed spae-time ould�nally be renormalizable. However, it beame lear that one annot proeed along this linewithout the identi�ation of new symmetries of the �-expanded ation whih ould restritthe struture of otherwise possible divergent ounterterms. The �rst andidates of suhsymmetries|Lorentz rotation and dilatation|were shown to give no further informationbeyond onformal symmetry of a Yang-Mills theory on ommutative spae-time [20℄. As aby-produt, however, we have obtained in [20℄ a deeper understanding of the Seiberg-Wittenmap: One has to distinguish between `observer Lorentz transformation' (whih transform��� as a tensor) and `partile Lorentz transformations' (whih leave ��� invariant), see [21℄.Demanding (A) observer Lorentz invariane and (B) gauge invariane of the partile Lorentzsymmetry breaking of the physial ation, the partile Lorentz transformation of a �eld isthe sum of its naive observer Lorentz transformation and an additional part given by theSeiberg-Witten di�erential equation (whih is very onveniently derived in this manner).A brute-fore approah to probe the existene of additional symmetries is to ompute one-loop Green's funtions other than the self-energy. For �-deformed Maxwell theory (whih hasno �-independent interations) the omputational e�ort beomes tremendous. In this paperwe therefore fous on �-deformed nonommutative QED [22℄, for whih we are able to omputeall divergent one-loop Green's funtions up to �rst order in �. The (already extremely lengthy)omputation in analyti regularization [23℄ is performed using aMathematiaTM pakage [24℄.The �nal result is simple and (at least for some people) disappointing:Nonommutative QED annot be renormalized by means of Seiberg-Witten expansion. (1)We provide some ideas how the Seiberg-Witten expansion an be used as a omputational1That work was inspired by [18℄. 1



tehnique to treat one-loop divergenes of the full (�-unexpanded) nonommutative QED [14℄,but this leads|similarly as UV/IR mixing|to problems at the two-loop level. This is theend of the hapter on nonommutative quantum �eld theories treated by the Seiberg-Wittenmap.2 Nonommutative R4Our presentation of the nonommutative R4 is (with di�erent notations, however) based on[25℄ and the appendix of [26℄. Let A be the spae of Shwartz lass funtions2 a � a(x) onR4 , equipped with the multipliation rule3(a ? b)(x) := ZR4 d4k(2�4) ZR4d4y a(x+ 12��k) b(x+y) eik�y ; (��k)� = ���k� ; k�y = k�x� ; (2)where � 2 M4R is a real-valued antisymmetri onstant matrix, ��� = ����. Positionspae variables are denoted by x; y; z and momentum spae variables by k; l; p; q; r; s; t. Themultipliation (2) is assoiative but nonommutative. The ?-(anti)ommutators are de�nedby [a; b℄? = a?b�b?a and fa; bg? = a?b+b?a. There is an involution on A given by omplexonjugation a�(x) = a(x) whih satis�es (a ? b)� = b� ? a�. Partial derivatives �� = ��x� arederivations with respet to (2), ��(a ? b) = ��a ? b + a ? ��b. Sine Shwartz lass funtionsare trae-lass one an de�ne an integralZ a = ZR4d4x a(x) ; Z a ? b = Z b ? a : (3)An important onept is that of the multiplier algebraM = �f : R4 ! C ; f ? a 2 A and a ? f 2 A for all a 2 A	 ; (4)where the produt is given by (2). The produt of f; g 2 M is de�ned by assoiativity of (2),(f ? g) ? a = f ? (g ? a) 2 A for all a 2 A. The multiplier algebraM ontains, for example,the unit 1 2 M and the oordinate funtions x�(y) � y�, whih both do not belong to A.The famous formula [x�; x�℄? = i��� is thus an identity inM and not in A. The multiplieralgebra is the biggest ompati�ation of A.Additionally we introdue the spae H = C 4 
 L2(R4) of square-integrable bispinors� = f�s(x)g4s=1, equipped with the sesquilinear inner produt4
�; ��H = Z d4x 4Xs;s0=1 �s(x)�0�ss0�s0(x) ; (5)where �0�ss0 are the matrix entries of the 0-matrix. The multipliation (2) extends to aninvolutive ation A�H ! H obtained by omponentwise ?-multipliation,(a ? �)s(x) := ZR4 d4k(2�4) ZR4d4y a(x+ 12��k) �s(x+y) eik�y ; 
a ? �; ��H = 
�; a� ? ��H : (6)2The Shwartz spae S(R4 ) is the spae of smooth omplex-valued funtions a on R4 suh that for allmulti-indies �; � there exist onstants C�;� with jx���a(x)j � C�;� .3It would be wrong in general to replae (2) by (a ? b)(x) = � exp( i2��� ��y� ��z� )a(y)b(z)�x=y=z, whih forinstane yields zero if a(x) and b(x) have disjoint support.4We work in Minkowski spae with metri g�� = diag(1;�1;�1;�1). The inner produt (5) is thereforenot positive de�nite and H is not a Hilbert spae. The -matries ful�ll �� + �� = 2g��14�4 and0���y0 = �. 2



We regard bosoni �elds as distinguished elements �i 2 A to whih one assigns a power-ounting dimension dim(�i) 2 Z and fermioni �elds are distinguished elements  i 2 H withpower-ounting dimension dim( i) 2 Z=2. For �[�i℄ being a (suÆiently regular) funtionalof the �elds �i (fermion �elds now inluded) we de�ne the funtional derivativeD~�j[�k℄; ÆÆ�jE�[�i℄ � D~�j[�k℄; Æ�[�i℄Æ�j E := lim�!0 1�����i + �~�i[�k℄�� �[�i℄� ; (7)whih replaes a �eld �j by the futional ~�j[�k℄ in a derivational manner. Summation overj in (7) is self-understood. We use (7) to de�ne funtional derivatives with respet to ��� aswell. Allowing for an expliit �-dependene of the �elds U and V we obtain from (2)D���; Æ(U ? V )Æ��� E = D���; ÆUÆ���E ? V + U ? D���; ÆVÆ���E+ i2��� (��U) ? (��V ) ; (8)where ��� has to be onstant.3 Nonommutative quantum eletrodynamisWe are going to study �-expanded nonommutative QED de�ned by the lassial ation (onnonommutative level, i.e. before �-expansion)�̂ = 
 ̂; �i�D̂� �m� ̂�H � 14g2 Z F̂�� ? F̂ �� ; (9)F̂�� = ��Â� � ��Â� � i[Â�; Â�℄? ; D̂� ̂ = �� ̂ � iÂ� ?  ̂ ;for the nonommutative gauge �elds (photons) Â� = (Â�)� and the nonommutative fermion�eld (eletron)  ̂ to whih we assign the power-ounting dimensions dim(Â�) = 1, dim( ̂) =32 . Additionally we de�ne dim(���) = �2. The ation (9) is invariant under in�nitesimalgauge transformationsW Ĝ� , observer Lorentz rotationsWR�� and translationsW T� , see [20, 27℄:W Ĝ� = D(���̂� i[Â�; �̂℄?); ÆÆÂ�E+ Di�̂ ?  ̂; ÆÆ ̂E ; (10)WR�� = W R̂A+ ̂;�� +WR�;�� ; (11)W R̂A+ ̂;�� = D�12fx�; ��Â�g? � 12fx�; ��Â�g? + g��Â� � g��Â��; ÆÆÂ�E+ D�x� ? �� ̂ � i� �� ���� ̂ � x� ? �� ̂ + i� �� ���� ̂ + 14[�; �℄ ̂�; ÆÆ ̂E (11a)WR�;�� = D(Æ��� �� + Æ����� � Æ��� �� � Æ�����); ÆÆ���E ; (11b)W T� = D�� Â�; ÆÆÂ�E+ D��  ̂; ÆÆ ̂E : (12)These Ward identity operators satisfy the following ommutation relations:[W Ĝ�1 ;W Ĝ�2 ℄ =W Ĝ�12 ;[W Ĝ� ;WR��℄ =W Ĝ��� ; [W Ĝ� ;W T��℄ =W Ĝ�� ;[WR��;WRÆ℄ = g�WR�Æ � g�WR�Æ � g�ÆWR� + g�ÆWR� ;[WR��;W T� ℄ = g��W T� � g��W T� ; [W T� ;W T� ℄ = 0 ; (13)for ertain �̂12; �̂��; �̂� 2 A depending on �̂; �̂1; �̂2 2 A as given in [20℄.3



4 Seiberg-Witten mapThere are two kinds of Lorentz transformations for a �eld theory on �-deformed spae-time[21℄: Observer Lorentz transformations refer to passing to another referene frame; the phys-ial ation has to be invariant under suh a tranformation. Partile Lorentz transformationsrefer to a repositioning of all partiles in a given referene frame in whih the bakground�eld � remains unhanged. In general the physial ation is not invariant under suh a trans-formation. Sine the partile Lorentz symmetry breaking must in priniple be observable, ithas to be gauge-invariant.At �rst sight the partile Lorentz rotation is given by W R̂A+ ̂;�� de�ned in (11a). How-ever, that transformation, applied to (9), does not lead to a gauge-invariant partile Lorentzsymmetry breaking. This means that one rather has to split (11) in the following way [20℄:WR�� = ~W R̂A+ ̂;�� + ~WR�;�� ; (14)~W R̂A+ ̂;�� = W R̂A+ ̂;�� �WR�;��(���)�D dÂ�d��� ; ÆÆÂ�E+ D d ̂d��� ; ÆÆ ̂E� ; (14a)~WR�;�� = WR�;�� +WR�;��(���)�D dÂ�d��� ; ÆÆÂ�E+ D d ̂d��� ; ÆÆ ̂E� : (14b)The transformation (14a) is then a partile Lorentz rotation if ~W R̂A+ ̂ applied to the ation(9) is gauge-invariant. This ondition is solved by [20, 27℄dÂ�d��� = �18�Â�; ��Â� + F̂��	? + 18�Â�; ��Â� + F̂��	? + 
̂��� ; (15a)d ̂d��� = �18Â� ? ��� ̂ + �̂D� ̂�+ 18Â� ? ��� ̂ + �̂D� ̂�+ 	̂�� ; (15b)where 
̂��� and 	̂�� transform ovariantly under gauge transformations:W Ĝ� 
̂��� = i��̂; 
̂����? ; W Ĝ� 	̂�� = i�̂ ? 	̂�� : (16a)Compatibility in (15) requiresdim�
̂���� = 3 ; dim�	̂��� = 72 ; 
̂��� = �
̂����� : (16b)The relations (15) an now be regarded as �rst-order (Seiberg-Witten [1℄) di�erentialequations for the nonommutative �elds Â�;  ̂. As suh they are solved by a power series in� and the initial values A�;  for Â�;  ̂, respetively, at � = 0. Inserting this solution intothe ation (9) one obtaines an ation �[A�;  ; �℄ whih at eah order n in � is invariant underommutative gauge transformations and ommutative observer Lorentz transformations [20℄:WG� = D(���� i[A�; �℄); ÆÆA�E+ Di� ; ÆÆ E ; (17a)WR�� = D�x���A� � x���A� + g��A� � g��A��; ÆÆA�E+ D�x��� � x��� + 14[�; �℄ �; ÆÆ E+ D(Æ��� �� + Æ����� � Æ��� �� � Æ�����); ÆÆ���E ; (17b)W T� = D��A�; ÆÆA�E+ D�� ; ÆÆ E : (17)4



5 Nonommutative Yang-Mills-Dira ation to �rst order in �The solution of (15) is up to �rst order in � given byÂ� = A� + ����� 12A�(��A� + F��)�+O(�2) ; (18a) ̂ =  + ����� 12A��� + 14��A� + �1F�� + �2F���� + �3F������ + i�4g����D�D� + i�5��D�D� + �6m�D� + �7m���D� + i�8m2�� �+O(�2) ; (18b)where D� = �� � iA� . The �i parametrize the solutions of (16) for5 
̂��� and 	̂��. Theyplay the role of additional oupling onstants whih parametrize (unphysial) �eld rede�ni-tions, see [19℄ for the model without fermions6. Thus we expet these oupling onstant tobe power series in Plank's onstant �h in order to absorb possible divergenes of the e�e-tive quantum ation. It turns out that all possible divergenes in �rst order in � are purelyimaginary in momentum spae. Hene we have written down only solutions of (16) whihare purely imaginary in momentum spae. In partiular, the �i are real. We have introduedthe ompletely antisymmetri gamma matries�� = 12 [�; �℄ ; ��� = 14f�; [�; �℄g ; ���� = 18 [�; f�; [�; �℄g℄ ; (19a)ful�lling��1:::�n � (�1)n�1:::�n� = nXj=1(�1)j+1 2g��j �1:::�j�1�j+1:::�j ; n = 1; : : : ; 4 : (19b)Note that 
̂��� 2 A annot ontain a term bilinear in  ̂ beause|within our frameworkpresented in Setion 2|there is no way to make an element of A out of two elements of H.We shall see (this is one of the main results of the paper) that the lak of suh a possibilitymakes the �-expanded nonommutative QED unrenormalizable. Therefore some readers maysuggest to enlarge somehow the framework of Setion 2 and to replae (18a) byÂ�(x) = A�(x) (18a')+ ����� 12A�(x)���A�(x) + F��(x)�+ ig2�9 4Xs;s0=1 s(x)�0����ss0 s0(x)� +O(�2) :To satisfy those readers we will indeed work with (18a'). We will see, however, that (18a')does not improve the result at all. Therefore, future work on similar subjets an stay withingthe mathematial framework of Setion 2 from the very beginning.Inserting (18) into the nonommutative Yang-Mills-Dira ation (9) we obtain7 to �rst5It is onvenient to shift �1 by 18 in order to add in (18b) the formally �-independent term �����A� =12���F�� to the 	̂-independent part of (15b).6That the ambiguity in the solution of the Seiberg-Witten di�erential equation is linked to �eld rede�ni-tions was already notied in [28℄.7We would like to draw the attention of the reader to the following typographial subtlety. From now onwe will write down our formulae in terms of the adjoint spinor � =  y0 (a row of four elements of L2(R4 )).There is no risk to onfuse the adjoint spinor with the previous operation of omplex onjugation  s(x) (forone element of L2(R4 )). The line symbolizing omplex onjugation is longer. Additionally we restrit thenumber �eld we work with from C to R so that spinor  and its adjoint � must be regarded as independent.5



order in ��` = Z d4x h� 14g2F��F �� + � ��(i�� + A�)�m� + ����� 12g2F��F��F �� + 18g2F��F��F ��+ (14 � �2)i � �(2F��D� + ��F��) + (�1 � 12�5)i � �(2F��D� + ��F��) + (�2 + 2�4)i � �(2F ��D� + ��F ��) + �4 � ���(�2D�D�D� + 2iF �� D� + i��F��) � (12�2 + 2�3)i � �����F�� + i(2�3 + �9) � �����F�� + (�2�1 + �6)m � F�� + (�2�3 + �7)m � F������ + (�2�4 + 2�7)im � ��D�D� + (��5 + �6 + 2�7)im � ��(2D�D� + iF��) � (2�7 + 2�8)m2 � ���D� � 2i�8m3 � �� + ig2�9( � � )( � ��� )�i+O(�2) : (20)Note that f�1; �5; �6g our in (20) in the ombinations 2�1��5 and �5��6 only. In themassless ase m = 0 there is only the ombination 2�1��5 suggesting not to eliminate �6. Itis therefore no restrition to put �5 = 0 :In order to pass to quantum �eld theory we have to add a BRST-invariant gauge-�xingterm. This an be done before or after Seiberg-Witten map [17℄. We hoose the moreeonomial way of a gauge-�xing of (20):�gf = Z d4x �� �����+B��A� + �2B2� = Z d4x s�����A� + �2B�� ; (21a)sA� = �� ; s = 0 ; s� = B ; sB = 0 ; s = i ; s � = �i �  : (21b)Note that there are no interations involving the ghosts ; � or the multiplier �eld B. Thus,the nilpotent BRST transformations (21b) are linear transformations of interating �elds.There is therefore no need to introdue soures (anti�elds) for the BRST transformations,and the BRST invariane of the total ation � = �l + �gf an then be written as follows:s� = D��; Æ�ÆA�E+ D�i � ; Æ�Æ � E+ Di ; Æ�Æ E+ DB; Æ�Æ� E = 0 : (22)6 Feynman rulesWe denote by �[�i;`℄ the generating funtional of one-partile irreduible (1PI) Green's fun-tions and by Z[Ji℄ the generating funtional for onneted Green's funtions. Both arerelated by Legendre transformationZ[Ji℄ = �[�i;`℄ +Xi Z d4x �i;`(x) Ji(x) ; Ji(x) = �DÆ4(x�y); Æ�Æ�i;`(y)E : (23)Swithing to momentum spae8, 1PI Green's funtions are obtained by funtional derivation:(2�)4Æ4(p1 + � � �+ pn)��1;:::;�n(p1; : : : ; pn) = Æn�[�i;`℄Æ�1;`(p1) : : : Æ�n;`(pn) ����i;`=0 : (24)8Our Fourier onventions are f(x) = R d4k(2�)4 e�ik�x ~f(k) and ~f(p) = R d4x eik�x f(x).6



Funtional derivation in momentum spae is de�ned byÆ�i;`(pi)Æ�j;`(pj) = Æji (2�)4Æ4(pi � pj) : (25)A parity fator of �1 has to be inserted for eah ommutation of a fermioni derivativeoperator with a fermioni �eld. Similarly, onneted Green's funtions are obtained by(2�)4Æ4(p1 + � � �+ pn)��1;:::;�n(p1; : : : ; pn) = ÆnZ[Ji℄ÆJ1(p1) : : : ÆJn(pn) ���Ji=0 : (26)We introdue a bigrading (�; `) for all Green's funtions, with � being the number of fatorsof � and ` the number of loops. The (`=0)-part orresponds to taking for � the ation� = �` + �gf .6.1 PropagatorsFeynman rules for propagators are obtained from the bilinear (�=0; `=0)-part9 of Z. Weonly need the propagators for the soures of photons and eletrons:��q p�  � �  (0;0)(q; p) = � �p� +mp2 �m2 + i� ; (27a)�p qA� A� �AA(0;0)��(p; q) = g2p2 + i��g�� � (1� �) p�p�p2 + i�� : (27b)The ghost propagator and the mixed A-B propagator are not required beause there are noverties involving B and ghosts.6.2 Verties independent of �Feynman rules for verties are obtained from the interation (`=0)-part of �, i.e. from theinteration part of the total ation �. The only vertex whih is independent of � is thestandard QED vertex:
�p�qr�  A� �(0;0)�A �  (p; q; r) = � : (28)The free part of the ation � leads to the following Green's funtions, whih by de�nitiondo not give rise to Feynman rules:�(0;0)��AA (p; q) = � 12g2�p2g�� � p�p�� ; �(0;0)�AB (p; q) = �ip� ;�(0;0)�  (q; p) = p�� �m ; �(0;0)� (q; p) = p2 : (29)9We regard �-dependent terms whih are bilinear in �elds as verties.
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6.3 Verties linear in �At �rst order in � we have the following graphs:��q p�  �p�qr�  A� �qp�rs�  A�A� �rp�st�  A�qA�A��(1;0)�  (p) �(1;0)�A �  (p; q; r) �(1;0)��AA �  (p; q; r; s) �(1;0)���AAA �  (p; q; r; s; t)
�q�p�rs�   � 	pqrA�A� A��(1;0)�  ; �  (p; q; r; s) �(1;0)���AAA;1+2(p; q; r) � �(1;0)���AAA;1 (p; q; r) + �(1;0)���AAA;2 (p; q; r) (30)where�(1;0)�  (q; p) = 2i����� �8m3�� + (�4��7)mp2�� �m(�6+2�7)p�p���+ (�7+�8)m2p���� � �4p�p2���� ; (31a)�(1;0)�A �  (p; q; r) = i����(2�2�12)p�r�� � (2�2� 12)p�r��g�� + (14+2�1��2)p�p��g��+ (4�1)�r�p�g�� + (2�6�4�1)mg��p�+ (�2+2�4)(p2 + 2pr)�g�� + (�2+2�4)(p� + 2r�)�g�� � (�2+4�3)���p�p�� (�6+2�7)m(p� + 2r�)�� + (�6+2�7)m(p� + 2r�)��g��+ (2�4�2�7)m(p� + 2r�)�� + (2�7�4�3)mp����� + (2�3+�9��4)p�p����� (2�3+�9��4)p2��� � 2�4(p2 + pr + r2)���� 2�4(p�r� + r�p� + 2r�r�)��� + (2�7+2�8)m2���� ; (31b)�(1;0)��AA �  (p; q; r;s) = i����(12 � 2�2)(�g��p� + �g��q�) + (12 � 2�2)�(p�g��g�� � q�g��g��)+ 4�1(g��q�� + g��p��) + (4�7 + 2�6)m(��g�� + ��g��)+ (2�2 + 4�4)g���(p� + q�) + (2�2 + 4�4)�(g��p� + g��q�)� 2�4���(p� + q� + 2s�)� 2�4���(p� + q� + 2s�)� 2�4g�����(p� + q� + 2s�) + (4�4 � 4�7)mg����� ; (31)�(1;0)���AAA �  (p; q; r; s; t) = �4i����4�g����� + g����� + g������ ; (31d)�(1;0)�  ; �  (p; q; r;s) = ig2����9� 
 ��� ; (31e)�(1;0)���AAA;1 (p; q;r) = 1g2�1 + �1�i����g��g���(qr)p� � (pr)q��+ g��g���(rp)q� � (qp)r��+ g��g���(pq)r� � (rq)p��+ g���(g��(pq)� p�q�)r� + (g��(rp)� r�p�)q��8



+ g���(g��(qr)� q�r�)p� + (g��(pq)� p�q�)r��+ g���(g��(rp)� r�p�)q� + (g��(qr)� q�r�)p��+ g���p�q�r� + q�p�r��+ g���q�r�p� + r�q�p��+ g���r�p�q� + p�r�q��� ; (31f)�(1;0)���AAA;2 (p; q;r) = 1g2�1 + �2�i����� g��(g��(rq)� r�q�)p� � g��(g��(pr)� p�r�)q�� g��(g��(qp)� q�p�)r�� : (31g)The last two terms (31f),(31g) our as a sum with �1 = �2 = 0, we split them arti�ially inorder to disuss possible extensionsYM = � 14g2 Z �F̂�� ? F̂ �� + 2�1���F̂�� ? F̂�� ? F̂ �� � 12�2���F̂�� ? F̂�� ? F̂ ��� (32)to the bosoni ation. These Feynman rules are subjet to momentum onservation p+q = 0,p+q+r = 0, p+q+r+s = 0 and p+q+r+s+t = 0, respetively. The strange �fth graph in(30) symbolizes a single vertex. The dotted line permits momentum exhange but does nota�et the spinor struture.6.4 Conatenation of propagators and verties1PI Feynman graphs are obtained by onatenation of propagators (inner lines only) andverties, mathing momenta and Lorentz indies and preserving the sense of the arrows.Conatenation from left to right of fermion propagators and verties is always in oppositesense of the arrow, beause the adjoint spinor symbolized by an outgoing arrow is on the left.To any losed loop with loop momentum ki one assoiates an integration operator �hi R d4ki(2�)4 .To eah losed eletron line one assoiates the operator �tr, where tr denotes the trae overthe -matries in the loop.The integration over all internal loop momenta of a subgraph with NA external photonlines and N external eletron lines and with a total number of T fators of � is expeted tobe ultraviolet divergent if 4 + 2T �NA � 32N � 0 : (33)Note that N is always even. The problem is to make sense of these meaningless integrals ina way preserving loality.7 One-loop Feynman graphs independent of �First we ompute all divergent one-loop graphs with the single vertex (28) whih is indepen-dent of �. From (33) we see that the problemati graphs are those with(N ; NA) 2 � (2; 0) ; (2; 1) ; (0; 2) ; (0; 3) ; (0; 4) 	 : (34)We employ analyti regularization in terms of a omplex variable ", j"j ! 0, see Appendix Afor details. The advantage is that with analyti regularization we are on the safe side withrespet to the algebra of -matries. Moreover, we an|in the divergent part|arbitrarilyshift the integration momentum and naively eliminate ommon fators in the numerator anddenominator (veri�ed for all integrals to evaluate).9



For the eletron self-energy (N ; NA) = (2; 0) we obtain�(0;1)�  (p) =
p�k + p2� �k � p2k + p2= �(0;0)�A �  (�k+p2 ;�p; k+p2)� �  (0;0)(�k� p2 ; k+p2)�(0;0)�A �  (k� p2 ;�k� p2 ; p)��AA(0;0)��(�k+p2 ; k�p2)= �hg2(4�)2"���p� � (3+�)m� +O(1)= �hg2(4�)2"��2N + 3m ��m��(0;1)�  (p) +O(1) : (35)Next, the one-loop QED vertex orretion (N ; NA) = (2; 1) is omputed to
�(0;1)�A �  (p; q; r) =�rk; �

�k; �k+rp; �k+p+r
= �(0;0)�A �  (�k;�p�r; k+p+r)� �  (0;0)(�k�p�r; k+p+r)�(0;0)�A �  (p;�k�p�r; k+r)�� �  (0;0)(�k�r; k+r)�(0;0)�A �  (k;�k�r; r)�AA(0;0)��(k;�k)= � �hg2(4�)2"� +O(1)= �hg2(4�)2"��2N + 0NA��(0;0)�A �  (p; q; r) +O(1) : (36)For the photon self-energy (N ; NA) = (0; 2) we obtain

�(0;1)��AA (p) = ��p; � �p; �k � p2
k + p2

= �tr��(0;0)�A �  (p;�k� p2 ; k�p2)� �  (0;0)(�k+ p2 ; k�p2)�(0;0)�A �  (�p;�k+p2 ; k+p2)�� �  (0;0)(�k� p2 ; k+p2)�= �hg2(4�)2"�� 43g2 (p2g�� � p�p�)� +O(1)= �hg2(4�)2"�0NA � 43g2 ��g2��AA(0;0)(p) +O(1) : (37)The photon three- and four-point funtions (N ; NA) = (0; 3) and (N ; NA) = (0; 4) areatually onvergent due to gauge invariane and its preservation in analyti regularization.10



For instane, in the three-point funtion�(0;1)���AAA (p; q; r) = 8>>>>>><>>>>>>: �p; �q; �r; � k + rk k + p+ r
9>>>>>>=>>>>>>;+ n (q; �)$ (r; �) o = O(1) (38)the divergent ontributions of both graphs anel (Furry's theorem).In order to absorb the divergenes (35), (36) and (37) the �elds and parameters of themodel must depend on �h in the following way:g = �1 + 23 �hg20(4�)2" +O(�h2)�g0 ; (39a)m = �1� 3 �hg20(4�)2" +O(�h2)�m0 ; (39b)� = �1� �2 �hg20(4�)2" +O(�h2)� � 0 ; (39) = �1� �2 �hg20(4�)2" +O(�h2)� 0 ; (39d)A� = (A�)0 +O(�h2) : (39e)8 One-loop Feynman graphs linear in �In this setion we ompute the divergent one-loop Green's funtions involving a vertex linearin �. Assuming a regularization sheme preserving gauge invariane (suh as analyti regu-larization), we expet at order 1 in � the following Hermitean ounterterms of dimension10 0whih are purely imaginary in momentum spae:B1 = Z d4x ���F��F��F �� ; B2 = Z d4x ���F��F��F �� ; (40a)�0 = Z d4x i��� � �(2F��D� + ��F��) ; (40b)�1 = Z d4x i��� � �(2F��D� + ��F��) ; �2 = Z d4x i��� � �(2F��D� + ��F��) ;�3 = Z d4x ��� � ���(�2D�D�D� + 2iF �� D� + i��F��) ;�4 = Z d4x i��� � �����F �� ; �5 = Z d4x i��� � �����F �� ; (40)~�1 = Z d4x i���( � � )( � ��� ) ; (40d)M1 = Z d4x i���m3 � �� ; M2 = Z d4x ���m2 � ���D� ;M3 = Z d4x i���m � ��(2D�D� + iF��) ; M4 = Z d4x i���m � ��D�D� ;M5 = Z d4x ���m � ����F �� ; M6 = Z d4x ���m � F�� : (40e)10The power-ounting dimensions dim are dim(d4x) = �4 and dim(Æ(x�y)) = 4.11



Naive omparison of (20) with (40) shows immediately that the nonommutative Yang-Mills-Dira ation (9) expanded to �rst order in � annot expeted to be renormalizable. Indeed,for the absorption of the �ve divergenes orresponding to �1 : : :�5 we have only the �eldrede�nition parameters �1; �2; �3; �4 at disposal, beause �9 (if inluded) is already �xed bythe divergene orresponding to ~�1. Even if we allow for a renormalization of � to deal with�0, there is at least one missing parameter to ahieve renormalizability in the massless asewithout a symmetry. The massive ase is worse: there are only three parameters �6; �7; �8 toabsorb the six divergenes orresponding to M1 : : :M6. Finally, for the bosoni divergenesorresponding to B1; B2 there is no parameter at all available (for �1 = �2 = 0 in (32)). Thus,unless there are symmetries, �-expanded nonommutative QED annot be renormalizable.For simpliity we hoose from now on the Feynman gauge � = 1.8.1 Two eletrons, no photonWe begin with the eletron selfenergy, allowing for a renormalization of �:�(1;1)�  (p) =Æp�k� �kk+p +�p�k� �kk+p +�p�k� �kk + p+�pk +�pk
+ 12�pk� ��k ��pk ��pk= �hg2(4�)2"�12N + 0NA + 3m ��m + ���� �����+ � 148 � 16�1 + 12�2 + 23�3 + (�� � 12)�4 + 13�9� ���4+ �16 + 23�1 � �2 � 23�3 � 3�4 + (�� � 3)�6 + 2�7 � 13�9� ���6+ �� 12�2 � �3 � 32�4 + 12�6 + (�� � 3)�7 + 12�9� ���7+ � 116 � 12�1 + �2 + �3 + �4 + �6 + 2�7 + (�� � 6)�8 + 12�9� ���8���(1;0)�  (p)�+O(1) :(41)This is indeed a renormalization of �4; �6; �7; �8!8.2 Four eletrons, no photonNext we onsider one-loop orretions to the eletron four-point funtion � �  ; �  (p; q; r; s) in�rst order in �. Sine � �  ; �  (p; q; r; s) is independent of external momenta and no furtherlabel distinguishes the two eletron pairs in � �  ; �  (p; q; r; s), we an onsider � �  ; �  (p; q; r; s)in the asymmetri form where the eletrons labelled by p; q attah to � and those labelledby r; s attah to ��� in (31e). This redues the number of graphs to ompute: we simply12



hoose the external momenta of the divergent part of the one-loop graphs aording to thispresription. All but the last two graphs below an then be arranged in pairs whih ontainthe following onatenation of Feynman rules:�(�� (s�+k� )�m)� + �(�� (�r��k� )�m)� = 2���k� + terms independent of k:Thus, these subgraphs orrespond to the external momenta (r; s). We therefore have�(1;1)�  ; �  (p; q; r; s) = ��r
�p

s
q

s+k
q�k �k; �k; �k+r+s; ��k�r�s; � + ��r

�p
s
q

�r�k
q�k �k�r�s; ��k; �k+r+s; �k; �

+ ��r
�p

s
q

s+k
q�k �k; �k; �k+r+s; ��k�r�s; � + ��r

�p
s
q

�r�k
q�k �k�r�s; ��k; �k+r+s; �k; �

+ ��r
�p

s
q

s+k
q�k �k; �k; �k+r+s; ��k�r�s; � + ��r

�p
s
q

�r�k
q�k �k�r�s; ��k; �k+r+s; �k; �

+ 12 ��r�p sq�k; �k+r+s; � k; ��k�r�s; � s+k + 12��r�p sqk+r+s; ��k; � �k�r�s; �k; � �r�k+��r�p sqs+kq�k �kk +��r�p sqq�k�r�kk �k
+ �r�p sqs+kq�k�kk +!�r�p sqq�k�r�k k�k
+"�r�p sqq+k�p+k�k k +#�r�p sqs+k�r+k�k k13



= �hg2(4�)2"�12N � 43g2 ��g2 + ���� ����� + �34 + (�� + 43)�9� ���9��(1;0)�  ; �  (p; q; r; s) +O(1) :(42)The divergene whih is expressed by the fator 34 in (42) is problemati. We had mentionedin the disussion around (18a') that the mathematial framework of Setion 2 imposes �9 = 0to all orders in �h. But this ontradits (42) whih enfores an �h-renormalization of �9. Thatwas the reason why we have inluded �9. Nevertheless it will turn out that the inlusion of�9 does not help. In order to make this transparent we introdue a swith � whih aordingto (42) should take the value �=1 and for mathematial reasons the value �=0 (leaving uswith an unrenormalizable divergene in the eletron four-point funtion). We therefore write�(1;1)�  ; �  (p; q; r; s) = �hg2(4�)2"�12N � 43g2 ��g2 + ���� �����+ �34� + (�� + 43)�9� ���9��(1;0)�  ; �  (p; q; r; s) +O(1) : (42')8.3 Two eletrons, one photonNow we turn to the omputation of the eletron-photon vertex to �rst order in �:
�(1;1)�A �  (p; q; r) =$rk; �

�k; �k+rp; �k+p+r +%rk; �
�k; �k+rp; �k+p+r +&rk; �

�k; �k+rp; �k+p+r
+'r�kk+r; ��k�r; �p; � k+p+r; ��k�p�r; � +(rk; ��k; �p; � k+r +)r

�k; �k; �p; � k+p+r
+*rk; �

�k; �k+rp; �k+p+r ++rk; �
�k; �k+rp; �k+p+r + 12,rp; ��k k

+-rk�p2p; � k+p2 +.rk�p2p; � k+p2
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�/rk�p2p; � k+p2 �0rk� p2p; � k+p2
= �hg2(4�)2"�12N + 0NA + 3m ��m + ���� �����+ �� 1348 � 12�1 + 16�2 + (�� � 16)�1 + 12�2 � 43�3 � 32�4 � 23�9� ���1+ �� 112 + �1 � 13�2 + 23�1 � ��2 � 23�3 + 3�4 � 13�9� ���2+ �1332 + 524�2 � 14�1 � 14�2 � ��3 + 34�4� ���3+ � 148 � 16�1 + 12�2 + 23�3 + (�� � 12)�4 + 13�9� ���4+ �16 + 23�1 � �2 � 23�3 � 3�4 + (�� � 3)�6 + 2�7 � 13�9� ���6+ �� 12�2 � �3 � 32�4 + 12�6 + (�� � 3)�7 + 12�9� ���7+ � 116 � 12�1 + �2 + �3 + �4 + �6 + 2�7 + (�� � 6)�8 + 12�9� ���8+ �34� + (�� + 43)�9� ���9���(1;0)�A �  (p; q; r)�+ �hg2(4�)2" i�����3 + 5�1 � 103 �2�mp�g�� + �32 + 56�2�mp�����+ �� 2�1 + 23�2 + 14���(2g��p� � 2g��p�)r� � g��p�p���+ �34� � 12�1 + 16�2�(p2g�� � p�p�)���� +O(1) : (43)There are several observations:� The renormalizations of �4; �6; �7; �8; �9 are the same in (41), (42) and (43), whihtogether with the transversality of the additional terms in (43) veri�es the Ward identity(see the next Setion).� The �eld rede�nitions parametrized by �i always give rise to renormalizations of �j,never to a renormalization of the \physial" ounterterms required by (43).� We obtain divergenes in (43) whih have no ounterpart in the original ation (20), inpartiular, they annot be �eld rede�nitions. In the massive ase not all of them anbe eliminated.� In the massless ase both remaining divergenes are absent for 6�1 � 2�2 = 9� +O(�h)and � = 12� +O(�h).The last remark means that for � = 0 (mathematial framework) in the massless ase no�-renormalization and no extension terms (32) to the bosoni ation are required. Thus wehave the hoie of a serious problem in (42) or in (43). It is lear that we prefer to make (43)as nie as possible. 15



8.4 No eletrons, two photonsIt remains to ompute the divergent one-loop graphs without external fermion lines to �rstorder in �. The exiting question is whether these divergenes are ompatible with �1 = �2 =0 for � = 12� = 0. For the photon two-point funtion we obtain�(1;1)��AA (p) = �1p; � �p; �k � p2
k + p2 �2p; � �p; �k � p2

k + p2
�3p; � �p; �k � p2

k + p2 �4p; � �p; �k � p2
k + p2 �5p; � �p; �k

= O(1) : (44)In (44) the divergent parts of the �rst, seond and �fth graphs are identially zero and thoseof the third and fourth graphs are antisymmetri in (p; �) $ (�p; �) so that their sum iszero. The result of (44) was lear from the beginning beause there is no gauge-invariantpurely bosoni ation part to �rst order in �.8.5 No eletrons, three photonsNow we ompute the photon three-point funtion to �rst order in �:�(1;1)���AAA (p; q; r) = 8>>>>>><>>>>>>:
8>>>>>><>>>>>>: �6p; �q; �r; � k + rk k + p + r

9>>>>>>=>>>>>>;+ n (q; �)$ (r; �) o9>>>>>>=>>>>>>;+ n (p; �)! (q; �)! (r; �)! (p; �)o+ n (p; �)! (r; �)! (q; �)! (p; �)o+8>>>>>><>>>>>>:
8>>>>>><>>>>>>: �7p; �q; �r; � k + rk k + p+ r

9>>>>>>=>>>>>>;+ n (q; �)$ (r; �) o9>>>>>>=>>>>>>;+ n (p; �)! (q; �)! (r; �)! (p; �)o+ n (p; �)! (r; �)! (q; �)! (p; �)o+8>>>>>><>>>>>>: �8p; �q; �r; � k � p2
k + p2

9>>>>>>=>>>>>>;+ n (p; �)$ (r; �) o + n (p; �)$ (q; �) o
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�9p; �q; �r; � k= �hg2(4�)2"�0NA � 43g2 ��g2 + 12���� ����� + �� 43�1 � 12�(1+�1)� ���1+ �� 43�2 � 12�(1+�2)� ���2��(1;0)���AAA;1+2(p; q; r) +O(1) : (45)We on�rm indeed that for � = 0 the hoie �1 = �2 = 0 in (32), whih orresponds tothe �-expansion of the unmodi�ed nonommutative Yang-Mills-Dira ation (9), is stable atone-loop level. A deeper understanding of this result is missing. It points however to a linkbetween the bosoni ation and an e�etive fermion ation as in [29℄. Before entering thedisussion we have to prove that this nie result (ignoring the �9-problem) is not going tohange by the remaining divergent Green's funtions.9 Ward identitiesThe ation � = �` + �gf given in (9) and (21a) is invariant under Abelian BRST trans-formations (22). Swithing to momentum spae, funtional derivation with respet to (p)and restrition to the physial setor fB; �; g = 0 leads to the following form of the Wardidentity:�p� Æ�ÆA�(p) + Z d4q(2�)4 d4r(2�)4 (2�)4Æ(p+q+r)� � (q) �!Æ �Æ � (�r) � � �ÆÆ (�q) (r)��fB;�;g=0 = 0 :(46)From (46) we derive the following identities:0 = �p� ÆnÆA�1(q1) : : : ÆA�n(qn) Æ�ÆA�(p)�fA; � ; ;B;�;g=0 ; (47a)0 = �p� �!ÆÆ � (q) Æn+1�ÆA�(p)ÆA�1(p1) : : : ÆA�n(pn)  �ÆÆ (r)+ �!ÆÆ � (p+q) Æn�ÆA�1(p1) : : : ÆA�n(pn)  �ÆÆ (r)� �!ÆÆ � (q) Æn�ÆA�1(p1) : : : ÆA�n(pn)  �ÆÆ (p+r)�fA; � ; ;B;�;g=0 ; (47b)whih meansp��(�;`)��1:::�nA:::A (p; q1; : : : ; qn) = 0 ; (48a)p��(�;`)�A �  (p; q; r) = �(�;`)�  (q; p+r)� �(�;`)�  (p+q; r) ; (48b)p��(�;`)��AA �  (p; q; r; s) = �(�;`)�A �  (q; r; p+s)� �(�;`)�A �  (q; p+r; s) ; (48)p��(�;`)���AAA �  (p; q; r; s; t) = �(�;`)��AA �  (q; r; s; p+t)� �(�;`)��AA �  (q; r; p+s; t) : (48d)17



On tree-level (�; 0), the identities (48) are easy to verify. Let us �rst investigate (48b)for (�; `) = (1; 1). We perform the manipulations diretly on the integrals enoded in theFeynman graphs. We onsider
p�0BBBBBBBB�:rk; �

�k; �k+rp; �k+p+r 1CCCCCCCCAanalyti regularization,divergent part in "= �Z d4k(2�)4 �(1;0)�A �  (�k;�p�r; k+p+r)� ��(k+p+r)� �m(k+p+r)2 �m2 + i�p�� ��(k+r)� �m(k+r)2 �m2 + i���AA(0;0)��(k;�k)� analyti regularization,divergent part in "= �Z d4k(2�)4 �(1;0)�A �  (�k;�p�r; k+p+r)� �(��(k+p+r)� �m)(�(k+p+r)� �m)(k+p+r)2 �m2 + i� ��(k+r)� �m(k+r)2 �m2 + i�� ��(k+p+r)� �m(k+p+r)2 �m2 + i� (�(k+r)� �m)(��(k+r)� �m)(k+r)2 �m2 + i� �� ��AA(0;0)��(k;�k)� analyti regularization,divergent part in "= ��Z d4k(2�)4 �(1;0)�A �  (�k;�p�r; k+p+r) ��(k+r)� �m(k+r)2 �m2 + i���AA(0;0)��(k;�k)� analyti regularization,divergent part in "+ �Z d4k(2�)4 �(1;0)�A �  (�k;�p�r; k+p+r) ��(k+p+r)� �m(k+p+r)2 �m2 + i���AA(0;0)��(k;�k)� analyti regularization,divergent part in "We have used the following property of analyti regularization, see Appendix A:�Z d4k(2�)4 (g��(k+p)�(k+p)� �m2)k�1 : : : k�n((k+p)2 �m2 + i�)Qsi=1((k+pi)2 �m2i + i�)� analyti regularization,divergent part in "= �Z d4k(2�)4 k�1 : : : k�nQsi=1((k+pi)2 �m2i + i�)� analyti regularization,divergent part in " : (49)Using the tree-level Ward identity (48b),�(1;0)�A �  (�k;�p�r; k+p+r) = p��(1;0)��AA �  (p;�k;�p�r; k+r) + �(1;0)�A �  (�k;�r; k+r) ;
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we onlude
p�0BBBBBBBB�;rk; �

�k; �k+rp; �k+p+r +<rk; ��k; �p; � k+r 1CCCCCCCCA1"= 0BB�=p+r�k� �kk+p+r �>r�k� �kk+r 1CCA1" ; (50a)where the 1" subsript stands for taking the divergent part in " in analytial regularization.In the same way one proves
p�0BBBBBBBB�?rk; �

�k; �k+rp; �k+p+r +�r
�k; �k; �p; � k+p+r 1CCCCCCCCA1"= 0BB�Ap+r�k� �kk+p+r �Br�k� �kk+r 1CCA1" ; (50b)

p�0BBBBBBBB�Crk; �
�k; �k+rp; �k+p+r +Drk; �

�k; �k+rp; �k+p+r +Erk; �
�k; �k+rp; �k+p+r 1CCCCCCCCA1"= 0BB�Fp+r�k� �kk+p+r �Gr�k� �kk+r 1CCA1" ; (50)

p�0BBBBBBBBB�Hrp; ��k k 1CCCCCCCCCA1" =
0BB�Ip+rk� ��k �Jrk� ��k 1CCA1" ;

(50d)19



p�0BBBBBB�Kr�kk+r; ��k�r; �p; � k+p+r; ��k�p�r; � 1CCCCCCA1" = 0 : (50e)
The four graphs in (43) whih involve the four-fermion vertex turn out to be transversal(ontration with p� yields zero). That zero an formally be written as the di�erene of theorresponding graphs in (41) ontaining the four-fermion vertex, with external momenta p+rand r, respetively, beause the singular part of these graphs is independent of the externalmomentum. Thus, (50) proves the Ward identity (48b) for (�; `) = (1; 1). We stress that thisproof only uses the possibility of a naive fatorization (49) of ommon terms in numeratorand denominator of the integrand, valid for analyti regularization. It is not neessary toevaluate the divergent integrals.In the same way we an prove the Ward identities (48) and (48d) without omputingthe (already very ompliated) divergent integrals. For instane, we havep�0BBBBB�Lq; �p; � s

�r
kk+p+q s�k; �k�s; �k+q +Lp; �q; � s

�r
kk+p+q s�k; �k�s; �k+p +Mp; �q; � s�rk+p+q s�k; �k�s; �k+p 1CCCCCA1"= 0BBBBBBBB�Np+s

�rk�s; �s�k; �k+pq; �k+p+q �Os
�r�pk�s; �s�k; �kq; � k+q 1CCCCCCCCA1" ; (51a)

p�0BBBBB�Pp; ��r s q; ��k�k�q�s; � k+s; �p�k 1CCCCCA1"= 0BBBBBB�Qp+s
�rp�kk+s; �q; ��k�q�s; � �Rs

�r�p�kk+s; �q; ��k�q�s; � 1CCCCCCA1" : (51b)
Thus, the evaluation of the divergent part of �(1;1)��AA �  (p; q; r; s) and �(1;1)���AAA �  (p; q; r; s; t) is om-patible with the �h-renormalizations of �i and the additional ounterterms in (43).Let us �nally show (48a) for n = 2, the generalization to higher n being obvious. We20



havep�0BBBBBB� �Sp; �q; �r; � k+rk k+p+r�Tp; �q; �r; � k+rk k+p+r �Uq; �r; �p; � k+p+rk+r k �Vq; �p; �r; � k+r+pk+p k
1CCCCCCA1"= 0 ; (52a)

p�0BBBBBB��Wq; �r; �p; � k+p+rk+r k �Xq; �p; �r; � k+p+rk+p k �Yr; �q; �p; � k
k+r

1CCCCCCA1"= 0 ; (52b)
p�0BBBBBB��Zp; �q; �r; � k

k+p �[p; �q; �r; � k
1CCCCCCA1"= 0 : (52)

By exhange (q; �)$ (r; �) in (52a) and (52b), all graphs ontributing to (45) are obtained,whih proves (48a) for n = 2.Proeeding analogously one proves (48a) for n 2 f3; 4; 5g. But this means that theoeÆient of 1" in analyti regularization of the 1-loop Green's funtions �(1;1)�0:::�nA:::A (p0; : : : ; pn)is the Fourier transformed of a gauge-invariant loal �eld polynomialXZ d4x n+1Yi=1 d4xi � (� : : : �F )(x1) : : : (� : : : �F )(xn+1) n+1Yj=1 Æ4(x�xj) ; (53)for an appropriate ontration of Lorentz indies. On the other hand, the integral has tobe of power-ounting dimension zero (see footnote 10), whih annot be ahieved for n > 2.This means �(1;1)�0 :::�nA:::A (p0; : : : ; pn) = O(1) for n > 2 : (54)Individual graphs ontributing to �(1;1)�0:::�nA:::A (p0; : : : ; pn) for n 2 f3; 4; 5g will be divergent, ofourse.10 DisussionWe have omputed or derived all divergent one-loop orretions to Green's funtions of �-expanded nonommutative QED, up to �rst order in �. Let us summarize the results:21



1) Taking the �-expansion serious, the model is obviously not renormalizable. This isthe death of all attempts to avoid onsidering the full nonommutative quantum �eldtheory by Seiberg-Witten expansion11.The problem is �rst of all due to the divergene of the fermion four-point funtion.From a mathematially appealing point of view, fermions are elements of an innerprodut spae. Therefore, any loal �eld monomial an never ontain more than twofermion �elds, whih means that divergenes in graphs with more than two externalfermions annot be renormalized. At order T in �, graphs with NF external fermionlines are divergent for 3NF � 8+4T . There is no reason why this in�nite number ofdivergenes ould anel for a quantum �eld theoretial model with a �nite number of�elds. Anyway, the inlusion of (on nonommutative level non-loal) fermion number-hanging �eld rede�nitions does not yield a renormalizable quantum �eld theory either.2) Let us solve the above problem in graphs with more than two external eletrons byignoring it (to be made preise below). Then �-expanded nonommutative QED is notrenormalizable if the eletrons are massive, with the mass term appearing expliitly inthe nonommutative Dira ation. This does not exlude a fermion mass oming froma Higgs mehanism. It would therefore be important to study an Abelian Higgs model.3) Let us therefore onsider �-expanded massless nonommutative QED with the diver-gene in graphs with n > 2 external eletrons being ignored. We have proved thatin this ase our model (9) is multipliatively one-loop renormalizable|inluding �eldrede�nitions|up to �rst order in �. This �h-dependene of the parameters of the modelis given by (39) and�1 = �1;0 � �hg20(4�)2"�� 1348 � 16�1;0 + 12�2;0 � 43�3;0 � 32�4;0� +O(�h2) ; (55a)�2 = �2;0 � �hg20(4�)2"�� 112 + 23�1;0 � 23�3;0 + 3�4;0�+O(�h2) ; (55b)�3 = �3;0 � �hg20(4�)2"�1332 � 14�1;0 � 14�2;0 + 34�4;0� +O(�h2) ; (55)�4 = �4;0 � �hg20(4�)2"� 148 � 16�1;0 + 12�2;0 + 23�3;0 � 12�4;0�+O(�h2) ; (55d)�6 = �6;0 � �hg20(4�)2"�16 + 23�1;0 � �2;0 � 23�3;0 � 3�4;0 � 3�6;0 + 2�7;0� +O(�h2) ; (55e)�7 = �7;0 � �hg20(4�)2"�� 12�2;0 � �3;0 � 32�4;0 + 12�6;0 � 3�7;0� +O(�h2) ; (55f)�8 = �8;0 � �hg20(4�)2"� 116 � 12�1;0 + �2;0 + �3;0 + �4;0 + �6;0 + 2�7;0 � 6�8;0� +O(�h2) :(55g)But there is no reason why Green's funtions with not more than two external eletronsare renormalizable up to the onsidered order. There ould be four additional diver-genes whih are allowed by gauge symmetry (Ward identity) and Lorentz symmetry|two in the pure photon setor, one orresponding to a renormalization of � and one inthe photon-eletron setor. All of these four divergenes are absent! This annot beaidental!11It ould still be meaningful to onsider �-expansions of nonommutative �eld theories as e�etive ations.22



Our task is now to start developing a renormalization sheme for nonommutative gaugetheories implementing these results. The divergenes in graphs with more than two externaleletrons disussed in 1) tell us that one must not expand the nonommutative �eld theoryin �. Then only graphs with N̂B + 32N̂F � 4 (56)are divergent, where N̂B and N̂F are the numbers of (�-unexpanded) external gauge bosonsand fermions, respetively. In this way we solve 1) automatially. One might objet imme-diately that now the famous UV/IR mixing destroys renormalizability. However, our results3) tell us to be more areful, although the problem seems to persist.Atually the UV/IR mixing [13℄ was due to the distintion of the Feynman graphs intoplanar and non-planar ones. The ustom was to subtrat the planar graphs as usual byloal ounterterms and to keep the non-planar graphs untouhed, beause non-planar graphs(seem to) orrespond to non-loal ounterterms [16℄. The trouble ame when inserting thenon-planar (at �rst sight �nite) graphs as subgraphs into a bigger graph, whih then turnedout to be divergent and non-loal. It is at this point where our results propose to modify thesubtration sheme. We have seen that there is a way to subtrat the non-planar graphs atleast partially without destroying the symmetries|using the Seiberg-Witten map in a ruialway.It is onvenient to represent this idea graphially. Let us draw Feynman rules for theunexpanded model as double lines. The Seiberg-Witten di�erential equation (inluding allpossible �eld rede�nitions) expands the nonommutative Yang-Mills-Dira ation in the fol-lowing way: 4X̂NB=2\1 2N̂B ... =Xn�0 XNB�2℄1 2NB ... ; � = O(�n) :1X̂NB=0^̂NB =Xn�0 XNB�0_1 2NB ... ; � = O(�n) : (57)A super�ially divergent Green's funtion �̂ of the unexpanded theory will then viaSeiberg-Witten map be expressed in terms of Green's funtions � of the �-expanded the-ory. Renormalization has to proeed order by order in �h (whih is the number of loops). Inorder �h1 we have proved that massless QED is renormalizable up to �rst order of �, beausegraphs with more than two external fermions are not expanded. Let us assume that one-looprenormalizability an be extended to any order of �. Under this assumption all divergeneswould have been removed for a ertain �h1-renormalization of the initial nonommutativeYang-Mills-Dira ation.Starting with order �h2 there is however a new problem to solve. Let us onsider the graph
k̀ l (58)
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This graph ontains an overlapping divergene in �-expanded nonommutative QED, beausethe fermion four-point funtion is divergent. In a (renormalizable) quantum �eld theory onommutative spae-time loal ounterterms are obtained only if all subdivergenes are treatedaording to the forest formula. Otherwise there are divergent terms involving logarithms ofexternal momenta and masses. For the graph (58), however, we are not allowed to treat thedivergent l-integration as a subdivergene in the forest formula. One has therefore to showthat �rst integrating over k, subtrating then the divergent part, and �nally integrating over ldoes not yield divergent terms whih ontain logarithms of external momenta|at least on thelevel of Green's funtions. It seems unlikely that this an work, but one annot exlude thepossibility of symmetries for the �-deformed ation whih do the job. We had also expetedfour additional divergenes at order �h1�1 whih eventually were absent. Thus, one has toperform the two-loop omputation in order to be sure.11 SymmetriesWe have mentioned several times possible (additional) symmetries of gauge theories on �-deformed spae-time. There are lear hints now that suh symmetries exist. Otherwisethe absene of the four divergenes whih are not reahed by �eld rede�nitions annot beexplained12. A general idea about these symmetries an be obtained from the mathemati-al foundation [8℄ of nonommutative geometry. The nonommutative Dira ation an bewritten identially as
 ̂; (i n� + n̂A) ?  ̂�H = 
U ?  ̂; (i n� + U ? n̂A ? U� + U ? [i n�; U�℄) ? (U ?  ̂)�H (59)for U ? U� = U� ? U = 1. One is tempted to regardn̂A 7! n̂AU := U ? n̂A ? U� + U ? [i n�; U�℄ ;  ̂ 7!  ̂U := U ?  ̂ ; (60)as a gauge transformation. However, the spae of all U is very big, for instane, Lorentztransformations an be implemented via U [26℄. In fat all automorphisms of the algebraA are inner [31℄. Thus, U is the andidate for additional symmetries. However, one hasto make sure that the nonommutative Yang-Mills ation is invariant under (60). Sine welook for an ation invariant under all automorphisms, an ation like R n̂F ? n̂F whih does notontain gravity (probably in a di�erent shape) is ertainly not the right hoie. There is|atleast formally|a natural andidate for a Yang-Mills ation invariant under (60), the spetralation [32℄ S�(n̂A) = trae f�nD2A�2 � ; nDA = i n� + n̂A ; (61)where f is an appropriate ut-o� with f(0) = 1 and f(x) = 0 for x � 1. This is nothing butthe weighted sum of the eigenvalues of nD2A smaller than �2. The problem is that we are in anon-ompat ase so that the eigenvalues of nD2A are ontinuous. Reently there has been alot of progress on non-ompat spetral geometries [26℄.Our omputations provide an indiret support for the spetral ation. What we haveomputed in Setion 8.5 is (together with (37)) the divergent part of the e�etive ation forfermions oupled to an external photon �eld, the oupling involving �. In the ommutativease one reovers the Maxwell ation � 14g2 R F��F �� as the oeÆient of that (logarithmi)divergene. This result was rigorously proved by Langmann [29℄ in the language of regularized12These symmetries ould also be redutions of ouplings [30℄ only.24



traes for pseudodi�erential operators, i.e. similar tehniques as those whih are used toevaluate the spetral ation. There is some rumour that Langmann's work and the spetralation are equivalent when restrited to the Yang-Mills part. Whereas in the ommutativease gauge and Lorentz symmetries do not permit a di�erent oeÆient of the divergene thanthe Maxwell ation, we ould in the �-expanded nonommutative ase obtain in priniple theadditional terms (32). But this does not happen. We expet therefore that the spetral ationforbids these additional terms trilinear in the nonommutative �eld strength. Thus, makingsense of (61), omputing the spetral ation and identifying the additional loal symmetriesof the spetral ation is one of the most important next steps for the renormalization ofnonommutative gauge theories.AknowledgementsI would like to thank Andreas Bihl, Jesper Grimstrup, Harald Grosse, Lukas Popp andManfred Shweda for numerous helpful disussions and a lot of inspiration whih �nallyresulted in this paper, outome of our fruitful ollaboration. I am grateful to Jos�e Gra��a-Bondia for advie on the mathematial bakground. Finally, the omputations of Feynmangraphs were performed using the MathematiaTM pakage [24℄ by Martin Ertl.A Analyti regularizationThe one-loop integrals to ompute are of the formI(s+1)�1:::�n(p0; p1; : : : ; ps;m0; m1; : : : ; ms) := lim�!0Z d4k(2�)4 Qnl=1 k�lQsi=0[(k+pi)2 �m2i + i�℄ : (62)Using Zimmermann's �-trik we replae a propagator1k2 �m2 + i� � 1k20 � (~k 2+m2) + i�7! 1k20 � (1�i�)(~k 2+m2) = (�0�i)(�0�i)k20 + (���0+i+i��0)(~k 2+m2) : (63)For 0 < �0 < � the denominator of the last expression has a positive real part so that standardEulidean integrations tehniques using Shwinger and Feynman parameters an be applied.Analyti regularization [23℄ onsists in the following replaement of the denominator of theintegrand: (�0�i)s+1�(�0�i)[k20 + 2k0q0 +M20 ℄ + (���0+i+i��0)[~k2 + 2~k~q + ~M2℄	s+17! �2"(�0�i)s+1+"�(�0�i)[k20 + 2k0q0 +M20 ℄ + (���0+i+i��0)[~k2 + 2~k~q + ~M2℄	s+1+" : (64)Then the integration over the loop momentum k and over the Shwinger parameter an beperformed, with the following result (whih now depends additionally on the renormalization
25



sale � and on "):I(s+1)�1:::�n(p0; p1; : : : ; ps;m0; m1; : : : ; ms;�; ") (65)= lim�!0; �0<� [n=2℄Xl=0 (�1)n�(s�l�1+")�(s+1)�2"(�0�i)s+ 12�l+"2l(4�)2�(s+1+")(���0+i+i��0) 32� Z dsx T n�2l�1:::�n�p0 + sXi=1 xi(pi�p0) ; ��n(�0�i) sXi;j=1xi(Æij�xj)(pi0�p00)(pj0�p00)+ (���0+i+i��0)�M2s (x) + sXi;j=1xi(Æij�xj)(~pi�~p0)(~pj�~p0)�ol+1�s�";whereZ dsx = Z 10 dx1 Z 1�x10 dx2 : : :Z 1�Ps�1j=1 xj0 dxs ; M2s (x) = m20 + sXi=1 xi(m2i �m20) : (66)Here the ompletely symmetri tensors T k�1:::�n(p) are indutively de�ned by T 0(p) := 1 andT 0�1:::�n(p; �) := nXj=2 g�1�j (�)T 0�2:::�j�1�j+1:::�n(p; �) ; (67a)T k�1:::�n(p; �) := 1k nXj=1 p�jT k�1�1:::�j�1�j+1:::�n(p; �) ; k 2 fn; n�2; : : :g; k � 1 ; (67b)g��(�) = diag(1;� 11�i� ;� 11�i� ;� 11�i�) : (67)In partiular, T 1�(p; �) = p� and T 0��(p) = g��(�). We de�ne T k�1:::�n(p) = 0 for k < 0 andk > n.The leading terms in " of (65) are then given byI(s+1)�1:::�n(p0; p1; : : : ; ps;m0; m1; : : : ; ms;�; ") (68)= i(4�)2" [n=2℄�s+1XÆ=0 (�1)n�Æ2Æ+s�1Æ! Z dsx T n�2Æ�2s+2�1:::�n �p0 + sXi=1 xi(pi�p0)�� n sXi;j=1xi(Æij�xj)(pi�p0)(pj�p0)�M2s (x)oÆ +O(1) ;�2 dd�2�I(s+1)�1:::�n(p0; p1; : : : ; ps;m0; m1; : : : ; ms;�; ")� (69)= i(4�)2 [n=2℄�s+1XÆ=0 (�1)n�Æ2Æ+s�1Æ! Z dsxT n�2Æ�2s+2�1:::�n �p0 + sXi=1 xi(pi�p0)�� n sXi;j=1xi(Æij�xj)(pi�p0)(pj�p0)�M2s (x)oÆ +O(") :We need two important properties of (68) and (69): (A) Invariane under the shift ofthe integration momentum and (B) naive fatorization of ommon terms in numerator anddenominator.(A) To formulate shift invariane, let P lnf�1 : : : �ng be any subset of l elements of f�1; : : : ; �ng,26



preserving the order. Let Pn�ln f�1 : : : �ng = f�1; : : : ; �ng n P lnf�1 : : : �ng be its omplement.The empty set and the total set are regarded as subsets. If P lnf�1 : : : �ng = f�1; : : : �lg letqPlnf�1:::�ng = q�1 � � � q�l for l > 0 and qP0nf�1:::�ng = 1. Aording to (62), shift invarianemeans I(s+1)�1:::�n(p0; p1; : : : ; ps;m0; m1; : : : ; ms)=XPln qPlnf�1:::�ngI(s+1)Pn�ln f�1:::�ng(p0+q; p1+q; : : : ; ps+q;m0; m1; : : : ; ms) :For the leading terms in (68) and (69) this amounts to verifyT ��1:::�n(p) = XPln; 0�l��(�1)l qPlnf�1:::�ng T ��lPn�ln f�1:::�ng(p+q) : (70)Eq. (70) is obvious for � 2 f0; 1g and any n and follows from (67b) by indution in �.Assuming it holds for ��1 and n� 1 we haveT ��1:::�n(p) = 1� nXj=1(p�j+q�j )XPln�1(�1)lqPln�1f�1:::�j�1�j :::�ngT ��1�lPn�1�ln�1 f�1:::�j�1�j :::�ng(p+q)� 1� nXj=1 q�j XPln�1(�1)lqPln�1f�1:::�j�1�j :::�ngT ��1�lPn�1�ln�1 f�1:::�j�1�j :::�ng(p+q)= XPln; l<n �� l� (�1)lqPlnf�1:::�ngT ��lPn�ln f�1:::�ng(p+q)+ XPl+1n ; l<n l + 1� (�1)l+1qPl+1n f�1:::�ngT ��l�1Pn�l�1n f�1:::�ng(p+q) :After a shift in l we on�rm (70).(B) Naive fatorization means aording to (62), using the shift invariane,I(s)�1:::�n(p0�ps; p1�ps; : : : ; ps�1�ps;m0; m1; : : : ; ms�1)= g�1�2I(s+1)�1:::�n�1�2(p0�ps; p1�ps; : : : ; ps�1�ps; 0;m0; m1; : : : ; ms)�m2sI(s+1)�1:::�n(p0�ps; p1�ps; : : : ; ps�1�ps; 0;m0; m1; : : : ; ms) : (71)For the leading terms in (68) and (69) this amounts to verify, when inserting the identityg�n�1�nT k�1:::�n(p) = (k+n+2)T k�1:::�n�2(p) + p2T k�2�1:::�n�2(p) ;the following equationZ ds�1x [n=2℄�s+2XÆ=0 (�1)n�Æ2Æ+s�2Æ!T n�2Æ�2s+4�1:::�n �(p0�ps) + s�1Xi=1 xi(pi�p0)�� n s�1Xi;j=1xi(Æij�xj)(pi�p0)(pj�p0)�M2s�1(x)oÆ= Z dsx [n=2℄�s+2XÆ=0 (�1)n�Æ2Æ+s�2Æ! (n�Æ�s+4)T n�2Æ�2s+4�1:::�n �(p0�ps) + sXi=1 xi(pi�p0)�� n sXi;j=1xi(Æij�xj)(pi�p0)(pj�p0)�M2s (x)oÆ27
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