
hep-th/9712183Gyros as geometry of the standard modelRaimar Wulkenhaar�Institut f�ur Theoretishe Physik, Universit�at LeipzigAugustusplatz 10/11, D-04109 Leipzig, Germanye-mail: raimar.wulkenhaar�itp.uni-leipzig.deDeember 18, 1997AbstratWe investigate the (nonommutative) geometry de�ned by the standardmodel, whih turns out to be of Kaluza{Klein type. We �nd that spaetimepoints are replaed by extended two-dimensional objets whih resemblethe surfae of a gyro. Their size is of the order of the inverse top quarkmass.1 IntrodutionGel'fand and Na��mark realized [1℄ that a unital ommutative C�-algebra is es-sentially the same thing as a ompat topologial Hausdor� spae. In the sequelmathematiians have dropped ommutativity and onsidered nonommutativeC�-algebras as something like nonommutative topologial spaes. Some high-lights of this program are algebrai K-theory [2℄, yli ohomology [3, 4℄ andquantum groups [5, 6℄. Physiists however are onfronted with measurements,that is the assignment of a set of real numbers to the system under onsideration.These real numbers onstitute a metri spae or geometry. Although topology hasimportant appliations to physis, geometry is indispensable. Therefore, Connes'assignment [3, 4, 7, 8℄ of metri properties to nonommutative topologial spaesis of paramount importane for physis.Connes' disovery was that geometry is enoded in the interplay between a�-algebraA and some sort of Dira operator D, both ating on a Hilbert spae H.The olletion (A;H; D) of these data is alled spetral triple. Connes' distanede�nition, applied to the spetral triple (smooth funtions on spin manifold M ,Dira operator of the spin onnetion, square integrable bispinors), reovers pre-isely [3, 4, 8℄ the geodesi distane on M . But the strength of Connes' de�nitionis that it does not require the algebra A to be ommutative. Moreover, it givesrise to an interesting geometry even on ommutative algebras with nonommu-tative di�erential alulus, suh as the famous two-point spae [3, 8℄.�1998 address: Centre de Physique Th�eorique, CNRS Luminy, Case 907,13288 Marseille Cedex 9, Frane1
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PPPq���16� � Figure 1: The gyro de�nedby Æ = 0:216, � = 0:72In spite of these opportunities, the interest of the physis ommunity hasmoved more to the onstrution of di�erential aluli [8, 9℄ assoiated to spe-tral triples and to physial models [8, 10, 11, 12℄ based on them. The formostahievement along this line is a reformulation of the standard model [7, 13, 14, 15℄in whih Yang{Mills and Higgs �elds are parts of one generalized gauge poten-tial. This leads to a genuine uni�ation of Yang{Mills and Higgs setors of thestandard model. However, I am not aware of an attempt to reover the metristruture assoiated to the standard model spetral triple, whih is the onernof this paper.Tehnially, we do not stritly follow Connes' framework but employ the au-thor's modi�ation [16℄ that uses Lie algebras instead of assoiative �-algebras(setion 2). The Lie algebrai framework has the advantage that every degreeof freedom has a physial meaning, whereas in the �-algebra ase one has addi-tional parameters whih at the very end are eliminated by skew-adjointness andunimodularity onditions. Our proedure implements neither real strutures [7℄nor all that sophistiated stu� like bivariant K-theory [17℄ and nonommuta-tive Poinar�e duality, whih aording to Connes [4, 7℄ are essential elements ofnonommutative manifolds. We start with the pure matrix part of the standardmodel (setion 4) and �nd that its geometry is a nine-parametri family (beausethere are nine massless Yang{Mills �elds in the standard model) of in�nitely dis-tant two-dimensional objets. They are the surfae of the unit ball whose polarregions are rotary-grinded to paraboloids, see �gure 1 for an example (the mean-ing of the oordinates �; : : : ; � is explained in setion 4). We all suh an objet agyro. The distane between points on the gyro equals 1=mt times the Eulideanthree-dimensional distane through the interior of the gyro, where mt is the massof the top quark. The pure ontinuum ase leads bak to Riemannian geometry(setion 5).Thus, the geometry of the full standard model (setion 6) is of Kaluza{Kleintype [18, 19℄. It is a nine-parametri family of in�nitely distant worlds. Eahworld is six-dimensional (see also [20℄), four dimensions are our usual spaetimeand the other two are ompati�ed to a ertain gyro. This means that we do2



not on�rm Connes' onjeture of a multi-sheeted struture of the universe [3, 4℄.It is true that the geometry of the standard model di�ers from four dimensionalRiemannian geometry at energy sales of the order mt. But on eah world thegeometry remains ontinuously onneted and an be desribed ompletely interms of standard (ommutative) geometry. This is also in ontrast with non-ommutative Kaluza{Klein theories developed by Madore and Mourad (see [21℄for a review and referenes therein), where the internal oordinates are generatorsof a nonommutative algebra. We show that the geometry of the matrix part ofthe standard model (whih ontains three massive Yang{Mills �elds) is a defor-mation of the 2-sphere S2. The spetral triple over the algebra C �C studied �rstby Connes and Lott [3, 8℄ gives rise to one massive Yang{Mills �eld. Therefore,its geometry is a deformed S0, i.e. a pair of points. After taking spaetime intoonsideration, Connes and Lott thus obtained two opies of spaetime as geom-etry of this example. The possibility of endowing disrete spaes with geometryhas been elebrated as a main ahievement of nonommutative geometry. To myknowledge, one has widely believed that the disreteness of the C � C -example istypial for matrix spetral triples. But this is not the ase, as the present papershows.2 FundamentalsPhysial reasons (the wish to desribe other �eld theoretial models than thestandard model) led us to replae the assoiative �-algebra in Connes' nonom-mutative geometry by a Lie algebra [16℄. Then, the spetral triple or K-yledesribing the initial data beomes an L-yle:De�nition 1 An L{yle (g;H; D; �;�) over a skew{adjoint Lie algebra g isgiven byi) an involutive representation � of g in the Lie algebra B(H) of bounded oper-ators on a Hilbert spae H, i.e. (�(a))� = �(a�) � ��(a), for any a 2 g,ii) a (possibly unbounded) selfadjoint operator D on H with ompat resolventsuh that [D; �(a)℄ 2 B(H),iii) a selfadjoint operator � on H, ful�lling �2 = idH, �D+D� = 0 and ��(a)��(a)� = 0.We reall [16℄ the de�nition of a metri struture on L-yles, obtained by asimple adaptation of Connes' proposal to our ase:De�nition 2 Let X be the spae of linear funtionals � on g whose norm equals1, i.e. k�k = supa2g �j�(a)j=k�(a)k� = 1. The distane dist(�1; �2) between�1; �2 2 X is given bydist(�1; �2) := supa2gf j�1(a)� �2(a)j : k [D; �(a)℄ k � 1 g : (1)3



The onern of this paper is to show the usefulness of this de�nition by meansof a ommutative example (setion 3) and to investigate the metri struture ofthe standard model L-yle.3 The ommutative aseThe Dira K-yle (C1(M); L2(S); i�/) an be regarded as an L-yle over theommutative Lie algebra iC1(M) as well. Here, M is the Eulidean spaetime(4-dimensional ompat Riemannian spin manifold), C1(M) denotes the algebraof real-valued smooth funtions over M , L2(S) is the Hilbert spae of squareintegrable setions of the spinor bundle S over M and i�/ = i��� is the Diraoperator of the spin onnetion. From Connes' disovery [3, 4, 8℄ that the DiraK-yle gives rise to Riemannian geometry on M we expet that this is also truefor the L-yle.We ompute the distane between those linear funtionals �p; �q on iC1(M)whih are even haraters determined by points ofM , i.e. �p(if) = f(p), �q(if) =f(q), for if 2 iC1(M) and p; q 2 M . Obviously,k�pk = supf2C1(M) jf(p)jkfk = supf2C1(M) jf(p)jmaxq2M jf(q)j = 1 :We have [D; �(f)℄ � [i�/ ; f ℄ = i� �f�x� = i(dx�) �f�x� = i(df) ; (2)where  : �1(M) ! B(L2(S)) is the Cli�ord representation of setions of theotangent bundle. The Cli�ord representation ful�lls (!)(!) = g�1(!; !)14,for ! 2 �1(M), where the bilinear form on setions of the otangent bundleg�1 : �1(M) � �1(M) ! C1(M) is the inverse of the metri g. The norm isobtained by optimization of di�erentiation along a urve C(s):k[D; �(f)℄k = ki(df)k = supC ��������(ds)dfds�������� = supC ����������(ds)(ds) ����dfds����2����������1=2= supC ����������g�1(ds; ds) ����dfds����2����������1=2 = supC;x �����dfds����pg�1(ds; ds)� ; (3)where the supremum is taken over all points x 2 M and all urves C = C(s)through x.We onsider only urves where s is the ar length satisfying g�1(ds; ds) = 1.This means that js(p)� s(q)j = length( bpq) is the length of the urve onnetingp; q 2M . We write the di�erentiation in (3) as the limit of a di�erene quotient:supC;x ����dfds���� = supC;x limp!x; p2C ����f(x)� f(p)s(x)� s(p) ���� = supC;x limp!x; p2C jf(x)� f(p)jlength(xp) :4



This value is maximized if C is a geodesis onneting x and p, and insteadof varying C we an equivalently vary the point p that de�nes the geodesis C.Moreover, the following onsiderationjf(x)� f(p)j = ����Z xp dfdsds���� � ����Z xp ds���� maxq2xp ����dfds ���� = dist(x; p) maxq2xp ����dfds����shows that supx jf(x)� f(p)jdist(x; p) � supx limp!x jf(x)� f(p)jdist(p; q) :This gives k[D; �(f)℄k = supx6=p jf(x)� f(p)jdist(x; p) ; (4)as stated in [3, 4℄. Therefore, k[D; �(f)℄k � 1 implies jf(p)�f(q)j � dist(p; q) forall funtions f under onsideration and all points p; q, whih means dist(�p; �q) �dist(p; q). Taking in partiular the distane funtion itself, fp(q) = dist(p; q), onehas jfp(q1) � fp(q2)j = jdist(p; q1) � dist(p; q2)j � dist(q1; q2) due to the triangleinequality, therefore, k[D; �(fp)℄k � 1 on one hand and jfp(p)�fp(q)j = dist(p; q)on the other hand. This means dist(�p; �q) = dist(p; q).4 The matrix part of the standard modelThe L-yle of the matrix part of the standard model is the diret transriptionof the physial situation and was already presented in [22℄. The Hilbert spae isH = C 48 if we inlude right neutrinos. The Lie algebra is of ourseg = su(3)� su(2)� u(1)3 fg;a; eg � fi(P8j=1 gj�j) ; i(a�3+b�1+�2) ; eg ; (5)where �j are the Gell-Mann matries, �k the Pauli matries and gj; a; b; ; e 2 R.This Lie algebra ats on H via the representation�(g;a; e) = � �`(g;a; e) 00 �q(g;a; e) � ;�`(g;a; e) = 0BB� i(a� e)
 13 i(b� i)
 13 0 0i(b+ i)
 13 i(�a� e)
 13 0 00 0 03 00 0 0 �2ie
 13 1CCA; (6)�q(g;a; e) =0BB�(i(a+13e)13+g)
13 i(b�i)13
13 0 0i(b+i)13 
 13 (i(�a+13e)13+g)
13 0 00 0 (43 ie13+g)
13 00 0 0 (�23 ie13+g)
131CCA:5



The generalized Dira operator is the Yukawa operatorY = � Y` 00 Yq � ; (7)Y` = 0BB� 0 0 M� 00 0 0 MeM�� 0 0 00 M�e 0 0 1CCA; Yq = 0BB� 0 0 13 
Mu 00 0 0 13 
Md13 
M�u 0 0 00 13 
M�d 0 0 1CCA;where Me;�;u;d are 3� 3-mass matries of the fermions.The �rst and most diÆult part is to ompute the norm of funtionals � ong. The omputation onsists of two steps: that of the norm of �(g;a; e) andthat of the extrema of �(g;a; e)=k�(g;a; e)k. Let igi, g1 � g2 � g3, be theeigenvalues of g 2 su(3). As g is traefree, there are only the two possibilitiesg1 � g2 � 0 � g3=jg2j+jg1j and g1=�jg2j�jg3j � 0 � g2 � g3. It suÆes tostudy the �rst ase, beause the seond ase goes into the �rst one by inversionfg;a; eg 7! f�g;�a;�eg. Thus, we haveg1 � g2 � 0 � jg2j � 12g3 � jg1j � g3=jg1j+jg2j : (8)Denoting kak := pa2 + b2 + 2, the eigenvalues of �(g;a; e) are i times�e + kak ; �e� kak ; �2e ;13e + kak+ gi ; 13e� kak+ gi ; 43e + gi ; �23e+ gi ;so that the norm (=absolute value of the largest eigenvalue) beomesk�(g;a; e)k = max �jej+kak ; 2jej ; j13e+gij+kak ; j13e+gij+jej� : (9)For the further evaluation we draw the `left' graphs y = jej+kak, y =j13e+gij+kak and the `right' graphs y = 2jej, y = j13e+gij+jej into a e-y-diagram.The partial norm funtions of the `left' and `right' graphs areinterval right norm left norme � �32 jg1j �2e �e+kak�32 jg1j � e � �32(g3�jg1j) jg1j�43e jg1j�13e+kak� 32(g3�jg1j) � e � 0 g3�23e g3+13e+kak0 � e � 32g3 g3+43e g3+13e+kak32g3 � e 2e e+kak (10)
This table tells us that the left and right norms are ontinuous and pieewiselinear with orners ate 2 � � 32 jg1j ; �32(g3 � jg1j) ; 0 ; 32g3 	 : (11)6



The total norm is the maximum of both partial norms and varies as we vary kak.The topology of the total norm funtion hanges at those values of kak where aorner of the left norm passes a orner of the right norm. These values arekak 2 � 0 ; 32(g3 � jg1j) ; 32 jg1j ; 32g3 	 : (12)We onsider funtionals on su(3)� su(2)� u(1) of the form��;�;Æ(g;a; e) := �a+ �b+ + (2Æ � �)e+P8j=1 �jgj ;see (5) for the notation. In order to avoid the disussion of the eight parameters�j we adopt the following simpli�ation. The norm of � isk�k = supg2su(3) jP8j=1 �jgjj = kgk ;where g is represented in the standard matrix representation of su(3). We assume� to be suh that there is only one straight line through the origin in su(3) �= R8on whih the supremum of jP8j=1 �jgjj=kgk is attained. Under this ondition wean de�ne a sign of �. We put sign(g) = 1 if jg3j > jg1j (whih is our ase),sign(g) = �1 if jg3j < jg1j andsign(�) = sign(P8j=1 �jgj) sign(g) ; if jP8j=1 �jgjj = kgk k�k : (13)This sign is onstant on the maximal straight line (without 0), and we havesign(�) = �sign(��). We put � = sign(�) k�k.Our goal is to examine the extrema of the funtional F on g de�ned byF (g;a; e) = ��;�;Æ(g;a; e) = k�(g;a; e)k. We have shown in (10) that k�(g;a; e)kis a pieewise linear funtion of kak; e; g3; jg1j. Letting these parameters �xed,the extrema of ��;�;Æ(g;a; e) are taken at�a+ �b+  = �p�2 + �2 + 2pa2 + b2 + 2 � �k�k kak(put a = �(�=k�k) kak, b = �(�=k�k) kak,  = �(=k�k) kak). Moreover,we have P8j=1 �jgj = �kgk = �g3, see (13). Therefore, the andidates for��;�;Æ(g;a; e) being extremal form the plane�k�k kak+ (2Æ��)e+ �g3 :But this means that F is pieewise the quotient of �rst-order polynomials in thefour parameters kak; e; g3; jg1j and as suh takes its extrema at the boundariesof the domain. In our ase, these boundaries are the points spei�ed in (11)and (12). In order to �nd the extrema of F it suÆes to evaluate it at eahombination of the points (11) and (12). Moreover, we must take into aountthe various in�nities of e and kak orresponding to ase g = 0 and either e = 07



No e kak F1 �32 jg1j 0 �32(2Æ��)jg1j+ �g33jg1j2 �32 jg1j 32(g3�jg1j) �32((2Æ��)�k�k)jg1j+ (��32k�k)g33jg1j3 �32 jg1j 32 jg1j �32((2Æ��)�k�k)jg1j+ �g33jg1j4 �32 jg1j 32g3 �32(2Æ��)jg1j+ (��32k�k)g332(g3+jg1j)5 �32(g3�jg1j) 0 32 (2Æ��)jg1j+ (��32(2Æ��))g32g3�jg1j6 �32(g3�jg1j) 32(g3�jg1j) 32 ((2Æ��)�k�k)jg1j+ (��32((2Æ��)�k�k))g32g3�jg1j7 �32(g3�jg1j) 32 jg1j 32 ((2Æ��)�k�k)jg1j+ (��32(2Æ��))g312g3+2jg1j8 �32(g3�jg1j) 32g3 32 (2Æ��)jg1j+ (��32((2Æ��)�k�k))g32g3+12 jg1j9 0 0 �g3g310 32g3 0 (�+32(2Æ��))g33g311 32g3 32(g3�jg1j) �32k�kjg1j+ (�+32((2Æ��)�32k�k))g33g312 32g3 32 jg1j �32k�kjg1j+ (�+32(2Æ��))g33g313 32g3 32g3 (�+32((2Æ��)�k�k))g33g314 �M 0 �(2Æ��)M2M15 �M M (�k�k�(2Æ��))M2M16 M M (�k�k+(2Æ��))M2M17 0 M �k�kMMTable 1: The value of F at the orner points
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or kak = 0. The values of F at all these points are given in table 1. In thistable, we used that at e = 0 there is a orner only if kak = 0 and took the limitM !1. The resulting funtion F is still the quotient of �rst-order polynomialsif it depends on g1. The extrema are again attained at the boundaries jg1j = g3(supersript +) and jg1j = 12g3 (supersript �), see (8). This gives the followingabsolute values:jF j No in Tab. 1 jF j No in Tab. 1jÆ�12�� 13�j 1+; 2+ jÆ�12��23�j 1�; 5�jÆ�12�� 13�j+12k�k 3+; 4+ jÆ�12��23�j+12k�k 2�; 3�; 6�; 7�23 jÆ�12��23�j+23k�k 4�; 8� j�j 5+; 6+; 925 j�j+35k�k 7+; 8+ jÆ�12�+13�j 10; 11+jÆ�12�+13�j+14k�k 11�; 12� jÆ�12�+13�j+12k�k 12+; 13jÆ�12�j 14 jÆ�12�j+12k�k 15; 16k�k 17After seleting the strongest onstraints we �nd for kFk = max jF jkFk = max � j�j ; k�k ; jÆ�12��16�j+12k�k+12 j�j � : (14)The requirement kFk = k��;�;Æk = 1 yields the following onstraints:j�j � 1 ; k�k � 1 ; jÆ�16�� 12�j+ 12k�k � A ; A := 1�12 j�j ; (15)where at least one of these onstraints must be an equality. The �rst onlusionis jÆ�16�j � A, whih we satisfy byÆ = 16� + A os� ; 0 � � � � : (16)This gives with k�k2 = �2 + �2 + 2 the equationjA os�� 12�j+ 12p�2 + �2 + 2 = A ;whih leads (for the admissible range of � to be spei�ed below) to�2 + 2 = 4(A� A os�)2 � 4�(A� A os�) ; for � R 2A os� : (17)What we obtain is thus a pair of paraboloids, whih we an parametrize as follows:� = A(os �+ os �0) ; 0 � �0 � � ;�2 + 2 = � 4A2(1 + os�)(1� os�0)4A2(1� os�)(1 + os�0) for os� � os�0os� � os�0 (18)9
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� �(1)(2)(3)(4) (4)(5) (5)(6) (6)(6) (6)? Figure 2: Domain of �; Ædetermining the shape ofthe gyroHowever, we still have to take the ondition k�k � 1 into aount, whih isthe 2-sphere of radius 1. This sphere will somewhere interset the paraboloids(18) so that the total geometry is the omposition of the sphere with one ortwo paraboloids replaing the sphere's polar regions. We all suh an objet agyro, whih is the surfae of a ball whose polar regions are rotary-grinded toparaboloids. Formulae (18) are equivalent to k�k = A(2�j os�� os�0j), whihdetermines the intersetion parallels of latitude as j os�� os �0j = 2�2j�j2�j�j . Thus,for os�0� os � � 2�2j�j2�j�jj os�� os �0j � 2�2j�j2�j�jos�� os�0 � 2�2j�j2�j�j 9>=>; we are on the 8<: northern paraboloidspheresouthern paraboloid (19)This situation is worth disussing. One has to hoose � 2 [�1; 1℄ and os� 2[�1; 1℄, whih yields Æ aording to (16) and (15). Next, one hooses os�0 2[�1; 1℄ and determines from (19) to whih rotary body this value belongs. Theheight parameter � and in the paraboloid ases the radiusp�2 + 2 are obtainedfrom (18). In the spherial ase we have of ourse p�2 + 2 = p1� �2. Somespeial ases of these gyros are interesting (see �gure 2):(1) � = 0; Æ = 0:This is the pure sphere of radius 1.(2) 0 < j�j < 1 ; 16�+12 j�j � Æ < 1+16�� 12 j�j:The southern part of the sphere is rotary-grinded to a paraboloid.(3) 0 � j�j < 1 ; �1+16�+12 j�j < Æ � 16�� 12 j�j:The northern part of the sphere is rotary-grinded to a paraboloid.(4) 0 < j�j < 1 ; 16�� 12 j�j < Æ < 16�+12 j�j:Both the northern and southern parts of the sphere are rotary-grinded toparaboloids but some region of the sphere remains. An example of thissituation is shown in �gure 1. 10



(5) j�j = 1 ; Æ 6= �1+16�� 12 j�j:The sphere is rotary-grinded to a lense omposed of two paraboloids.(6) �1 � � � 1 ; Æ = �1+16�� 12 j�j:The sphere is rotary-grinded to a string of length 1.� jÆ�16�j � 12� 12 j�j:The sphere's equator belongs to the gyro so that the maximal radius is 1.� 1�12 j�j � jÆ�16�j � 12� 12 j�j:One paraboloid passes the sphere's equator and the maximal radius isq1� 2(12�12 j�j�jÆ�16�j)2.� The height of the gyro is 2�(jÆ�16�j+12 j�j) in ases (1),(2),(3),(6) and 2�j�jin ases (1),(4),(5),(6).We now derive the metri properties of these gyros. The �rst step is toompute k[Y; �(g;a; e)℄k, whih we demand to be bounded by 1. The alulationsplits into that for leptons (`) and quarks (q), see (6) and (7). We on�ne ourattention to the quark setor. It is onvenient to use the C�-property and toevaluate[Yq; �q(g;a; e)℄�[Yq; �q(g;a; e)℄ = � L 00 R � ; (20)L =0BB� (a�e)213 
MuM�u+(b2+2)13 
MdM�d (a�e)(b�i)13 
 (MuM�u�MdM�d)(a�e)(b+i)13 
 (MuM�u�MdM�d) (b2+2)13 
MuM�u+(a�e)213 
MdM�d 1CCA;R = � ((a�e)2+b2+2)13 
M�uMu 00 ((a�e)2+b2+2)13 
M�dMd � :Unitary transformation ULU� of the left setor L, withU = � os �13 
 13 ei� sin �13 
 13� sin �13 
 13 ei� os �13 
 13 � 2 U(2)13 
 13 ;os � = a�ep(a�e)2+b2+2 ; sin � = pb2+2p(a�e)2+b2+2 ; ei� = b�ipb2+2 ;yields the matrix((a�e)2+b2+2) diag(13
MuM�u ; 13
MdM�d ; 13
 M�uMu ; 13
M�dMd) :Thus, the eigenvalues of [Y; �(g;a; e)℄�[Y; �(g;a; e)℄ are ((a� e)2 + b2 + 2) timesthe squared fermion masses and, beause the mass of the top quark mt is thelargest one, we havek[Y; �(g;a; e)℄k =p(a� e)2 + b2 + 2mt : (21)11



The seond step is to ompute��;�;Æ(g;a; e)� ��0;�0;Æ0(g;a; e)= (���0)(a�e) + (��� 0)b + (�0)+ 2(Æ�Æ0)e+P8i=1(�j��j 0)gj :For Æ 6= Æ0 take (g; a; b; ; e) = (0; a; 0; 0; a), whih on one hand givesk[Y; �(0; a; 0; 0; a)℄k = 0 for all a and on the other hand j��;�;Æ(0; a; 0; 0; a) ���0;�0;Æ0(0; a; 0; 0; a)j = 2jÆ�Æ0j jaj, whih is obviously unbounded. The same ef-fet happens if there is �j 6= �j 0 for at least one j = 1; : : : ; 8. In other words, thedistane between funtionals with di�erent f�; Æg is in�nite.Let us thus ompute the distane between funtionals with �xed f�; Æg:j��;�;Æ(g;a; e)� ��;�0;Æ(g;a; e)j = j(���0)(a�e) + (��� 0)b + (�0)j :Under the ondition k[Y; �(g;a; e)℄k = p(a� e)2 + b2 + 2mt � 1, this numberis bounded bydist(�;�0)=mt �p(���0)2 + (��� 0)2 + (�0)2 =mt : (22)This means that the spae of funtionals ��;�;Æ, for �xed parameters f�; Æg, isjust the Eulidean spae R3 equipped with the usual Eulidean distane (saledby 1=mt). If we restrit the funtionals ��;�;Æ and ��;�0;Æ to be points on a gyroof funtionals of norm 1, their distane is equal to the Eulidean length (inunits of 1=mt) of the string through the interior that onnets the points on thegyro. Gyros assoiated to di�erent parameters f�; Æg are in�nitely distant fromeah other. Thus, the geometry of the standard model matrix L-yle is a nine-parametri family (the parameters are �j and Æ) of in�nitely distant gyros. Thispiture has a natural physial interpretation. The three massive Yang{Mills �eldsW� and Z yield in a �rst step R3 and the norm=1 requirement selets a ertainhypersurfae in R3 { our gyro. The nine-dimensional disonnetedness reetsthe nine massless Yang{Mills �elds (photon and gluons) of the standard model.Again, the norm=1 ondition selets a ompat region of R9 as shown in �gure2.5 The ontinuous part of the standard modelNow we add spaetime to investigate the metri struture of the ontinuous partof the standard model. We only onsider funtionals ong = C1(M)
 �su(3)�su(2)�u(1)� 3 �g;a; e�whih are of the form��;�;Æ;p(g;a; e) := �a(p) + �b(p) + (p) + (2Æ��)e(p) + 8Xj=1�jgj(p) ; (23)12



with f�;�; Æg �xed for all funtionals under onsideration. Here, e is a funtionon M and e(p) its value at the point p 2 M , and so on. Moreover, we evaluatethe distane by means of the Dira operator D = i�/ of the spin onnetion. TheHilbert spae is H = L2(S)
 C 48 and the representation � : g! B(H) oinidespointwise with the matrix representation (6).We investigate the following problem: For given p; q 2M �nd the supremumof j��;�;Æ;p(g;a; e)� ��;�;Æ;q(g;a; e)j= ���(a(p)�a(q)) + �(b(p)�b(q)) + ((p)�(q)) (24)+ (2Æ��)(e(p)�e(q)) +P8j=1 �j(gj(p)�gj(q))��under the ondition [see (2)℄k[i�/ ; �(g;a; e)℄k = k��(dg); (da); (de)�k � 1 : (25)In the same way as in setion 3 we an replae in (25) partial di�erentia-tions by di�erentiations along urves. Note that eah of the 12 real funtionsparametrizing g is di�erentiated independently, and the supremum is found byoptimization of these 12 urves. Di�erentiation along a ommon urve yields asmaller value than the norm, so that (25) impliessupC ��������(ds)
 ��dgds ; dads ; deds��������� � z � 1 : (26)If s is the ar length we have ((ds))2 = 14, see (3), so that (ds) an be diago-nalized to a matrix ontaining �1 on the diagonal. This yields with (9)z � supC ��������(ds)
 ��dgds ; dads ; deds���������= supC;x max� ����deds ����+��������dads �������� ; 2 ����deds���� ; ����13 deds+dgids ����+��������dads �������� ; ����13 deds+dgids ����+����deds���� �:As in setion 3 we an replae the optimized di�erentiation by an optimizeddi�erene quotient, see the steps from (3) to (4). The result isz � supp6=q n 1dist(p; q) max � je(p)�e(q)j+ka(p)�a(q)k ; 2je(p)�e(q)j ;j(13e+gi)(p)�(13e+gi)(q)j+ka(p)�a(q)k ;j(13e+gi)(p)�(13e+gi)(q)j+je(p)�e(q)j �o ;
13



whih gives for any p; q 2M , p 6= q, the inequality1dist(p; q) max � je(p)�e(q)j+ka(p)�a(q)k ; 2je(p)�e(q)j ;j(13e+gi)(p)�(13e+gi)(q)j+ka(p)�a(q)k ;j(13e+gi)(p)�(13e+gi)(q)j+je(p)�e(q)j � � ~z ; (27)
with 0 < ~z � z � 1. Comparison with our previous problem (to �nd max jF j) insetion 4 suggests the replaementsa(p)�a(q) 7! â dist(p; q) ; e(p)�e(q) 7! ê dist(p; q) ;(13e+gi)(p)� (13e+gi)(q) 7! (13 ê+ĝi) dist(p; q) ;where â 2 su(2), ê 2 R, and iĝi 2 iR are the eigenvalues of ĝ 2 su(3). Then, ourproblem (24){(25) redues to the matrix problemdist(��;�;Æ;p; ��;�;Æ;q) = supĝ;â;ê�dist(p; q) j��;�;Æ(ĝ; â; ê)j : k�(ĝ; â; ê)k � ~z 	 :But this means nothing else thandist(��;�;Æ;p; ��;�;Æ;q) = ~z dist(p; q) k��;�;Æk = ~z dist(p; q) � dist(p; q) ; (28)beause the funtionals ��;�;Æ satisfy k��;�;Æk = 1 if f�;�; Æg determine a gyro.We will now prove that (28) is atually an equality. For this purpose weonsider optimized matries multiplied by the distane funtion:ap(x) = dist(p; x) â ; gp(x) = dist(p; x) ĝ ; ep(x) = dist(p; x) ê ; (29)k�(ĝ; â; ê)k = 1 ; j�â+ �b̂+ ̂+ (2Æ��)ê+P8j=1 �j ĝjj = 1 :This gives for (25)k[i�/ ; �(gp;ap; ep)℄k = supx j�/(dist(p; x))j k�(ĝ; â; ê)k = 1due to (4) on one hand and on the other hand for (24)j��;�;Æ;p(gp;ap; ep)� ��;�;Æ;q(gp;ap; ep)j= dist(p; q) ���â+ �b̂+ ̂+ (2Æ��)ê+P8j=1 �j ĝj�� = dist(p; q) : (30)Hene, we get the nie result that the distane between funtionals ��;�;Æ;p (�;�; Æ�xed and determining a gyro, p variable) is equal to the geodesi distane betweenthe points p 2 M . However, this result is preliminary beause the standardmodel Dira operator is not i�/ (as we used in this setion) but the Dira{Yukawaoperator that involves the fermioni mass matrix Y , see (7).14



6 The full standard modelHere we unite matrix part and ontinuous part to the full standard model. Weompute the distane between funtionals (23), where we now permit a variationof f�;�; Æg. Moreover, we evaluate the metri with the full Dira-Yukawa op-erator D = i�/ + 5Y , whih is the sum of the previous ases. Lie algebra andHilbert spae are as in setion 5. We have to �nd the supremum ofj��;�;Æ;p(g;a; e)� ��0;�0;Æ0;q(g;a; e)j=���(a(p)�a(q)) + �(b(p)�b(q)) + ((p)�(q))+(2Æ��)(e(p)�e(q)) +P8j=1 �j(gj(p)�gj(q))+(���0)(a(q)�e(q)) + (��� 0)b(q) + (�0)(q)+2(Æ�Æ0)e(q) +P8j=1(�j��j 0)gj(q)�� (31)
under the onditionku+ vk � 1 ; u := [i�/ ; �(g;a; e)℄ ; v := 5[Y; �(g;a; e)℄ : (32)The exat solution of the problem (31){(32) would involve the diagonalizationof 4� 4-matries, whih is too ambitious. We therefore will give an exat lowerbound for the distane and estimate an upper bound. The lower bound is foundby investigation of the extremal ases u = 0 or v = 0. The ase u = 0 is ahievedby taking onstant matries and leads bak to setion 4. It is lear that thedistane is in�nity unless we require Æ = Æ0 and � = �0. Under this ondition, theresult (22) holds and we getdist(��;�;Æ;p; ��;�0;Æ;q) � dist(�;�0) =mt : (33)We now adjust v = 0, whih means a = e and b =  = 0. The lesson of setion5 was that the optimum is attained in the lass (dist(p; x) times an appropriatematrix) of elements of g. This lass orresponds to the �rst line of (29), withâ = ê and b̂ = ̂ = 0. From (30) we onludedist(��;�;Æ;p; ��;�0;Æ;q) � dist(p; q) supê;ĝ j2Æê+�ĝ3jk�(ĝ; ê; ê)k :The searh for the extrema of F̂ = (2Æê+�ĝ3)=�(ĝ; ê; ê) is easier than the problemsolved in setion 4. From (6) we see that the left and right norms are idential
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and equal to the right norm in (10). The table orresponding to table 1 reads:No ê F̂1 �32 jĝ1j �3Æjĝ1j+ �ĝ33ĝ12 �32(ĝ3�jĝ1j) 3Æjĝ1j+ (��3Æ)ĝ32ĝ3�jĝ1j3 0 �ĝ3ĝ34 32 ĝ3 (�+3Æ)ĝ33ĝ35 �M �2MÆ2MThis yields kF̂k = B = max(j�j; jÆ�16�j+12 j�j) � 1) dist(��;�;Æ;p; ��;�0;Æ;q) � B dist(p; q) : (34)Thus, dist(��;�;Æ;p; ��;�0;Æ;q) is bounded up to the sale fator B by the spaetimedistane dist(p; q), where B beomes 1 only on the boundary of the parameterregion f�; Æg of allowed gyros (�gure 2).If we now rise ja � ej; jbj; jj, then the distane will also grow at �rst due tothe part �(a�e)(p)��0(a�e)(q)+ �b(p)�� 0b(q)+ (p)�0(q) in (31). But verysoon this growth is ompensated by the neessity to derease u at expense of thegrowth of v. We havej�(a�e)(p)��0(a�e)(q) + �b(p)�� 0b(q) + (p)�0(q)j� 2 supx p(a�e)2 + b2 + 2 � 2=mtfor kvk = k5vk � 1, see (21). This meansdist(��;�;Æ;p; ��;�0;Æ;q) � B dist(p; q) + 2=mt ;and we �nd the �nal resultmax�B dist(p; q) ; dist(�;�0)=mt	� dist(��;�;Æ;p; ��;�0;Æ;q) � B dist(p; q) + 2=mt : (35)The preise value of dist(��;�;Æ;p; ��;�0;Æ;q) is not so important, its boundednesssuÆes for a physial disussion. 16



7 Physial interpretationNote that dist(�;�0)=mt � 2=mt � 2:3 � 10�16 m. No measurement deviefor marosopi distanes has a preision of 10�16 m. Hene, for geodesi dis-tanes dist(p; q) of atomi size or larger, the geometry of the standard model isin aurate agreement with B times the Riemannian geometry of the underlyingmanifold. At sales of the order of the inverse top quark mass however, orre-sponding to energies of the order 100GeV, spaetime should reveal a ompletelydi�erent struture. That what marosopially is a point beomes an extendedobjet { a gyro.As we have seen, there is a nine-parametri family of in�nitely distant worlds(or universes) whose points (on marosopi sales) are gyros (on sales 1=mt).The sale fator B is onstant on eah world. At �rst glane, this unobservedsale fator B seems to favour the onlusion that in our world values for �; Æare realized whih are on the boundary of the allowed values (�gure 2). Thismeans that the gyros would be degenerated to strings or lenses. However, weshould remember that we annot see the \atual" spaetime manifold M . Allour measurements are only able to detet the \derived" geometry, whih is Btimes the true one. And as the atual manifold is not relevant, there is noproblem in saying that the true geometry is (1=B) times the measured geometry.This means that any of the allowed values for f�; Æg aording to �gure 2 (exept�=Æ=0) ould be realized in our universe. The laws of physis should be the sameon eah world exept for e�ets due to di�erent sale fators B, whih ertainlylead to di�erent \onstants" of nature.This piture of the geometry of our world is probably not ultimate knowledge.The standard model is in aurate agreement with experiment only beause to-day's experiments have a maximal resolution of the order 10�16 m. At thisresolution, spaetime onsists of gyros. But this does not exlude the possibilitythat at higher resolutions the gyros show a �ne struture in the sense that eahof its points is a higher dimensional objet itself. Grand uni�ed theories for ex-ample ontain further massive Yang{Mills �elds and a plenty of additional Higgs�elds. We therefore expet that further dimensions beome apparent at GUTsales (1015 : : : 1016GeV).In other words, we reover the old Kaluza{Klein idea [18, 19℄ of additionalspaetime dimensions, whih are ompati�ed to very small size so that theyare not apparent in every day's life. The attempt to dedue the fundamentalinterations from higher dimensional Riemannian geometry has a long history[18, 19, 23, 24, 20℄. But this approah has a severe shortoming. One has tomake a guess for the higher dimensional spaetime and then to redue dimensionsin order to obtain an e�etive theory in four dimensions. Although Manton hasalready found [20℄ the six-dimensional geometry of the Salam-Weinberg model(whih in some sense oinides with our result), this trial-and-error method was17



not very e�etive after all. We simply took the other diretion: We startedfrom the experimentally well-on�rmed standard model (Lie algebra, fermioniHilbert spae, fermioni mass matrix) and omputed diretly the orrespondingsmall sale geometry. The essential progress (apart from its e�etiveness) ofour method lies in the fat that it implements hiral fermions from the verybeginning { an obstale for traditional Kaluza{Klein theories. Moreover, weobtain a geometri interpretation of the unbroken symmetries: They parametrizethe opies of the world.Now the question arises: What was wrong with previous Kaluza{Klein theo-ries? | The physial interpretation! One has mostly attempted to identify theadditional dimensions with Yang{Mills �elds. This is orret in so far as thegyros are hypersurfaes in R3 , beause the standard model ontains three mas-sive Yang{Mills �elds. A di�erent explanation is that the gyros are deformationsof the 2-sphere S2 �= SU(2)=U(1), whih ould be related to the spontaneouslybroken symmetry group. But the size and shape of the gyros are �xed, there isno geometry other than dimension related to Yang{Mills �elds. The geometryof the gyros is rather related to the Higgs �eld. This beomes apparent if oneadopts ideas of the Chamseddine{Connes approah of nonommutative geome-try [15℄. There, one studies the spetral geometry of the full Dira operator DAwhih inludes Yang{Mills �elds and Higgs �elds. Let us drop the Yang{Mills�elds. Any nonommutative formulation of the standard model tells us that theDira{Yukawa{Higgs operator is obtained from the Dira{Yukawa operator byreplaing all fermion masses mi by �mi, where � is the Higgs �eld whose vauumexpetation value h�i0 equals 1. Now, the distane sale on the gyro beomes1=(�mt) instead of 1=mt, and is therefore subjet to hange if the Higgs �eldvaries.Thus, we handle the gyros on the same footing as Riemannian spaes M .Introduing oordinates x = fx0; x1; x2; x3g on M , the distane between pointsx; x0 is not the Eulidean distane kx� x0k but obtained on in�nitesimal level bytaking the metri tensor g�� into onsideration, (ds)2 = g��dx�dx� . Just as theHiggs �eld on the rigid gyro, the metri tensor determines the sale on the rigidoordinate spae. The analogy between metri tensor and Higgs �eld as the saleon oordinate spae goes further: Both have non-vanishing vauum expetationvalue: hg��i0 = ��� (or Æ�� in Eulidean framework; ��� is the Minkowski tensor)and h�i0 = 1. The diameter of the gyro is determined by the inverse top quarkmass or, equivalently [22℄, by the inverse mass of the Higgs boson (see also [20℄).Our analogy then implies that the diameter of the oordinate spae of the fourdimensional manifold should be of the order of the inverse mass of the graviton,and therefore equal to in�nity. This explains why four oordinates are expandedwhereas the internal oordinates are ompati�ed. Einstein told us [25, 26℄ thatmasses determine the geometry of spaetime { on large sales. Our result is theinverse: the small sale struture of spaetime (gyros) tells us that there exist18
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