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1 IntrodutionIn nonommutative �eld theory one of the greatest surprises is the existene of the so-alled Seiberg-Witten map [1℄. The Seiberg-Witten map was originally dedued from theobservation that di�erent regularization shemes (point-splitting vs. Pauli-Villars) in the�eld theory limit of string theory lead either to a ommutative or a nonommutative �eldtheory and thus suggest an equivalene between them.A partiular appliation of the Seiberg-Witten map is the onstrution of the nonom-mutative analogue of gauge theories with arbitrary gauge group, whih automatially leadsto enveloping algebra-valued �elds involving in�nitely many degrees of freedom [2℄. TheSeiberg-Witten map solves this problem in an almost miraulous manner by mapping theenveloping algebra-valued nonommutative gauge �eld to a ommutative gauge �eld with�nitely many degrees of freedom.The renormalization of nonommutative Yang-Mills (NCYM) theories is an open puz-zle: Loop alulations [3℄ and power-ounting analysis [4℄ show the existene of a new typeof infrared divergenes. The irumvention of the infrared problem by appliation of theSeiberg-Witten map leads to a power-ounting non-renormalizable theory with in�nitelymany verties. In an earlier work [5℄ we have proven the two-point funtion of �-expandednonommutative Maxwell theory to be renormalizable to all orders. However, to show renor-malizability of allN -point funtions one annot proeed without strong symmetries that limitthe number of possible ounterterms. In partiular, one needs to �nd a symmetry that �xesthe speial �-struture of the �-expanded theory.The intuition that the symmetry searhed for is related to spae-time symmetries leadsus to an investigation of rigid onformal symmetries (translation, rotation, dilatation) forNCYM theory haraterized by a onstant �eld ��� . The term rigid means that the fator 
in the onformal transformation (ds0)2 = 
2ds2 of the line element is onstant. The reasonfor this restrition is that � has to be onstant in all referene frames.We show in this paper that the nonommutative Yang-Mills �eld Â forms an irreduiblespin-1 representation of the undeformed Lie algebra of onformal transformations. We alsoprove that the nonommutative Yang-Mills (NCYM) ation is invariant under the sum ofthe onformal transformations of Â and of �. This result an either be regarded as anexat invariane (ompatible with gauge transformations) with respet to observer Lorentztransformations or as the quantitative amount of symmetry breaking under partile Lorentztransformations, see also Setion 3.Regarding the ombined onformal transformations of Â and �, one an onsider vari-ous splittings into individual transformations. There is one (up to gauge transformations)distinguished splitting for whih both individual omponents are ompatible (ovariant)with gauge transformations, i.e. the ommutator of these omponents with a gauge trans-formation is again a gauge transformation. Whereas the �-part of this ovariant splittingannot be omputed, the Â-part is easily onstruted by a ovariane ansatz involving o-variant oordinates [6, 7℄. This ovariane ansatz generalizes the gauge-ovariant onformaltransformations whih in its ommutative form were �rst investigated by Jakiw [8, 9℄.These transformations are loosely related to the improvements allowing to pass from theanonial energy-momentum tensor to the symmetri and traeless one. Now, the ovariant�-omplement of the ovariant transformation of Â an easily be omputed as the missing1



piee to ahieve invariane of the NCYM ation. The result is the Seiberg-Witten di�erentialequation [1℄.Almost all splittings of the ombined onformal transformation of Â and � lead to a �rst-order di�erential equation for Â whih an be used to express the nonommutative �elds interms of initial values living on ommutative spae-time. The ovariant splitting (whih leadsto the Seiberg-Witten di�erential equation) has the distinguished property that the resulting�-expansion of a gauge-invariant nonommutative ation is invariant under ommutativegauge transformations. This was the original motivation for the Seiberg-Witten map. Wewould like to point out, however, that the original gauge-equivalene ondition [1℄ is morerestritive than the approah of this paper|a fat made transparent by our investigationof nonommutative onformal symmetries. Moreover, we prove that the �-expansion of thenonommutative onformal symmetries redues to the ommutative onformal symmetries.All this means that there are two quantum �eld theories assoiated with the NCYMation. The �rst one is obtained by a diret gauge-�xing of the NCYM ation and theother one by gauge-�xing of the �-expanded NCYM ation. The seond approah wasadopted in [10, 5℄: Take the Seiberg-Witten expansion of the NCYM ation as a very speialtype of an ation for a ommutative gauge �eld A� oupled to a onstant external �eld��� and quantize it in the ordinary way (with the linear gauge-�xing in [10℄). It is notompletely lear in whih sense this is equivalent to the �rst approah of a diret quantizationof the nonommutative Yang-Mills ation. The infrared problem found in nonommutativequantum �eld theory [3, 4℄ and its absene in the approah of [10℄ shows the inequivaleneat least on a perturbative level. For interesting physial onsequenes of the Seiberg-Wittenexpanded ation in nonommutative QED see [11℄.The paper is organized as follows: First we reall in Setion 2 neessary informationabout nonommutative �eld theory and ovariant oordinates. In Setion 3 we distinguishbetween observer and partile Lorentz transformations. After a review of rigid onformalsymmetries in the ommutative setting in Setion 4 we extend these strutures in Setion 5to nonommutative Yang-Mills theory, deriving in partiular the Seiberg-Witten di�erentialequation and the �-expansion of the nonommutative onformal and gauge symmetries. InSetion 6 we omment on quantization and Setion 7 ontains the summary. Longer butimportant alulations are delegated to the Appendix.2 Nonommutative geometry and ovariant oordinatesIn this setion we give a short introdution to nonommutative �eld theory and the oneptof ovariant oordinates. We onsider a nonommutative geometry haraterized by thealgebra [x�; x�℄ = i���; (1)where ��� is an antisymmetri onstant tensor. The nonommutative algebra may be repre-sented on a ommutative manifold by the ?-produt(f ? g)(x) = Z d4k(2�)4 Z d4p(2�)4 e�i(k�+p�)x� e� i2 ���k�p� ~f(k) ~g(p) ; (2)
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where f(x) and g(x) are ordinary funtions on Minkowski spae and ~f(p) and ~g(p) theirFourier transforms. Denoting the ordinary (ommutative) oordinates by x we have[x�; x� ℄? � x� ? x� � x� ? x� = i���: (3)Let us now onsider an in�nitesimal gauge transformation ÆG of a �eld �(x),ÆG�(x) = i�(x) ? �(x) ; (4)with �(x) being an in�nitesimal gauge parameter. As usual one hooses the oordinates tobe invariant under gauge transformations, ÆGx = 0. However, with this onstrution one�nds that multipliation by x does not lead to a ovariant objet:ÆG�x� ? �(x)� 6= i�(x) ? �x� ? �(x)� : (5)The solution of this problem, whih was given in [7℄, is to introdue ovariant oordinates [6℄X̂� � x�1+ ���Â� ; (6)where the transformation of the �eld Â(x) is de�ned by the requirementÆG�X̂� ? �(x)� = i�(x) ? �X̂� ? �(x)� : (7)The relation (7) leads to the transformation rule for the �eld Â(x)ÆGÂ�(x) = ���(x)� i[Â�(x); �(x)℄? � D̂��(x) ; (8)and Â(x) is interpreted as a nonommutative gauge �eld. In this way gauge theory is seen tobe intimately related to the nonommutative struture (3) of spae and time. The ovariantoordinates ful�ll �X̂�; X̂��? = i��� + i������F̂�� ; (9)where F̂�� = ��Â� � ��Â� � i�Â�; Â��? is the nonommutative �eld strength.3 Observer versus partile Lorentz transformationsIn general one should distinguish between two kinds of Lorentz (or more general, onfor-mal) transformations (see [12℄ and referenes therein). Lorentz transformations in speialrelativity relate physial observations made in two inertial referene frames haraterizedby di�erent veloities and orientations. These transformations an be implemented as o-ordinate hanges, known as observer Lorentz transformations. Alternatively one onsiderstransformations whih relate physial properties of two partiles with di�erent heliities ormomenta within one spei� inertial frame. These are known as partile Lorentz transforma-tions. Usually (without bakground) these two approahes are equivalent. However, in thepresene of a bakground tensor �eld this equivalene fails, beause the bakground �eld willtransform as a tensor under observer Lorentz transformation and as a set of salars underpartile Lorentz transformations. 3



Thirdly, having a bakground tensor �eld one may onsider the transformations of all�elds within a spei� inertial frame simultaneously, inluding the bakground �eld. Thesetransformations are known as (inverse) ative Lorentz transformations and are equivalent toobserver Lorentz transformations.What kind of `�eld' is ���? Sine we are onsidering the ase of a onstant �, it ertainlyis a bakground �eld. Therefore, all results of this paper refer to `observer' transformations.This also mathes the setting of nonommutative �eld theory appearing in string theory.Here � is related to the inverse of a `magneti �eld' (mostly taken to be onstant). In thissense, Lorentz invariane of the ation means that its value is the same for observers indi�erent inertial referene frames. Sine invariane of the ation always involves the sum ofonformal transformations of Â and �, see Setion 5.1, one an however take the `partile'point of view and regard our `observer' invariane as the quantitative amount of `partile'symmetry breaking due to the presene of �.However, we �nd it desirable to extend the general analysis to the ase of a non-onstant�. In this ase one ould hoose to view � as a dynamial �eld whih also transforms under`partile' transformations.In the rest of the paper we will simply refer to onformal transformations, leaving outthe `observer' pre�x.4 Rigid onformal symmetries: ommutative aseThe Lie algebra of the rigid onformal transformations is generated by fP� ;M��; Dg and thefollowing ommutation relations:[P� ; P�℄ = 0 ; [D;D℄ = 0 ;[P� ;M��℄ = g��P� � g��P� ; [P� ; D℄ = �P� ;[M��;MÆ℄ = g�M�Æ � g�M�Æ � g�ÆM� + g�ÆM� ; [M��; D℄ = 0 : (10)A partiular representation is given by in�nitesimal rigid onformal transformations of theoordinates x�,(x�)T = (1 + a��x(P� ))x� +O(a2) ; �x(P� ) = �� (translation), (11)(x�)R = (1 + !���x(M��))x� +O(!2) ; �x(M��) = x��� � x��� (rotation), (12)(x�)D = (1 + ��x(D))x� +O(�2) ; �x(D) = �xÆ�Æ (dilatation), (13)for onstant parameters a� ; !��; �.A �eld is by de�nition an irreduible representation of the Lie algebra (10). In viewof the nonommutative generalization we are interested in the Yang-Mills �eld A� and theonstant antisymmetri two-tensor �eld ��� whose representations are given by�1(P� )A� = W TA;�A� ; W TA;� := Z d4x tr���A� ÆÆA��; (14)�1(M��)A� = WRA;��A� ; WRA;�� := Z d4x tr��g��A� � g��A� + x���A� � x���A�� ÆÆA��;(15)�1(D)A� = WDA A� ; WDA := Z d4x tr��A� + xÆ�ÆA�� ÆÆA��; (16)4



and1 ��2(P� )��� =W T�;���� W T�;���� := 0 ; (17)��2(M��)��� =WR�;����� ; WR�;����� := Æ��� �� � Æ��� �� + Æ����� � Æ����� ; (18)��2(D)��� =WD� ��� ; WD� ��� := �2��� : (19)Throughout this paper we use the following di�erentiation rule for an antisymmetri two-tensor �eld: �������� := 12�Æ�� Æ�� � Æ��Æ��� : (20)The fator 12 in (20) ensures the same rotational behaviour of the spin indies in (15) and(18). The Yang-Mills ation � = � 14g2 Z d4x tr�F��F ��� ; (21)for F�� = ��A� � ��A� � i[A�; A�℄ being the Yang-Mills �eld strength and g a ouplingonstant, is invariant under (14){(16). Moreover the ation (21) is invariant under gaugetransformationsWGA;� = Z d4x tr�D�� ÆÆA�� ; D�� = �� � �i[A�; �℄ ; (22)with a possibly �eld-dependent transformation parameter �.5 Rigid onformal symmetries: nonommutative aseIn this setion we show that the nonommutative gauge �eld forms an irreduible represen-tation of the same undeformed Lie algebra of rigid onformal transformations. To obtain therepresentation one has to take the symmetri produt when going to the nonommutativerealm: AB ! 12fA;Bg?. Compatibility with gauge transformations implies that only thesum of the onformal transformations of gauge �eld Â and � has a meaning. A ovariantsplitting of this sum allows a �-expansion into a ommutative gauge theory.5.1 Conformal transformations of the nonommutative gauge �eldWe generalize the (rigid) onformal transformations (14){(16) to nonommutative Yang-Millstheory, i.e. a gauge theory for the �eld Â� transforming aording to (8):W T̂A;� := Z d4x tr��� Â� ÆÆÂ�� ; (23)1The translation invariane ��2(P� )��� = 0 quali�es ��� as a onstant �eld. It takes however di�erent(onstant!) values in di�erent referene frames. The neessity to have a onstant �eld in the model foresus to restrit ourselves to rigid onformal transformations. Loal onformal transformations as in [13℄ areinompatible with onstant �elds. In partiular, the speial onformal transformations K� are exludedbeause the ommutator [K�; P� ℄ = 2(g��D �M�� ) annot be represented.5



W R̂A;�� := Z d4x tr��12�x�; ��Â�	? � 12�x�; ��Â�	? + g��Â� � g��Â�� ÆÆÂ�� ; (24)W D̂A := Z d4x tr��12�xÆ; �ÆÂ�	? + Â�� ÆÆÂ�� ; (25)where �U; V 	? := U?V+V ?U is the ?-antiommutator. It is important to take the symmetriprodut in the \quantization" x���A� 7! 12fx�; ��Â�g? . Let us introdue the onvenientabbreviation W ?̂A standing for one of the operators fW T̂A;� ;W R̂A;��;W D̂A g and similarly for W ?�in (17){(19).Applying W R̂A;�� to the nonommutative Yang-Mills �eld strength F̂�� = ��Â� � ��Â� �i[Â�; Â�℄? one obtainsW R̂A;��F̂�� = 12fx�; ��F̂��g? � 12fx�; ��F̂��g? + g��F̂�� � g��F̂�� + g��F̂�� � g��F̂��� 12� �� f��Â�; ��Â�g? + 12� �� f��Â�; ��Â�g?+ 12� �� f��Â�; ��Â�g? � 12� �� f��Â� ; ��Â�g? ; (26)whih is not the expeted Lorentz transformation of the �eld strength. However, we mustalso take the �-transformation (17){(19) into aount, whih ats on the ?-produt in theÂ-bilinear part of F̂�� . Using the di�erentiation rule for the ?-produtW ?� (U ? V ) = �W ?�U� ? V + U ? �W ?� V �+ i2 �W ?� ���� (��U) ? (��V ) ; (27)whih is a onsequene of (2) and (20), together withW ?� Â� = 0 ; (28)one �nds that WR�;��F̂�� anels exatly the last two lines in (26):(W R̂A;�� +WR�;��)F̂�� = 12fx�; ��F̂��g? � 12fx�; ��F̂��g?+ g��F̂�� � g��F̂�� + g��F̂�� � g��F̂�� : (29)In the same way one �nds(W D̂A +WD� )F̂�� = 12�xÆ; �ÆF̂��	? + 2F̂�� : (30)It is then easy to verify that the nonommutative Yang-Mills (NCYM) ation�̂ = � 14g2 Z d4x tr(F̂ �� ? F̂��) (31)is invariant under nonommutative translations, rotations and dilatations2:W T̂A+�;� �̂ = 0 ; W R̂A+�;���̂ = 0 ; W D̂A+��̂ = 0 ; (32)2In [14℄ we have shown that an identity like WD� �̂� 2���(��̂=����) = 0 exists for dilatation in the aseof nonommutative �4 theory. 6



with the general notation W ?A;C +W ?B;C = W ?A+B;C : (33)Computing the various ommutators betweenW ?̂A given in (23){(25) one onvines oneselfthat the nonommutative gauge �eld Â� forms an irreduible representation of the onformalLie algebra (10). For onveniene we list these ommutators (for W ?̂A+�, whih makes nodi�erene to W ?̂A when applied to Â�) below in (41). It is remarkable that the onformalgroup remains the same and should not be deformed when passing from a ommutativespae to a nonommutative one whereas the gauge groups are very di�erent in both ases.This shows that the fundamentals of quantum �eld theory|Lorentz ovariane, loality,unitarity|have good hanes to survive in the nonommutative framework.In partiular, the Wigner theorem [15℄ that a �eld is lassi�ed by mass and spin holds.The onformal Lie algebra is of rank 2, hene its irreduible representations � are (in non-degenerate ases) lassi�ed by two Casimir operators,m2 = �g���(P� )�(P�) ; s(s+ 1)m2 = �g��W PL;�W PL;� ; (34)where W PL;� = �12������(P� )�(M��) (35)is the Pauli-Ljubanski vetor and m and s mass and spin of the partile, respetively. In ourase where �(?) is given by the ation of W ?̂A+� on Â� we �ndm2Â� = ����� Â� ; g��W PL;�Â W PL;�Â Â� = 2(g������ � ���� )Â� + 0 ���� Â� ; (36)whih means that the transverse omponents of Â� have spin s = 1 and the longitudinalomponent spin s = 0.5.2 Compatibility with gauge symmetryThe NCYM ation (31) is additionally invariant under nonommutative gauge transforma-tions W ĜA;�̂ = Z d4x tr������ i�Â�; �̂�?� ÆÆÂ�� ; (37)where �̂ is a possibly Â-dependent gauge parameter. This means that the symmetry algebraof the NCYM ation is at least3 given by the Lie algebraL = G >/ C (38)3Renormlizability seems to require that the symmetry algebra of the NCYM ation is atually biggerthan L.
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of Ward identity operators, whih is the semidiret produt of the Lie algebra G of possi-bly �eld-dependent gauge transformations W ĜA;�̂ with the Lie algebra C of rigid onformaltransformations W fT;R;DgÂ+� . The ommutator relations of L are omputed to[W ĜA;�̂1 ;W ĜA;�̂2 ℄ = �iW ĜA;[�̂1;�̂2℄?+iW ĜA;�̂1 �̂2�iW ĜA;�̂2 �̂1 ; (39)[W T̂A+�;� ;W ĜA;�̂℄ =W ĜA;��� �̂+W T̂A+�;� �̂ ;[W R̂A+�;��;W ĜA;�̂℄ =W ĜA;� 12fx�;���̂g?+ 12fx� ;���̂g?+W R̂A+�;���̂ ;[W D̂A+�;W ĜA;�̂℄ =W ĜA;� 12fxÆ ;�Æ�̂g?+W D̂A+��̂ ; (40)[W T̂A+�;� ;W T̂A+�;�℄ = 0 ;[W T̂A+�;� ;W R̂A+�;��℄ = g��W T̂A+�;� � g��W T̂A+�;� ;[W T̂A+�;� ;W D̂A+�℄ = �W T̂A+�;� ;[W R̂A+�;��;W R̂A+�;Æ℄ = g�W R̂A+�;�Æ � g�W R̂A+�;�Æ � g�ÆW R̂A+�;� + g�ÆW R̂A+�;� ;[W R̂A+�;��;W D̂A+�℄ = 0 ;[W D̂A+�;W D̂A+�℄ = 0 : (41)It is ruial to use the sum of the individual transformations W fR;DgÂ and W fR;Dg� beausethe individual ommutators do not preserve the Lie algebra L:[W ĜA;�̂;WR�;��℄Â� =W ĜA;�WR�;���̂Â� � 12� �� f��Â�; ���̂g? + 12� �� f��Â�; ���̂g?+ 12� �� f��Â�; ���̂g? � 12� �� f��Â�; ���̂g? ;[W ĜA;�̂;WD� ℄Â� =W ĜA;�WD� �̂Â� + �Æ�f�ÆÂ�; ���̂g? : (42)5.3 Gauge ovariane, ovariant representation and Seiberg-Witten di�erential equationOne may ask (the reason is given below) whether there exists a `rotation' in (Â; �) spae sothat the `rotated �elds' preserve individually the mixed ommutators (40). To be onrete,what we look for is a splittingW ?̂A+� � W ?̂A +W ?� = ~W ?̂A + ~W ?� ; (43)[ ~W ?̂A;W ĜA;�̂℄ = W ĜA;�̂?̂A ; [ ~W ?� ;W ĜA;�̂℄ = W ĜA;�̂?� ; (44)for appropriate �eld-dependent gauge parameters �̂?̂A and �̂?�. Beause of (40), eah of thetwo relations in (44) is of ourse the onsequene of the other relation. Furthermore, weimpose the ondition that the splitting should be universal in the sense ~W ?� = W ?� (���) dd��� :~W ?̂A =W ?̂A �W ?� (���) Z d4x tr� dÂ�d��� ÆÆÂ�� ;~W ?� =W ?� +W ?� (���) Z d4x tr� dÂ�d��� ÆÆÂ�� � W ?� (���) dd��� : (45)8



The notation dÂ�d��� is for the time being just a symbol for a �eld-dependent quantity with threeLorentz indies and power-ounting dimension 3. Inserted into (44) one gets the equivalentonditions �i� ~W ?̂AÂ�; �̂�? �W ĜA;�̂� ~W ?̂A(Â�)� = D̂���̂?̂A � ~W ?̂A(�̂)� ; (46)W ?� (���)�� ihdÂ�d��� ; �̂i? + 12���Â�; ���̂	? �W ĜA;�̂� dÂ�d����� = D̂���̂?� � ~W ?� (�̂)� : (47)Whereas (47) annot be solved without prior knowledge of the result4, we an trivially solve(46) by a ovariane ansatz:~W T̂A;� = W ĜA;�̂T� + Z d4x tr�F̂�� ÆÆÂ�� ; (48)~W R̂A;�� = W ĜA;�̂R�� + Z d4x tr��12fX̂�; F̂��g? � 12fX̂�; F̂��g? �WR�;��(���)
̂���� ÆÆÂ�� ; (49)~W D̂A = W ĜA;�̂D + Z d4x tr��12fX̂Æ; F̂Æ�g? �WD� (���)
̂���� ÆÆÂ�� ; (50)where X̂� = x� + ���Â� are the ovariant oordinates [6, 7℄ and 
̂��� is a polynomial in theovariant quantities �; X̂; F̂ ; D̂ : : : D̂F̂ whih is antisymmetri in �; � and of power-ountingdimension 3. For physial reasons (e.g. quantization) an X̂-dependene of 
̂��� should beexluded. We denote (48){(50) as ovariant transformations of the nonommutative gauge�eld Â, beause these transformations redue in the ommutative ase to the `gauge-ovariantonformal transformations' of Jakiw [8, 9℄.It follows from (38) and (43) that ~W ?� and thus dÂ�d��� are (up to a gauge transformation)preisely the missing piee to omplete (49) and (50) to an invariane of the ation,( ~W R̂A;�� + ~WR�;��)�̂ = 0 ; ( ~W D̂A;�� + ~WD�;��)�̂ = 0 : (51)Applying (48){(50) to the NCYM ation (31) we obtain for 
̂��� = 0~W T̂A;� �̂ = 0 ; (52)~W R̂A;���̂ = 1g2 Z d4x tr����F̂ �� ? T̂�� � ���F̂ �� ? T̂��� ; (53)~W D̂A �̂ = 1g2 Z d4x tr��Æ�F̂ �� ? T̂Æ�� ; (54)where the quantity T̂�� = 12F̂�� ? F̂ �� + 12 F̂�� ? F̂ �� � 14g��F̂�� ? F̂ �� (55)resembles (but is not) the energy-momentum tensor. The alulation uses however thesymmetry T̂�� = T̂�� (a onsequene of the symmetrial produt in (49)) and traelessness4One an make of ourse an ansatz for dÂ�d��� with free oeÆients to be determined by (47).9



g��T̂�� = 0. We give in Appendix A details of the omputation of (53). As we show inAppendix B, the �rst (rotational) ondition in (51) has, reinserting 
̂���, the solutiondÂ�d��� = �18�Â�; ��Â� + F̂��	? + 18�Â�; ��Â� + F̂��	? + 
̂��� ; (56)whih is also ompatible with the seond (dilatational) ondition in (51). The solution (56) isfor 
̂��� = 0 known as the Seiberg-Witten di�erential equation [1℄. It is now straightforwardto hek (47) for an arbitrary �eld-dependent gauge parameter �̂. The gauge parameters in(45) are�̂T� = Â� ; �̂R�� = 14f2x� + � �� Â�; Â�g? � 14f2x� + � �� Â�; Â�g? ; �̂D = 12fxÆ; ÂÆg? : (57)5.4 �-expansion of nonommutative gauge transformationsThe meaning of the ondition (44) is easy to understand: ~W ?� applied to a gauge-invariantfuntional remains gauge-invariant. Beause ~W ?� (���) ommutes with W ĜA;�̂, we onludewith the notation dd��� = ����� + R d4x tr� dÂ�d��� ÆÆÂ� �, see (45), thath dd��� ;W ĜA;�̂i = W ĜA;�̂��(�̂) ; (58)where �̂��(�̂) is determined by �̂ and the hoie dÂ�d��� . In partiular, we onlude from (58)that dn�d��1�1 : : : d��n�n is gauge-invariant if � is gauge-invariant. (59)Given any �rst-order di�erential equation dÂ�d��� = ����[Â; �℄ we an express Â in terms of� and the initial value A at � = 0. In the same way, the �rst-order di�erential equationexpresses any (suÆiently regular) funtional �[Â; �℄ in terms of � and the initial value A:�[A; �℄ := 1Xn=0 1n! ��1�1 � � � ��n�n � dn�[Â; �℄d��1�1 : : : d��n�n ��=0 : (60)The speial hoie (56) of the di�erential equation has due to (59) the distinguished propertythatW ĜA;�̂��[Â; �℄� = 0 ) WGA;�=�̂j�=0� NXn=0 1n! ��1�1 � � � ��n�n � dn�[Â; �℄d��1�1 : : : d��n�n ��=0� = 0 :(61)In other words, any approximation up to order N in � of a nonommutatively gauge-invariantfuntional �[Â; �℄ is invariant under ommutative gauge transformations if the �-evolutionis given by (56), i.e. the solution of (44). We stress that the nonommutative onformaltransformations (23){(25) and their ommutators (40) with gauge transformations enabled10



us to ompute the gauge-equivalent �-expansion of Seiberg and Witten diretly (withoutan ansatz) via the equivalent but muh simpler solution of (51) for the trivially obtainedovariant transformations (45).Our ondition (44) is more general than the original gauge-equivalene requirement [1℄by Seiberg and Witten. To see this we onsider the �-expansion of W ĜA;�̂Â� taking (58) intoaount, where �̂ is allowed to depend on Â. To demonstrate the relation we onsider theterm to seond order in �:d2W ĜA;�̂Â�d��1�1d��2�2 = dd��1�1 �h dd��2�2 ;W ĜA;�̂i +W ĜA;�̂ dd��2�2 �Â�= �W ĜA;�̂�1�1(�̂�2�2(�̂)) +W ĜA;�̂�2�2 (�̂) dd��1�1 +W ĜA;�̂�1�1(�̂) dd��2�2 +W ĜA;�̂ d2d��1�1d��2�2 �Â� :Setting �! 0, generalizing it to any order n and inserting the result into the Taylor expansion(60) we obtain�W ĜA;�̂Â��[A; �℄ =WGA;�[�̂;A;�℄�Â�[A; �℄� ; (62)�[�̂;A; �℄ = ��̂��=0 + �����̂��(�̂)��=0 + 12��1�1��2�2��̂�1�1(�̂�2�2(�̂))��=0 + : : : :Eq. (62) is the original Seiberg-Witten gauge-equivalene [1℄ i� ��̂��(�̂)��=0 = 0. In otherwords, our approah via (44)|whih leads to the same �-expansion as the Seiberg-Wittenrequirement, see (61)|is more general.5.5 �-expansion of nonommutative onformal transformationsAording to (60) let us ompute the �-expansion of the nonommutative onformal trans-formation of a funtional �[Â; �℄ approximated up to order N in �,NXn=0 1n! ��1�1 � � � ��n�n �dn(W ?̂A+��[Â; �℄)d��1�1 : : : d��n�n ��=0 : (63)As a typial example we regard the n = 2 term in this series, whih we derive by the followingproedure. Before putting � = 0 we onsiderT ?2 := ��1�1��2�2 d2(W ?̂A+��[Â; �℄)d��1�1d��2�2= ��1�1 dd��1�1 ���2�2 d(W ?̂A+��[Â; �℄)d��2�2 �� ��2�2 d(W ?̂A+��[Â; �℄)d��2�2 : (64)The ruial property we use is the identityhW ?̂A+�; ��� dd��� i = 0 ; (65)
11



whih is valid for a very general lass of di�erential equations. See Appendix C for details.Thus,T ?2 =W ?̂A+����1�1 dd��1�1 ���2�2 d�[Â; �℄d��2�2 �� ��2�2 d�[Â; �℄d��2�2 � =W ?̂A+����1�1��2�2 d2�[Â; �℄d��1�1d��2�2 �= �W ?̂A+�(��1�1)��2�2 + ��1�1W ?̂A+�(��2�2)� d2�[Â; �℄d��1�1d��2�2 � + ��1�1��2�2W ?̂A+�� d2�[Â; �℄d��1�1d��2�2 �= ��1�1��2�2��W ?� (���)���1�1 d2�[Â; �℄d���d��2�2 + �W ?� (���)���2�2 d2�[Â; �℄d��1�1d��� +W ?̂A+�� d2�[Â; �℄d��1�1d��2�2 �� ;(66)using the linearity of W ?� (���) in �. We an now omit the leading fators of � from T ?2 in(64) and (66), generalize it to any order n and put � = 0:�dn(W ?̂A+��[Â; �℄)d��1�1 : : : d��n�n ��=0 = nXi=1 �W ?� (���)���i�i � dn�[Â; �℄d��2�1 : : : d��i�1�i�1d���d��i+1�i+1 : : : d��n�n ��=0+W ?A� dn�[Â; �℄d��1�1 : : : d��n�n ��=0 : (67)Note that fromW ?̂A+� at � = 0 there survives only the ommutative onformal transformationW ?A de�ned in (14){(16). Inserted into (63) we get the �nal resultNXn=0 1n! ��1�1 � � � ��n�n �dn(W ?̂A+��[Â; �℄)d��1�1 : : : d��n�n ��=0=WA+�� NXn=0 1n! ��1�1 � � � ��n�n � dn�[Â; �℄d��1�1 : : : d��n�n ��=0� : (68)This result an be formulated asTheorem Ating with the nonommutative onformal transformations (translation, ro-tation, dilatation) on ation funtionals �[Â; �℄ and applying the Seiberg-Witten map isidential to the ation of the ommutative translation, rotation and dilatation operations,respetively, on �[Â[A; �℄; �℄.The result means that with the nonommutative onformal symmetries there are|afterSeiberg-Witten map|no further symmetries assoiated than the standard ommutative on-formal symmetries. Thus, the nonommutative onformal symmetries do not give any hintsfor the renormalization of nonommutative Yang-Mills theories.6 QuantizationPassing from a lassial ation with gauge symmetry to quantum �eld theory one mustintrodue gauge-�xing terms to the ation in order to de�ne the propagator. Here we repeatthis onstrution for the nonommutative Yang-Mills theory.12



The NCYM theory is enlarged by the �elds ̂; �̂; B̂ whih transform aording to thefollowing representation of (10):W T̂A+̂+�̂+B̂+�;� =W T̂A+�;� + Z d4x tr��� ̂ ÆÆ̂ + �� �̂ ÆÆ�̂ + �� B̂ ÆÆB̂� ; (69)W R̂A+̂+�̂+B̂+�;�� =W R̂A+�;�� + Z d4x tr��12�x�; �� ̂	? � 12�x�; ��̂	?� ÆÆ̂+ �12�x�; �� �̂	? � 12�x�; ���̂	?� ÆÆ�̂+ �12�x�; ��B̂	? � 12�x�; ��B̂	?� ÆÆB̂� ; (70)W D̂A+̂+�̂+B̂+� =W D̂A+� + Z d4x tr�12�xÆ; �Æ ̂	? ÆÆ̂ + �12�xÆ; �Æ �̂	? + 2�̂�+ �12�xÆ; �ÆB̂	? + 2B� ÆÆB̂� : (71)The nonommutative BRST transformations are given byŝÂ� = D̂�̂ ; ŝ̂ = �i ?  ; ŝ�̂ = B̂ ; ŝB̂ = 0 : (72)It is then not diÆult to verify that the standard gauge-�xing ation�̂gf = Z d4x tr�ŝh�̂ ? ���Â� + �2 B̂�i� (73)is onformally invariant:W T̂A+̂+�̂+B̂+�;� �̂gf = 0 ; W R̂A+̂+�̂+B̂+�;���̂gf = 0 ; W D̂A+̂+�̂+B̂+��̂gf = 0 : (74)Loop alulations based on �̂ + �̂gf in (31) and (73) su�er from infrared divergenes [3℄.To irumvent the IR-problem one an however use the �-expansion of the NCYM ationleading to a gauge �eld theory on ommutative spae-time oupled to an external �eld �.This ation is quantized aording to the analogous formulae as above, omitting everywherethe hat symbolizing nonommutative objets and replaing the ?-produt by the ordinaryprodut. This approah was used in [10℄ to ompute the one-loop photon selfenergy in �-expanded Maxwell theory and in [5℄ to show renormalizability of the photon selfenergy toall orders in �h and �.7 Summary and outlookWe have established rigid onformal transformations (23){(25) for the nonommutativeYang-Mills �eld Â. Our results related to these transformations an be summarized asfollows.
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NCYM � invariane under ( W ĜA;�̂W ?̂A +W ?� = ~W ?̂A + ~W ?�[W ?̂A +W ?� ;W ĜA;�̂℄ =W ĜA;�̂0?ovariane ansatz for 6- solution of
6

Seiberg-Witten di�erential equation?�-expansion�YM�
quantization
quantization�q-YM�

�q-NCYM

The (lassial) nonommutative Yang-Mills ation (31) is invariant under the Lie algebra Lof gauge transformationsW ĜA;�̂ and the sumW ?̂A+W ?� of onformal transformations of Â and�. The ommutation relations [W ?̂A +W ?� ;W ĜA;�̂℄ = W ĜA;�̂0 in L suggest a ovariant splittingW ?̂A +W ?� = ~W ?̂A + ~W ?� . The relation [ ~W ?̂A;W ĜA;�̂℄ = W ĜA;�̂00 is trivially solved by a ovarianeansatz. Then, the ovariant omplement ~W ?� is simply obtained from invariane of theNCYM ation under ~W ?̂A+ ~W ?� transformation. The solution for ~W ?� is given by the Seiberg-Witten di�erential equation (56). What we have thus ahieved is a more transparent|andless restritive|derivation of the Seiberg-Witten di�erential equation whih does not requirethe usual ansatz of gauge equivalene.Interpreting the Seiberg-Witten di�erential equation as an evolution equation we anexpress the nonommutative Yang-Mills �eld Â in terms of its initial value A. The resulting�-expansion of the NCYM ation is due to the ovariane [ ~W ?� ;W ĜA;�̂℄ =W ĜA;�̂000 invariant underommutative gauge transformations. Moreover, nonommutative onformal transformationsredue after �-expansion to ommutative onformal transformations. In this way we assoiateto the NCYM theory a gauge theory YM� on ommutative spae-time for a ommutativegauge �eld A oupled to a translation-invariant external �eld �. Both gauge theories anbe quantized by adding appropriate gauge-�xing terms and yield the two quantum �eldtheories q-NCYM and q-YM�, respetively. It is unlear in whih sense these two quantum�eld theories are equivalent. At least on a perturbative level the quantum �eld theoriesq-NCYM and q-YM� are ompletely di�erent.Loop alulations [3℄ and power-ounting analysis [4℄ for q-NCYM reveal a new type ofinfrared singularities whih so far ould not be treated. Loop alulations [10℄ for q-YM�are free of infrared problems but lead apparently to an enormous amount of ultravioletsingularities. This is not neessarily a problem. For instane, all UV-singularities in thephoton selfenergy are �eld rede�nitions [5℄ whih are possible in presene of a �eld ���of negative power-ounting dimension. For higher N -point Green's funtions the situationbeomes more and more involved and a renormalization seems to be impossible without asymmetry for the �-expanded NCYM-ation. We had hoped in the beginning of the workon this paper that this symmetry searhed for ould be the Seiberg-Witten expansion of the14



nonommutative onformal symmetries. As we have seen in Setion 5.5 this is not the aseand the omplete renormalization of NCYM theory remains an open problem.We have proved that the nonommutative gauge �eld is an irreduible representationof the undeformed onformal Lie algebra. The nonommutative spin-12 representations forfermions have been worked out in [16℄. This shows that lassial onepts of partiles and�elds extend without modi�ation to a nonommutative spae-time. We believe this makeslife in a nonommutative world more omfortable.Of ourse muh work remains to be done. First we have onsidered a very speial non-ommutative geometry of a onstant ��� . This assumption should �nally be relaxed; at leastthe treatment of those non-onstant ��� whih are Poisson bivetors as in [18℄ seems to bepossible. The inuene of the modi�ed onept of loality on ausality and unitarity of theS-matrix must be studied. Previous results [19, 20℄ with di�erent onsequenes aording towhether the eletrial omponents of ��� are zero must be invariantly formulated in termsof the signs of the two invariants ������ and �����������. Eventually the renormalizationpuzzle for nonommutative Yang-Mills theory ought to be solved.AknowledgementsWe would like to thank Roman Jakiw for numerous interesting omments and for point-ing out to us his earlier work on the ovariant representation [8, 9℄. We also thank AlanKosteleky for larifying omments on observer and partile Lorentz transformations. JMGwould like to thank the University of Bonn for friendly hospitality during a visit.A Covariant Â-rotation of the NCYM ationLet us give here the alulations leading to the result (53). The �rst input is the Â-variationof the NCYM ation (31) Æ�̂ÆÂ�(x) = 1g2�D̂�F̂ ���(x) : (A.1)Inserted into (49), for 
̂��� = 0, we obtain~W R̂A;���̂ = 12g2 Z d4x tr�(X̂� ? F̂�� + F̂�� ? X̂� � X̂� ? F̂�� � F̂�� ? X̂�) ? D̂�F̂ ���= 12g2 Z d4x tr�X̂� ? �D̂��F̂��; F̂ ��	? � �D̂�(F̂��); F̂ ��	?�� X̂� ? �D̂��F̂��; F̂ ��	? � �D̂�(F̂��); F̂ ��	?�� : (A.2)Now we use the Bianhi identity D̂�F̂� + D̂�F̂�+ D̂F̂�� = 0 and the antisymmetry in �; �to rewrite D̂�(F̂��) ? F̂ �� = 12D̂�(F̂��) ? F̂ �� (A.3)15



and similarly for the other terms in (A.2). We then obtain~W R̂A;���̂ = 1g2 Z d4x tr�X̂� ? D̂��12�F̂��; F̂ ��	? � 18Æ���F̂�� ; F̂ ��	?�� X̂� ? D̂��12�F̂��; F̂ ��	? � 18Æ���F̂�� ; F̂ ��	?��= 1g2 Z d4x tr�D̂��X̂� ? T̂ �� � X̂� ? T̂ �� �� D̂�(X̂�) ? T̂ �� + D̂�(X̂�) ? T̂ �� � ;(A.4)where we have used (55) and the derivation property of D̂�. Note that the total derivativeR d4x tr(D̂�Ĵ���) in (A.4) vanishes. The result (53) follows now fromD̂�X̂� = g�� + � �� F̂�� ; (A.5)whih is easily derived from the formulae in Setion 2, and the symmetry T̂�� = T̂��.B Derivation of the Seiberg-Witten di�erential equationWe �rst ompute the expliit �-dependene of the ?-produt aording to the last term in(27),WR�;���̂ = � 1g2 Z d4x tr������Â� ? n12��Â�; F̂ �� o? � �����Â� ? n12��Â�; F̂ �� o?� : (B.1)Then, (45) and (A.1) yield~WR�;���̂ = rhs(B.1) + 1g2 Z d4x tr��Æ��� �� � Æ��� �� + Æ����� � Æ������dÂ�d��� ? D̂�F̂ ���= rhs(B.1) + 2g2 Z d4x tr�� �� D̂�� dÂ�d���� ? F̂ �� � � �� D̂�� dÂ�d���� ? F̂ ��� ; (B.2)where rhs(B.1) stands for the right hand side of (B.1). Inserting (53), (B.1) and (B.2) intothe �rst ondition (51) and splitting the result into the independent parts with oeÆients���=g2 and ���=g2 we �nd for the �rst one0 = Z d4x tr�F̂ �� ? T̂�� � 12��Â� ? ���Â�; F̂ �� 	? + 2g��D̂�� dÂ�d���� ? F̂ ���= Z d4x tr�� 12��Â� ? �D̂�Â�; F̂ �� 	? � 18��Â� ? �F̂�� ; F̂ ��	? � 12D̂�Â� ? �F̂�� ; F̂ �� 	?+ 18D̂�Â� ? �F̂��; F̂ ��	? + 2g��D̂�� dÂ�d���� ? F̂ ���= Z d4x tr�g���� 12���Â�; D̂�Â�	? � 12�D̂�Â�; F̂��	?� 18�F̂��; F̂��	? + 2D̂�� dÂ�d����� ? F̂ ���16



= Z d4x tr�g���14�D̂�Â�; ��Â� + F̂��	? � 14�D̂�Â�; ��Â� + F̂��	?� 18�F̂��; F̂��	? + 2D̂�� dÂ�d����� ? F̂ ��� ; (B.3)where we have used several times yliity of the trae, the identity F̂�� = ��Â�� D̂�Â� andthe antisymmetry of F̂�� . Now we onsiderZ d4x tr��Â�; D̂�(��Â� + F̂��)	? ? F̂ ��� = Z d4x tr��Â�; D̂�D̂�Â� + 2D̂�F̂��	? ? F̂ ���= Z d4x tr��Â�;� i2�F̂�� ; Â��? + D̂�F̂��	? ? F̂ ���= Z d4x tr� i4�Â�; Â��? ? �F̂��; F̂ ��	? � 12D̂�Â� ? �F̂�� ; F̂ ��	?� ; (B.4)where we have used the Bianhi identity and integrated by parts. Antisymmetrizing in �; �we obtainZ d4x tr��Â�; D̂�(��Â� + F̂��)	? ? F̂ �� � �Â�; D̂�(��Â� + F̂��)	? ? F̂ ���= Z d4x tr�� 12�F̂��; F̂��	? ? F̂ ��� : (B.5)Combining (B.3) and (B.5) we arrive at0 = Z d4x tr�D̂��14�Â�; ��Â� + F̂��	? � 14�Â�; ��Â� + F̂��	? + 2 dÂ�d���� ? F̂ ��� ; (B.6)whih leads after reinsertion of 
̂��� to the Seiberg-Witten di�erential equation (56).C The ommutator between rotation and total �-variationWe will prove here eq. (65) in the ase of rotation. As usual it is suÆient to evaluate theommutator on Â� and on ��� . The last one is zero beause rotation and dilatation of �ommute, see (10). In fat the ommutator will vanish for a very general lass of di�erentialequations. Let ��� dÂ�d��� = ������� ; (C.1)where ���� is a polynomial in5 Â and � with power ounting dimension 3. We assume that���� transforms as a tensor under rotationW R̂A+�;������ = 12fx�; ������g? � 12fx�; ������g?+ g������ � g������ + g������ � g������ + g������ � g������ : (C.2)5� may also depend on the oordinates. In this ase however, (C.2) should also involve rotation of theoordinates. 17
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