Prof. Dr. R. Wulkenhaar Dr. R. Brüske

WS 08/09

Übungen zur Mathematik für Physiker III

Abgabe: Donnerstag, 30.10.08, bis 14h00 in den Briefkästen

Blatt 2

Aufgabe 1. a) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ erklärt durch

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & \text{sonst} \end{cases}$$

Zeigen Sie: f ist stetig.

b) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ erklärt durch

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & \text{sonst} \end{cases}$$

Wo ist f stetig?

Aufgabe 2. Man untersuche, ob die folgenden Mengen X im \mathbb{R}^2 offen (abgeschlossen) sind

- (a) $\{(x,y) \in \mathbb{R}^2 : x \in \mathbb{R} \setminus \{0\}, y = \sin \frac{1}{x}\} \cup \{(0,0)\}$
- (b) $\{(x,y) \in \mathbb{R}^2 : x^2 < |y|\}.$

Aufgabe 3. Es sei (X, d) ein metrischer Raum und $f, g: X \to \mathbb{R}$ stetig. Zeige:

- (a) $\{x \in X : f(x) = g(x)\}\$ ist abgeschlossen.
- (b) $\{x \in X : f(x) \neq g(x)\}\$ ist offen.

Aufgabe 4. Es seien X,Y metrische Räume, $K\subset X$ eine kompakte Teilmenge und $y\in Y$. Sei $W\subset X\times Y$ offen mit $K\times\{y\}\subset W$.

Zeige: Es gibt offene Mengen $U \subset X$ und $V \subset Y$ mit $K \times \{y\} \subset U \times V \subset W$.