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ember 18, 1997Abstra
tWe investigate the (non
ommutative) geometry de�ned by the standardmodel, whi
h turns out to be of Kaluza{Klein type. We �nd that spa
etimepoints are repla
ed by extended two-dimensional obje
ts whi
h resemblethe surfa
e of a gyro. Their size is of the order of the inverse top quarkmass.1 Introdu
tionGel'fand and Na��mark realized [1℄ that a unital 
ommutative C�-algebra is es-sentially the same thing as a 
ompa
t topologi
al Hausdor� spa
e. In the sequelmathemati
ians have dropped 
ommutativity and 
onsidered non
ommutativeC�-algebras as something like non
ommutative topologi
al spa
es. Some high-lights of this program are algebrai
 K-theory [2℄, 
y
li
 
ohomology [3, 4℄ andquantum groups [5, 6℄. Physi
ists however are 
onfronted with measurements,that is the assignment of a set of real numbers to the system under 
onsideration.These real numbers 
onstitute a metri
 spa
e or geometry. Although topology hasimportant appli
ations to physi
s, geometry is indispensable. Therefore, Connes'assignment [3, 4, 7, 8℄ of metri
 properties to non
ommutative topologi
al spa
esis of paramount importan
e for physi
s.Connes' dis
overy was that geometry is en
oded in the interplay between a�-algebraA and some sort of Dira
 operator D, both a
ting on a Hilbert spa
e H.The 
olle
tion (A;H; D) of these data is 
alled spe
tral triple. Connes' distan
ede�nition, applied to the spe
tral triple (smooth fun
tions on spin manifold M ,Dira
 operator of the spin 
onne
tion, square integrable bispinors), re
overs pre-
isely [3, 4, 8℄ the geodesi
 distan
e on M . But the strength of Connes' de�nitionis that it does not require the algebra A to be 
ommutative. Moreover, it givesrise to an interesting geometry even on 
ommutative algebras with non
ommu-tative di�erential 
al
ulus, su
h as the famous two-point spa
e [3, 8℄.�1998 address: Centre de Physique Th�eorique, CNRS Luminy, Case 907,13288 Marseille Cedex 9, Fran
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 Figure 1: The gyro de�nedby Æ = 0:216, � = 0:72In spite of these opportunities, the interest of the physi
s 
ommunity hasmoved more to the 
onstru
tion of di�erential 
al
uli [8, 9℄ asso
iated to spe
-tral triples and to physi
al models [8, 10, 11, 12℄ based on them. The formosta
hievement along this line is a reformulation of the standard model [7, 13, 14, 15℄in whi
h Yang{Mills and Higgs �elds are parts of one generalized gauge poten-tial. This leads to a genuine uni�
ation of Yang{Mills and Higgs se
tors of thestandard model. However, I am not aware of an attempt to re
over the metri
stru
ture asso
iated to the standard model spe
tral triple, whi
h is the 
on
ernof this paper.Te
hni
ally, we do not stri
tly follow Connes' framework but employ the au-thor's modi�
ation [16℄ that uses Lie algebras instead of asso
iative �-algebras(se
tion 2). The Lie algebrai
 framework has the advantage that every degreeof freedom has a physi
al meaning, whereas in the �-algebra 
ase one has addi-tional parameters whi
h at the very end are eliminated by skew-adjointness andunimodularity 
onditions. Our pro
edure implements neither real stru
tures [7℄nor all that sophisti
ated stu� like bivariant K-theory [17℄ and non
ommuta-tive Poin
ar�e duality, whi
h a

ording to Connes [4, 7℄ are essential elements ofnon
ommutative manifolds. We start with the pure matrix part of the standardmodel (se
tion 4) and �nd that its geometry is a nine-parametri
 family (be
ausethere are nine massless Yang{Mills �elds in the standard model) of in�nitely dis-tant two-dimensional obje
ts. They are the surfa
e of the unit ball whose polarregions are rotary-grinded to paraboloids, see �gure 1 for an example (the mean-ing of the 
oordinates �; : : : ; � is explained in se
tion 4). We 
all su
h an obje
t agyro. The distan
e between points on the gyro equals 1=mt times the Eu
lideanthree-dimensional distan
e through the interior of the gyro, where mt is the massof the top quark. The pure 
ontinuum 
ase leads ba
k to Riemannian geometry(se
tion 5).Thus, the geometry of the full standard model (se
tion 6) is of Kaluza{Kleintype [18, 19℄. It is a nine-parametri
 family of in�nitely distant worlds. Ea
hworld is six-dimensional (see also [20℄), four dimensions are our usual spa
etimeand the other two are 
ompa
ti�ed to a 
ertain gyro. This means that we do2



not 
on�rm Connes' 
onje
ture of a multi-sheeted stru
ture of the universe [3, 4℄.It is true that the geometry of the standard model di�ers from four dimensionalRiemannian geometry at energy s
ales of the order mt. But on ea
h world thegeometry remains 
ontinuously 
onne
ted and 
an be des
ribed 
ompletely interms of standard (
ommutative) geometry. This is also in 
ontrast with non-
ommutative Kaluza{Klein theories developed by Madore and Mourad (see [21℄for a review and referen
es therein), where the internal 
oordinates are generatorsof a non
ommutative algebra. We show that the geometry of the matrix part ofthe standard model (whi
h 
ontains three massive Yang{Mills �elds) is a defor-mation of the 2-sphere S2. The spe
tral triple over the algebra C �C studied �rstby Connes and Lott [3, 8℄ gives rise to one massive Yang{Mills �eld. Therefore,its geometry is a deformed S0, i.e. a pair of points. After taking spa
etime into
onsideration, Connes and Lott thus obtained two 
opies of spa
etime as geom-etry of this example. The possibility of endowing dis
rete spa
es with geometryhas been 
elebrated as a main a
hievement of non
ommutative geometry. To myknowledge, one has widely believed that the dis
reteness of the C � C -example istypi
al for matrix spe
tral triples. But this is not the 
ase, as the present papershows.2 FundamentalsPhysi
al reasons (the wish to des
ribe other �eld theoreti
al models than thestandard model) led us to repla
e the asso
iative �-algebra in Connes' non
om-mutative geometry by a Lie algebra [16℄. Then, the spe
tral triple or K-
y
ledes
ribing the initial data be
omes an L-
y
le:De�nition 1 An L{
y
le (g;H; D; �;�) over a skew{adjoint Lie algebra g isgiven byi) an involutive representation � of g in the Lie algebra B(H) of bounded oper-ators on a Hilbert spa
e H, i.e. (�(a))� = �(a�) � ��(a), for any a 2 g,ii) a (possibly unbounded) selfadjoint operator D on H with 
ompa
t resolventsu
h that [D; �(a)℄ 2 B(H),iii) a selfadjoint operator � on H, ful�lling �2 = idH, �D+D� = 0 and ��(a)��(a)� = 0.We re
all [16℄ the de�nition of a metri
 stru
ture on L-
y
les, obtained by asimple adaptation of Connes' proposal to our 
ase:De�nition 2 Let X be the spa
e of linear fun
tionals � on g whose norm equals1, i.e. k�k = supa2g �j�(a)j=k�(a)k� = 1. The distan
e dist(�1; �2) between�1; �2 2 X is given bydist(�1; �2) := supa2gf j�1(a)� �2(a)j : k [D; �(a)℄ k � 1 g : (1)3



The 
on
ern of this paper is to show the usefulness of this de�nition by meansof a 
ommutative example (se
tion 3) and to investigate the metri
 stru
ture ofthe standard model L-
y
le.3 The 
ommutative 
aseThe Dira
 K-
y
le (C1(M); L2(S); i�/) 
an be regarded as an L-
y
le over the
ommutative Lie algebra iC1(M) as well. Here, M is the Eu
lidean spa
etime(4-dimensional 
ompa
t Riemannian spin manifold), C1(M) denotes the algebraof real-valued smooth fun
tions over M , L2(S) is the Hilbert spa
e of squareintegrable se
tions of the spinor bundle S over M and i�/ = i
��� is the Dira
operator of the spin 
onne
tion. From Connes' dis
overy [3, 4, 8℄ that the Dira
K-
y
le gives rise to Riemannian geometry on M we expe
t that this is also truefor the L-
y
le.We 
ompute the distan
e between those linear fun
tionals �p; �q on iC1(M)whi
h are even 
hara
ters determined by points ofM , i.e. �p(if) = f(p), �q(if) =f(q), for if 2 iC1(M) and p; q 2 M . Obviously,k�pk = supf2C1(M) jf(p)jkfk = supf2C1(M) jf(p)jmaxq2M jf(q)j = 1 :We have [D; �(f)℄ � [i�/ ; f ℄ = i
� �f�x� = i
(dx�) �f�x� = i
(df) ; (2)where 
 : �1(M) ! B(L2(S)) is the Cli�ord representation of se
tions of the
otangent bundle. The Cli�ord representation ful�lls 
(!)
(!) = g�1(!; !)14,for ! 2 �1(M), where the bilinear form on se
tions of the 
otangent bundleg�1 : �1(M) � �1(M) ! C1(M) is the inverse of the metri
 g. The norm isobtained by optimization of di�erentiation along a 
urve C(s):k[D; �(f)℄k = ki
(df)k = supC ��������
(ds)dfds�������� = supC ����������
(ds)
(ds) ����dfds����2����������1=2= supC ����������g�1(ds; ds) ����dfds����2����������1=2 = supC;x �����dfds����pg�1(ds; ds)� ; (3)where the supremum is taken over all points x 2 M and all 
urves C = C(s)through x.We 
onsider only 
urves where s is the ar
 length satisfying g�1(ds; ds) = 1.This means that js(p)� s(q)j = length( bpq) is the length of the 
urve 
onne
tingp; q 2M . We write the di�erentiation in (3) as the limit of a di�eren
e quotient:supC;x ����dfds���� = supC;x limp!x; p2C ����f(x)� f(p)s(x)� s(p) ���� = supC;x limp!x; p2C jf(x)� f(p)jlength(
xp) :4



This value is maximized if C is a geodesi
s 
onne
ting x and p, and insteadof varying C we 
an equivalently vary the point p that de�nes the geodesi
s C.Moreover, the following 
onsiderationjf(x)� f(p)j = ����Z xp dfdsds���� � ����Z xp ds���� maxq2
xp ����dfds ���� = dist(x; p) maxq2
xp ����dfds����shows that supx jf(x)� f(p)jdist(x; p) � supx limp!x jf(x)� f(p)jdist(p; q) :This gives k[D; �(f)℄k = supx6=p jf(x)� f(p)jdist(x; p) ; (4)as stated in [3, 4℄. Therefore, k[D; �(f)℄k � 1 implies jf(p)�f(q)j � dist(p; q) forall fun
tions f under 
onsideration and all points p; q, whi
h means dist(�p; �q) �dist(p; q). Taking in parti
ular the distan
e fun
tion itself, fp(q) = dist(p; q), onehas jfp(q1) � fp(q2)j = jdist(p; q1) � dist(p; q2)j � dist(q1; q2) due to the triangleinequality, therefore, k[D; �(fp)℄k � 1 on one hand and jfp(p)�fp(q)j = dist(p; q)on the other hand. This means dist(�p; �q) = dist(p; q).4 The matrix part of the standard modelThe L-
y
le of the matrix part of the standard model is the dire
t trans
riptionof the physi
al situation and was already presented in [22℄. The Hilbert spa
e isH = C 48 if we in
lude right neutrinos. The Lie algebra is of 
ourseg = su(3)� su(2)� u(1)3 fg;a; eg � fi(P8j=1 gj�j) ; i(a�3+b�1+
�2) ; eg ; (5)where �j are the Gell-Mann matri
es, �k the Pauli matri
es and gj; a; b; 
; e 2 R.This Lie algebra a
ts on H via the representation�(g;a; e) = � �`(g;a; e) 00 �q(g;a; e) � ;�`(g;a; e) = 0BB� i(a� e)
 13 i(b� i
)
 13 0 0i(b+ i
)
 13 i(�a� e)
 13 0 00 0 03 00 0 0 �2ie
 13 1CCA; (6)�q(g;a; e) =0BB�(i(a+13e)13+g)
13 i(b�i
)13
13 0 0i(b+i
)13 
 13 (i(�a+13e)13+g)
13 0 00 0 (43 ie13+g)
13 00 0 0 (�23 ie13+g)
131CCA:5



The generalized Dira
 operator is the Yukawa operatorY = � Y` 00 Yq � ; (7)Y` = 0BB� 0 0 M� 00 0 0 MeM�� 0 0 00 M�e 0 0 1CCA; Yq = 0BB� 0 0 13 
Mu 00 0 0 13 
Md13 
M�u 0 0 00 13 
M�d 0 0 1CCA;where Me;�;u;d are 3� 3-mass matri
es of the fermions.The �rst and most diÆ
ult part is to 
ompute the norm of fun
tionals � ong. The 
omputation 
onsists of two steps: that of the norm of �(g;a; e) andthat of the extrema of �(g;a; e)=k�(g;a; e)k. Let igi, g1 � g2 � g3, be theeigenvalues of g 2 su(3). As g is tra
efree, there are only the two possibilitiesg1 � g2 � 0 � g3=jg2j+jg1j and g1=�jg2j�jg3j � 0 � g2 � g3. It suÆ
es tostudy the �rst 
ase, be
ause the se
ond 
ase goes into the �rst one by inversionfg;a; eg 7! f�g;�a;�eg. Thus, we haveg1 � g2 � 0 � jg2j � 12g3 � jg1j � g3=jg1j+jg2j : (8)Denoting kak := pa2 + b2 + 
2, the eigenvalues of �(g;a; e) are i times�e + kak ; �e� kak ; �2e ;13e + kak+ gi ; 13e� kak+ gi ; 43e + gi ; �23e+ gi ;so that the norm (=absolute value of the largest eigenvalue) be
omesk�(g;a; e)k = max �jej+kak ; 2jej ; j13e+gij+kak ; j13e+gij+jej� : (9)For the further evaluation we draw the `left' graphs y = jej+kak, y =j13e+gij+kak and the `right' graphs y = 2jej, y = j13e+gij+jej into a e-y-diagram.The partial norm fun
tions of the `left' and `right' graphs areinterval right norm left norme � �32 jg1j �2e �e+kak�32 jg1j � e � �32(g3�jg1j) jg1j�43e jg1j�13e+kak� 32(g3�jg1j) � e � 0 g3�23e g3+13e+kak0 � e � 32g3 g3+43e g3+13e+kak32g3 � e 2e e+kak (10)
This table tells us that the left and right norms are 
ontinuous and pie
ewiselinear with 
orners ate 2 � � 32 jg1j ; �32(g3 � jg1j) ; 0 ; 32g3 	 : (11)6



The total norm is the maximum of both partial norms and varies as we vary kak.The topology of the total norm fun
tion 
hanges at those values of kak where a
orner of the left norm passes a 
orner of the right norm. These values arekak 2 � 0 ; 32(g3 � jg1j) ; 32 jg1j ; 32g3 	 : (12)We 
onsider fun
tionals on su(3)� su(2)� u(1) of the form��;�;Æ(g;a; e) := �a+ �b+ 

+ (2Æ � �)e+P8j=1 �jgj ;see (5) for the notation. In order to avoid the dis
ussion of the eight parameters�j we adopt the following simpli�
ation. The norm of � isk�k = supg2su(3) jP8j=1 �jgjj = kgk ;where g is represented in the standard matrix representation of su(3). We assume� to be su
h that there is only one straight line through the origin in su(3) �= R8on whi
h the supremum of jP8j=1 �jgjj=kgk is attained. Under this 
ondition we
an de�ne a sign of �. We put sign(g) = 1 if jg3j > jg1j (whi
h is our 
ase),sign(g) = �1 if jg3j < jg1j andsign(�) = sign(P8j=1 �jgj) sign(g) ; if jP8j=1 �jgjj = kgk k�k : (13)This sign is 
onstant on the maximal straight line (without 0), and we havesign(�) = �sign(��). We put � = sign(�) k�k.Our goal is to examine the extrema of the fun
tional F on g de�ned byF (g;a; e) = ��;�;Æ(g;a; e) = k�(g;a; e)k. We have shown in (10) that k�(g;a; e)kis a pie
ewise linear fun
tion of kak; e; g3; jg1j. Letting these parameters �xed,the extrema of ��;�;Æ(g;a; e) are taken at�a+ �b+ 

 = �p�2 + �2 + 
2pa2 + b2 + 
2 � �k�k kak(put a = �(�=k�k) kak, b = �(�=k�k) kak, 
 = �(
=k�k) kak). Moreover,we have P8j=1 �jgj = �kgk = �g3, see (13). Therefore, the 
andidates for��;�;Æ(g;a; e) being extremal form the plane�k�k kak+ (2Æ��)e+ �g3 :But this means that F is pie
ewise the quotient of �rst-order polynomials in thefour parameters kak; e; g3; jg1j and as su
h takes its extrema at the boundariesof the domain. In our 
ase, these boundaries are the points spe
i�ed in (11)and (12). In order to �nd the extrema of F it suÆ
es to evaluate it at ea
h
ombination of the points (11) and (12). Moreover, we must take into a

ountthe various in�nities of e and kak 
orresponding to 
ase g = 0 and either e = 07



No e kak F1 �32 jg1j 0 �32(2Æ��)jg1j+ �g33jg1j2 �32 jg1j 32(g3�jg1j) �32((2Æ��)�k�k)jg1j+ (��32k�k)g33jg1j3 �32 jg1j 32 jg1j �32((2Æ��)�k�k)jg1j+ �g33jg1j4 �32 jg1j 32g3 �32(2Æ��)jg1j+ (��32k�k)g332(g3+jg1j)5 �32(g3�jg1j) 0 32 (2Æ��)jg1j+ (��32(2Æ��))g32g3�jg1j6 �32(g3�jg1j) 32(g3�jg1j) 32 ((2Æ��)�k�k)jg1j+ (��32((2Æ��)�k�k))g32g3�jg1j7 �32(g3�jg1j) 32 jg1j 32 ((2Æ��)�k�k)jg1j+ (��32(2Æ��))g312g3+2jg1j8 �32(g3�jg1j) 32g3 32 (2Æ��)jg1j+ (��32((2Æ��)�k�k))g32g3+12 jg1j9 0 0 �g3g310 32g3 0 (�+32(2Æ��))g33g311 32g3 32(g3�jg1j) �32k�kjg1j+ (�+32((2Æ��)�32k�k))g33g312 32g3 32 jg1j �32k�kjg1j+ (�+32(2Æ��))g33g313 32g3 32g3 (�+32((2Æ��)�k�k))g33g314 �M 0 �(2Æ��)M2M15 �M M (�k�k�(2Æ��))M2M16 M M (�k�k+(2Æ��))M2M17 0 M �k�kMMTable 1: The value of F at the 
orner points
8



or kak = 0. The values of F at all these points are given in table 1. In thistable, we used that at e = 0 there is a 
orner only if kak = 0 and took the limitM !1. The resulting fun
tion F is still the quotient of �rst-order polynomialsif it depends on g1. The extrema are again attained at the boundaries jg1j = g3(supers
ript +) and jg1j = 12g3 (supers
ript �), see (8). This gives the followingabsolute values:jF j No in Tab. 1 jF j No in Tab. 1jÆ�12�� 13�j 1+; 2+ jÆ�12��23�j 1�; 5�jÆ�12�� 13�j+12k�k 3+; 4+ jÆ�12��23�j+12k�k 2�; 3�; 6�; 7�23 jÆ�12��23�j+23k�k 4�; 8� j�j 5+; 6+; 925 j�j+35k�k 7+; 8+ jÆ�12�+13�j 10; 11+jÆ�12�+13�j+14k�k 11�; 12� jÆ�12�+13�j+12k�k 12+; 13jÆ�12�j 14 jÆ�12�j+12k�k 15; 16k�k 17After sele
ting the strongest 
onstraints we �nd for kFk = max jF jkFk = max � j�j ; k�k ; jÆ�12��16�j+12k�k+12 j�j � : (14)The requirement kFk = k��;�;Æk = 1 yields the following 
onstraints:j�j � 1 ; k�k � 1 ; jÆ�16�� 12�j+ 12k�k � A ; A := 1�12 j�j ; (15)where at least one of these 
onstraints must be an equality. The �rst 
on
lusionis jÆ�16�j � A, whi
h we satisfy byÆ = 16� + A 
os� ; 0 � � � � : (16)This gives with k�k2 = �2 + �2 + 
2 the equationjA 
os�� 12�j+ 12p�2 + �2 + 
2 = A ;whi
h leads (for the admissible range of � to be spe
i�ed below) to�2 + 
2 = 4(A� A 
os�)2 � 4�(A� A 
os�) ; for � R 2A 
os� : (17)What we obtain is thus a pair of paraboloids, whi
h we 
an parametrize as follows:� = A(
os �+ 
os �0) ; 0 � �0 � � ;�2 + 
2 = � 4A2(1 + 
os�)(1� 
os�0)4A2(1� 
os�)(1 + 
os�0) for 
os� � 
os�0
os� � 
os�0 (18)9
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� �(1)(2)(3)(4) (4)(5) (5)(6) (6)(6) (6)? Figure 2: Domain of �; Ædetermining the shape ofthe gyroHowever, we still have to take the 
ondition k�k � 1 into a

ount, whi
h isthe 2-sphere of radius 1. This sphere will somewhere interse
t the paraboloids(18) so that the total geometry is the 
omposition of the sphere with one ortwo paraboloids repla
ing the sphere's polar regions. We 
all su
h an obje
t agyro, whi
h is the surfa
e of a ball whose polar regions are rotary-grinded toparaboloids. Formulae (18) are equivalent to k�k = A(2�j 
os�� 
os�0j), whi
hdetermines the interse
tion parallels of latitude as j 
os�� 
os �0j = 2�2j�j2�j�j . Thus,for 
os�0� 
os � � 2�2j�j2�j�jj 
os�� 
os �0j � 2�2j�j2�j�j
os�� 
os�0 � 2�2j�j2�j�j 9>=>; we are on the 8<: northern paraboloidspheresouthern paraboloid (19)This situation is worth dis
ussing. One has to 
hoose � 2 [�1; 1℄ and 
os� 2[�1; 1℄, whi
h yields Æ a

ording to (16) and (15). Next, one 
hooses 
os�0 2[�1; 1℄ and determines from (19) to whi
h rotary body this value belongs. Theheight parameter � and in the paraboloid 
ases the radiusp�2 + 
2 are obtainedfrom (18). In the spheri
al 
ase we have of 
ourse p�2 + 
2 = p1� �2. Somespe
ial 
ases of these gyros are interesting (see �gure 2):(1) � = 0; Æ = 0:This is the pure sphere of radius 1.(2) 0 < j�j < 1 ; 16�+12 j�j � Æ < 1+16�� 12 j�j:The southern part of the sphere is rotary-grinded to a paraboloid.(3) 0 � j�j < 1 ; �1+16�+12 j�j < Æ � 16�� 12 j�j:The northern part of the sphere is rotary-grinded to a paraboloid.(4) 0 < j�j < 1 ; 16�� 12 j�j < Æ < 16�+12 j�j:Both the northern and southern parts of the sphere are rotary-grinded toparaboloids but some region of the sphere remains. An example of thissituation is shown in �gure 1. 10



(5) j�j = 1 ; Æ 6= �1+16�� 12 j�j:The sphere is rotary-grinded to a lense 
omposed of two paraboloids.(6) �1 � � � 1 ; Æ = �1+16�� 12 j�j:The sphere is rotary-grinded to a string of length 1.� jÆ�16�j � 12� 12 j�j:The sphere's equator belongs to the gyro so that the maximal radius is 1.� 1�12 j�j � jÆ�16�j � 12� 12 j�j:One paraboloid passes the sphere's equator and the maximal radius isq1� 2(12�12 j�j�jÆ�16�j)2.� The height of the gyro is 2�(jÆ�16�j+12 j�j) in 
ases (1),(2),(3),(6) and 2�j�jin 
ases (1),(4),(5),(6).We now derive the metri
 properties of these gyros. The �rst step is to
ompute k[Y; �(g;a; e)℄k, whi
h we demand to be bounded by 1. The 
al
ulationsplits into that for leptons (`) and quarks (q), see (6) and (7). We 
on�ne ourattention to the quark se
tor. It is 
onvenient to use the C�-property and toevaluate[Yq; �q(g;a; e)℄�[Yq; �q(g;a; e)℄ = � L 00 R � ; (20)L =0BB� (a�e)213 
MuM�u+(b2+
2)13 
MdM�d (a�e)(b�i
)13 
 (MuM�u�MdM�d)(a�e)(b+i
)13 
 (MuM�u�MdM�d) (b2+
2)13 
MuM�u+(a�e)213 
MdM�d 1CCA;R = � ((a�e)2+b2+
2)13 
M�uMu 00 ((a�e)2+b2+
2)13 
M�dMd � :Unitary transformation ULU� of the left se
tor L, withU = � 
os �13 
 13 ei� sin �13 
 13� sin �13 
 13 ei� 
os �13 
 13 � 2 U(2)13 
 13 ;
os � = a�ep(a�e)2+b2+
2 ; sin � = pb2+
2p(a�e)2+b2+
2 ; ei� = b�i
pb2+
2 ;yields the matrix((a�e)2+b2+
2) diag(13
MuM�u ; 13
MdM�d ; 13
 M�uMu ; 13
M�dMd) :Thus, the eigenvalues of [Y; �(g;a; e)℄�[Y; �(g;a; e)℄ are ((a� e)2 + b2 + 
2) timesthe squared fermion masses and, be
ause the mass of the top quark mt is thelargest one, we havek[Y; �(g;a; e)℄k =p(a� e)2 + b2 + 
2mt : (21)11



The se
ond step is to 
ompute��;�;Æ(g;a; e)� ��0;�0;Æ0(g;a; e)= (���0)(a�e) + (��� 0)b + (
�
0)
+ 2(Æ�Æ0)e+P8i=1(�j��j 0)gj :For Æ 6= Æ0 take (g; a; b; 
; e) = (0; a; 0; 0; a), whi
h on one hand givesk[Y; �(0; a; 0; 0; a)℄k = 0 for all a and on the other hand j��;�;Æ(0; a; 0; 0; a) ���0;�0;Æ0(0; a; 0; 0; a)j = 2jÆ�Æ0j jaj, whi
h is obviously unbounded. The same ef-fe
t happens if there is �j 6= �j 0 for at least one j = 1; : : : ; 8. In other words, thedistan
e between fun
tionals with di�erent f�; Æg is in�nite.Let us thus 
ompute the distan
e between fun
tionals with �xed f�; Æg:j��;�;Æ(g;a; e)� ��;�0;Æ(g;a; e)j = j(���0)(a�e) + (��� 0)b + (
�
0)
j :Under the 
ondition k[Y; �(g;a; e)℄k = p(a� e)2 + b2 + 
2mt � 1, this numberis bounded bydist(�;�0)=mt �p(���0)2 + (��� 0)2 + (
�
0)2 =mt : (22)This means that the spa
e of fun
tionals ��;�;Æ, for �xed parameters f�; Æg, isjust the Eu
lidean spa
e R3 equipped with the usual Eu
lidean distan
e (s
aledby 1=mt). If we restri
t the fun
tionals ��;�;Æ and ��;�0;Æ to be points on a gyroof fun
tionals of norm 1, their distan
e is equal to the Eu
lidean length (inunits of 1=mt) of the string through the interior that 
onne
ts the points on thegyro. Gyros asso
iated to di�erent parameters f�; Æg are in�nitely distant fromea
h other. Thus, the geometry of the standard model matrix L-
y
le is a nine-parametri
 family (the parameters are �j and Æ) of in�nitely distant gyros. Thispi
ture has a natural physi
al interpretation. The three massive Yang{Mills �eldsW� and Z yield in a �rst step R3 and the norm=1 requirement sele
ts a 
ertainhypersurfa
e in R3 { our gyro. The nine-dimensional dis
onne
tedness re
e
tsthe nine massless Yang{Mills �elds (photon and gluons) of the standard model.Again, the norm=1 
ondition sele
ts a 
ompa
t region of R9 as shown in �gure2.5 The 
ontinuous part of the standard modelNow we add spa
etime to investigate the metri
 stru
ture of the 
ontinuous partof the standard model. We only 
onsider fun
tionals ong = C1(M)
 �su(3)�su(2)�u(1)� 3 �g;a; e�whi
h are of the form��;�;Æ;p(g;a; e) := �a(p) + �b(p) + 

(p) + (2Æ��)e(p) + 8Xj=1�jgj(p) ; (23)12



with f�;�; Æg �xed for all fun
tionals under 
onsideration. Here, e is a fun
tionon M and e(p) its value at the point p 2 M , and so on. Moreover, we evaluatethe distan
e by means of the Dira
 operator D = i�/ of the spin 
onne
tion. TheHilbert spa
e is H = L2(S)
 C 48 and the representation � : g! B(H) 
oin
idespointwise with the matrix representation (6).We investigate the following problem: For given p; q 2M �nd the supremumof j��;�;Æ;p(g;a; e)� ��;�;Æ;q(g;a; e)j= ���(a(p)�a(q)) + �(b(p)�b(q)) + 
(
(p)�
(q)) (24)+ (2Æ��)(e(p)�e(q)) +P8j=1 �j(gj(p)�gj(q))��under the 
ondition [see (2)℄k[i�/ ; �(g;a; e)℄k = k��
(dg); 
(da); 
(de)�k � 1 : (25)In the same way as in se
tion 3 we 
an repla
e in (25) partial di�erentia-tions by di�erentiations along 
urves. Note that ea
h of the 12 real fun
tionsparametrizing g is di�erentiated independently, and the supremum is found byoptimization of these 12 
urves. Di�erentiation along a 
ommon 
urve yields asmaller value than the norm, so that (25) impliessupC ��������
(ds)
 ��dgds ; dads ; deds��������� � z � 1 : (26)If s is the ar
 length we have (
(ds))2 = 14, see (3), so that 
(ds) 
an be diago-nalized to a matrix 
ontaining �1 on the diagonal. This yields with (9)z � supC ��������
(ds)
 ��dgds ; dads ; deds���������= supC;x max� ����deds ����+��������dads �������� ; 2 ����deds���� ; ����13 deds+dgids ����+��������dads �������� ; ����13 deds+dgids ����+����deds���� �:As in se
tion 3 we 
an repla
e the optimized di�erentiation by an optimizeddi�eren
e quotient, see the steps from (3) to (4). The result isz � supp6=q n 1dist(p; q) max � je(p)�e(q)j+ka(p)�a(q)k ; 2je(p)�e(q)j ;j(13e+gi)(p)�(13e+gi)(q)j+ka(p)�a(q)k ;j(13e+gi)(p)�(13e+gi)(q)j+je(p)�e(q)j �o ;
13



whi
h gives for any p; q 2M , p 6= q, the inequality1dist(p; q) max � je(p)�e(q)j+ka(p)�a(q)k ; 2je(p)�e(q)j ;j(13e+gi)(p)�(13e+gi)(q)j+ka(p)�a(q)k ;j(13e+gi)(p)�(13e+gi)(q)j+je(p)�e(q)j � � ~z ; (27)
with 0 < ~z � z � 1. Comparison with our previous problem (to �nd max jF j) inse
tion 4 suggests the repla
ementsa(p)�a(q) 7! â dist(p; q) ; e(p)�e(q) 7! ê dist(p; q) ;(13e+gi)(p)� (13e+gi)(q) 7! (13 ê+ĝi) dist(p; q) ;where â 2 su(2), ê 2 R, and iĝi 2 iR are the eigenvalues of ĝ 2 su(3). Then, ourproblem (24){(25) redu
es to the matrix problemdist(��;�;Æ;p; ��;�;Æ;q) = supĝ;â;ê�dist(p; q) j��;�;Æ(ĝ; â; ê)j : k�(ĝ; â; ê)k � ~z 	 :But this means nothing else thandist(��;�;Æ;p; ��;�;Æ;q) = ~z dist(p; q) k��;�;Æk = ~z dist(p; q) � dist(p; q) ; (28)be
ause the fun
tionals ��;�;Æ satisfy k��;�;Æk = 1 if f�;�; Æg determine a gyro.We will now prove that (28) is a
tually an equality. For this purpose we
onsider optimized matri
es multiplied by the distan
e fun
tion:ap(x) = dist(p; x) â ; gp(x) = dist(p; x) ĝ ; ep(x) = dist(p; x) ê ; (29)k�(ĝ; â; ê)k = 1 ; j�â+ �b̂+ 

̂+ (2Æ��)ê+P8j=1 �j ĝjj = 1 :This gives for (25)k[i�/ ; �(gp;ap; ep)℄k = supx j�/(dist(p; x))j k�(ĝ; â; ê)k = 1due to (4) on one hand and on the other hand for (24)j��;�;Æ;p(gp;ap; ep)� ��;�;Æ;q(gp;ap; ep)j= dist(p; q) ���â+ �b̂+ 

̂+ (2Æ��)ê+P8j=1 �j ĝj�� = dist(p; q) : (30)Hen
e, we get the ni
e result that the distan
e between fun
tionals ��;�;Æ;p (�;�; Æ�xed and determining a gyro, p variable) is equal to the geodesi
 distan
e betweenthe points p 2 M . However, this result is preliminary be
ause the standardmodel Dira
 operator is not i�/ (as we used in this se
tion) but the Dira
{Yukawaoperator that involves the fermioni
 mass matrix Y , see (7).14



6 The full standard modelHere we unite matrix part and 
ontinuous part to the full standard model. We
ompute the distan
e between fun
tionals (23), where we now permit a variationof f�;�; Æg. Moreover, we evaluate the metri
 with the full Dira
-Yukawa op-erator D = i�/ + 
5Y , whi
h is the sum of the previous 
ases. Lie algebra andHilbert spa
e are as in se
tion 5. We have to �nd the supremum ofj��;�;Æ;p(g;a; e)� ��0;�0;Æ0;q(g;a; e)j=���(a(p)�a(q)) + �(b(p)�b(q)) + 
(
(p)�
(q))+(2Æ��)(e(p)�e(q)) +P8j=1 �j(gj(p)�gj(q))+(���0)(a(q)�e(q)) + (��� 0)b(q) + (
�
0)
(q)+2(Æ�Æ0)e(q) +P8j=1(�j��j 0)gj(q)�� (31)
under the 
onditionku+ vk � 1 ; u := [i�/ ; �(g;a; e)℄ ; v := 
5[Y; �(g;a; e)℄ : (32)The exa
t solution of the problem (31){(32) would involve the diagonalizationof 4� 4-matri
es, whi
h is too ambitious. We therefore will give an exa
t lowerbound for the distan
e and estimate an upper bound. The lower bound is foundby investigation of the extremal 
ases u = 0 or v = 0. The 
ase u = 0 is a
hievedby taking 
onstant matri
es and leads ba
k to se
tion 4. It is 
lear that thedistan
e is in�nity unless we require Æ = Æ0 and � = �0. Under this 
ondition, theresult (22) holds and we getdist(��;�;Æ;p; ��;�0;Æ;q) � dist(�;�0) =mt : (33)We now adjust v = 0, whi
h means a = e and b = 
 = 0. The lesson of se
tion5 was that the optimum is attained in the 
lass (dist(p; x) times an appropriatematrix) of elements of g. This 
lass 
orresponds to the �rst line of (29), withâ = ê and b̂ = 
̂ = 0. From (30) we 
on
ludedist(��;�;Æ;p; ��;�0;Æ;q) � dist(p; q) supê;ĝ j2Æê+�ĝ3jk�(ĝ; ê; ê)k :The sear
h for the extrema of F̂ = (2Æê+�ĝ3)=�(ĝ; ê; ê) is easier than the problemsolved in se
tion 4. From (6) we see that the left and right norms are identi
al

15



and equal to the right norm in (10). The table 
orresponding to table 1 reads:No ê F̂1 �32 jĝ1j �3Æjĝ1j+ �ĝ33ĝ12 �32(ĝ3�jĝ1j) 3Æjĝ1j+ (��3Æ)ĝ32ĝ3�jĝ1j3 0 �ĝ3ĝ34 32 ĝ3 (�+3Æ)ĝ33ĝ35 �M �2MÆ2MThis yields kF̂k = B = max(j�j; jÆ�16�j+12 j�j) � 1) dist(��;�;Æ;p; ��;�0;Æ;q) � B dist(p; q) : (34)Thus, dist(��;�;Æ;p; ��;�0;Æ;q) is bounded up to the s
ale fa
tor B by the spa
etimedistan
e dist(p; q), where B be
omes 1 only on the boundary of the parameterregion f�; Æg of allowed gyros (�gure 2).If we now rise ja � ej; jbj; j
j, then the distan
e will also grow at �rst due tothe part �(a�e)(p)��0(a�e)(q)+ �b(p)�� 0b(q)+ 

(p)�
0
(q) in (31). But verysoon this growth is 
ompensated by the ne
essity to de
rease u at expense of thegrowth of v. We havej�(a�e)(p)��0(a�e)(q) + �b(p)�� 0b(q) + 

(p)�
0
(q)j� 2 supx p(a�e)2 + b2 + 
2 � 2=mtfor kvk = k
5vk � 1, see (21). This meansdist(��;�;Æ;p; ��;�0;Æ;q) � B dist(p; q) + 2=mt ;and we �nd the �nal resultmax�B dist(p; q) ; dist(�;�0)=mt	� dist(��;�;Æ;p; ��;�0;Æ;q) � B dist(p; q) + 2=mt : (35)The pre
ise value of dist(��;�;Æ;p; ��;�0;Æ;q) is not so important, its boundednesssuÆ
es for a physi
al dis
ussion. 16



7 Physi
al interpretationNote that dist(�;�0)=mt � 2=mt � 2:3 � 10�16 
m. No measurement devi
efor ma
ros
opi
 distan
es has a pre
ision of 10�16 
m. Hen
e, for geodesi
 dis-tan
es dist(p; q) of atomi
 size or larger, the geometry of the standard model isin a

urate agreement with B times the Riemannian geometry of the underlyingmanifold. At s
ales of the order of the inverse top quark mass however, 
orre-sponding to energies of the order 100GeV, spa
etime should reveal a 
ompletelydi�erent stru
ture. That what ma
ros
opi
ally is a point be
omes an extendedobje
t { a gyro.As we have seen, there is a nine-parametri
 family of in�nitely distant worlds(or universes) whose points (on ma
ros
opi
 s
ales) are gyros (on s
ales 1=mt).The s
ale fa
tor B is 
onstant on ea
h world. At �rst glan
e, this unobserveds
ale fa
tor B seems to favour the 
on
lusion that in our world values for �; Æare realized whi
h are on the boundary of the allowed values (�gure 2). Thismeans that the gyros would be degenerated to strings or lenses. However, weshould remember that we 
annot see the \a
tual" spa
etime manifold M . Allour measurements are only able to dete
t the \derived" geometry, whi
h is Btimes the true one. And as the a
tual manifold is not relevant, there is noproblem in saying that the true geometry is (1=B) times the measured geometry.This means that any of the allowed values for f�; Æg a

ording to �gure 2 (ex
ept�=Æ=0) 
ould be realized in our universe. The laws of physi
s should be the sameon ea
h world ex
ept for e�e
ts due to di�erent s
ale fa
tors B, whi
h 
ertainlylead to di�erent \
onstants" of nature.This pi
ture of the geometry of our world is probably not ultimate knowledge.The standard model is in a

urate agreement with experiment only be
ause to-day's experiments have a maximal resolution of the order 10�16 
m. At thisresolution, spa
etime 
onsists of gyros. But this does not ex
lude the possibilitythat at higher resolutions the gyros show a �ne stru
ture in the sense that ea
hof its points is a higher dimensional obje
t itself. Grand uni�ed theories for ex-ample 
ontain further massive Yang{Mills �elds and a plenty of additional Higgs�elds. We therefore expe
t that further dimensions be
ome apparent at GUTs
ales (1015 : : : 1016GeV).In other words, we re
over the old Kaluza{Klein idea [18, 19℄ of additionalspa
etime dimensions, whi
h are 
ompa
ti�ed to very small size so that theyare not apparent in every day's life. The attempt to dedu
e the fundamentalintera
tions from higher dimensional Riemannian geometry has a long history[18, 19, 23, 24, 20℄. But this approa
h has a severe short
oming. One has tomake a guess for the higher dimensional spa
etime and then to redu
e dimensionsin order to obtain an e�e
tive theory in four dimensions. Although Manton hasalready found [20℄ the six-dimensional geometry of the Salam-Weinberg model(whi
h in some sense 
oin
ides with our result), this trial-and-error method was17



not very e�e
tive after all. We simply took the other dire
tion: We startedfrom the experimentally well-
on�rmed standard model (Lie algebra, fermioni
Hilbert spa
e, fermioni
 mass matrix) and 
omputed dire
tly the 
orrespondingsmall s
ale geometry. The essential progress (apart from its e�e
tiveness) ofour method lies in the fa
t that it implements 
hiral fermions from the verybeginning { an obsta
le for traditional Kaluza{Klein theories. Moreover, weobtain a geometri
 interpretation of the unbroken symmetries: They parametrizethe 
opies of the world.Now the question arises: What was wrong with previous Kaluza{Klein theo-ries? | The physi
al interpretation! One has mostly attempted to identify theadditional dimensions with Yang{Mills �elds. This is 
orre
t in so far as thegyros are hypersurfa
es in R3 , be
ause the standard model 
ontains three mas-sive Yang{Mills �elds. A di�erent explanation is that the gyros are deformationsof the 2-sphere S2 �= SU(2)=U(1), whi
h 
ould be related to the spontaneouslybroken symmetry group. But the size and shape of the gyros are �xed, there isno geometry other than dimension related to Yang{Mills �elds. The geometryof the gyros is rather related to the Higgs �eld. This be
omes apparent if oneadopts ideas of the Chamseddine{Connes approa
h of non
ommutative geome-try [15℄. There, one studies the spe
tral geometry of the full Dira
 operator DAwhi
h in
ludes Yang{Mills �elds and Higgs �elds. Let us drop the Yang{Mills�elds. Any non
ommutative formulation of the standard model tells us that theDira
{Yukawa{Higgs operator is obtained from the Dira
{Yukawa operator byrepla
ing all fermion masses mi by �mi, where � is the Higgs �eld whose va
uumexpe
tation value h�i0 equals 1. Now, the distan
e s
ale on the gyro be
omes1=(�mt) instead of 1=mt, and is therefore subje
t to 
hange if the Higgs �eldvaries.Thus, we handle the gyros on the same footing as Riemannian spa
es M .Introdu
ing 
oordinates x = fx0; x1; x2; x3g on M , the distan
e between pointsx; x0 is not the Eu
lidean distan
e kx� x0k but obtained on in�nitesimal level bytaking the metri
 tensor g�� into 
onsideration, (ds)2 = g��dx�dx� . Just as theHiggs �eld on the rigid gyro, the metri
 tensor determines the s
ale on the rigid
oordinate spa
e. The analogy between metri
 tensor and Higgs �eld as the s
aleon 
oordinate spa
e goes further: Both have non-vanishing va
uum expe
tationvalue: hg��i0 = ��� (or Æ�� in Eu
lidean framework; ��� is the Minkowski tensor)and h�i0 = 1. The diameter of the gyro is determined by the inverse top quarkmass or, equivalently [22℄, by the inverse mass of the Higgs boson (see also [20℄).Our analogy then implies that the diameter of the 
oordinate spa
e of the fourdimensional manifold should be of the order of the inverse mass of the graviton,and therefore equal to in�nity. This explains why four 
oordinates are expandedwhereas the internal 
oordinates are 
ompa
ti�ed. Einstein told us [25, 26℄ thatmasses determine the geometry of spa
etime { on large s
ales. Our result is theinverse: the small s
ale stru
ture of spa
etime (gyros) tells us that there exist18



massive parti
les in the universe. Isn't this a beautiful interplay between largeand small s
ales? The small s
ale stru
ture of spa
etime generates the masseswhi
h in turn generate the large s
ale stru
ture.We live on one spe
i�
 world of the nine-parametri
 family. We 
annot estab-lish any 
onta
t with the other universes, we nevertheless know of their existen
e:the nine massless Yang{Mills �elds o

urring in our (and any other) world arethe 
arriers of this global information. All gyros of our world have the sameshape, denoted by �Æ;�. The information about this shape (better: of the obje
tthat repla
es the gyro at GUT-energies) and about the four-dimensionality of theunderlying manifold must have been present as early as the big bang. As alreadystressed, the shape R4 � �Æ;� (or S4 � �Æ;� ?) is �xed forever, that what evolvesis the s
ale. Big bang singularity means that the distan
e between any points onR4 ��Æ;� be
omes zero, be
ause g�� and � diverge. This behavior is very similarto a 
orrelation length that diverges at a 
riti
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