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2 The Hopf algebra of Connes{MosoviiIn priniple, the Hopf algebra of Connes and Mosovii an be understood fromlassial di�erential geometry [7℄. We give here a somewhat shortened version ofthe derivation and refer to [8℄ for more details. We reommend [9℄ for a usefulintrodution to Hopf algebras and related topis.We regard the frame bundle F+ of a manifoldM and in partiular the vetor�elds on F+. There is a natural notion of vertial vetor �elds, these are thetangent vetors to urves in F+ obtained by the right ation of the group Gl+(n)of n� n matries with positive determinant. The horizontal vetor �elds are notanonially given, they are determined one a onnetion is spei�ed. For ourpurpose we an work in loal oordinates.Let fx�g�=1:::;n be the oordinates of x 2 M within a loal hart of M andfy�i g�;i=1;:::n be the oordinates of n linearly independent vetors of the tangentspae TxM with respet to the basis ��. On F+ there exist the following geomet-rial objets, written in terms of the loal oordinates (x�; y�i ) of p 2 F+:1) an Rn -valued (soldering) 1-form � with �i = (y�1)i�dx� ;2) a gl(n)-valued (onnetion) 1-form ! with !ij = (y�1)i�(dy�j + ���� y�j dx�),where ���� depends only on x� ;3) n2 vertial vetor �elds Y ij = y�j �i� ;4) n horizontal (with respet to !) vetor �elds Xi = y�i (�� � ����y�j �j�) :A loal di�eomorphism  of M has a lift ~ : (x�; y�i ) 7! ( (x)�; �� (x)�y�i )to the frame bundle and indues the following transformations of the previousgeometrial objets:10) ( ~ ��)��p = ���p :20) ( ~ �!)��p = (y�1)i�(dy�j + ~���� y�j dx�) is again a onnetion form, with~������x = ((� (x))�1)� �Æ��� (x) �� (x)Æ�� (x)� + ((� (x))�1)� ���� (x) ;30) ( ~ �Y ji )��p = Y ji ��p ;40) ( ~ �1� Xi)��p = y�i (�� � ~����y�j �j�) is horizontal to ~ �! :We refer to [8℄ for the proof.Given these tools of lassial di�erential geometry, the new idea is to applythe vetor �elds X; Y to a rossed produt A = C1 (F+)>/� of the algebra ofsmooth funtions on F+ with ompat support by the ation of the pseudogroup� of loal di�eomorphisms of M . As a set, A an be regarded as the tensorprodut of C1 (F+) with �. It is generated by the monomialsfU� ; f 2 C1 (Dom( ~ )) ;  2 � ; (1)2



where ~ is the di�eomorphism of F+ obtained as the lift of  2 �. As an algebra,the multipliation rule in A is de�ned byf1U� 1 f2U� 2 := f1(f2 Æ ~ 1)U� 2 1 : (2)Here, the funtion f1(f2 Æ ~ 1) evaluated at p (in the domain of de�nition) givesf1(p) f2( ~ 1(p)), i.e. we have a non-loal produt on the funtion algebra.The ation of vetor �elds on A is de�ned as the ation on the funtion part.Interesting is the appliation to the produt (2), beause the non-loality in thefuntion part leads to a deviation from the Leibniz rule. For V being a vetor�eld on F+ one omputesV (f1U� 1 f2U� 2) = V (f1U� 1) f2U� 2 + f1U� 1 � ~ 1�(V )��f2U� 2� : (3)Sine di�eomorphisms and right group ation ommute, we get the unhangedLeibniz rule for the vertial vetor �elds,Y ji (ab) = Y ji (a) b+ a Y ji (b) ; a; b 2 A : (4)For the horizontal vetor �elds, however, there will be an additional terma( 1�Xi �Xi)(b). Comparing 4), 40) and 3) above we have  1�Xi �Xi = ~ÆkjiY jk ,for some funtion ~Ækji. Using (2) we ommute this funtion in front of a and obtainXi(ab) = Xi(a) b+ aXi(b) + Ækji(a)Y jk (b) ; a; b 2 A : (5)The operator Ækji on A is omputed toÆkji(fU� ) = (~���� � ����)y�j y�i (y�1)k�fU� ; (6)where ~���� are the onnetion oeÆients belonging to ~ �!. It turns out that Ækjiis a derivation: Ækji(ab) = Ækji(a) b+ a Ækji(b) : (7)These formulae an now be interpreted in the dual sense, for instaneXi(ab) =�(Xi) (a 
 b), whih leads to a struture of a oalgebra on the linear spaeR(1; Xi ; Y jk ; Ækji), �(Y jk ) = Y kj 
 1 + 1
 Y jk ;�(Xi) = Xi 
 1 + 1
Xi + Ækji 
 Y jk ; (8)�(Ækji) = Ækji 
 1 + 1
 Ækji ;�(1) = 1
 1 ;with 1 being the identity on A. Coassoiativity (� 
 id) Æ� = (id
 �) Æ� iseasy to hek.Vetor �elds form a Lie algebra, so the next step is to ask whetherR(1; Xi ; Y jk ; Ækji) lose under the Lie braket. The �rst ommutators are OK,[Y ij ; Y kl ℄(fU� ) = (ÆilY kj � Ækj Y il )(fU� ) ;[Y kj ; Xi℄(fU� ) = ÆkiXj(fU� ) ; (9)[Y ij ; Æklm℄(fU� ) = (ÆilÆkjm + ÆimÆklj � Ækj Æilm)(fU� ) :3



The next one between horizontal �elds[Xi; Xj℄ = RklijY lk +�kijXk (10)leads to new generators, beause urvature R and torsion � are no struture`onstants'. Therefore, one uses a di�erent strategy and onsiders instead of A aMorita equivalent algebra A0 based on a at manifold N = `U� { the disjointunion of the harts U� of M . Now, there is neither urvature nor torsion, andhorizontal vetor �elds ommute. There remain the ommutators of X with Æ,whih lead indeed to new generators of the Lie algebra:Ækji;`1:::`n(fU� ) := [X`n; : : : ; [X`1; Ækji℄ : : :℄(fU� ) (11)= ��n : : : ��1�((� (x))�1)�� ���� (x)��y�j y�i (y�1)k� y�1`1 � � � y�n`n fU� :All these generators Ækji;`1:::`n ommute with eah other.Now having established a Lie algebra, we all H its enveloping algebra, i.e.the algebra of polynomials in f1; Xi; Y kj ; Ækji; Ækji;`1:::`n:::g, with the ommutationrelations inherited from the Lie algebra. With the oprodut � on the Lie algebra,H beomes automatially a bialgebra, where the oprodut is de�ned via thealgebra homomorphism axiom:�(h1h2) = �(h1)�(h2) :=X h11h12 
 h21h22 ; �(hi) =Xh1i 
 h2i ; (12)for h1; h2 2 H. The ounit � : H ! C is de�ned by"(1) = 1C ; "(h) = 0 8h 6= 1 : (13)The ounit axiom (" 
 id) Æ �(h) = (id 
 ") Æ �(h) = h is straightforward tohek.There also exists an antipode on H whih makes it to a Hopf algebra. Theantipode is the unique antiautomorphism of H satisfyingS(h1h2) = S(h2)S(h1) ;m Æ (S 
 id) Æ�(h) = 1"(h) = m Æ (id
 S) Æ�(h) ; (14)for h; h1; h2 2 H, and where m denotes the multipliation. From the seond lineand (8) one easily obtains S(1) = 1 ;S(Y jk ) = �Y jk ;S(Ækji) = �Ækji ; (15)S(Xi) = �Xi + ÆkjiY jk :The ation of S on the other generators of H an be derived from (14).The purpose of this Hopf algebra H is to ease the omputation [3℄ of oylesin the loal index formula [2℄ of Connes and Mosovii. So far I did not studythis alulation for myself, but I think a good way to learn it would be to onsult[10℄. 4



3 Rooted treesCoprodut and antipode for the generators Ækji;`1:::`n::: are only reursively de�nedvia the axioms of oprodut and antipode. Now we are going to present an expliitsolution { via the onept of rooted trees. This was introdued by Connes andKreimer [5℄ to larify the relation between the two Hopf algebras in the theoryof foliations and in perturbative quantum �eld theory. We generalize [8℄ theironstrution from dimension 1 to arbitrary dimension of the manifoldM . To the�rst three lasses of Æ's we assoiate the following trees:Ækji = � kji ;Ækji;l = � kji� l ;Ækji;lm = � kji� l� m + � kji�� AA� l � m : (16)The rule is obvious. A symbol Ækji;A`, for A a string of jAj indies, is obtainedfrom Ækji;A =PjAj!a=1 tjAja by attahing to eah of its trees tjAja a new vertex with label` suessively to the right of eah vertex. The root (with three indies) remainsthe same and order is important.Coprodut and antipode require the de�nition of uts of a tree. An elementaryut along a hosen edge splits a tree into two { the trees above (trunk) and below(ut branh) the ut. It is lear that we have to add 2 indies to omplete the rootof the ut branh. This will be a pair of summation indies. We de�ne the ationof a ut as the shift of one index of the vertex above the ut to the �rst positionof the new root of the ut branh. The remaining position to omplete the root ofthe ut branh is �lled with a summation index and the same summation indexis put into the vaant position of the trunk. In the ase of utting immediatelybelow the root, we have to sum over the three possibilities of piking up indies ofthe root, adding a minus sign if we pik up the unique upper index. The followingexamples illustrate the de�nition of a ut, where we write the trunk as the rhs ofthe tensor produt and the ut branh as the lhs:� kji|� l = � ajl 
 � kai + � ail 
 � kja � � kal 
 � aij ;� kji�� AA|� l � m = � ajm 
 � kai;l + � aim 
 � kja;l � � kam 
 � aji;l ;� kji|� l� m = � alm 
 � kji� a : (17)A multiple ut onsists of several elementary uts, where the order of uts is fromtop to bottom and from left to right. An admissible ut is a multiple ut suhthat on the path from any vertex to the root there is at most one elementary ut.5



The produt of all ut branhes forms the lhs of the tensor produt, whereas thetrunk alone ontaining the old root serves as the rhs.The purpose of these de�nitions is to give an expliit formula for oprodutand antipode. Indeed, by indution one an prove the following:Proposition 1 The oprodut of Ækji;A =PjAj!a=1 tjAja is given by�(Ækji;A) = Ækji;A 
 1 + 1
 Ækji;A + jAj!Xa=1XC P C(tjAja )
 RC(tjAja ) ; (18)where for eah tjAja the sum is over all admissible uts C of tjAja . In eq. (18),RC(tjAja ) is the trunk and P C(tjAja ) the produt of ut branhes obtained by uttingtjAja via the multiple ut C.Proof. We start from�(Ækji;A`) = [�(Ækji;A);�(X`)℄ = Ækji;A` 
 1 + 1
 Ækji;A` +Rkji;A` ;Rkji;A` = [X` 
 1 + 1
X`; Rkji;A℄ + [Æmn` 
 Y nm; Rkji;A + (1
 Ækji;A)℄ 2 H 
H :By de�nition of the tree, the ommutator with X` attahes a vertex ` suessivelyto all previous verties, where X` 
 1 attahes to the ut branhes and 1 
 X`attahes to the trunk. Next, the ommutator with Æmn` 
 Y nm puts for eah vertexof the trunk (due to the ommutator with Y ) a ut branh onsisting of a singlevertex to the lhs of the tensor produt. Both ontributions together yield preiselyall admissible uts of the trees orresponding to Ækji;A`.The antipode is obtained by applying the antipode axiom mÆ (S
 id)Æ� = 0to (18). By reursion one provesProposition 2 The antipode S of Ækji;A =PjAj!a=1 tjAja is given byS(Ækji;A) = �Ækji;A � jAj!Xa=1XCa (�1)jCaj P Ca(tjAja )RCa(tjAja ) ; (19)where the sum is over the set of all non-empty multiple uts Ca of tjAja (multipleuts on paths from bottom to the root are allowed) onsisting of jCaj individualuts.4 Feynman graphs and rooted treesIn a perturbative quantum �eld theory it is onvenient to symbolize ontribu-tions to Green's funtions by Feynman graphs. These Feynman graphs stand foranalyti expressions of momentum variables. Internal momentum variables haveto be integrated out. Very often some of these integrations formally yield in�nity.The art of obtaining meaningful results out of these integrals is alled renormal-ization. A entral problem is the existene of subdivergenes whih annot beregularized by a simple subtration of the divergent part. Bogoliubov [11℄ found6



a reursion formula for the regularization of Feynman graphs with subdivergenesand Zimmermann gave an expliit solution { the forest formula [12℄.In 1997 Dirk Kreimer disovered [4℄ that there is the struture of a Hopfalgebra behind this art of renormalization, with the ombinatoris of the forestformula produed by the antipode. Kreimer's idea was to visualize the divergenestruture of Feynman graphs in terms of parenthesized words, whih are in 1:1orrespondene to rooted trees [5℄. Let us exemplify this idea by a Feynmangraph from QED:
�4 52 31 = � v5���v4 ��� p3���s1 ��� v2 (20)

Straight lines stand for fermions and wavy lines for bosons, and the boxes ontaindivergent setors. A riterion for super�ial divergene of a region on�ned ina box is power ounting. If a box has nB bosoni and nF fermioni outgoinglegs, the power ounting degree of divergene d is (in four dimensions) de�ned byd := 4� nB � 32nF � 0. Owing to symmetries the atual degree of divergene ofone graph or a sum of graphs an be lower than d, see [13℄. The onstrution ofthe rooted tree from the Feynman graphs with identi�ed divergent setors is lear:The outermost (super�ial) divergene (5) is the root v5. The box (5) ontainsthe boxes (3) and (4) as immediate subdivergenes, hene we onnet two vertiesp3 and v4 diretly to the root v5. The box (4) ontains the subdivergenes (1)and (2), so we attah the verties s1 and v2 to v4. This works as long as there areno overlapping divergenes, whih must be resolved before in terms of disjointand nested ones and lead to a sum of rooted trees [14, 15℄.Having identi�ed the trees to Feynman graphs, it are the same utting opera-tions on trees as before whih give us oprodut and antipode. Here, a ut splitsa Feynman graph into several subgraphs { a standard operation in renormaliza-tion. It is very remarkable that the antipode obtained in this way reprodues theombinatoris of renormalization [4℄. These surprising fats have been extendedto a omplete renormalization of a toy model [16℄, whih we review in the nextsetion.Before, let us ask an interesting question: What is the role of the operatorsÆkji;`1:::`n in quantum �eld theory, and what is the meaning of the individual treesfor di�eomorphisms? I am not aware of an answer, but there is an interestingobservation [8℄ onerning the relation of the deorated rooted trees (16) to Feyn-man graphs. The trees emerging from the Connes{Mosovii Hopf algebra aredeorated by spaetime indies (three for the root) whereas in QFT the deora-tion is a label for divergent Feynman graphs without subdivergenes. Althoughthe operators Æ are invariant under permutation of the indies after the omma,for instane Ækji;lm = Ækji;ml, see (11), this symmetry is lost on the level of individualtrees. That leads us to speulate that the sum of Feynman graphs aording to7



the olletion of rooted trees to Æ's has more symmetry than the individual Feyn-man graphs. This should be heked in QFT alulations. Another interpretationwould be the observation from (16)� kji� l� m + � kji�� AA� l � m� � kji� m� l � � kji�� AA� m � l = 0 ; (21)whih ould possibly be regarded as a relation between Feynman graphs similarto those derived in [17℄. Aording to a private ommuniation by Kreimer, (21)is satis�ed in QFT for the leading divergenes, as it an be derived from se.V.C in [18℄. For non-leading singularities there will be (probably systemati)modi�ations.In mathematis, Connes and Kreimer extended the investigation of the om-mutative Hopf subalgebra H1 in [3℄ to the level of individual trees [5℄. Theyshowed that the Hopf algebra of rooted trees HR is the solution of a universalproblem in Hohshild ohomology. We reall [3℄ that H1 is the dual of the en-veloping algebra of the Lie algebra L1 of formal vetor �elds on R vanishing toorder 2 at the origin, and that H1 itself is isomorphi to the Hopf algebra ofoordinates on the group of di�eomorphisms of R of the form  (x) = x + o(x).By analogy, Connes and Kreimer regard HR as the Hopf algebra of oordinateson a nilpotent formal group G whose Lie algebra L1 they sueed to ompute.This group was reently found to be related to the Buther group in numeri-al analysis [6℄. It will ertainly ontain preious information for quantum �eldtheory beause the antipode in HR governing renormalization is the dual of theinversion operation in G. Renormalization seems to provide a new mathematialalulus whih generalizes di�erential aluli.5 A toy model: iterated integralsIn the spirit of Kreimer [16℄ we are going to give the reader a feeling for renormal-ization by onsidering a toy model. The toy model is given by iterated divergentintegrals, in lose analogy to QFT. The only di�erene is that the integrals arevery simple to ompute.Let us take the integral �1(t) = Z 1t dp1p1+�1 ; (22)whih diverges logarithmially for � ! 0. We an regard it as the analytiexpression to the Feynman graph� = �����PPPPP
8



To a Feynman graph with subdivergene there orresponds an iterated integral:�� = ������PPPPPP  ! �2(t) = Z 1t dp1p1+�1 Z 1p1 dp2p1+�2 ;��� = ������PPPPPP  ! �3(t) = Z 1t dp1p1+�1 Z 1p1 dp2p1+�2 Z 1p2 dp3p1+�3 : (23)Clearly, these iterated integrals form a Hopf algebra of rooted trees withoutside branhes, and the oprodut is given by the admissible uts of the trees.The renormalization of these integrals requires an algebra homomorphisms �a oniterated integrals, whih represents a ertain way of evaluation under \a set ofonditions a". For our purpose we take�a�Yi2I �i(t)� :=Yi2I �i(a) ; (24)the evaluation of the integrals at t = a. In QFT, a should be regarded as anenergy sale, and �a evaluates the Feynman graphs at this sale.The essential idea [16℄ is now to onsider the onvolution produt of thesehomomorphisms, de�ned via the Hopf algebra struture:(� ?  )(h) := m Æ (�
  ) Æ�(h) ; h 2 H : (25)The antipode axiom an be written in the ompat form S?id = 1 ". It is howevermore interesting to onsider the following modi�ation:"a;b = Sa ? idb := (�a Æ S) ? �b : (26)Due to the Hopf algebra properties, the "a;b satisfy a groupoid law. We give thederivation in full detail, using 1) assoiativity of m and oassoiativity of �, 2)the antipode axiom, 3) homomorphism property of �, 4) �Æ1� = 1�, 5) the ounitaxiom:"a;b ? "b; = m Æ ��m Æ �Sa 
 �b) Æ���
 �m Æ �Sb 
 �) Æ���� Æ�= m Æ (m
m) Æ �Sa 
 �b 
 Sb 
 �� Æ (�
�) Æ�= m Æ (id
m) Æ (m
 id
 id) Æ �Sa 
 �b 
 Sb 
 �� ÆÆ(�
 id
 id) Æ (id
�) Æ�=1 m Æ (m
 id) Æ (m
 id
 id) Æ �Sa 
 �b 
 Sb 
 �� ÆÆ(�
 id
 id) Æ (�
 id) Æ�= m Æ (�m Æ (m
 id) Æ (Sa 
 �b 
 Sb) Æ (�
 id) Æ��
 �) Æ�=1 m Æ (�m Æ (id
m) Æ (Sa 
 �b 
 Sb) Æ (id
�) Æ��
 �) Æ�9



= m Æ (�m Æ fSa 
 �m Æ (�b 
 �b) Æ (id
 S) Æ��g Æ��
 �) Æ�=2;3 m Æ (�m Æ fSa 
 ��b Æ 1��g Æ��
 �) Æ�=4 m Æ (�m Æ (Sa 
 id) Æ (id
 1�) Æ��
 �) Æ�= m Æ (m
 id) Æ (Sa 
 id
 �) Æ (id
 1�
 id) Æ (�
 id) Æ�=1;4 m Æ (id
m) Æ (Sa 
 � 
 �) Æ (id
 1�
 id) Æ (id
�) Æ�=3 m Æ (Sa 
 �) Æ (id
 �m Æ (1�
 id) Æ��) Æ�=5 m Æ (Sa 
 �) Æ�= "a; :We apply now the "a;b operation to the divergent integrals to ompute"a;b(�i(t)) = �ia;b: �1a;b = m Æ (�a 
 �b) Æ (S 
 id) Æ�(�)= m Æ (�a 
 �b) Æ �� � 
 1 + 1
 �)= ��1(a) + �1(b) = Z ab dpp1+� :The result �1a;b is �nite for � ! 0 and vanishes for a = b. We proeed with thenext integral, using the de�nition of � as given by the admissible uts and S asgiven by all uts (with sign from the number of elementary uts) of the graphs:�2a;b = m Æ (�a 
 �b) Æ (S 
 id) Æ�� �� �= m Æ (�a 
 �b) Æ �S� �� �
 1 + S(�)
 �+ 1
 �� �= m Æ (�a 
 �b) Æ �� �� 
 1 + � � 
1� � 
 �+ 1
 �� �= ��2(a) + �1(a)�1(a)� �1(b)�1(a) + �2(b)= �� Z 1a Z 1p1 + Z 1a Z 1a � Z 1b Z 1a + Z 1b Z 1p1 � dp1p1+�1 dp2p1+�2= Z ab dp1p1+�1 Z ap1 dp2p1+�2 :Again, the result is �nite. Note that in � 
 � the root whih stands for the p1integration is the right vertex and hene is evaluated at t = b. The omputationfor �3a;b is left as an exerise.From the identity "a;b ? "b; = "a; and the oprodut rule given by admissibleuts of a tree without side branhes we get Chen's Lemma [19℄:�ia; = �ia;b + �ib; + i�1Xj=1 �ja;b�i�jb; : (27)10



For i = 2 it readsZ a dp1p1 Z ap1 dp2p2 = Z ab dp1p1 Z ap1 dp2p2 + Z b dp1p1 Z bp1 dp2p2 + Z b dp1p1 Z ab dp2p2 :The purpose of these onsiderations was the renormalization of a QFT. Letus assume a theory where all ontributions to the oupling onstant ome fromthe following ladder diagrams:���HHH� = ���HHH + ������PPPPPP + ������PPPPPP + ������PPPPPP + : : :� = �0 + �1 + �2 + �3 + : : :Formally, this series evaluates to in�nity, but this in�nity an be renormalized toa �nite but undetermined value. That value has to be adapted to experiment andyields a normalization ondition. At some energy sale a we are allowed to �xthe oupling onstant �a = �0(a). But suppose we measure now the value of theoupling onstant at another energy sale b. The normalization ondition is �xedso that in the diagrams we have to use in all verties the normalized ouplingonstant ��HH = �a. Sine the renormalization removing the in�nities was saledependent, the loop diagrams �i now give a ontribution, and this ontributionis preisely �ia;b. Hene,�b = �a + �1a;b + �2a;b + �3a;b + : : : (28)Assuming the series onverges, we get a �nite shift of the oupling onstant. Inrealisti quantum �eld theories, the agreement of this value with experiment isoverwhelming. In partiular, in �rst order we reover the familiar logarithmienergy dependene of the oupling onstant. We also learn from (28) that onean ompletely avoid talking about in�nities.As it is lear from our model, the running oupling onstants resulting fromrenormalization are governed by the Hopf algebra struture together with theonvolution produt. The Hopf algebra struture not only produes the ombi-natoris of the forest formula, it also allows to ompare di�erent renormalizationshemes, whih arise from eah other by a �nite re-normalization. The theory isonsistent without a preferred sale or preferred renormalization sheme. Theyare always related by the onvolution identity "a; = "ab ? "b, where a; b;  standfor parameterizations of di�erent renormalization shemes. Appliations of theseideas to QFT alulations are starting [18℄.AknowledgementsI am grateful to the organizers of the Hesselberg'99 onferene, Florian Shek,Harald Upmeier and Wend Werner, for the invitation and the possibility topresent these ideas. It is a pleasure to thank my olleagues Bruno Iohum,Thomas Krajewski, Serge Lazzarini, Thomas Sh�uker and Daniel Testard forollaboration and numerous disussions. Finally, I would like to thank AlainConnes and Dirk Kreimer for important advie at various stages of my study ofthe Hopf algebras. 11
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